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I. INTRODUCTION

The dimensional regularization scheme of ’t Hooft and
Veltman [1] has proven to be successful not only for its
theoretical implication in renormalizing gauge field theo-
ries but also for its practical application in simplifying the
calculations of Feynman amplitudes. Only one difficulty of
the dimensional regularization scheme remains. As pointed
out by ’t Hooft and Veltman in Sec. 6 of [1], the breakdown
of Ward identities [2] in the presence of

�5 ¼ i�0�1�2�3 (1)

is caused by the inability of maintaining the validity of the
basics identity

k�5 ¼ ðpþ kÞ�5 þ �5p (2)

beyond dimension n ¼ 4. In this paper, we shall present a
simple method to deal with �5 which reserves the validity
of the basic Ward identity (2) so that the dimensional
regularization scheme can still be useful in yielding gauge
invariant regularized amplitudes for gauge theories involv-
ing �5.

In a four-dimensional space, any matrix product

M̂ ¼ �!1
�!2

� � ��!n
with !i 2 f0; 1; 2; 3; 5g

may be reduced, by anticommuting �5 to the rightmost
position, to either the form of���1

��2
� � ���m

with�i 2
f0; 1; 2; 3g if M̂ contains even �5 factors, or the form
���1

��2
� � ���p

�5 with �i 2 f0; 1; 2; 3g if the �5 count

is odd. The matrix product ��1
��2

� � ���m
is unambigu-

ously defined under dimensional regularization when the
components �i run out of the range f0; 1; 2; 3g of the first
four dimensions. The product ��1

��2
� � ���p

�5 with one

�5 on the right is continued by defining it to be the product
of the analytically continued ��1

��2 � � ���p and the �5

in (1). Before analytic continuation is made, a �5-odd
matrix product may always be reduced to a matrix product
with only one �5 factor. To analytically continue such a
matrix product, we adopt the default continuation by anti-
commuting the �5 matrix to the rightmost position before
making the continuation.

Let us introduce the notation p� for the component of

the p� vector in the first 4 dimensions and the notation
p�
� for the component in the remaining n� 4 dimensions;

i.e., p� ¼ p� þ p�
� with p�

� ¼ 0 if � 2 f0; 1; 2; 3g and

p� ¼ 0 if � =2 f0; 1; 2; 3g. The Dirac matrix �� is also

decomposed as �� ¼ �� þ �
�
� with �

�
� ¼ 0 when

� =2 f0; 1; 2; 3g and �� ¼ 0 when � =2 f0; 1; 2; 3g. We

then have

�5�
� þ ���5 ¼ 2�

�
��5; (3)

which means that �5 does not anticommute with �� when
� =2 f0; 1; 2; 3g.
For the QED theory, the identity

1

‘�m
k

1

‘� k�m
¼ 1

‘� k�m
� 1

‘�m
(4)

is the foundation that a Ward identity is built upon. For a
gauge theory involving �5, there is a basic identity similar
to (4) for verifying Ward identities:

1

‘þ k�m
ðk� 2mÞ�5

1

‘�m

¼ �5

1

‘�m
þ 1

‘þ k�m
�5: (5)

The above identity valid at n ¼ 4 is derived by decompos-
ing the vertex factor ðk� 2mÞ�5 into ð‘þ k�mÞ�5 and
�5ð‘�mÞ that annihilate, respectively, the propagators of
the outgoing fermion with momentum ‘þ k and the in-
coming fermion with momentum ‘. Positioning �5 at the
rightmost site, the above identity becomes

1

‘þ k�m
ðk� 2mÞ 1

�‘�m
�5

¼
�

1

�‘�m
þ 1

‘þ k�m

�
�5: (6)

If we disregard the rightmost �5 on both sides of the above
identity, we obtain another identity that is valid at n ¼ 4.
This new identity, which is void of �5, may be analytically
continued to hold when n � 4. We then multiply �5 on the
right to every analytically continued term of this �5-free
identity to yield the analytic continuation of the identity (5).*ectsai@ntu.edu.tw
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As a side remark, we note that when we go to the
dimension of n � 4, (5) in the form presented above is
not valid. This is because �5 defined in (1) does not always
anticommute with �� if n � 4. Adopting the rightmost �5

ordering avoids this difficulty, as the validity of the identity
in the form of rightmost �5 ordering no longer depends on
�5 anticommuting with the � matrices.

For an amplitude corresponding to a diagram involving
no fermion loops, we shall move all �5 matrices to the
rightmost position before we continue analytically the
dimension n. Subsequent application of dimensional regu-
larization gives us regulated amplitudes satisfying the
Ward identities.

If a diagram has one or more fermion loops, the ampli-
tude corresponding to this diagram can be regulated in
more than one way. This is because there are different
ways to assign the starting position on a fermion loop.
Once we have chosen a starting point, we define the matrix
product inside the trace by rightmost �5 ordering before
making the analytic continuation. In general, continuations
from different starting points give different values for the
trace when n � 4. An identity relating the traces of matrix
products without �5 at n ¼ 4 can always be analytically
continued to hold when n � 4. Therefore, the portion of an
amplitude in which the count of �5 on every loop is even
has no �5 difficulty [3]. But to calculate amplitudes with an
odd count of �5, we need an additional prescription. This is
because, as we have mentioned, the rightmost position on a
fermion loop is not defined a priori.

Although we have multiple continuations for the trace of
a matrix product, they differ from one another by terms
containing at least a factor of ��

�. In the tree order and in

the limit n ! 4, they are all restored to the same result
because ��

� will disappear when n ! 4. For higher loop

orders, ��
� contribution may not be ignored. This is be-

cause the factor �
�
��

�
�g�� ¼ ðn� 4Þ multiplied by a di-

vergent integral, which generates a simple pole factor 1
ðn�4Þ

or a higher-order pole term, is finite or even infinite in the
limit n ! 4. Thus divergent diagrams with fermion loops
are the only type of diagrams that may be ambiguous with
respect to the �5 positioning. Not incidentally, they are
also the diagrams that may be plagued by the anomaly
problem [4].

In the dimensional regularization scheme of
Breitenlohner and Maison (BM) [5], the �5 matrix is also
defined as (1). By continuing the Lagrangian to dimension
n � 4 and carefully handling the evanescent terms that are
proportional to (n� 4), Breitenlohner and Maison were
able to show that dimensional regularization and minimal-
subtraction renormalization can be implemented consis-
tently for theories involving �5. But there is a major
deficiency in this BM scheme: it is not a gauge invariant
scheme. Consequently, amplitudes obtained therewith do
not satisfy Ward identities and finite counterterms are
required to restore the validities of these identities

[6–11]. This in fact renders the application of dimensional
regularization for chiral gauge theories rather complicated
in practical calculation.
There is a naive dimensional regularization (NDR)

scheme which assumes that �5 satisfies �5�
�þ���5¼0

for all � even when n � 4. Since no such �5 exists, this
scheme is not without fault. In particular, it is not capable
of producing the triangular anomaly term. While regulated
amplitudes satisfying Ward identities have often been ob-
tained in the past with the use of the NDR scheme [12–14],
it is because all the �5 matrices have been tacitly moved
outside of divergent subdiagrams in these calculations.
This is to say that the rightmost �5 scheme has been
employed in actuality.
In contrast to the NDR scheme, the triangular diagrams

that are responsible for the anomaly can be handled by the
rightmost �5 scheme. We shall find that, while there are
many choices for the rightmost position on a loop, some
choices are in violation of gauge invariance. When no
choice obeying all symmetry requirements is available,
the Ward identity involving such amplitudes may be bro-
ken to give rise to an anomaly.
Körner, Kreimer, and Schilcher (KKS) [15] have shown

that if we relinquish the cyclicity of the trace for a matrix
product, an anticommuting �5 as the one adopted in the
NDR scheme can be defined under dimensional regulari-
zation. In this KKS formalism, the noncyclic trace be-
comes the spoiler of Ward identities because the trace of
a matrix product with an odd number of �5 depends on
where the ‘‘reading point’’ is designated. For a fermion
loop, the reading point in the KKS scheme plays a similar
role as the rightmost �5 position in our scheme. In fact,
they both yield the same dimensionally regularized ampli-
tudes for the fermion loop if the reading point and the
rightmost �5 are identically positioned. But the prescrip-
tion for choosing the reading point given in [15] to resolve
the noncyclicity difficulty is flawed because the effect of
the pole terms arising from loop integrals of divergent
subdiagrams or overall diagram on theOðn� 4Þ difference
due to different reading points has been mistakenly
ignored. As a consequence, the KKS method presented in
[15] does not lead to regularized amplitudes that obey
multiloop Ward identities. This problem can be solved,
as we shall verify in this paper, by using only the reading
points or �5 positions that are located outside all self-
energy-insertion or vertex-correction subdiagrams and
are not at any vertices connecting to external field lines.
By taking advantage of the rightmost �5 scheme, which

allows us to employ identities such as (2) and (5) given
above, we will be able to choose the rightmost positions for
the �5 to be consistent with the gauge invariance so that
Ward identities are preserved. In particular, we shall dem-
onstrate how to apply the rightmost �5 scheme to account
for the 1-loop anomaly and the preservation of the 2-loop
triangular Ward identity in the chiral Abelian-Higgs theory
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defined in the following section. This Abelian theory has
no infrared problem and has a nonfree ghost field due to the
particular gauge fixing term that we choose to use. The �5

treatment that we shall present for the Abelian theory is
also applicable to non-Abelian theories which must be
accompanied by ghost interactions.

II. ABELIAN-HIGGS GAUGE THEORY
WITH CHIRAL FERMION

The Lagrangian for the Abelian-Higgs gauge theory [16]
with chiral fermion is

L ¼ �1
4F��F

�� þ ðD��ÞyðD��Þ � 1
2�g

2ð�y�� 1
2v

2Þ2
þ �c Lði 6DÞc L þ �c Rði@Þc R

� ffiffiffi
2

p
fð �c L�c R þ �c R�

yc LÞ; (7)

where

F�� � @�A� � @�A�; D�� � ð@� þ igA�Þ�;

c L ¼ Lc ; c R ¼ Rc ;

with the chiral projection operators L and R defined as

L ¼ 1
2ð1� �5Þ; R ¼ 1

2ð1þ �5Þ:
We define two Hermitian fields H and �2 for the real and
imaginary parts of the complex scalar field by

� ¼ H þ i�2 þ vffiffiffi
2

p : (8)

We also introduce two mass parameters M and m
defined by

M ¼ gv; m ¼ fv: (9)

Both M and m will be regarded as zero order quantities
in perturbation. To quantize this theory, we add to the
Lagrangian L gauge fixing terms as well as the associated
ghost terms. The sum will be called the effective
Lagrangian Leff , and is invariant under the following
BRST [17,18] variations:

�A� ¼ @�c; ��2 ¼ �Mc� gcH;

�H ¼ gc�2; �c L ¼ �igcc L;

�c R ¼ 0; � �c ¼ � i

�
ð@�A� � ���2Þ;

�c ¼ 0;

(10)

where c is the ghost field and �c is the antighost field. The
gauge fixing term is

Lgf ¼ � 1

2�
ð@�A� � ���2Þ2; (11)

and the ghost term is

Lghost ¼ i �c�ð@�A� � ���2Þ
¼ i �cð@�@� þ ��MÞcþ ig���ccH: (12)

The BRST invariant effective Lagrangian is

Leff ¼ Lþ Lgf þ Lghost: (13)

A. Graphical identities

The prescription of the rightmost �5 ordering under
dimensional regularization offers a scheme to construct
amplitudes when n � 4. We now introduce some graphical
notations for verifying diagrammatically if the regularized
amplitudes so obtained satisfy Ward identities.
According to the Feynman rules, one assigns the

factor�igR��L to the vertex �c � A� � c and the factor
�fðL� RÞ to the vertex �c ��2 � c , as these factors
correspond to the terms �g �c LAc L and �ifð �c L�2c R �
�c R�2c LÞ in the interaction Lagrangian of (7). Let us
define the following two graphical notations for these
two vertices:

�
�

¼ �igR��L; � ¼ �fðL� RÞ: (14)

We also introduce the notationO
k

¼ �gRkLþmgðL� RÞ; (15)

which represents the sum of �ik� times the �c � A� � c
vertex factor, with k the momentum of the vector particle
flowing into the vertex and �M times the �c ��2 � c
vertex factor. Note that Mf may be equated to mg accord-
ing to (9). The identity

RkL�mðL� RÞ ¼ ð‘þ k�mÞL� Rð‘�mÞ; (16)

valid in a four-dimensional space, will be our building
block for verifying various Ward identities involving fer-
mion lines. Indeed, if we set L ¼ R ¼ 1, the identity above
becomes the familiar identity used in verifying Ward iden-
tities in QED.
Sandwiching Eq. (16) between two fermion propagators,

we get

1

ð‘þ k�mÞ ðRkL�mðL� RÞÞ 1

ð‘�mÞ
¼ L

1

ð‘�mÞ �
1

ð‘þ k�mÞR: (17)

Note the similarity of this identity with its familiar counter-
part (4) in QED. As noted before, when we go to the
dimension of n � 4, (17) in the form presented above is
not valid. This is because �5 does not always anticommute
with �� if n � 4. Adopting the rightmost �5 ordering
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avoids this difficulty. The above equation multiplied by the
coupling constant g may be expressed graphically as

where the double line emitting from the composite vertexN
indicates that the fermion propagator is annihilated. In

addition, the double line together with the composite ver-
tex is to be replaced by�igL if the arrow points to the left,
and to be replaced by igR if the arrow points to the right.
Thus the following two diagrams cancel each other if the
corresponding external momenta are the same:

In our convention, the direction of any horizontal fermion
line is assumed to be pointing to the left side unless
indicated otherwise.

B. Cut point

We note that a fermion loop opens up and becomes a
fermion line if we make a cut at some point on the loop. We
shall always choose as the cut point either the beginning
point or the end point of an internal fermion line on the
loop. An internal fermion line begins from a vertex and
ends at another vertex. When the cut point is chosen to be
the end point of an internal fermion line, the vertex factor is
then assigned to appear as the beginning factor and stands
at the right end of the matrix product for the entire open
fermion line. And when the cut point is chosen to be the
beginning point of an internal fermion line that emits from
a vertex, the matrix factor corresponding to that vertex will
be assigned to be the terminating factor and stands at the
left end of the matrix product for the entire open fermion
line. With the cut point on a fermion loop chosen and with
the fermion loop turned into a fermion line, we may apply
the rule of rightmost ordering for �5.

The diagrams in this paper are often cut open at the end
of an internal fermion line flowing into a vertex, and as a
matter of convenience, wewill speak of such a vertex as the
cut point. If the vertex is �c �H� c with the vertex factor
�if or �c ��2 � c with the vertex factor�f�5, choosing
the cut point to be either the end point of the fermion line
flowing into the vertex or the beginning point of the fermion
line leaving the vertex gives us identical rightmost �5

positioning and therefore the same dimensionally regular-
ized amplitude. Furthermore, if the vertex is �c � A� � c
and the polarization � falls within the first 4 dimensions
such that its vertex factor anticommutes with �5, we also
get the same regularized amplitude whether or not the cut
point is in the immediate front or rear of the vertex.

III. ONE-LOOP TRIANGULAR DIAGRAMS

Let �ð1Þ
F ðA�; A�; A�; k1; k2; k3Þ denote the one particle

irreducible (1PI) AAA amplitude with one fermion loop
and three external fields A�, A�, A�, with k1, k2, k3 ¼
�k1 � k2 the momenta of A�, A�, A�, respectively. We
may omit the momentum variables k1, k2, k3 if there is
no confusion. The superscript (1) signifies that the ampli-
tude is of one loop, while the subscript F signifies the
presence of a fermion loop. The directions of the external

momenta are inward. Similarly, �ð1Þ
F ðA�; A�;�2; k1; k2; k3Þ

denotes the 1PI AA�2 amplitude with one fermion

loop. The Ward identity that relates �ð1Þ
F ðA�; A�; A�Þ to

�ð1Þ
F ðA�; A�;�2Þ is

� ik
�
3�

ð1Þ
F ðA�; A�; A�; k1; k2; k3Þ

�M�ð1Þ
F ðA�; A�;�2; k1; k2; k3Þ ¼ 0: (20)

Formally, the amplitude for the left side of the above
identity (20) is represented by the sum of the following
two Feynman diagrams:

If we replace the circled cross
N

in the two diagrams
above by the uncircled cross �

�
defined in (14), then these

two diagrams become the 1-loop diagrams for the AAA
amplitude in (20). Similarly, if we replace the circled crossN

by the black dot � defined in (14), then the two
diagrams become the 1-loop diagrams for the AA�2 am-
plitude in (20). Thus the two diagrams in (21) represent the
left side of (20). Furthermore, according to Appendix A,
only Levi-Civita tensor terms survive in the regularized
amplitudes for both AAA and AA�2. A 3-point 1PI func-
tion is linearly divergent, and the 2nd order term of its
Taylor series expanded with respect to its external mo-
menta, henceforth called the T2 term, is convergent. Thus

T2½�ð1Þ
F ðA�; A�;�2Þ� is convergent and may be easily eval-

uated with any cut point. The result

lim
n!4

T2½�ð1Þ
F ðA�; A�;�2Þ� ¼ ig3

12	2M

����k1�k2� (22)

is unambiguously defined.
If the composite vertex

N
is detached from each of

the two diagrams in (21), both diagrams then become
identical to

Since the component diagrams in (21) may be generated by
all possible insertions of the composite vertex

N
into the
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internal lines of (23), the diagram in (23) will be called the
generator for the Ward identity (20).

By making a cut at the �c � A� � c vertex and then by
repeated use of (18) and (19), the sum of the two diagrams
in (21) becomes

in which the horizontal line is supposed to be an open
fermion line flowing to the left. We emphasize that the
identity (24) remains satisfied when n � 4 if we adopt the
rightmost �5 dimensional regularization for every term in
the identity. Calling the momentum for the fermion line
entering the cut point as ‘, we find that these two ampli-
tudes are, respectively,

ð�ig3LÞ 1

‘þ k1 þ k2 �m
��L

1

‘þ k2 �m
��L¼ LM̂ð‘ÞL

and

1

‘�m
��L

1

‘þ k2 þ k3 �m
ðig3RÞ��L¼�M̂ð‘þ k3ÞL;

where M̂ð‘Þ stands for

� ig3
1

‘þ k1 þ k 2 �m
��L

1

‘þ k2 �m
��:

Since the fermion lines form a closed loop, the trace of the
expressions above will be taken. With �5 rightmost posi-

tioned, TrðLM̂ð‘ÞLÞ may be reduced to TrðM̂ð‘ÞLÞ and the
amplitudes corresponding to the last two diagrams in (24)
are related by a shift of the momentum variable. Since it is
legitimate to shift the loop momentum by a finite amount
after regularization, the regularized amplitude of (24) van-
ishes after integration.

Note that the first two cut diagrams in (24) may be
generated by attaching the composite vertex

N
in all

possible manners consistent with Feynman rules to the
cut diagram

obtained by cutting the generator diagram (23) at the
�c � A� � c vertex. It is convenient to view the identity
in which the regularized amplitude of (24) vanishes as
being generated by the cut generator in (25). To summa-
rize, if we choose the �c � A� � c vertex as the cut point
for the generator (23), construct the component diagrams
by attaching

N
, anticommute �5 to the rightmost position,

and then dimensionally regularize the coefficients in front
of �5, the regularized amplitudes so obtained satisfy the
Ward identity (20).

Similarly, we may open up the fermion loop by choosing
the �c � A� � c vertex as the cut point, follow through the
same arguments, and arrive at another set of amplitudes for

�ð1Þ
F ðA�;A�;A�Þ and �ð1Þ

F ðA�;A�;�2Þ. Such amplitudes may
also be obtained from the interchange of ð�; k1Þ , ð�; k2Þ
on the previously defined �ð1Þ

F ðA�; A�; A�Þ and

�ð1Þ
F ðA�; A�;�2Þ. Since 
����k1�k2� is invariant under

such exchange, the amplitude T2½�ð1Þ
F ðA�; A�;�2Þ� remains

the same. Therefore, it may appear in order that the result
of (22) is consistent with the Ward identity (20),

T1½�ð1Þ
F ðA�; A�; A�Þ� (1st order term in the Taylor series

expansion) should be defined such that

�ik
�
3 lim
n!4

T1½�ð1Þ
F ðA�;A�;A�Þ� ¼ ig3

12	2

����k1�k2�: (26)

However, we will show, immediately following, that the
above condition (26) for AAA amplitude is inconsistent
with the Bose permutation symmetry. By definition,

T1½�ð1Þ
F ðA�; A�; A�Þ� is a product of a Levi-Civita tensor

and a linear combination of the independent external mo-
menta k1 and k2. From relativistic covariance, we must
have

T1½�ð1Þ
F ðA�; A�; A�; k1; k2; k3Þ� ¼ 
����ðC1k1� þ C2k2�Þ;

(27)

where C1 and C2 are dimensionless constants. The Bose
symmetry under the exchange of ðA�; k1Þ , ðA�; k2Þ gives

T1½�ð1Þ
F ðA�; A�; A�; k1; k2; k3Þ�

¼ T1½�ð1Þ
F ðA�; A�; A�; k2; k1; k3Þ�;

which is equivalent to


����ðC1k1� þ C2k2�Þ ¼ 
����ðC1k2� þ C2k1�Þ
¼ 
����ð�C2k1� � C1k2�Þ:

(28)

Similarly, the Bose symmetry for the exchange of
ðA�; k2Þ , ðA�; k3Þ yields

T1½�ð1Þ
F ðA�; A�; A�; k1; k2; k3Þ�

¼ T1½�ð1Þ
F ðA�; A�; A�; k1; k3; k2Þ�;

and


����ðC1k1� þ C2k2�Þ ¼ 
����ðC1k1� þ C2k3�Þ
¼ 
����ððC2 � C1Þk1� þ C2k2�Þ:

(29)

To meet (28) and (29), we must have C1 ¼ C2 ¼ 0.
Consequently,

T1½�ð1Þ
F ðA�; A�; A�Þ� ¼ 0: (30)
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This result contradicts the result (26) derived on the basis
of the validity of the Ward identity (20), showing that this
Ward identity for the triangular diagrams is not consistent
with the Bose permutation symmetry.

Note that the diagrams used in the graphical identity (24)
with the �c � A� � c vertex as the cut point are not Bose
symmetric. Nor are those with the �c � A� � c vertex as
the cut point. Nor are the sum of these two sets of diagrams.
This is because we have left out the third vertex as a cut

point. In fact, if we choose the vertex �c � A� � c to be

the cut point for �ð1Þ
F ðA�; A�; A�Þ and the vertex �c ��2 �

c to be the cut point for �ð1Þ
F ðA�; A�;�2Þ, the left side of

(20) is now diagrammatically expressed as

which, by making use of (18), is expanded into

Let ‘ be the momentum of the fermion line entering the cut
point. The symbol on the right of either the second
diagram or the fourth diagram in Eq. (32) is to be replaced
by gRð‘�mÞ at the right end before moving �5 to the
rightmost position. If the factor of (‘�m) at the right end
of the second (fourth) diagram annihilates the fermion
propagator i

‘�m
at the left end, the amplitude so obtained

will cancel the amplitude of the third (first) diagram. But in
our scheme of dimensional regularization, we continue to
n � 4 after positioning �5 at the rightmost site. This right-

most �5 may stand between the 1

‘�m
at the left end and the

(‘�m) at the right end to prevent their annihilation in the

trace. In fact, when n � 4, the symbol should be

replaced by the expression

ðgRð‘�mÞÞjrightmost�5
¼ gð‘L�mRÞ
¼ gRð‘�mÞ � g‘��5: (33)

The last term �g‘��5 in Eq. (33) is the leftover after
the cancellation. To evaluate the total amplitude of (32)
by dimensional regularization, we only need to take into
account the contribution from the leftover terms.
Furthermore, due to the presence of ‘�, only the divergent
orders in the Taylor series expansion with respect to the
external momenta may contribute to the n ! 4 limit. In
particular, the leftover amplitude from the second diagram
of (32) is

ig3
Z dn‘

ð2	Þn

�Tr

�
1

‘�m
�� ‘�k1

ð‘�k1Þ2�m2
�� ‘þk3

ð‘þk3Þ2�m2
‘��5

�
:

The evaluation of the above amplitude in the limit n ! 4 is
greatly simplified by keeping only the T2 order term to
yield the result

� ig3

8	2

����k1�k2�: (34)

In Eq. (32), the fourth diagram may be obtained from the
second diagram by the exchange ð�; k1Þ , ð�; k2Þ.

Therefore, the leftover amplitude due to the former dia-
gram is the same as that due to the latter diagram and the
total amplitude of (31) in the limit n ! 4 is equal to twice
the amount of (34),

� ig3

4	2

����k1�k2�; (35)

which is also equal to �M times thrice the amplitude of

T2½�ð1Þ
F ðA�; A�;�2Þ� in (22). We have thus shown that the

Ward identity (20) is not satisfied if the fermion loops are
cut open as in (31).

The values of T2½�ik
�
3�

ð1Þ
F ðA�; A�; A�Þ� and

�MT2½�ð1Þ
F ðA�; A�;�2Þ� evaluated with respect to the

three possible cut points, after factoring out
�ig3
����k1�k2�, are summarized as follows:

cut point �ikAAA �MAA�2 sum

�� � 1
12	2

1
12	2 0;

�� � 1
12	2

1
12	2 0;N 1

6	2
1

12	2
1

4	2 :

(36)

We have learned that T1½�ð1Þ
F ðA�; A�; A�Þ� vanishes if

total permutation symmetry is built into its component

diagrams. The amplitude �ð1Þ
F ðA�; A�; A�Þ obtained by

averaging over the three amplitudes corresponding to the
three different cut points chosen at the vertices of �c �
A� � c , �c � A� � c , and �c � A� � c satisfies the per-

mutation symmetry. The amplitude T1½�ð1Þ
F ðA�; A�; A�Þ�

so obtained therefore vanishes as can be verified by sum-
ming over the three coefficients of the second column in

Eq. (36). The amplitude T2½�ð1Þ
F ðA�; A�;�2Þ� is convergent

and its value, which is independent of the cut point chosen,
remains equal to (22). If we take the average of the T2 order
term for the left-hand side of the Ward identity (20) over
the three cuts, this average value does not vanish but is

equal to �MT2½�ð1Þ
F ðA�; A�;�2Þ�. Since the permutation

symmetry of Bose statistics must be obeyed, we have to
pay the price of losing the validity of a Ward identity and
conclude that there exists an anomaly.
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Anomaly compensating fermion field

We have just observed that the ambiguity in choosing the
cut point for the 1-loop AAA amplitude owes its origin to
the singular behavior of its integrand. As a result, the Ward
identity for this amplitude is not obeyed and there is an
anomaly. Let us add to the theory another fermion field c 0
with a coupling constant �g for c 0

L equal to the negative
of the coupling constant g for c L. The covariant derivative
for c 0

L is

D�c
0
L ¼ ð@� � igA�Þc 0

L

in contrast to the covariant derivative for c L:

D�c L ¼ ð@� þ igA�Þc L:

The Lagrangian for such a theory is given by

L0
eff ¼ Leff þ �c 0

Lði 6DÞc 0
L þ �c 0

Rði@Þc 0
R

� ffiffiffi
2

p
f0ð �c 0

L�
yc 0

R þ �c 0
R�c 0

LÞ; (37)

where Leff is defined in (13). Note the coupling f
0 does not

need to be the same as the f in (7) and the masses for the
two fermion fields may not be equal. The amplitude for a

1-loop AAA diagram with the fermion loop due to the c 0
field is proportional to ð�gÞ3 and cancels the logarithmi-
cally divergent term of the amplitude due to the c field
provided that we have synchronized the cut-point positions
for both the c and c 0 fermion loops. The 1-loop AAA
amplitude is convergent and cut point independent.
Therefore the theory defined by (37) is free of the 1-loop
anomaly.

IV. TWO-LOOP TRIANGULAR DIAGRAMS

A straightforward calculation of the 2-loop anomaly is
lengthy [19–22] without incorporating a gauge invariant
regularization. By utilizing the basic diagrammatic identi-
ties (18) and (19), we will be able to choose all rightmost
positions for the �5 to be in consistency with gauge invari-
ance and prove, without laborious calculation, the vanish-
ing of the 2-loop anomaly. To simplify the presentation in
this section, we will consider only the subset of 2-loop
triangular diagrams with one fermion loop and one internal
vector meson line. Other types of 2-loop triangular dia-
grams can be handled similarly without additional diffi-
culty and will be addressed in Appendix B. For this
restricted type of diagram, the triangular Ward identity is
the identity that equates the sum of amplitudes for the
following 12 diagrams to zero:

In the above equation, the fermion loop is the arrowed
loop and the wavy lines are vector meson lines. The above
12 diagrams are also the ones generated by attaching the
composite

N
vertex in all possible manners consistent

with Feynman rules to the following three generator dia-
grams:

In order not to give an asymmetric treatment to any of
the external fields, we will refrain from using cut points at
the vertices connecting to external fields. A cut point is
deemed illegitimate if it is positioned at a vertex connect-
ing to an external field line. For the diagrams in (38), cut
points at �� , �� , or

N
vertices are illegitimate.

Because we do not position �5 inside a self-energy or
vertex-correction subdiagram on an open fermion line in
our prescription, it is also appropriate to avoid cutting the
fermion loops at such positions. A position for �5 will be
called proper if it is not located within a divergent 1PI
subdiagram such as a self-energy insertion or a vertex
correction. For a fermion loop, a cut and the corresponding
cut point will be called proper if the cut is not made within
a divergent self-energy insertion or vertex-correction
subdiagram.
It will be shown in Appendix A that we only need to use

cut points at the end points of fermion lines to evaluate the
Levi-Civita tensor terms. Therefore, for each of the 12
diagrams in (38), we may choose the cut point to be the
one and the only one that is proper, legitimate, and located
at the end of an internal fermion line. For convenience, the
sum of regularized amplitudes for the 12 cut diagrams so
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obtained will be denoted by S12. Since none of the external
fields is given a preferential treatment, the AAA amplitude
obtained by replacing the composite vertex

N
with the

vertex �
�
in each of the 12 component diagrams in S12 is

symmetric with respect to the permutation of the three
external vector fields A�, A�, and A�. This permutation
symmetry ensures that the T1 order term of the AAA
amplitude vanishes and therefore S12 is superficially
convergent.

There are many cancellations among the amplitudes for
the 12 component diagrams in S12. For example, making

the cut at the end point of the fermion line connecting to the
1-loop fermion self-energy insertion of the second diagram
in (39) yields the cut generator

which gives, after attaching
N

in all possible manners that
are consistent with Feynman rules, the following four
component diagrams:

Using (18) and (19) repeatedly, the above expression can
be reduced to

If we identify fð‘1; ‘2Þ as the Feynman integrand for the
last diagram, where ‘2 is the momentum of the vector
meson line and ‘1 is the momentum of the leftmost fermion
line, the Feynman integrand corresponding to (42) is the
difference of two terms related by a shift of the loop
momentum ‘1. Specifically, this sum is

fð‘1 � k3; ‘2Þ � fð‘1; ‘2Þ; (43)

which vanishes upon carrying out the integrationR
dn‘1d

n‘2 under our scheme of rightmost �5 dimensional
regularization. The sum of amplitudes for the 4 diagrams in
(41) therefore vanishes. Likewise, the sum of the 4 dia-

grams obtained from (41) by making the exchange
ð�; k1Þ , ð�; k2Þ also vanishes. By deleting those 4þ 4
diagrams from the 12 diagrams of S12, we are left with 4
diagrams, each of which has a 1-loop vertex-correction
subdiagram. Let us define S4 to be the sum of amplitudes
for these 4 remaining diagrams. S4 is equal to S12 and is
superficially convergent as well.
Unlike the first two diagrams in (39), no proper cut point

is available for the third diagram. Making the cut at the end
point of the fermion line connecting to the 1-loop radiative
correction for the vertex �c � A� � c on the third diagram
in (39), we get the cut generator

that, after attaching
N

, yields the identity

For the first two diagrams in the above, the cut points are
proper. But for each of the last two diagrams, if we recon-
nect the beginning point and the end point of the open
fermion line to restore the original fermion loop, we see
that there is a subdiagram of radiative correction for the
vertex �c � A� � c . The cut point, being the end point of
the fermion line in this vertex-correction subdiagram, is
improper. From here on in this section, we will identity S2
as the sum of the last two diagrams in (45). The subdiagram
of radiative correction for the vertex �c � A� � c in each
diagram of S2 will be denoted by H.

For both diagrams in S2, if the improper cut point inside
H is moved out of H to the end point of the fermion line
connecting to H, the relocated cut becomes proper and S2
becomes

Since all the fermion lines and vertex factors sandwiched
between the original cut points in S2 and the relocated ones
in (46) lie within the subdiagramH, the difference between
S2 and (46) may be expressed as a combination of terms
with �� factors stemming from the matrix product in H.
These �� factors may not be ignored if they are multiplied
by pole terms arising from the logarithmically divergent
loop integrations due to the subdiagram H or the overall
diagram.
Making repetitive use of (18) and (19), S2 can be trans-

formed into
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There is a similar transformation for (46). The divergent
loop integration of the subdiagram H only occurs in the T0

term of H, denoted by T0½H�, which is the amplitude of H
with all the external momenta relative to H set to zero. If
we substitute T0½H� for H in either diagram of (47), the
resulting amplitude must vanish because it depends on only
one external momentum k2 and two external polarizations
� and �, which are insufficient to form a Levi-Civita tensor
term. Thus the divergent loop integral of H does not
contribute to S2. Similarly, the divergence of H does not
contribute to (46).

Let us define �S2 to be the first two diagrams in (45). The
two diagrams of (46) may be obtained from �S2 by making
the interchange ð�; k1Þ , ð�; k2Þ. Since S4 consists of the
two diagrams of �S2 and the two diagrams of (46), it is
symmetric under ð�; k1Þ , ð�; k2Þ. In the Taylor series
expansion with respect to the external momenta for S2,
�S2, or S4, only the second order T2 term may have super-
ficially divergent Levi-Civita tensor terms. In addition, any
such T2 order term is equal to some constant times

����k1�k2� which is invariant under ð�; k1Þ , ð�; k2Þ.
Thus T2½S4� is equal to twice T2½ �S2�. Since we have shown
that S4 is superficially convergent, �S2 is also superficially
convergent. Furthermore, the identity (45), which is
equivalent to �S2 þ S2 ¼ 0, ensures that S2 is superficially
convergent as well. There is no divergent pole term to
prevent the difference between S2 and (46) from vanishing
in the limit n ! 4. As a consequence, both S4 and S12
vanish in the limit n ! 4, and we have succeeded in
regularizing and preserving the 2-loop triangular Ward
identity under dimensional regularization.

In the 1-loop case, one of the three external vertices must
be used as the cut point and we have shown it is impossible
to construct a set of diagrams to satisfy both the triangular
Ward identity and Bose permutation symmetry. For the 2-
loop diagrams we have discussed here, there is the addi-
tional freedom of choosing cut points at vertices connect-
ing to internal vector meson lines. As a result, we are able
to construct diagrams that satisfy both the triangular Ward
identity and Bose permutation symmetry.

The AA�2 function is superficially convergent and its
renormalized amplitude can be calculated with any conve-
nient choice of proper cut point. Since the 2-loop triangular
Ward identity can be regularized and renormalized by
minimal subtractions without violating Bose permutation
symmetry, the T2 term of the renormalized AA�2 ampli-
tude can be expressed as a linear combination of the T1

term of the renormalized AAA amplitude. Knowing that
T1½AAA� vanishes on the sole account of permutation
symmetry, T2½AA�2� must vanish as well. This condition
has been verified by direct calculation [22] without using
dimensional regularization.

V. CONCLUSION

In this paper, we have found a simple and natural way to
treat �5 in dimensional regularization: moving all �5 ma-
trices to the rightmost position before analytically continu-
ing the dimension. For amplitude corresponding diagrams
without fermion loops, the amplitudes obtained with our
prescription automatically satisfy the Ward identities with-
out further ado.
The rightmost position on a fermion loop is not defined.

For this reason, we introduce the concept of a cut point. We
have found that the choice of a cut point often conflicts
with gauge invariance. From this vantage point, this lack of
a rightmost position is what breaks the Ward identities,
leading to triangular anomalies.
Applying our prescriptions to 1-loop triangular ampli-

tudes, we reproduce correctly the value of the triangular
anomaly, verifying that our prescription is applicable to
diagrams with anomalies. For a 1-loop fermion self-energy
diagram or a 1-loop vertex-correction diagram, positioning
�5 within the divergent 1PI diagram gives an amplitude
differing from the amplitude obtained with rightmost �5 by
a finite amount, even after subtraction of pole terms. Thus
for a 2-loop diagram with a fermion loop and with a 1-loop
self-energy insertion or a 1-loop radiative vertex insertion,
we do not assign a point inside a divergent 1-loop subdia-
gram as a cut point. Furthermore, in order not to give a
preferential role to any of the external lines, we do not
choose the point of the vertex connecting to an external
field line as a cut point. We have shown that this prescrip-
tion of utilizing proper and legitimate cut points enables us
to regulate amplitudes in a gauge invariant manner.

APPENDIX A: CHARGE CONJUGATION
TRANSFORMATION

If we disregard terms involving fermion fields, the ef-
fective Lagrangian (13) is invariant under the following
charge conjugation transformation:

H ! H; �2 ! ��2; A
� ! �A�; �c ! � �c; c ! �c:

(A1)

Fields that have odd (even) charge parity shorthanded as
C parity under this transformation are classified as C-odd
(C-even) fields. For nonfermion fields, H is C even and
non-H fields are C odd. We define the C parity of a
Feynman diagram to be the product of the C parities of
its nonfermion external lines. A vertex without fermion
lines attached is always C even, and so is a fermionless
Feynman diagram. It is therefore impossible to construct a
C-odd diagram without including fermion lines or loops.
For a theory that does not involve �5, such as QED, the
charge conjugation transformation is a symmetry of its
Lagrangian. A consequence of this symmetry is the Furry
theorem which states that any amplitude for an odd number
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of external vector fields such as the AAA amplitude van-
ishes in QED.

In four-dimensional space, the charge conjugation trans-
formation c ! C �c T for fermion fields is effected by the
matrix

C ¼ i�2�0 (A2)

that satisfies

C��C�1 ¼ �ð��ÞT: (A3)

The above identity is based on the property that �0 and �2

are symmetric matrices while �1 and �3 are antisymmetric
in four-dimensional space. It is not guaranteed that this
property specific to n ¼ 4may be dimensionally continued
such that (A3) holds when n � 4.

We shall not assume the validity of (A3) when n � 4 and
define instead the charge conjugation for a matrix product

of N � matrices M̂ ¼ ��1��2 � � ���N as M̂C ¼
ð���N Þ � � � ð���2Þð���1Þ which is the product of the
negative of these N � matrices in reversed order. When
n ¼ 4, we may make use of (A3) to verify straightfor-

wardly that the trace of M̂ is the same as that of M̂C or

Tr ð��1��2 � � ���N Þ ¼ Trðð���N Þ � � � ð���2Þð���1ÞÞ:
(A4)

Since both sides in (A4) consist of terms that are products
of g���j metric tensors, the polarizations �1; �2; . . . ; �N

may be dimensionally continued beyond the first 4 dimen-
sions so that (A4) is also valid when n � 4. The validity of

Tr ð��1��2 � � ���N�0�1�2�3Þ
¼ Trð�3�2�1�0ð���N Þ � � � ð���2Þð���1ÞÞ

also yields

Trð��1��2 � � ���N�5Þ ¼ Trð�5ð���N Þ � � � ð���2Þð���1ÞÞ;
(A5)

where �1; �2; . . . ; �N are allowed to be polarizations in
arbitrary n dimensional space.

We will use the notation M̂DR with the subindex DR to

indicate that M̂DR is the matrix product obtained from M̂

by anticommuting all the �5 matrices with � matrices to
the right and then continuing to n � 4. Conditions (A4)
and (A5) in the above may be summarized as

Tr ðM̂DRÞ ¼ TrððM̂DRÞCÞ: (A6)

The accumulated sign change resulting from moving a �5

in M̂ to the rightmost position is equal to that from moving

the corresponding �5 in M̂C to the leftmost position. We
thus have

ðM̂DRÞC ¼ ðM̂CÞDL; (A7)

where the subscript DL means that the analytical continu-
ation to n � 4 starts from the expression obtained after
anticommuting all the �5 factors to the leftmost position. If
the count of �� matrices with � 2 f0; 1; 2; 3g in a matrix
product is odd, the trace of the matrix product is zero and
so is its continuation from any form. Hence, the �5 factor at

the leftmost position of ðM̂CÞDL in a trace may be moved to
the rightmost position to yield

Tr ððM̂CÞDLÞ ¼ TrððM̂CÞDRÞ: (A8)

Combining (A6)–(A8), in the above, we get

Tr ðM̂DRÞ ¼ TrððM̂CÞDRÞ: (A9)

Let G be a Feynman diagram with a fermion loop that
has been cut open at the point P. The conjugate diagram
GC is defined to be the diagram obtained by reversing the
direction of the fermion loop in G. The point P remains to
be the cut point of GC. If the cut point P on G is the end
point of a certain fermion line on the loop, it becomes the
beginning point of the reversed fermion line in GC, and
vice versa.
The identity (A9) may be utilized to show that dimen-

sionally regularized amplitudes for G and GC are related.
To be more specific, let F be a fermion loop attached by
fields in the sequence’1; ’2; . . . ; ’n with inward momenta
k1; k2; . . . ; kn and the cut point is chosen to be the end point
of the internal fermion line flowing into the vertex of ’1.
The Feynman integrand IðFÞ for F may be written as

IðFÞ ¼ Tr

0
@ i

‘�m
$ð’nÞ i

‘þ k1þ k2 � � �þ kn�1�m
$ð’n�1Þ � � � i

‘þ k1þ k2�m
$ð’2Þ i

‘þ k1�m
$ð’1Þ

1
A

DR

; (A10)

where ‘ is the loop momentum variable and the vertex factors are

$ðA�Þ ¼ �igR��L; $ð�2Þ ¼ f�5; and $ðHÞ ¼ �if:

According to the identity (A9), performing the charge conjugation operation on the matrix product inside the trace of (A10)
leaves the value of IðFÞ unchanged. Thus,
IðFÞ¼Tr

�
~$ð’1Þ i

�ð‘þk1Þ�m
~$ð’2Þ i

�ð‘þk1þk2Þ�m
� � � ~$ð’n�1Þ i

�ð‘þk1þk2 � � �þkn�1Þ�m
~$ð’nÞ i

�‘�m

�
DR

;

where
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~$ðA�Þ ¼ igL��R; ~$ð�2Þ ¼ f�5; and ~$ðHÞ ¼ �if:

We are allowed to make the transformation ‘ ! �‘ in carrying out the
R
dn‘ loop integration and arrive at

Z
dn‘IðFÞ¼

Z
dn‘Tr

�
~$ð’1Þ i

‘�k1�m
~$ð’2Þ i

‘�k1�k2�m
��� ~$ð’n�1Þ i

‘�k1�k2 ����kn�1�m
~$ð’nÞ i

‘�m

�
DR

:

(A11)

On the other hand, the conjugate diagram FC is the fermion loop with the external fields attached on the loop in the order of
’n; ’n�1; . . . ; ’1, and with the cut point being the beginning point of the fermion line that leaves the vertex of ’1. The
Feynman integrand for FC may be written as

IðFCÞ ¼ Tr

�
$ð’1Þ i

‘� k1 �m
$ð’2Þ i

‘� k1 � k2 �m
� � �$ð’n�1Þ i

‘� k1 � k2 � � � � kn�1 �m
$ð’nÞ i

‘�m

�
DR

:

(A12)

Let us observe that

~$ðA�Þ ¼ �$ðA�Þj�5!��5
;

~$ð�2Þ ¼ �$ð�2Þj�5!��5
;

~$ðHÞ ¼ $ðHÞj�5!��5
:

These relationships demonstrate that if we insert an addi-
tional negative sign in front of every �5, the vertex factors
~$ðA�Þ, ~$ð�2Þ, and ~$ðHÞ become�$ðA�Þ,�$ð�2Þ, and
$ðHÞ, respectively. Note also that the integrand in (A11)
becomes the integrand IðFCÞ in (A12) if all the vertex
factors ~$ð’Þ in (A11) are replaced by$ð’Þ. Thus we have

Z
dn‘IðFCÞ ¼ ð�1ÞNCðFÞ

Z
dn‘IðFÞj�5!��5

; (A13)

where NCðFÞ is the number of C-odd fields in
f’1; ’2; . . . ; ’ng and ð�1ÞNCðFÞ is the C parity of the dia-
gram F or FC. Decomposing the identity (A13) into the
�5-even part and the �5-odd part, we get

�5-even part of
Z

dn‘IðFCÞ ¼ �5-even part of ð�1ÞNCðFÞ

�
Z

dn‘IðFÞ (A14)

and

�5-odd part of
Z

dn‘IðFCÞ ¼ �5-odd part of ð�1ÞNCðFÞþ1

�
Z

dn‘IðFÞ: (A15)

If the fermion loop F is a subdiagram of a larger diagramG
that contains no other fermion lines than those in F, then
the C parity of G is equal to the C parity of F. Since the
Feynman integrand for the complement of F in G is the
same as that for the complement of FC inGC, (A13)–(A15)
are also valid if we replace F with G. If G is C even, the
�5-even part of the dimensionally regularized amplitude of

G is equal to the �5-even part of G
C but the �5-odd part of

G is the negative of the �5-odd part of GC. If G is C odd,
the �5-odd part of G is equal to the �5-odd part of GC and
the �5-even part of G is the negative of the �5-even part
of GC.
We will require that if a diagram G is included as a

component diagram, the conjugate diagram GC must also
be included (with, of course, suitable adjustment of
weighting factors). Since the �5-odd parts are canceled
between G and GC when G is C even, no Levi-Civita
tensor term is possible for C-even functions.
For C-odd functions, the �5-even parts are canceled

between G and GC. If we discard the �5-even part, either
G or GC suffices for the evaluation of the C-odd function.
We will use the one whose cut point is located at the end
point of an internal fermion line. In other words, the Levi-
Civita tensor terms for C-odd functions may be evaluated
by diagrams whose cut points are restricted to the subset of
end points of internal fermion lines on the fermion loops.

APPENDIX B: GREEN FUNCTIONS AND
WARD IDENTITIES

In the main context, we only consider Feynman dia-
grams in which the nonfermion internal lines are the vector
meson lines. To handle other types of diagrams, we will
make use of Green functions.
The Green function G is the vacuum expectation value

of a time-ordered product. Specifically,

GðO1ðx1Þ; O2ðx2Þ; . . . ; OnðxnÞÞ
¼ ThO1ðx1ÞO2ðx2Þ � � �OnðxnÞi; (B1)

where the operator OiðxiÞ is either a field operator or a
product of field operators at the same space-time point xi.
The connected Green function, denoted by Gc, is

Gcð� � �Þ ¼ all connected diagrams of Gð� � �Þ:
We need a notation to indicate that some external lines

of a Green function are amputated. To denote a truncated
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external line, we underline the corresponding field variable
in the Green function. That is,

Gð. . . ; ’i; . . .Þ ¼ Dð’i; ’jÞGð. . . ; ’
j
; . . .Þ;

Gcð. . . ; ’i; . . .Þ ¼ Dð’i; ’jÞGcð. . . ; ’j
; . . .Þ;

(B2)

where the propagatorDð’i; ’jÞ is also the two-point Green
function,

Dð’i; ’jÞ ¼ Gð’i; ’jÞ:
Note that in (B2) the space-time dependence of the field
variable ’i is lumped into the index i, and the Einstein
summation convention for the repeated index j is extended
to include the summation over all possible field types and
integration of space-time points. The fully truncated Green
function � is the connected Green function with all field
variables underlined.

�ð’1; ’2; . . . ; ’nÞ ¼ Gcð’1; ’2; . . . ; ’nÞ:

In particular, �ð’i; ’jÞ is the inverse propagator,

�ð’i; ’jÞ ¼ Gð’i; ’jÞ ¼ D�1ð’j; ’iÞ:

For a composite operator Ô, which is a product of field
operators at the same space-time point, we define

�ð’1; ’2; . . . ; ’n; ÔÞ ¼ Gcð’1; ’2; . . . ; ’n; ÔÞ:

Note that to avoid misinterpretations, Ô is forbidden to be a
single field operator in the above identification. The tree
order part of a Green function ϝ, which may be any of the
aboveG,Gc, or � function, will be denoted by the notation

ϝð0Þ with the superscript (0). The Fourier transform of a
Green function ϝ is labeled by an additional group of
momentum variables and is related to its counterpart in
the coordinate space by

ϝ ð’1ðx1Þ; ’2ðx2Þ; . . . ; ’nðxnÞÞ

¼
Z dk1

ð2	Þ4
dk2
ð2	Þ4 � � �

dkn�1

ð2	Þ4 e
�iðk1x1þk2x2þ���knxnÞ

� ϝð’1; ’2; . . . ; ’n; k1; k2; . . . ; knÞ;

where k1 þ k2 þ � � � þ kn ¼ 0. We will omit the momen-
tum variables k1; k2; . . . ; kn for the Fourier transform if
there is little chance of confusion.

1. Basic graphical identities

The BRST invariance leads to a number of Ward iden-
tities which form an important part of the foundation on
which renormalizability is based. These identities can be
formally derived in the following way. The vacuum state
j0i in the theory satisfies

Qj0i ¼ 0; (B3)

where Q is the BRST charge. The commutator (anticom-
mutator) of iQ with a nonghost (ghost) field is equal to the
BRST variation of the field. Because of (B3), we have

Th0jiQ’1ðx1Þ’2ðx2Þ � � � j0i ¼ 0;

where’i is a field operator. By moving iQ to the right until
it operates on j0i and vanishes, we get

Th0j�ð’1ðx1Þ’2ðx2Þ � � �Þj0i ¼ Th0j�’1ðx1Þ’2ðx2Þ � � � j0i
�Th0j’1ðx1Þ�’2ðx2Þ � � � j0i
� � � � ¼ 0: (B4)

The relative sign between terms is determined by the
positions of the ghost fields. The above BRST identity is
formal and its renormalized version may not be satisfied
when anomaly exists. But the tree order terms are finite and
always satisfy the BRST identity provided the Lagrangian
is BRST invariant. To facilitate the discussions for higher
loop order terms, we will introduce graphical notations for
some basic tree order identities.
The BRST variation for any field variable ’ðxÞ in gen-

eral may be decomposed as

�’ðxÞ ¼ �1’ðxÞ þ �2’ðxÞ; (B5)

in which �1’ðxÞ is a linear superposition of field variables
and �2’ðxÞ is a product of the ghost field cðxÞ and another
field variable at the same space-time point x. For the
Abelian-Higgs theory with the Lagrangian (13), nonvan-
ishing �1’ are �1A

� ¼ @�c and �1�2 ¼ �Mc, and non-
vanishing �2’ are �2H ¼ gc�2, �2�2 ¼ �gcH, and
�2c L ¼ �igcc L.
By (B4), we have

Th0jð� �cðzÞÞ’ij0ið0Þ ¼ Th0j �cðzÞ�’ij0ið0Þ
¼ @�1’i

@cðz0Þ D
ð0Þð �cðzÞ; cðz0ÞÞ; (B6)

where the subscript and superscript (0) refer to tree order

terms and @�1’i

@c is a constant or constant operator. Next, let

us assume that ’j and ’k are nonghost fields. Then (B4)

yields

Th0jð� �cðzÞÞ’j’kj0ið0Þ ¼ Th0j �cðzÞð�’jÞ’kj0ið0Þ
þ Th0j �cðzÞ’jð�’kÞj0ið0Þ: (B7)

According to the definition (B2) for the Green function
with underlined arguments, the left side of (B7) may be
expressed as
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Th0jð� �cðzÞÞ’j’kj0ið0Þ
¼ Dð0Þð� �cðzÞ; ’iÞGð0Þð’

i
; ’j; ’kÞ

¼ Dð0Þð �cðzÞ; cðz0ÞÞ@�1’i

@cðz0Þ G
ð0Þð’

i
; ’j; ’kÞ:

In the tree order, the antighost �cðzÞ field in Th0j �cðzÞ�
ð�’jÞ’kj0ið0Þ, which is the first term on the right side of

(B7), must be paired under Wick contraction with the ghost
c field in �’j or with the c field from the interaction

Lagrangian, and we have

Th0j �cðzÞð�’jÞ’kj0ið0Þ
¼ Dð0Þð �cðzÞ; cðz0ÞÞ

�
�
Dð0Þ

�
@�2’j

@cðz0Þ ; ’k

�
þGð0Þðcðz0Þ; �1’j; ’kÞ

�
:

(B8)

Note that we have discarded Dð0Þð@�1’j

@c ; ’kÞ owing to the

vanishing vacuum expectation h’ki ¼ 0. For the 2nd term
on the right side of (B7), there is an expression similar to
(B8). The identity (B7), after factoring out the common

ghost propagator Dð0Þð �cðzÞ; cðz0ÞÞ and then replacing z0 by
z, becomes

@�1’i

@cðzÞ G
ð0Þð’

i
; ’j; ’kÞ ¼ Dð0Þ

�
@�2’j

@cðzÞ ; ’k

�

þDð0Þ
�
’jðxÞ; @�2’k

@cðzÞ
�

þGð0ÞðcðzÞ; �1’j; ’kÞ
þGð0ÞðcðzÞ; ’j; �1’kÞ: (B9)

The definition (15) for the composite vertex
N

on a
fermion line may be extended to include other types of
vertices. The extended composite vertex is defined as

O ¼ @�1’i

@c
�ð0Þð’i; ’; ’

0Þ

¼ �ik��
ð0ÞðA�;’; ’0Þ �M�ð0Þð�2; ’; ’

0Þ; (B10)

where the tree order amplitude �ð0Þð’i; ’; ’
0Þ stands for the

vertex factor of ’i � ’� ’0 and k is the incoming mo-
mentum of the vector field A� or scalar field �2. Note that

this definition is the same as the restricted one of (15) when
’ and ’0 are the fermion fields c and �c . The amplitude
@�1’i

@c Gð0Þð’i; ’j; ’kÞ can then be diagrammatically ex-

pressed as a composite vertex
N

connected with two
propagator lines to fields ’j and ’k:

Let us use a solid black box to graphically represent the
c� �c� ’ vertex. Then the Green function

Gð0Þðc; c; ’k; k1; k2; k3Þ ¼ Dð0Þðc; �c; k2Þ
� �ð0Þðc; �c; ’iÞDð0Þð’i; ’k; k3Þ;

(B12)

can be diagrammatically expressed as

where the dotted arrowed line corresponds to the ghost

propagator Dð0Þðc; �cÞ. Let us also define

Since �2’j is a product of one ghost c field and another

nonghost field, taking the partial derivative with respect to

c as in
@�2’j

@c is equivalent to factoring out the c field to

retain the nonghost factor. Dð0Þð@�2’j

@c ; ’kÞ is thus propor-

tional to the free propagator that propagates the field ’k to
the nonghost field in �2’j. In particular, if ’j ¼ �2 and

’k ¼ H, then �2�2 ¼ �gcH and

Dð0Þ
�
@�2�2

@c
;H

�
¼ �gDð0ÞðH;HÞ:

We now graphically represent Dð0Þð@�2’j

@c ; ’kÞ by

where the single line stands for the free propagator from’k

to the nonghost field in �2’j and the arrowed double line

emitting from the composite vertex
N

is interpreted as that
the original propagator connecting to field’j as in (B11) is

annihilated and the composite vertex with the arrowed
double line is to be replaced by the constant coefficient

of the nonghost field in
@�2’j

@c . With the graphical elements

defined in (B10)–(B15), the identity (B9) can be diagram-
matically expressed as
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Likewise, by expanding

Th0j�ð �cðzÞ’i’j’kÞj0ið0Þ ¼ 0

and utilizing (B16), we get the identity

The above two graphic identities (B16) and (B17) together
with the condition

Th0j�ð �cðzÞ’i’j’k’lÞj0ið0Þ ¼ 0

can be combined to yield the identity

We will need graphical notations to express two amputated
external fields in a four-point function. In

the amputated A� and A� fields are represented by two
crosses that are stacked together. Similarly,

represents a four-point function with an amputated external
A� and a composite vertex

N
.

We are now equipped with the graphical notations and
identities needed to construct component diagrams for
Ward identities without the restriction on the type of inter-
nal field lines.

2. Two-loop triangular Ward identity

If all the vertices for external fields are detached, a
3-point 2-loop 1PI diagram in the presence of one fermion-
loop subdiagram becomes a 2-loop supergenerator diagram

which is composed of a fermion loop and a nonfermion
internal line. Seven topologically different generator dia-
grams will result from all possible attachments of the
vertices for A� and A� consistent with Feynman rules to
this supergenerator:

For each diagram in the above, either of the two legitimate
cut points at the two vertices connecting to the nonfermion
internal line is available to yield a cut generator for a
regularized Ward identity. For example, if the cutting is
made at the end point of the internal fermion line connect-
ing to the lowest vertex of the last diagram in (B22), we
obtain the generator

The vertex for A� is attached to the fermion line and the
vertex for A� is attached to the arc above the fermion line.
We may attach

N
to the above cut generator (B23) in all

possible manners to obtain the following collection of
component diagrams:

A component diagram is constructed when we insert
N

in
consistency with Feynman rules into one of the internal
lines or vertices in the generator. The momentum entering
the open fermion line from the right side is assumed to be
equal to the momentum leaving the fermion line at the left
end. Since the original closed fermion loop is restored by
fusing the open fermion line, the amplitude of the cut
diagram is calculated by taking the trace and carrying out
the fermion-loop momentum integration.
There are many cancellations for the sum of component

diagrams constructed from a cut generator. Making use of
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(B16) and (B17), the sum of the six diagrams in (B24)
becomes

The integrals for the first two diagrams in the above cancel
each other after loop momentum shifting which is allowed
under dimensional regularization. The amplitude for the
3rd diagram also vanishes because the fermion loop that
may produce Levi-Civita tensor terms is essentially em-
bedded in a two-point function that lacks sufficient indices
to form a Levi-Civita tensor. The propagators for the two
internal lines that are attached to the fermion line in the 4th
or 5th diagram must both be DðH;HÞ. The amplitude for
this type of diagram is absent of a Levi-Civita tensor term
because a triangular fermion loop with one vector A and
two scalar H lines attached does not have enough indices
available to make up a Levi-Civita tensor. By (18), the 6th
diagram in (B25) can be decomposed as

The fermion loop for either diagram on the right side of the
above identity has only two vertices effectively and will
not have enough indices to give rise to any Levi-Civita
tensor term.

The last diagram in (B25) may be problematic because
its cut point is located next to the composite vertex

N
as in

(31) of which the nonvanishing amplitude invalidates the
basic identity (18) to result in the 1-loop anomaly. Let us
recall that a cut point not residing in a divergent subdia-
gram of self-energy insertion or vertex correction is said to
be proper. Since a proper cut point for a generator diagram

remains to be a proper one for any of the component
diagrams constructed by attaching

N
to the generator,

we will choose to cut each generator in (B22) at a legiti-
mate and proper point if it is available. For the seven
generators in (B22), only the third diagram does not have
such a cut point when the nonfermion internal line corre-
sponds to a wavy line representing an internal vector
meson line. But this is the situation that we have already
encountered in Sec. IV in constructing proper component
diagrams from the third generator diagram of (39).
To violate a Ward identity in our �5 scheme, a cut point

must be positioned next to the
N

vertex, such as the one
for the last diagram in (B25). With �5 positioned immedi-
ately to the right of the composite vertex

N
, the

N
vertex

together with the double line pointing to the right in the
identity (18) is no longer equal to igR but should be
interpreted as

ðigRð‘�mÞÞjrightmost�5

1

ð‘�mÞ
¼ igR� ig�5‘�

1

ð‘�mÞ : (B27)

The extra term �ig�5 ‘�
1

ð‘�mÞ may contribute to the

violation of the Ward identity and give rise to an anomaly.
If we restrict ourselves to legitimate and proper cut points,
only the following four kinds of diagrams, one of which is
the last diagram in (B25), may be responsible for the
violation of the 2-loop triangular Ward identity.

For the theory of (37) in which we have added another
fermion field to cancel the 1-loop anomaly, the � factor of
mass dimension 1 from the solid black box, which repre-
sents the vertex factor of c� �c�H, reduces the power
counting such that the extra term with the ‘� factor cannot
survive the n ! 4 limit in any diagram of (B28). The
theory defined by (37) is therefore also free of the 2-loop
anomaly.

[1] G. ’t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).
[2] J. C. Ward, Phys. Rev. 78, 182 (1950); Y. Takahashi,

Nuovo Cimento 6, 371 (1957).
[3] S.Gottlieb and J. T.Donohue, Phys.Rev.D20, 3378 (1979).
[4] S. L. Adler, Phys. Rev. 177, 2426 (1969); J. S. Bell and R.

Jackiw, Nuovo Cimento A 60, 47 (1969).
[5] P. Breitenlohner and D. Maison, Commun. Math. Phys.

52, 11 (1977).
[6] Guy Bonneau, Nucl. Phys. B177, 523 (1981).

[7] S. Aoyama and M. Tonin, Nucl. Phys. B179, 293 (1981).
[8] R. Ferrari, A. Le Yaouanc, L. Oliver, and J. C. Raynal,

Phys. Rev. D 52, 3036 (1995).
[9] T. L. Trueman, Z. Phys. C 69, 525 (1996).
[10] R. Ferrari and P. A. Grassi, Phys. Rev. D 60, 065010

(1999).
[11] D. Sanchez-Ruiz, Phys. Rev. D 68, 025009 (2003).
[12] M. Chanowitz, M. Furman, and I. Hinchliffe, Nucl. Phys.

B159, 225 (1979).

GAUGE INVARIANT TREATMENT OF �5 IN THE . . . PHYSICAL REVIEW D 83, 025020 (2011)

025020-15

http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1103/PhysRev.78.182
http://dx.doi.org/10.1007/BF02832514
http://dx.doi.org/10.1103/PhysRevD.20.3378
http://dx.doi.org/10.1103/PhysRev.177.2426
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1007/BF01609069
http://dx.doi.org/10.1007/BF01609069
http://dx.doi.org/10.1016/0550-3213(81)90185-1
http://dx.doi.org/10.1016/0550-3213(81)90240-6
http://dx.doi.org/10.1103/PhysRevD.52.3036
http://dx.doi.org/10.1007/s002880050057
http://dx.doi.org/10.1103/PhysRevD.60.065010
http://dx.doi.org/10.1103/PhysRevD.60.065010
http://dx.doi.org/10.1103/PhysRevD.68.025009
http://dx.doi.org/10.1016/0550-3213(79)90333-X
http://dx.doi.org/10.1016/0550-3213(79)90333-X


[13] M. Clements, C. Footman, A. Kronfeld, S. Narasimhan,
and D. Photiadis, Phys. Rev. D 27, 570 (1983); V.
Ganapathi, T. Weiler, E. Laermann, I. Schmitt, and P.M.
Zerwas, Phys. Rev. D 27, 579 (1983); G. Eilam, Phys. Rev.
D 28, 1202 (1983).

[14] J.M. Soares and A. Barroso, Phys. Rev. D 39, 1973
(1989); A. Barroso, M.A. Doncheski, H. Grotch, J. G.
Körner, and K. Schilcher, Phys. Lett. B 261, 123 (1991).

[15] J. G. Körner, D. Kreimer, and K. Schilcher, Z. Phys. C 54,
503 (1992).

[16] P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[17] C. Becchi, A. Rouet, and R. Stora, Phys. Lett. 52B, 344
(1974); Commun. Math. Phys. 42, 127 (1975); Ann. Phys.
(N.Y.) 98, 287 (1976); I. V. Tyutin, Lebedev Institute
preprint 39 (1975).

[18] H. Cheng and E. C. Tsai, Phys. Lett. B 176, 130 (1986);
Phys. Rev. D 40, 1246 (1989).

[19] S. L.Adler andW.A.Bardeen, Phys.Rev. 182, 1517 (1969).
[20] D. R. T. Jones and J. P. Leveille, Nucl. Phys. B206, 473

(1982).
[21] M. Bos, Nucl. Phys. B404, 215 (1993).
[22] H. Cheng and S. P. Li, Int. J. Mod. Phys. A 13, 2991 (1998).

ER-CHENG TSAI PHYSICAL REVIEW D 83, 025020 (2011)

025020-16

http://dx.doi.org/10.1103/PhysRevD.27.570
http://dx.doi.org/10.1103/PhysRevD.27.579
http://dx.doi.org/10.1103/PhysRevD.28.1202
http://dx.doi.org/10.1103/PhysRevD.28.1202
http://dx.doi.org/10.1103/PhysRevD.39.1973
http://dx.doi.org/10.1103/PhysRevD.39.1973
http://dx.doi.org/10.1016/0370-2693(91)91336-T
http://dx.doi.org/10.1007/BF01559471
http://dx.doi.org/10.1007/BF01559471
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1016/0370-2693(74)90058-6
http://dx.doi.org/10.1016/0370-2693(74)90058-6
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0370-2693(86)90937-8
http://dx.doi.org/10.1103/PhysRevD.40.1246
http://dx.doi.org/10.1103/PhysRev.182.1517
http://dx.doi.org/10.1016/0550-3213(82)90279-6
http://dx.doi.org/10.1016/0550-3213(82)90279-6
http://dx.doi.org/10.1016/0550-3213(93)90479-9
http://dx.doi.org/10.1142/S0217751X98001505

