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We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF

type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the

potential function the theory is a deformation of (complex) general relativity and electromagnetism, and

describes just two propagating polarizations of the graviton and two of the photon. When gravity is

switched off the theory becomes the usual nonlinear electrodynamics with a general structure function.

The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining

potential to zero, but for any generic choice of the potential the theory is indistinguishable from Einstein-

Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study

the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.
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I. INTRODUCTION

In the seventies Plebanski proposed [1] a reformulation
of general relativity where the basic dynamical object was
taken to be a collection of two-forms satisfying certain
algebraic constraints. Essentially the same formulation was
rediscovered a decade later via a completely different path
(canonical transformation on the phase space of GR) by
Ashtekar [2]. A relation between the new Hamiltonian
formulation [2] and Plebanski’s theory was elucidated in
[3] and works that followed, in particular [4]. These devel-
opments have made it clear that general relativity can be
formulated as a theory whose phase space is that of pairs
(connection, canonically conjugate electric field), i.e. as a
gauge theory. This immediately suggested that it might be
possible to unify gravity with other interactions by consid-
ering a version of Plebanski-Ashtekar theory written for a
gauge group larger than (complexified) SU(2) that gives
GR. This unification program has been pursued in [5–7] at
the level of the Hamiltonian formulation and in [8] at the
covariant level. The almost unknown work [8] is particu-
larly impressive for it shows how a Plebanski-type
Lagrangian for the group UCð2Þ ¼ GLð2;CÞ describes
(complexified) unified Einstein-Maxwell theory. The real
theory can then be extracted by imposing suitable reality
conditions.

A few years ago one of us has proposed [9] a class of
gravity theories that can be thought of as deformations of
(complexified) GR in that the new theories continue to
describe, as general relativity, just two propagating DOF.
These gravity theories are most naturally formulated using
a Plebanski-type Lagrangian where the constraint term for
the two-form field is replaced by a certain potential term,
see below. The idea of these deformations is one familiar
from e.g. the relation between the scalar field �I theory
with a Mexican hat potential and the nonlinear sigma
model. Here, instead of constraining �I to lie on the
sphere ð�IÞ2 ¼ const, which gives the nonlinear sigma

model, one can allow the ð�IÞ2 component of the field
to fluctuate but give it a large mass. The original theory
with the constraint ð�IÞ2 ¼ const is then recovered in the
limit when this mass is sent to infinity. Similarly, in the
context of theories [9] the fields that were set to zero by
the constraints of Plebanski theory are allowed to fluctuate
but these fluctuations are weighed by a potential. The
original theory corresponding to GR is recovered in the
limit of an infinitely steep potential (or at low energies).
However, in the gravitational case there is one fundamen-
tal difference from the scalar field/nonlinear sigma model
relationship: replacing the Plebanski constraint term by a
potential does not introduce any new propagating degrees
of freedom. This occurs because the fields that are al-
lowed to fluctuate do not have kinetic terms and are thus
nondynamical, see e.g. [10] for a further discussion of this
point.
As it often happens, the class of theories [9] has been

arrived at without knowing that it has been considered in
the literature previously. Thus, the same class of theories
(but in a rather different ‘‘pure connection’’ formulation)
was described and studied a decade earlier in [11] and
following works by Bengtsson and Peldan.
The unification proposal in the context of Plebanski-

type theories [9] has been studied in [12] and more
recently in [13]. These references studied the unification
that enlarges the gauge group of gravity formulated as a
real group SO(1,3) Plebanski-type theory [4]. However, in
this case, once the Plebanski constraint term is replaced
by a potential, additional propagating modes get intro-
duced, see [14] and a more recent explicit description in
[15]. Thus, if one is to avoid extra propagating modes
(with some of them with wrong sign kinetic terms), there
is no choice but to continue working in the chiral (and
complex) context of the original Plebanski theory [1]. The
unification proposal has been studied in this setting in a
recent paper by two of us [16].
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The aim of the present paper is to continue the study of
unified Gravity-Yang-Mills theories of BF type. Here we
consider a particularly simple case when the underlying
gauge group is UCð2Þ ¼ GLð2;CÞ. We obtain a simple
unified gravi-electromagnetic theory, and our aim is to
shed some light on its properties. To this end we first
look at the pure electromagnetic sector of the model.
This is obtained when the gravitational interactions are
switched off by setting the gravitational fields to their
Minkowski spacetime values. The resulting theory turns
out to be just the most general nonlinear electrodynamics
with the Lagrangian being an arbitrary function of two
invariants E2 � B2, EB. Such models have been studied
in the literature in the past, see in particular [17] and works
by Plebanski and coauthors, including [18]. The usual
Maxwell Lagrangian can be obtained in a limit when
some parameters of the defining function are sent to zero.

This behavior of the theory in the purely electromagnetic
setting suggests a useful analogy for what happens in the
case of deformations of pure GR [9]. Thus, the deformation
of Einstein’s GR to a more general class of theories [9] can
be seen to be analogous to the deformation of Maxwell’s
theory to a general class of nonlinear electrodynamics
theories. Indeed, in the Maxwell case the deformation to
a nonlinear electrodynamics theory consists in adding to
the Lagrangian all possible invariants constructed from the
field strength. Similarly, the gravitational Lagrangian that
corresponds to deformations of GR [9] is given by a rather
general expansion in invariants constructed from the cur-
vature, see [19]. The arising gravitational Lagrangians are
not completely general though, as the number of propagat-
ing DOF described by them is unchanged as compared to
GR, a nontrivial property that would not hold for a random
Lagrangian constructed from curvature invariants.

Returning to our unified gravi-electromagnetic theory,
the general count of the degrees of freedom given in [16]
establishes that it is a deformation of both Einstein and
Maxwell theory with the key property that the number of
propagating DOF described by this model is unchanged as
compared to Einstein-Maxwell. The deformation is con-
trolled by a certain potential function, see below, and if one
so wishes can be switched off in a continuous fashion.
Moreover, as we shall explain below, the deformation is
only of significance at Planckian energies, while for low
energies the theory with any generic choice of the defining
potential is indistinguishable from Einstein-Maxwell.

We will pay particular attention to the issue of how the
real physical theory is extracted from an originally com-
plex formulation, the issue that was only touched upon in
[16]. Our present analysis of the GLð2;CÞ model suggests
that the prescription for dealing with reality conditions that
was advocated in [16] must be changed. In particular, the
somewhat unnatural step of taking the real part of the
action that was used in [16] in an essential way is now
eliminated altogether. This implies that the analysis of the

Yang-Mills sector given in [16] needs to be changed. This
will be presented elsewhere.
Another possible way to think about the theories that we

consider in this paper is that they arise by replacing the
constraint term of the theory studied by Robinson [8] by a
potential term. Our goal is to better understand the physics
of this type of unified theories by considering the simplest
setting with a clear physical interpretation.
Our final remarks are as follows. The natural question to

confront this work with is: Why should one be interested in
any deformations of Einstein-Maxwell theory? Indeed, this
is a well-tested theory correctly describing our world in a
vast range of scales. The first motivation is aesthetic: The
two theories are quite different—one is about spacetime
metric, the other is about a U(1) connection—and if there
exists a reformulation that puts them within the same
framework (at the price of allowing both theories to get
deformed at very high energies) it is certainly worth
studying.
The second motivation has to do with nonrenormaliz-

ability of GR. The latter implies that GR cannot be the
gravity theory relevant at Planck energies. The hope is then
[9] that by sufficiently enlarging the class of gravitational
theories one can obtain a class containing the sought
ultraviolet completion of Einstein’s theory. We emphasize
that this differs from the usual expectation existing in the
particle physics community, which is that some new DOF
(possibly an infinite number of them) become relevant at
Planck energies, and resolve the high-energy problems of
Einstein’s theory. In contrast, the scenario envisaged by our
approach is that it is simply the dynamics that changes as
one goes to the UV, while the dynamical content of the
theory (i.e. the number of propagating modes) remains
unchanged. This can be seen to be a variant of the asymp-
totic safety scenario [20] for quantum gravity.
In the case of a unified Einstein-Maxwell theory the

motivation is the same. Thus, similar to the gravitational
sector scenario, the idea is that it is only the dynamics of
the Maxwell part of the theory that is to change in the UV,
while the dynamical content remains intact. This is exactly
what is achieved by our unified model—our deformations
of the Einstein-Maxwell theory leave the propagating
mode content of the theory intact, only the dynamics is
changed (in the UV region). The hope is then that this
change in the dynamics may capture the nontrivial new
physics occurring at high energies. We note that this mo-
tivation is similar to the original motivation behind the
Born-Infeld nonlinear electrodynamics [21].
The organization of the paper is as follows. The next

section describes the class of theories that we are going to
study in this paper. In Sec. III we switch off the gravita-
tional sector and study the resulting nonlinear electrody-
namics. In Sec. IV we switch the gravitational force back
on and study the spherically-symmetric solution of the
theory. We conclude with a discussion.
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II. THE CLASS OF THEORIES

In this section we briefly describe the class of theories
that we are going to study for an arbitrary complex Lie
group G, and then specialize to the case G ¼ GLð2;CÞ at
hand. A more detailed discussion of the general G case can
be found in [16]. One first studies a complex theory on a
4-dimensional complexified manifold, with a Lagrangian
depending holomorphically on all the fields. At a later
stage reality conditions are imposed to extract a physical
real sector.

A. The Class of Theories for a General Gauge Group

The main dynamical field of the theory is a Lie-algebra
valued two-form BI, where the index I is a Lie-algebra one.
The other field is a connection one-form AI. To write down
the action, one needs to choose an invariant bilinear form
on the Lie-algebra of G. When G is not simple, this is not
unique, and we assume that a choice has been made. Let us
denote this form by gIJ. The action of the theory is then of
the so-called BF type, with an extra potential term for the B
field:

S½B; A� ¼ i
Z

gIJB
I ^ FJ � 1

2
VðBI ^ BJÞ: (1)

Here i ¼ ffiffiffiffiffiffiffi�1
p

is a factor introduced for future conve-
nience and FI is the curvature two-form of the connection
AI. The potential term is nonstandard and needs explana-
tion. The potential V is a G-invariant, holomorphic, and
homogeneous function of order one in its arguments. Thus,
since its argument is a matrix-valued 4-form XIJ ¼ BI ^
BJ, we have the following properties of V: VðgXgTÞ ¼
VðXÞ,8g 2 G; Vð�XÞ ¼ �VðXÞ. The homogeneity prop-
erty is important, for it makes the potential term a scalar-
valued 4-form on the manifold, which can be integrated to
obtain the action.

A somewhat more practical, but less compact form of
writing the action is to introduce the density weight one
matrix:

~h IJ: ¼ 1

4
~�����BI

��B
J
��: (2)

Then

VðBI ^ BJÞ ¼ �Vð~hIJÞd4x; (3)

where the homogeneity property makes the right-hand-side
to be of the right density weight to be integrated over the
manifold. We use conventions: dx� ^ dx� ^ dx� ^ dx� ¼
�~�����d4x, which explains the minus sign in (3). The
potential function is then that of ratios of appropriate
powers of all the invariants that one can construct from
~hIJ, see below.
The field equations that follow from (1) are as follows.

Varying the action with respect to the connection one gets

DAB
I ¼ 0; (4)

whereDA is the covariant derivative with respect to A. This
equation can often be interpreted as an equation allowing
one to find the connection in terms of derivatives of the
two-form field. Varying the action with respect to BI one
gets

gIJF
J ¼ 1

2

@V

@BI ; (5)

which, once AI is expressed in terms of derivatives of BI,
can be interpreted as a second-order differential equation
for the two-form field. To give meaning to the right-hand-
side of this equation we use the parametrization of the
potential (3). The field equation becomes

gIJF
J
�� ¼ @V

@~hIJ
BJ
��: (6)

The derivative on the right-hand-side is now the usual
derivative of a function of a matrix and can be computed
without any difficulties.

B. The Case of G ¼ GLð2;CÞ
Let us now specialize to the case of interest G ¼

GLð2;CÞ. The Lie-algebra in this case is 4 (complex)
dimensional and splits g ¼ soCð3Þ � uCð1Þ. Up to rescal-
ings, there is a unique invariant bilinear form in each factor.
Thus, if we split I ¼ ði; 4Þ, where i ¼ 1, 2, 3 is a soCð3Þ ¼
suCð2Þ Lie-algebra index, then the most general bilinear
form is

hX; Yi ¼ �1	ijX
iYj þ �2X

4Y4; (7)

where Xi, Yi, X4, Y4 are components of XI, YI and 	ij is the

usual invariant form on soCð3Þ. The curvature components
are

Fi ¼ dAi þ 1

2
�ijkA

j ^ Ak; F4 ¼ dA4; (8)

where �ijk are the soCð3Þ structure constants. The first BF
term of the action then takes the following form:

i�1

Z
	ijB

i ^ Fj þ i�2

Z
B4 ^ dA4: (9)

Since the normalizations of the two-form fields are not yet
fixed we can freely absorb the constants �1;2 into the fields,

and we shall do so.
Let us now discuss the potential term. Let us introduce

the following quantities:

~hij :¼ 1

4
~�����Bi

��B
j
��; ~�i :¼ 1

4
~�����Bi

��B
4
��;

~c :¼ 1

4
~�����B4

��B
4
��: (10)

The matrix ~hIJ is then
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~h IJ ¼ ~hij ~�j

~�i ~c

 !
: (11)

The G invariants of this matrix are1

Tr ð~hÞ; Trð~h2Þ; Trð~h3Þ; ð ~�Þ2; ~c ; (12)

where the traces of powers of the matrix ~hij are computed

using the invariant metric 	ij, and ð ~�Þ2 ¼ 	ij
~�i ~�j. We can

take any of these quantities as the basic one, and construct
ratios of the other quantities and powers of the basic one to
form quantities invariant under rescalings of BI. It is

convenient to choose as the basic quantity Trð~hÞ. The
potential function can then be written as

Vð~hIJÞ ¼ Trð~hÞ
3

f

�
Trð~h2Þ
ðTrð~hÞÞ2 ;

Trð~h3Þ
ðTrð~hÞÞ3 ;

ð ~�Þ2
ðTrð~hÞÞ2 ;

~c

Trð~hÞ
�
;

(13)

where f is now an arbitrary function of its 4 arguments.
The full action, written in terms of components of

forms, is

� i
Z

d4x

�
1

4
~�����ð	ijB

i
��F

j
�� þ B4

��F
4
��Þ � 1

2
Vð~hIJÞ

�
:

(14)

Varying this with respect to the two-form field components
one can easily obtain the field equations. It is most compact
to write them using the form notations:

Fi ¼ @V

@~hij
Bj þ @V

@ð ~�Þ2
~�iB4; (15)

dA4 ¼ @V

@ð ~�Þ2
~�iBi þ @V

@ ~c
B4; (16)

where all partial derivatives of the potential can be ob-
tained in an elementary way from (13). We note that it
might appear that a factor of 2 is missing from the last term
on the right-hand-side of the first equation, and the first
term of the second. However, let us carefully compute the
variation. We have, dropping unessential constant factors
and the integral sign,

1

2
~�����ð	Bi

��F
i
�� þ 	B4

��F
4
��Þ

¼ @V

@~hij
	~hij þ @V

@ð ~�Þ2 2
~�i	 ~�i þ @V

@ ~c
	 ~c : (17)

Now, computing the variations on the right-hand-side from
the definitions (10) we have

	~hij ¼ 1

2
~�����	Bði

��B
jÞ
��;

	 ~�i ¼ 1

4
~�����ð	Bi

��B
4
�� þ Bi

��	B
4
��Þ;

	 ~c :¼ 1

2
~�����	B4

��B
4
��:

We now substitute these into (17) and equate to zero the
coefficients in front of independent variations 	Bi

��, 	B
4
��.

We get precisely (15) and (16).
The equations obtained by varying the action with

respect to the connection components are

dBi þ �ijkA
j ^ Bk ¼ 0; dB4 ¼ 0: (18)

The first equation here can be solved for the components of
Ai in terms of the derivatives of Bi. One then substitutes the
solution into (15) and obtains a second-order differential
equation for Bi involving also B4. The latter is found by
integrating dB4 ¼ 0, and then the connection A4 is found
from (16). Below we shall see how this procedure works
explicitly by working out the spherically-symmetric solu-
tion of our theory.
We also note that the equations of our theory are very

similar to those of the unified theory [8], with the main
difference being that the constraints Bi ^ Bj � 	ij and
Bi ^ B4 ¼ 0 of [8] are absent in our case. Related to this
is the absence on the right-hand-side of the Lagrange
multipliers that imposed those constraints. Their role is
now played by the derivatives of the potential function.
This is precisely analogous to what happens in the case of
deformations of pure gravity, where the constraint term in
the action is replaced by a potential term, and the Lagrange
multipliers on the right-hand-side of field equations for Bi

get replaced by @V=@~hij. Thus, the theory that we are
considering is a deformation of the Einstein-Maxwell the-
ory of precisely the same type as the SLð2;CÞ-based theory
with a potential is a deformation of Einstein’s GR. Similar
to the case of pure gravity, we shall see that it is possible to
send some of the parameters of the potential to infinity to
recover the usual Einstein-Maxwell theory. To understand
how this happens, it is useful to first switch off the gravi-
tational force, and consider what the theory under consid-
eration becomes as a purely electromagnetic theory.

1This list does not contain all independent G invariants. For
example, one can also take ~�i ~hij ~�j, which, for a general ~hij, ~�i,
is functionally independent from the invariants we consider. At
the same time, for situations studied in this paper (Minkowski
background, spherical symmetry) allowing the defining function
to depend on these more general invariants does not bring
anything new. However, one should keep in mind that the
parameterization of the defining potential considered in this
article, while sufficient for our purposes, is not the most general
possible.
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III. NONLINEAR ELECTRODYNAMICS

A. Version of Nonlinear Electrodynamics

In this section we switch off the gravitational part of the
theory by fixing the soCð3Þ ¼ suCð2Þ part of the two-form
field to be given by

Bi ¼ �i ¼ idt ^ dxi � 1

2
�ijkdx

j ^ dxk; (19)

which corresponds to the Minkowski spacetime back-
ground. We further expand the B4 field into the basis of
self- and anti-self-dual two-forms:

B4 ¼ �i�i þ�i ��i

¼ ð�i þ�iÞidt ^ dxi þ ð�i ��iÞ 1
2
�ijkdxj ^ dxk;

(20)

where �i and �i are complex functions, and ��i are anti-
self-dual two-forms

�� i ¼ idt ^ dxi þ 1

2
�ijkdx

j ^ dxk: (21)

We now compute the action (14) on this field configu-
ration. Using �i ^ �j ¼ �2i	ijd4x we get

S½�;�; A4� ¼
Z

d4xðð�i�i�� ��i ��i��Þ@½�A4
��

þ fð�2;�2 ��2ÞÞ; (22)

where f is an arbitrary function of its two arguments. The
action depends on fields �, �, A4 that are at this stage all
complex. In anticipation of the reality conditions to be
imposed on the connection A4, let us rewrite the
Lagrangian in terms of a new connection A:

A4 ¼ iA: (23)

We will later require this connection to be real, with the
original A4 thus being an uð1Þ connection. Using the ex-
plicit form of (19) and (21) we have

S½�;�;A� ¼
Z

d4xðð�i ��iÞð@0Ai � @iA0Þ
� ið�i þ�iÞ�ijk@jAk þ fð�2;�2 ��2ÞÞ:

(24)

It is now clear that the combination�i ��i plays the role
of the momentum conjugate to the spatial projection of the
connection A:

E i :¼ �i ��i; (25)

and the combination

Q i :¼ ið�i þ�iÞ (26)

is nondynamical, to be eliminated via its field equation.
The action in the Hamiltonian form thus becomes

S½E;Q;A� ¼
Z

d4xðEi@0Ai þA0@iE
i �QiBi

þ fððE2 �Q2Þ=4þ ði=2ÞEQ; iEQÞÞ; (27)

where we have introduced the magnetic field

B i :¼ �i
jk@jAk: (28)

Once the field Qi is eliminated by solving its field equa-
tion, we get the nonlinear electrodynamics action in the
Hamiltonian form

S½E;A� ¼
Z

d4xðEi@0Ai þA0@iE
i �HðE; iBÞÞ; (29)

whereH is the Legendre transform of the original potential
function f with respect to the Q variable. Below we will
see how this procedure works explicitly by working out the
Lagrangian for the function f expanded in powers of its
arguments. With the Hamiltonian H being a Legendre
transform of an arbitrary Lorentz-invariant function, this
is the most general nonlinear electrodynamics Lagrangian,
see e.g. [17,18]. The only difference with the Lagrangians
typically considered in the literature is that in our case the
dependence on the invariant EB is with a factor of

i ¼ ffiffiffiffiffiffiffi�1
p

in front, and so it is in general complex even
after the reality condition A, E 2 R is imposed. The
presence of this extra imaginary unit in the action makes
the action invariant under a simultaneous operation of
parity inversion and complex conjugation, similar to what
happens in the case of the pure gravitational modified
theory, see [19]. This is a very interesting feature of the
class of theories considered, whose interpretation is still to
be understood. In contrast, the nonlinear electrodynamics
real Hamiltonians containing odd powers of EB are, in
general, parity violating (if the coefficients in front of these
terms are taken to be usual scalars). It is however clear that
the same constraint that is imposed on the Hamiltonian of
the usual nonlinear electrodynamics to have a parity-even
theory in our case will produce a real Lagrangian. This will
be our strategy for dealing with reality conditions below.
We leave the more interesting case of non-Hermitian
Hamiltonians containing odd powers of EB (and its
physical interpretation) to further research.
Now, to get a better insight into this theory let us con-

sider its linearization, in which only terms quadratic in the
fields are kept.

B. Linearized Theory

Unlike considerations of the previous subsection where
we have derived the action in the Hamiltonian form and
kept Ei as an independent field, we will now integrate out
all fields apart from the connection and produce a more
familiar Lagrangian that depends only on the field strength.
At the linearized level we should only keep the terms
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fð2Þð�2;�2 ��2Þ ¼ �

2
�2 þ 


2
ð�2 ��2Þ (30)

in the expansion of the function f in Taylor series, where �
and 
 are constant parameters. Once this is done, we can
integrate out the fields �i, �i from the action. The solu-
tions for �i, �i are given by

�i¼� 1

�þ

�i��@½�A4

��; �i¼� 1



��i��@½�A4

��; (31)

and the resulting action is

S½A4� ¼ � 1

2

Z
d4x

�
1

�þ 

ð�i��@�A

4
�Þ2

� 1



ð ��i��@�A

4
�Þ2
�
: (32)

Using the identities

�i���i�� ¼ 2��½����� � i�����;

��i�� ��i�� ¼ 2��½����� þ i�����
(33)

that can be checked by an elementary computation we get

S½A4� ¼ 1

4

�
1



� 1

�þ 


�Z
d4xF4��F4

��

þ i

8

�
1



þ 1

�þ 


�Z
d4x�����F4

��F
4
��; (34)

where F4
�� ¼ @�A

4
� � @�A

4
�. Thus, modulo the (purely

imaginary) second term that is a total derivative, we get
the following action:

S½A4� ¼ �

4
ð�þ 
Þ
Z

d4xF4��F4
��: (35)

Let us note that very little in the above analysis depends
on the fact that the gravitational part of the two-form field
was chosen to be (19). One can see that the procedure of
integrating out the B4 two-form field can be carried out in
the same way whenever Bi ^ Bj � 	ij. Thus, whenever the
gravitational background is chosen to be ‘‘metric’’, in the
sense that the Plebanski constraint Bi ^ Bj � 	ij is satis-
fied, it can be seen that the linearized electromagnetic
Lagrangian is just the Maxwell one, with the metric being
the one defined by declaring the two-forms Bi to span the
space of self-dual two forms. This means that the linear-
ized electromagnetic theory is the usual Maxwell electro-
dynamics not only when considered around the Minkowski
spacetime, but for any fixed metric background. On the
other hand, when the condition Bi ^ Bj � 	ij is not satis-
fied (nonmetric case using the terminology of [9]), the
linearized electromagnetic Lagrangian is different from
that of Maxwell theory. This means that on a nonmetric
background light no longer has to follow geodesics of the
metric defined by Bi. Of course, such nonmetric back-
grounds are only of significance in the high-energy regime
(small distances). So, we can safely ignore them for low

energies. Still, it would be interesting to study the effects of
nonmetricity on light propagation; we leave this to further
research.

C. Linearized Reality Conditions

Assuming (for simplicity) that both �, 
 are real and
positive, we easily deduce the linearized level reality con-
ditions that must be imposed on our fields. Thus, the
condition that A4 is purely imaginary, which is appropriate
if we want to think of A4 as the uð1Þ component of a
connection field, gives the correct Lorentzian signature
action. Thus, for

A4 ¼ iA; A 2 R; (36)

we get

S½A� ¼ � 1

4g2
uð1Þ

Z
d4xF��F��; (37)

where F�� ¼ @�A� � @�A� is the fields strength and the

coupling constant is

g2
uð1Þ ¼ 
ð�þ 
Þ=�: (38)

We now note that, if desired, we can obtain the [8]
version of the electrodynamics in which the field B4 is
purely anti-self-dual by sending � ! 1. Indeed, as clear
from (31), in this limit �i that describes the self-dual part
of B4 goes to zero. In this limit the coupling constant of our
Maxwell theory becomes g2

uð1Þ ¼ 
. Thus, the theory

considered in [8] is easily recovered.
When � ! 1 the two-form field B4 becomes (propor-

tional to) the anti-self-dual part of the real field strength
F��. In the case of finite � the reality conditions that B4

satisfies are much more involved. We get

iB4
�� ¼ �þ 2



ð�þ 
ÞF�� þ �


ð�þ 
Þ
i

2
���

��F��: (39)

The structure arising is typical for the theories under
consideration in that the part of the expression that carries
the ����� tensor contains an additional factor of i as

compared to the part that does not contain �����.

D. Nonlinear Electrodynamics

Above we have analyzed the theory with the potential
function f truncated to its quadratic terms in the quantities
�2, �2. To understand the structure of the full nonlinear
theory we expand the potential and keep higher powers of
�2, �2. Thus, let us see what happens at the next order,
which is quartic (Lorentz invariance prevents us from
having any cubic terms). The quartic order part of the
potential can be parametrized as

fð4Þð�2;�2��2Þ¼�

4
ð�2Þ2þ	

2
�2�2þ

4
ð�2Þ2; (40)
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where �, 	 and  are constant parameters. One can now
vary the action (22) with respect to �i, �i and solve for
these fields perturbatively in powers of A4. We get for the
cubic order terms:

�ð3Þi¼ 1

ð�þ
Þ2�
i��@�A

4
�

�
�

ð�þ
Þ2 ð�@A
4Þ2þ 	


2
ð ��@A4Þ2

�
;

�ð3Þi¼� 1


2
��i��@�A

4
�

�
	

ð�þ
Þ2 ð�@A
4Þ2þ 


2
ð ��@A4Þ2

�
;

(41)

where we have introduced a compact notation

ð�@A4Þ2 :¼ �i��@�A
4
��

i��@�A
4
�

¼ 1

2
F4��F4

�� � i

4
�����F4

��F
4
��; (42)

and similarly for ð ��@A4Þ2. Now we can compute the
quartic order Lagrangian, with the result being

Lð4Þ ¼ �

4ð�þ 
Þ4 ðð�@A
4Þ2Þ2 þ 	

2
2ð�þ 
Þ2 ð�@A
4Þ2

� ð ��@A4Þ2 þ 

4
4
ðð ��@A4Þ2Þ2: (43)

This can be expanded in terms of the usual field strength
invariants. Thus, using

ð�����F4
��F

4
��Þ2 ¼ �8ðF4��F4

��Þ2 þ 16F4�
� F4�

� F4�
� F4�

� ;

(44)

we get the following Lagrangian:

Lð4Þ ¼ 1

16
ðF4��F4

��Þ2
�

3�

ð�þ
Þ4�
2	


2ð�þ
Þ2þ
3


4

�

�1

4
F4�
� F

4�
� F4�

� F
4�
�

�
�

ð�þ
Þ4�
2	


2ð�þ
Þ2þ



4

�

� i

4
ðF4��F4

��Þð���
	F4
��F

4

	Þ

�
�

ð�þ
Þ4�



4

�
:

(45)

We can now substitute here the linearized reality condi-
tions (36) and obtain the Lagrangian for the real-valued
connection. However, we note that now, unlike what hap-
pened in the quadratic order of the theory, the imaginary
term in the Lagrangian is no longer a total derivative. Thus,
as we have already discussed above, the nonlinear action
for the real connection (36) is, in general, complex. This is
precisely similar to what happens in the case of the effec-
tive gravitational Lagrangian, see [19]. There the metric
Lagrangian that one gets from a similar BF type theory
with a potential (but in the case of G ¼ SLð2;CÞ) at cubic
order in the curvature in general contains an imaginary
term that is not a total derivative. Similar to what we are
seeing here, in the purely gravitational case it is also the
higher-order interaction term that is in general complex,

while the theory linearized around the Minkowski back-
ground does not exhibit any complexity issues. We also
note that, similar to what happens in the case [19] of pure
gravity, the imaginary term is odd under parity. Thus, the
full Lagrangian is invariant under the operation of complex
conjugation accompanied by parity inversion.

E. Reality Conditions

There are several strategies that one could follow when
facing such a non-Hermitian Lagrangian. One, advocated
in [16,19], is to impose the linearized reality conditions and
take the real part of the full nonlinear action. As was,
however, realized more recently in the context of work
[22] on the purely gravitational theory linearized around
the expanding FRW background of relevance for cosmo-
logy, this real part of the action prescription does not in
general produce a consistent theory. In the case of the FRW
background the problem arises when one considers the
gravitational waves (tensor perturbations).
Let us describe what the problem is in some more de-

tails. As in our electromagnetic considerations above, in
the purely gravitational case one starts from the complex
action and ‘‘integrates out’’ the nondynamical fields to
obtain an action that depends only on the physical metric.
The action one gets is a functional depending holomor-
phically on the complex ‘‘physical’’ fields. One has to
impose some reality conditions to extract the real action.
Since the action depends on the complex fields holomorph-
ically, one can instead consider the, say, real part of the
action, and vary it with respect to real and imaginary parts
of the fields. The arising Euler-Lagrange equations are the
same as the real and imaginary parts of the complex Euler-
Lagrange equations one obtains from the holomorphic
action (this follows from Cauchy-Riemann equations).
Thus, the real part of the holomorphic action considered
as a functional of real and imaginary parts of all the fields
carries exactly the same information as the original hol-
omorphic action and can be taken as the action for the
theory. However, this action depends on twice the number
of physical fields, and, moreover, kinetic terms for the
‘‘imaginary’’ parts of the fields are typically negative-
definite. Thus, this action describes twice the number of
propagating modes of the physical theory, and is badly
unstable. Reality conditions are needed to select a good
physical sector of the theory, which describes half the
modes of the complex sector and is void of any instability
problems. It is natural to require that the reality conditions
one imposes are some second-class constraints that cut the
dimension of the phase space by half. However, as a
consideration of simple examples shows, for an action
that is obtained as the real part of a holomorphic action,
it is in general not consistent to impose the constraint that
the field is real. The reason for this is that the condition that
this constraint is preserved in time generates a secondary
constraint, and the condition that the secondary constraint
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is preserved in time in general produces a new constraint
that is not equivalent to the original constraint of the reality
of the field. Thus, in general, requiring the field to be real
imposes more constraints than one would want. So, in
general the dynamics of the Lagrangian such as (45) (or
the real part of this Lagrangian with all fields complexified)
is not consistent with the reality condition that the physical
field is real. If one imposes this condition at some instant of
time (and arranges the momentum to be real as well), the
dynamics will in general generate an imaginary part of the
field. So, the strategy of dealing with the problem of reality
conditions for non-Hermitian Lagrangians should be more
sophisticated. We will leave any attempt at such to further
research.

For the purposes of this paper we note that, at least in our
case of nonlinear electrodynamics, we can restrict the
potential function defining the theory so that the arising
Lagrangian is real (for real connections). This is precisely
what is usually done in the context of nonlinear electro-
dynamics theories studied in the literature, where there is
typically a restriction on the class of defining functions so
that the theory is parity-invariant. Thus, in the case of our
Lagrangian (45) we can arrange the coefficients in the
expansion of the function fð�2;�2 ��2Þ in such a way
that the coefficient in the last term in (45) is zero. We can
arrange things so that no imaginary terms arise in the
higher orders of the expansion either. This will produce a
consistent theory with a real Lagrangian as far as the
electromagnetic sector is concerned. Whether a similar
prescription is possible in the gravitational sector is beyond
the scope of this paper. However, in the next section we
shall see that at least in the spherically-symmetric situation
the reality condition that the metric is real is completely
consistent.

IV. SPHERICALLY-SYMMETRIC SOLUTION

In this section we obtain and analyze the spherically-
symmetric solution of the gravi-electromagnetic theory
described above. As we have already noted above, on
nonmetric backgrounds where Bi ^ Bj � 	ij the coupling
of electromagnetism to gravity as prescribed by our theory
is different that in the Maxwell case. Thus, there are two
different ways that electromagnetism can be coupled to
deformations of GR [9]: one way is to couple the electro-
magnetic potential to the metric defined by declaring the
gravitational sector two-forms Bi to be self-dual. Such a
coupling has been studied in [23], where also the
spherically-symmetric solution was analyzed. A different
coupling is given by our theory. Thus, the spherically-
symmetric case field equations that we shall analyze are
distinct from those in [23]. We emphasize that this differ-
ence is only of relevance for very small scales (or
Planckian curvatures). For low energies (large distances)
the spherically-symmetric solutions of both [23] and this
work become indistinguishable from Reissner-Nordstrom.

A. The Spherically-Symmetric Ansatz

We start by making an ansatz for all the fields as dictated
by the symmetry. The gravitational suð2Þ sector B-fields
can be selected as in the purely gravitational case first
studied in [24]. This reference has worked in spinor nota-
tions and used a complex null tetrad. However, it is not
hard to repeat the analysis for a real tetrad for the usual
spherically-symmetric metric ansatz

ds2 ¼ �f2dt2 þ g2dr2 þ r2d�2 þ r2sin2ð�Þd�2; (46)

where as usual f, g are (real) functions of the radial
coordinate r only. The starting point of the analysis is to
construct the self-dual two-forms for this metric, see e.g.
[25] for a description of this procedure for the case of
Einstein’s GR. The modified theory ansatz is then obtained
by allowing for an extra functions of the radial coordinate
multiplying the metric B-field ansatz of the GR case. Using
the available coordinate freedom one can put the B field in
the following convenient form:

B1 ¼ bðifrdt ^ d�� gr sin�d� ^ drÞ;
B2 ¼ bðifr sin�dt ^ d�� grdr ^ d�Þ;
B3 ¼ ifgdt ^ dr� r2 sin�d� ^ d�;

(47)

where b is a function of the radial coordinate. When b ¼ 1
one gets the usual metric self-dual two-form ansatz of
relevance for Einstein’s GR, see [25]. As we already men-
tioned in the previous section, when the parameters of the
potential of the electromagnetic sector are chosen so that
the purely electromagnetic Lagrangian is real, the metric
also turns out to be real. Thus, in the spherically-symmetric
case one can assume that the metric is real from the start.
We therefore assume the functions f, g and b, as well as the
coordinate functions t, r, �, � to be real.
The ansatz that we make for the B4 two-form field is a

general combination of the ‘‘electric’’ and ‘‘magnetic’’
two-forms:

B4 ¼ �2cr2 sin�d� ^ d�þ 2ifgmdt ^ dr; (48)

where c, m are functions of r only, and the numerical
constants are introduced for future convenience. No reality
conditions on c, m are assumed at this stage.

B. B-Compatible GLð2;CÞ-Connection
We now solve

DAB
I ¼ dBI þ fIJKA

J ^ BK ¼ 0

for the connection. The gravitational suð2Þ part of this
‘‘compatibility’’ equation reads

DAB
i ¼ dBi þ �ijkA

j ^ Bk ¼ 0; (49)

which gives
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A1 ¼ � 1

bg
sin�d�; A2 ¼ 1

bg
d�;

A3 ¼ if

g

�ðbfrÞ0
bfr

� 1

b2r

�
dtþ cos�d�:

(50)

For the uð1Þ part of the compatibility equation we have
DAB

4 ¼ dB4 ¼ 0. This implies

ðcr2Þ0 ¼ 0: (51)

Note that we cannot solve this equation for A4, so we will
need to find the electromagnetic connection from another
equation. For now, we make the following spherically-
symmetric ansatz for it:

A4 ¼ iadtþ ip cos�d�; (52)

where a is, at this stage, arbitrary functions of r, and the
imaginary unit is introduced in the expectation that later
the reality condition will be imposed requiring the connec-
tion to be purely imaginary, as appropriate for a uð1Þ
connection. The spherical symmetry requires p to be a
constant (proportional to the magnetic charge of our
system).

We can now compute the curvature

FI ¼ dAI þ 1

2
fIJKA

J ^ AK (53)

of the connection that we found (or made an ansatz for)
above. We have for the gravitational sector I ¼ 1, 2, 3:

F1 ¼ � 1

bg

�
if

g

�ðbfrÞ0
bfr

� 1

b2r

�
dt ^ d�

þ bg

�
1

bg

�0
sin�dr ^ d�

�
;

F2 ¼ � 1

bg

�
if

g

�ðbfrÞ0
bfr

� 1

b2r

�
sin�dt ^ d�

� bg

�
1

bg

�0
dr ^ d�

�
;

F3 ¼ �
�
if

g

�ðbfrÞ0
bfr

� 1

b2r

��0
dt ^ dr

�
�
1� 1

b2g2

�
sin�d� ^ d�;

(54)

and for the electromagnetic field strength I ¼ 4:

F4 ¼ dA4 ¼ �ia0dt ^ dr� ip sinð�Þd� ^ d�: (55)

C. Field Equations

The remaining field equations to consider are given in
(15) above. Defining the matrix hIJ via

BI ^ BJ ¼ hIJð�2ifgr2 sin�dt ^ dr ^ d� ^ d�Þ (56)

we get

hIJ ¼
b2 0 0 0
0 b2 0 0
0 0 1 cþm
0 0 cþm 4cm

2
6664

3
7775: (57)

We can now compute the derivatives of the potential (13)
needed in (15). We get

@V

@hij
¼ 	ij

�
f

3
� f01

2ð2b4 þ 1Þ
3ð2b2 þ 1Þ2 � f02

2b6 þ 1

ð2b2 þ 1Þ3

� f03
2ðcþmÞ2
3ð2b2 þ 1Þ2 � f04

4cm

3ð2b2 þ 1Þ
�

þ f01
2hij

3ð2b2 þ 1Þ þ f02
ðh2Þij

ð2b2 þ 1Þ2 ;
@V

@�2
¼ f03

3ð2b2 þ 1Þ ;
@V

@c
¼ f04

3
:

(58)

Here f0n is the derivative of the function f with respect to
n-th argument evaluated at hij ¼ diagðb2; b2; 1Þ, �2 ¼
ðcþmÞ2, c ¼ 4cm.
It turns out to be very convenient to separate the trace

and the tracefree parts in the gravitational part, and intro-
duce a separate notation for the electromagnetic part
potential first derivatives. Thus, let us write the matrix of
the first derivatives of the potential as

@V

@hIJ
¼

�� � 0 0 0
0 �� � 0 0
0 0 �þ 2� �
0 0 � �

2
6664

3
7775 (59)

where �, �, �, � are functions of b, c, m given by

� ¼ f

3
� f01

4ðb2 � 1Þ2
9ð2b2 þ 1Þ2 � f02

2ðb2 � 1Þðb4 � 1Þ
3ð2b2 þ 1Þ3

� f03
2ðcþmÞ2
3ð2b2 þ 1Þ2 � f04

4cm

3ð2b2 þ 1Þ ;

� ¼ f01
2ð1� b2Þ
9ð2b2 þ 1Þ þ f02

ð1� b4Þ
3ð2b2 þ 1Þ2 ;

� ¼ f03
cþm

3ð2b2 þ 1Þ ; � ¼ f04
3
:

(60)

The field equations (15) then read, in the gravitational
sector,

� 1

bgr

�
1

bg

�0 ¼� 1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

�
¼���; (61)

1

r2

�
1� 1

b2g2

�
¼ �þ 2�þ 2c�; (62)

� 1

fg

�
f

g

�ðbfrÞ0
bfr

� 1

b2r

��0 ¼ �þ 2�þ 2m�: (63)

The electromagnetic sector equation gives the following
two equations:
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a0 ¼ �fgð�þ 2�mÞ; ip ¼ r2ð�þ 2�cÞ: (64)

Before we analyze these equations let us describe a con-
venient change of independent functions that will eventu-
ally allow us to integrate the system.

D. Legendre Transformation

As was done in the purely gravitational spherically-
symmetric case treated in [24], we can think of � as the
Legendre transform of the function f. In fact, we have

� ¼ f

3
� x�� y�� z�; (65)

where

x¼2
1�b2

2b2þ1
; y¼2

cþm

2b2þ1
; z¼ 4cm

2b2þ1
: (66)

Thus, we get

�� :¼ @�

@�
¼ �x; �� :¼ @�

@�
¼ �y;

�� :¼ @�

@�
¼ �z: (67)

We can use these relations to express the original functions
b, c, m appearing in our two-form field ansatz in terms of
derivatives of the new function � ¼ �ð�;�; �Þ. We get

b2 ¼ 2þ��

2ð1���Þ ; cþm ¼ � 3��

2ð1���Þ ;

2cm ¼ � 3��

2ð1���Þ : (68)

This gives, for c and m,

c ¼ � 3

4

�
��

1���

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
�

ð1���Þ2
þ 4��

3ð1���Þ

vuut �
;

m ¼ � 3

4

�
��

1���

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
�

ð1���Þ2
þ 4��

3ð1���Þ

vuut �
:

(69)

We have chosen the solution such that m ¼ 0 for �� ¼ 0.

Thus, one can now take the viewpoint that the theory is
parametrized by the function � ¼ �ð�;�; �Þ, and that the
above relations give us the functions b, c, m once the
quantities �, �, � are solved for. This change of viewpoint
will allow us to integrate the field equations.

E. Bianchi Identities

A very powerful method for analyzing the system of
equations that we have obtained is by rewriting them as
differential equations for the functions �, �, �. These are
nothing but the Bianchi identities obtained from the equa-
tion DFI ¼ 0. Alternatively, these equations can be
obtained directly from the field equations (61)–(63).

Thus, differentiating the Eq. (62), and using one of the
equations in (61), as well as (51), we get

�0 þ 2�0 þ 2c�0 ¼ � 6�

r
: (70)

Another Bianchi identity is obtained by differentiating
the second equation in (61). We have

1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

��
2ðbgÞ0
bg

þ 1

r

�

� 1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

�0 ¼ �0 � �0: (71)

We now rewrite the Eq. (63) expanding the terms on the left
and dividing the whole equation by b2r. We have

1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

��
�f0

f
þg0

g

�
� 1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

�0
¼���þ3�þ2m�

b2r
: (72)

Using the second equation in (61) we express �� � in
terms of other quantities and then take this term to the left-
hand-side of the equation. We get

1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

��
1

b2r
� f0

f
þ g0

g

�

� 1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

�0 ¼ 3�þ 2m�

b2r
: (73)

We now subtract (73) from (71). We get

1

b2g2r

�ðbfrÞ0
bfr

� 1

b2r

��ðb2fgÞ0
b2fg

þ b2 � 1

b2r

�

¼ �0 � �0 � 3�þ 2m�

b2r
: (74)

We should now note that the following equation is true:

ðb2fgÞ0
b2fg

¼ 1� b2

b2r
: (75)

Indeed, this is just a rewrite of the first equality in (61).
Therefore, the quantity in the second brackets on the left-
hand-side of (74) is zero and we get

�0 � �0 ¼ 3�þ 2m�

b2r
: (76)

Equations (70) and (76), together with (51), after the
functions b, c,m are expressed in terms of �, �, � via (68)
and (69), become 3 first order differential equations for the
3 unknown functions �, �, �. Once these are found,
the electromagnetic connection is found from (64), and
the metric functions g is found from

1

ðbgÞ2 ¼ 1� ð�þ 2�þ 2c�Þr2; (77)
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which is easily obtained from (62). The metric function f is
then found from (75).

F. Consistency

Yet another Bianchi identity can be obtained from
dF4 ¼ 0, and is equivalent to the statement that the mag-
netic charge p ¼ const. On the other hand, the second
equation in (64) expresses the magnetic charge in terms
of other functions. Differentiating this equation, and using
the known from (51) derivative of c we get

�0 þ 2�0cþ 2�=r ¼ 0: (78)

This equation can be shown to follow from the two Bianchi
identities (70) and (76) and the relations (68). Thus, let us
show that (78) together with (76) imply (70). We multiply
(78) by 2m and, using the last two identities in (68) write
the result as

4m�

r
¼ 3�0�� þ 3�0��

1���

þ 2�0c: (79)

We now use this, as well as the first identity in (68), to write
�2b2 times (76) as

ð�0��0Þ2þ��

1���

þ3�0��þ3�0��

1���

þ2�0c¼�6�

r
: (80)

The first two terms on the left-hand-side combine to

2�0 � 2�0�� þ�0 ��0��

1���

¼ �0 þ 2�0: (81)

Thus, (80) is just (70) and the obtained system of equations
is consistent.

G. Nonmetric Gravity

In the limit �� ¼ �� ¼ 0 the electromagnetic part of

the theory is switched off and we recover the spherically-
symmetric solution [24] of nonmetric gravity. The two
Bianchi identities (70) and (76) in this case coincide and
give the following equation:

ð�� þ 2Þ�0 ¼ � 6�

r
(82)

for �. After this is solved the metric functions f, g are
determined from (77) and (75). For more details on the
pure gravity sector solution see [24].

H. Reissner-Nordstrom Solution

Let us now see how the usual Reissner-Nordstrom solu-
tion of GR coupled to Maxwell can be recovered. First, we
should switch off the gravity modifications, which is done
by putting �� ¼ 0 which gives b2 ¼ 1 and the gravita-

tional part of the two-form field becomes the usual
spherically-symmetric triple of metric two-forms. The
simplest way to get the RN solution is to set �� ¼ 0 so

that m ¼ �c and the B4 field (48) is anti-self-dual.
However, let us see the appearance of the charged solution
in full generality. Wewill also allow the magnetic charge to
be present, to illustrate how the issues of complexity
should be dealt with.
First, we need to perform the Legendre transform of the

original defining function f. In a previous section we have
seen that in the absence of gravity modifications, and in the
case which gives the usual Maxwell theory, this function is
given by (30). Inspection of (57) reveals that we have to
replace �2 ! ðcþmÞ2, �2 ��2 ! 4cm. Thus, in the
case that gives Maxwell theory our defining function is

fðc;mÞ ¼ �

2
ðcþmÞ2 þ 


2
ð4cmÞ: (83)

We then easily find �, � from (60)

� ¼ @f

@ðcþmÞ2 ðcþmÞ ¼ �ðcþmÞ
2

;

� ¼ @f

@ð4cmÞ ¼



2
:

(84)

The Legendre transform (65) now gives

� ¼ � 2

3�
�2: (85)

Note that this is independent of �, as the original function
was linear in �. However, the derivative �� cannot be

considered to be zero because it must satisfy the last
equation in (68). Thus, in this case the parametrization
by � is somewhat degenerate. This can be dealt with by
declaring the last equation in (68) to be satisfied by defi-
nition. This degeneracy is removed when one considers
more complicated, nonlinear dependence on cm.
We can now proceed to solving the equations. We first

find � from the second equation in (64). Using the value of
� given by (84) we get

� ¼ ip

r2
� 
c: (86)

We now find m from the second equation in (68) and get

m ¼ 2ip

�r2
� c

2
þ �

�
; (87)

where we have used�� ¼ 0. We now use the first equation

in (64) and, in anticipation that no modification to the
electromagnetic potential will be introduced, put a0 ¼
�q=r2, where q is the usual (real) electric charge. This
allows us to express the quantity c in terms of q, p. Using
fg ¼ 1 (which follows from (75)) we get

c ¼ ��qþ ð2
þ �Þip
2
r2ð
þ �Þ : (88)

Note that this does have the required 1=r2 dependence on
the radial coordinate. The above expression for c gives the
following expression for �, m:
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� ¼ �ðqþ ipÞ
2r2ð
þ �Þ ; m ¼ ð2
þ �Þq� �ip

2
r2ð
þ �Þ : (89)

We note that all quantities �,m, c became complex, so it is
by no means obvious that one will arrive at a real metric at
the end. Note also that, interestingly, the quantities c, m
can be obtained one from another by exchanging ip $ q.

We can now solve for the unknown function � using e.g.
(70). Using �0 ¼ �ð4=3�Þ��0 and putting all the terms
not containing � to the right-hand-side we get

�0 ¼ � 3�

r
� �ðqþ ipÞðð2
þ 3�Þq� ð4
þ 3�ÞipÞ

6
r5ð�þ 
Þ2 :

(90)

The solution with correct behavior at infinity is

� ¼ rs
2r3

þ �ðqþ ipÞðð2
þ 3�Þq� ð4
þ 3�ÞipÞ
6
r4ð�þ 
Þ2 :

(91)

Note that this quantity is, when p � 0, complex even when
the reality conditions are imposed.

We can finally find the metric functions from (77). The
above analysis does not seem to make it plausible that the
arising function g can be real. However, once we substitute
all the quantities we have found above into (77) we obtain

g�2 ¼ 1� rs
r
þ �ðq2 þ p2Þ

2
r2ð�þ 
Þ : (92)

Thus, the metric is the usual real Reissner-Nordstrom black
hole with electric and magnetic charges provided we
choose �, 
 so that

�


ð�þ 
Þ ¼ 2; (93)

which is exactly the condition expected from the formula
(38) for the coupling constant.

To summarize, the analysis of this subsection confirms
that there exist a two-parameter family of potentials giving
rise to unmodified Einstein-Maxwell system. It also illus-
trates how nontrivial can the issue of reality become.
Indeed, we have worked with complex quantities at inter-
mediate stages of the computation, but at the end all the
complexity disappeared to give rise to the real metric
functions. This could have been expected from general
considerations, since we have switched off the gravita-
tional and Maxwell sector modifications. However, it is
reassuring to see this happening explicitly.

Any departure from the simple choice of the defining
potential considered in this subsection produces a modified
theory, where one can either modify the gravitational sec-
tor, or electromagnetic, or both. At this stage of the devel-
opment of the theory it is unclear what constitutes a
physically interesting potential function. Also, as we
have emphasized above, our theory only becomes different
from Einstein-Maxwell in the region of high curvatures. In

this regime other effects (quantum mechanics) also be-
come important. Thus, it is not at all clear if in this regime
any physics can be extracted by looking at the purely
classical solution. Thus, we refrain from an analysis of
the modified black hole solutions at this stage. At the same
time it is gratifying to know that the theory is simple
enough that the problem of determining such a solution
for a general defining potential reduces to three first order
ODE’s for the functions �, �, �.

V. DISCUSSION

In this paper we described a simple class of unified
gravi-electromagnetic theories. The Lagrangian of our uni-
fied theory is of the BF type, with a potential for the B field
added. The gauge group on which the theory is based is
(complexified) Uð2Þ ¼ SUð2Þ � Uð1Þ, and the SU(2) sec-
tor of our model is responsible for the gravitational inter-
actions while the U(1) sector describes electromagnetism.
The Lagrangian of our theory can be argued to be the

most general functional of the Lie-algebra valued two-
form field B and the connection A, subject to the conditions
of gauge and diffeomorphism invariance.2 As such, it is a
very natural starting point for a unified theory that de-
scribes both gravity and a gauge theory. It is gratifying to
learn that the simplest possible nontrivial such a theory
describes gravity, and the next most simple case describes a
unified gravi-electromagnetic theory. Indeed, the simplest
possible gauge group that one could try to use in the
general Lagrangian (1) is the Abelian U(1). However, in
this case the only potential that one could write is B ^ B,
which produces a topological theory. Thus, the Uð1Þ gauge
group does not lead to a physically interesting theory. The
next simplest group is SU(2), and for this choice we do get
a nontrivial gravitational theory describing as GR just two
polarizations of the graviton. Increasing the level of com-
plexity one step further one takes the gauge group to be
Uð2Þ ¼ SUð2Þ � Uð1Þ studied in this paper. As we have
seen, this is a unified theory of electromagnetism and
gravity. It is quite encouraging that the first two simplest
nontrivial cases that one encounters when studying diffeo-
morphism invariant gauge theories (1) are the two most
physically important theories.
We would like to emphasize that the only assumptions

that were used in our choice of the Lagrangian are those of
diffeomorphism and gauge invariance. It is true that the
potential function in (1) can be arbitrary, so one has not a
single theory, but the whole class parameterized by the
choice of V. However, we have also seen that for any
choice of the potential the theory expanded around the

2An alternative equivalent viewpoint is obtained by integrating
out the two-form field B and considering the ‘‘pure connection’’
formulation, in which the theory becomes just the most general
diffeomoprhism invariant gauge theory. We refrain from consid-
ering this point of view in the present paper.
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Minkowski spacetime background is for low energies in-
distinguishable from the Einstein-Maxwell theory. Indeed,
in the lowest, quadratic order in the expansion the gravi-
tational and electromagnetic parts are uncoupled. One can
then refer to the pure gravity case results in e.g. [16] to see
that the low-energy gravitons are unmodified. On the other
hand, the electromagnetic sector is described at low ener-
gies by the quadratic terms (30) which we have seen to lead
to the usual Maxwell Lagrangian. Thus, for any choice of
the potential function defining the theory (apart from that
giving the topological BF theory) the linearized excitations
are the usual gravitons and photons. One can also see that
the interactions between these are correctly described by
noting, as we already did above, that on an arbitrary metric
background described by two-forms satisfying Bi ^ Bj �
	ij the linearized electromagnetic sector coupling to
gravity is just that of the Maxwell theory. Thus, for low
electromagnetic field strength and small curvatures in the
gravitational sector our theory is just the Maxwell theory
coupled to gravity.

Thus, most of the parameters of the potential function V
are invisible at low energies, and we only have access to the
usual Newton’s constant and the Maxwell theory coupling
constant (unmeasurable unless a coupling to matter is
introduced). The departure of our theory from Einstein-
Maxwell would only be visible at high energies (or high
field strength). Since the only dimensionful parameter in
the theory is the Newton’s constant, the only relevant
energy scale is the Planck scale. Thus, the departure of
our unified theory from Einstein-Maxwell is only going to
be visible close to the Planckian domain. For low energies
that we have access to any choice of V leads to the usual
Einstein-Maxwell system.

We could also have phrased the above discussion in
terms of renormalization group flow arguments. Since
our theory was seen to describe the degrees of freedom
of the Einstein-Maxwell theory, and has the same symme-
tries, we are guaranteed that at low energies the theory will
be indistinguishable from Einstein-Maxwell, since by gen-
eral arguments the Einstein and Maxwell Lagrangians are
the only terms of the effective field theory Lagrangian of
gravity and electromagnetism that survive at low energies.
This is confirmed by our analysis.

The choice of the potential therefore only matters in the
high-energy regime where the theory starts to deviate from

its low-energy Einstein-Maxwell limit. However, here
other effects are becoming important as well, of which
the most important is of course quantum mechanics.
Indeed, at high energies we can no longer treat our theory
as classical. This, in particular, implies that we are no
longer free to specify the potential V, as it will become
running with the energy scale. So, at high energy where a
choice of V would be of importance we are no longer free
to make this choice, and it is the renormalization group
flow which will determine V. This is gratifying, because it
means that there is no freedom at all in our choice of the
Lagrangian, and it is completely specified by symmetries
and the quantum behavior. Unfortunately, we are not able
to say anything about the latter at this stage of the develop-
ment of the theory.
Let us finish with a quick discussion of the open prob-

lems of this approach. First, while there is some scope for
gauge-gravity unification in the context of our diffeomor-
phism invariant gauge theories, there are other field spe-
cies in Nature—fermions. These usually require a metric
(or a tetrad) if they are to couple to gravity, and so it is not
at all clear that they will be possible to describe in an
approach that trades the spacetime metric for a collection
of two-forms. This is a difficult question that will be dealt
with elsewhere. One other very important question is that
of reality conditions for the whole theory (including the
gravitational sector). There are some puzzles here associ-
ated with the fact that the Lagrangians one naturally
obtains in our approach are non-Hermitian (this non-
Hermiticity is only visible in higher-order interaction
terms, see e.g. the last term in (45), and is of no signifi-
cance at low energies). We will return to this problem
elsewhere. For now let us just mention the fact that it is
now known that the condition of Hermiticity is overly
restrictive and there are some systems in nature that are
described by non-Hermitian Hamiltonians, see [26] for a
review. Finally, the most important open problem of the
whole approach is to study the quantum mechanical be-
havior of our theories and show that they continue to
make sense also as quantum theories.
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