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In the eprint by Jean Alexandre [arXiv:1009.5834], a minimal extension of (3þ 1)-dimensional

quantum electrodynamics has been proposed, which includes Lorentz violation (LV) in the form of

higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale M. The model

can lead to dynamical mass generation for charged fermions. In this article, I elaborate further on this idea

and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory.

Specifically, in the first part of the article, I comment briefly on the gauge dependence of the dynamical

mass generation in the approximations of J. Alexandre [arXiv:1009.5834.], and I propose a possible

avenue for obtaining the true gauge-parameter-independent value of the mass by means of pinch technique

argumentations. In the second part of the work, I embed the LV QED model into multibrane world

scenarios with a view to provide a geometrical way of enhancing the dynamical mass to phenomeno-

logically realistic values by means of bulk warp metric factors, in an (inverse) Randall-Sundrum

hierarchy. Finally, in the third part of this paper, I demonstrate that such Lorentz-violating QED models

may represent parts of a low-energy effective action (of Finsler-Born-Infeld type) of open strings

propagating in quantum D0-particle stochastic space-time foam backgrounds, which are viewed as

consistent quantum-gravity configurations. To capture correctly the quantum-fluctuating nature of the

foam background, I replace the D0-recoil-velocity parts of this action by appropriate gradient operators in

three-space, keeping the photon field part intact. This is consistent with the summation over world-sheet

genera in the first-quantized string approach. I identify a class of quantum orderings which leads to the LV

QED action of J. Alexandre, arXiv:1009.5834. In this way I argue, following the logic in that work, that

the D-foam can lead to dynamically generated masses for charged-matter (fermionic) excitations

interacting with it.
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I. INTRODUCTION

Lorentz violation (LV) in the standard model is a rela-
tively old subject, originating from works by Kostelecky
and collaborators [1]. There is extensive literature over the
past 20 years on tests of LV based on a (phenomenological)
effective Lagrangian approach, the so-called standard
model extension (SME). However, there is no way in this
approach of knowing the precise magnitude of the various
LV parameters appearing in the SME, and thus we cannot
have a feeling on the expected order of magnitude of the
violations, so as to guide (or discourage!) experimental
searches in a sensible and constructive way.

It is therefore desirable to have an ultraviolet completion
of such phenomenological theories, which would guide us
in our quest for an understanding of the quantum structure
of space time at microscopic scales. In this latter respect,
Horava recently revisited the issue of Lorentz violation by
suggesting an anisotropic time-space scaling for gravity,
which in the ultraviolet regime rendered the quantum
theory of this gravitation renormalizable [2] (Horava-
Lifshitz theories). This approach triggered an enormous
interest among the relevant communities. Although in its

original formulation the model required a cosmological
constant with the wrong sign to be compatible with
observations, nevertheless, phenomenologically realistic
improved versions [3] and appropriate extensions of the
standard model [4] have recently been constructed.
Moreover, LV quantum field theories with anisotropic
scalings (therefore of Lifshitz type, but not related neces-
sarily to gravity) existed long before the Horava-Lifshitz
gravity, and in fact their anisotropic scaling has been used
as a regulator of the ultraviolet divergences of quantum
field theory [5]. Dynamical mass generation in such theo-
ries has also been discussed [6].
Whether LV is ultimately related to quantum gravity is

not known at present, since all such theories are at the level
of effective (low-energy) field theories and their micro-
scopic understanding is lacking. However, quantum grav-
ity may not admit a local effective Lagrangian description,
as we have argued some time ago, based on a toy model of
space-time foam, originating from string theory [7–10]. In
fact, in these works, the space-time foamy structures are
provided by stringy defects, interacting with matter string
excitations on brane universes. The defects break Poincaré
invariance, and their recoil during the interaction with
open strings also breaks local Lorentz invariance. The
D-particles, being string theory solitons, quantum fluctuate
and their fluctuations give the background space time a
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foamy nature (‘‘D-foam’’). There is a nontrivial momen-
tum transfer during the interactions of matter strings with
D-foam defects, which necessitates the emission of non-
local intermediate string states. The latter do not admit a
local effective action description. In this kind of models,
the so-called ultraviolet completion is provided by string/
brane theory itself. We have argued [9,11], however, that,
despite the lack of an efficient local effective action
description, there is a rich astroparticle phenomenology
associated with either the induced vacuum refraction, char-
acterizing the D-foam, or with global aspects of it, asso-
ciated with modifications of the energy budget of the dark
sector of the Universe [8,9,12].

Nevertheless, as we shall discuss below, under some
approximations, it is after all possible to write down a
LV local effective action (expanded in powers of deriva-
tives), which describes part of the effects of an isotropic,
stochastically fluctuating, D-foam on radiation and, indi-
rectly, on charged fermionic matter coupled to it, in par-
ticular dynamical mass generation. However, there are
some other aspects of the foam, such as the induced
time delays [9], during the interaction of a photon with a
D-particle, and the associated vacuum refractive index, that
such an action cannot fully capture. The latter effects,
being associated with stringy time-space uncertainties,
require the full string theory machinery to be quantified.

The quantum fluctuations of the D-particle defects in
target space lead to a novel correspondence principle by
means of which a B-antisymmetric tensor background field
in phase space, representing the recoil velocity of the
defect during its interaction with matter, is mapped [13]
into a spatial-derivative operator along the direction of the
recoil. In this way, the resulting Finsler-Born-Infeld (FBI)
Lagrangian, which describes the (low-energy) dynamics
of open strings on a brane world in interaction with
the D-particles, may be transformed into an effective
Lagrangian with Lorentz-violating higher spatial-
derivative terms. The latter are of the form studied in a
minimal LVextension of QED considered recently in [14].
That model has been argued to provide a novel way of
generating electron masses dynamically. The model is not
of Lifshitz type, in the sense that there is no anisotropic
scaling between time and space coordinates. The presence
of LV is manifested through higher-spatial-derivative
terms, respecting rotational invariance in three space,
which are suppressed by an effective mass scale. The
presence of this scale and the LV terms catalyze dynamical
mass generation for charged fermions, for arbitrarily weak
gauge fields.

In view of our link of such a Lagrangian with the
D-foam, and ultimately with more general quantum gravi-
tational structures, this constitutes an explicit realization of
the effects of a foam medium on ‘‘slowing’’ down some
particles via mass generation. In our case, the suppression
mass scale of the LV terms is expressed in terms of the

string mass scale and fundamental parameters of the foam,
such as the variance of its quantum fluctuations. There are
issues associated with quantum ordering ambiguities in
our construction, which I attempt to resolve by appealing
to the important role of the dynamical mass generation
in curing infrared instabilities in the model. In this way,
I select as the physical class of quantum orderings the
one that maps the FBI effective action into the precise
form of the LV QED action of [14] at low energies.
Any further ordering ambiguities within this class of mod-
els is absorbed into the quantum fluctuation parameters
of the D-foam, which at this stage are viewed as
phenomenological.
The structure of the article is as follows: in Sec. II, I

review the basic features of the model of [14]. In Sec. III, I
comment briefly on the gauge dependence of the dynami-
cally generated mass for fermions in this model, and
propose a way to extract the gauge-fixing-parameter inde-
pendent part of it, which we argue to be provided by its
value in the Feynman gauge. The argumentation is based
on the so-called pinch technique [15,16], which applies
straightforwardly to our LV case, as a result of the very
minimal form of the LV terms in the model of [14].
In Sec. IV, I discuss geometric ways of enhancing the
dynamically generated mass through an inverse Randall-
Sundrum-like hierarchy, which is achieved when the model
of [14] is embedded appropriately into a multibrane world
scenario, with warped bulk geometries. As a rather intrigu-
ing aspect, in Sec. V, I discuss a possible microscopic
origin of the LV terms in the model of [14]. I show that
such terms may constitute parts of an effective action
describing the interaction of photons with quantum-
fluctuating (in target-space) D-particles in the stochastic
stringy space-time foammodel of [8,9]. In this case, the LV
scale M in the action of [14] is identified with a specific
function of the foam parameters and the string scale and
coupling. Conclusions and Outlook, in particular possible
extensions of the model to incorporate flavored neutrinos,
are presented in Sec. VI. Details on the application of the
pinch technique to our one-loop approximate Schwinger-
Dyson (SD) equations, relevant for dynamical mass gen-
eration in the analysis of [14], and some remarks on its
current status in gauge theories in general, are given in an
Appendix to the work.

II. REVIEW OFA MINIMAL LORENTZ-
VIOLATING (LV) QED MODEL

In [14] dynamical mass generation for fermions has been
studied in the context of a (3þ 1)-dimensional QED field
theory with higher-order spatial derivatives in the photon
sector, that violated four-dimensional Lorentz symmetry
but preserved spatial rotations, and a standard form for
the fermion sector. This LV model is not of Lifshitz type, in
the sense that there is isotropic scaling between time
and space coordinates, but there is a mass scale to suppress

NICK E. MAVROMATOS PHYSICAL REVIEW D 83, 025018 (2011)

025018-2



the LV spatial-derivative terms. The Lorentz-violating
Lagrangian considered in [14] reads

L ¼ � 1

4
F��

�
1� �

M2

�
F�� � �

2
@�A

�

�
1� �

M2

�
@�A

�

þ i �c 6Dc ; (2.1)

where � is a covariant gauge-fixing parameter (GFP),

D� ¼ @� þ ieA�, and � ¼ @i@
i ¼ ~@ � ~@. Our conventions

for the metric are ð�1; 1; 1; 1Þ.
As emphasized in [14], no higher-order space deriva-

tives are introduced for the fermions, to avoid the intro-
duction of extra nonrenormalizable couplings into the
theory. Indeed, in order to respect gauge invariance, which
is a crucial assumption of the model, such terms would
need to be of the form

1

Mn�1
�c ði ~D � ~�Þnc n � 2; (2.2)

thereby leading to nonrenormalizable couplings.
The standard (3þ 1)-dimensional QED in a covariant

gauge is recovered in the limitM ! 1. This scale parame-
trizes the region of energies in which the Lorentz-violating
effects become important. It may or may not be the Planck
scale, depending on the microscopic origin of Lorentz
violation.

As discussed in [14], the Lorentz-violating terms play a
dual role:

(i) First, to introduce a mass scale, M, necessary to
generate a fermion mass [14],

mdyn ¼ M exp

�
� 2�

ð4þ ð�� 1ÞÞ�
�
; (2.3)

where� ¼ e2=4� is the fine structure constant. Here
one draws an analogy with the magnetic catalysis
phenomenon of standard QED, studied extensively
in the past [17,18], according to which the presence
of a sufficiently strong magnetic field catalyzes dy-
namical generation of a fermion mass for arbitrarily
weak QED couplings. This case is also an example
of a Lorentz-violating situation: the Lorentz sym-
metry breaking is provided by the direction of the
external background field. However, there are two
important differences from the model of [14]. The
magnetic field breaks three-dimensional rotational
symmetry, and moreover induces an effective dimen-
sional reduction to two dimensions, as a result of the
(1þ 1)-dimensional form of the fermion propagator
of the lowest Landau level, which plays a dominant
role in the strong magnetic-field case.

(ii) Second, the higher-derivative Lorentz-violating
terms provide an effective regularization of the
theory, leading to finite gap equations [14]. An
important remark is in order here, to avoid confu-
sion. In this approach, the scale M is not the regu-
lator of the theory (2.1), since it regularizes loops

with an internal photon line only. It is rather a
parameter of the model, which physical quantities,
like the dynamically generated mass, will depend
upon. As we shall discuss later on, in Sec. V, in our
stringy quantum-gravity model, which leads to the
Lagrangian (2.1) as a low-energy field theory limit,
this scale will be expressed in terms of fundamental
parameters of the underlying string theory.

III. ON DYNAMICAL MASS GENERATION IN LV
QED AND ITS GAUGE (IN)DEPENDENCE

In this section we present for completeness a concise
brief review of the results of [14] on dynamical mass
generation (2.3) in the theory (2.1). We shall put emphasis
on the gauge dependence of the result and propose a
resolution to this problem, which will lead us to the
gauge-parameter-independent, physically observable,
value of the dynamical mass.
From the Lagrangian (2.1), the bare photon propagator is

given by [14]

Dbare
�� ð!; ~pÞ ¼ � i

1þ p2=M2

�
�

���

�!2 þ p2
þ ð�� 1Þ p�p�

ð�!2 þ p2Þ2
�
;

(3.1)

where p0 ¼ ! and p2 ¼ ~p � ~p. We thus observe
that, because the pole structure is not affected by the LV
terms, the photon remains massless in this minimally LV
model [14].
The SD equation for the fermion propagator, used in the

derivation of (2.3) is (cf.. for instance [19])

S�1 � S�1
bare ¼

Z
D��ðe��ÞS��; (3.2)

where ��, S , andD�� are, respectively, the dressed vertex,

the dressed fermion propagator, and the dressed photon
propagator. This equation gives an exact self-consistent
relation between dressed n-point functions, and thus is
nonperturbative. As a consequence, no redefinition of the
bare parameters in the theory can be done in order to
absorb the would-be divergences, and for this reason one
needs this equation to be regularized by the scaleM, which
thus acquires physical significance.
In [14] the so-called ladder approximation has been

assumed in order to solve the SD equation (3.2).
According to this approximation, corrections to the vertex
function, which otherwise would have led to a system of
coupled SD equations and would complicate matters sig-
nificantly, are ignored. It is well known that this approxi-
mation is not gauge invariant [19], as is the case actually
with all off-shell field-theoretic quantities that are involved
at intermediate stages of calculations of physical quantities
in field theory. There are some gauges, termed nonlocal
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gauges, in which the bare approximation to the vertex is
argued to be an exact ansatz [18]. In our discussion below
we shall restrict our analysis to one loop but attempt to
determine the gauge-parameter-independent part of the
dynamical mass generation.

In this spirit, Ref. [14] neglected the loop corrections to
the photon propagator, as well as the fermion wave func-
tion renormalization, keeping only the corrections to the
electron self-energy. The dressed fermion propagator can
then be expressed as (in our conventions)

Sð!; ~pÞ ¼ i
p��

� �mdyn

p�p
� þm2

dyn

; (3.3)

where mdyn is the fermion dynamical mass.

With these approximations, the SD equation (3.2), in-
volving a convergent integral, due to the M dependent
Lorentz-violating terms, becomes

mdyn ¼ �

�2

Z d!p2dp

1þ p2=M2

� mdynð3þ �Þ
ð�!2 þ p2Þð�!2 þ p2 þm2

dynÞ
; (3.4)

where the fine structure constant is � ¼ e2=4�. This
equation has the obvious solution mdyn ¼ 0, and

potentially a second solution, which must satisfy the fol-
lowing gap equation, obtained after integration over the
frequency !,

�

ð3þ �Þ� ¼
Z 1

0

xdx

1þ�2x2

�
1� xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

�
; (3.5)

where � ¼ mdyn=M is the dimensionless dynamical mass,

expected to be very small.
Both terms in the last equation, if taken separately, lead

to diverging integrals. However, in this specific combina-
tion the divergences cancel each other. As explained in
[14], after some approximations in the limit � � 1, the
nontrivial fermion dynamical mass arises as a consistent
solution of Eq. (3.5), and is given by (2.3). The selection by
the physical system of the dynamical massmdyn takes place

in order to avoid infrared (IR) instabilities, which would
otherwise occur.

The expression (2.3) for mdyn is not analytic in �, so a

perturbative expansion cannot lead to such a result.
This justifies the use of a nonperturbative approach, like
the SD in [14].

There is, however, an obvious drawback of this solution,
namely its dependence on the gauge-fixing parameter �.
The latter has consequences on the value of mdyn, and

prompts the question as to what is, if any, the true physical
value of the dynamically generated mass. A possible reso-
lution of this problem, which could lead to the true physical
value of the dynamical mass, may be achieved by the

so-called pinch technique (PT) [15] and amounts to com-
puting the dynamical mass in the Feynman gauge � ¼ 1,
ignoring in the relevant SD analyses the longitudinal parts
of the gauge boson propagator. A brief review of this
technique, which is widely used in related problems, not
only in particle physics [16] but also in some condensed-
matter systems [20] (involving energy gap generation of
relativistic quasiparticle excitations, similar to the mass
generation in particle physics), is given in the Appendix.
We also present there the rather straightforward adaptation
of the (one-loop) PTanalysis of the Lorentz-invariant QED
to the LV model (2.1), of interest to us here. This is feasible
due to the special (minimal) form of LV in this model.
The consequences of the application of PT for the

dynamical mass generation (2.3) in the theory (2.1) may
be summarized in the statement that the physical (gauge-
parameter-independent) value of the infrared fermion
mass is the one corresponding to the Feynman gauge
� ¼ 1, in which all longitudinal parts of the photon propa-
gator vanish:

mdyn ¼ M exp

�
� �

2�

�
: (3.6)

Unfortunately, for standard QED coupling,� ’ 1=137, this
value is too small to have any phenomenological signifi-
cance, even for scales M as high as the Planck scale. One
needs enormously trans-PlanckianM in order to get values
of mdyn that are near 0.5 MeV, and thus identify the above

model as physical.
One might think of using improved ladder approxima-

tions, so as to replace the bare QED coupling � by a
running one, which could be stronger and thus increase
the value of the dynamical mass. But it is doubtful that such
improved analyses, which at any rate have to be performed
for completeness, will yield phenomenologically accept-
able values for the electron mass. The only case where such
analysis works, in the sense of enhancing significantly
dynamical masses, compared to the ladder approximation,
is the magnetic catalysis [18] in the presence of an external
magnetic field, which, as mentioned already, is another
example of explicit Lorentz violation due to the direction
of the field. However, the reason why in such a case the
dynamical mass generation is not so suppressed in the
improved approximation is the dimensional reduction to
effectively two dimensions induced by the magnetic field.
There is no such a reduction in our LV case.
Nevertheless, the use of Lorentz-violating theories as

seeds for dynamical mass generation is interesting, and
may lead to phenomenologically realistic situations if
embedded in more complicated theoretical frameworks,
like those involving, e.g., hidden sectors in string or other
higher-dimensional extensions of the standard model à la
Randall-Sundrum scenarios [21], as we now proceed to
discuss.
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IV. GEOMETRICAL ENHANCEMENT
OF DYNAMICAL MASS

In this section we shall present a geometric mechanism
for the enhancement of the dynamical mass (3.6), by
embedding the model in higher-dimensional setups involv-
ing brane worlds in warped bulk geometries, following
the spirit of [21]. In [21] a large mass hierarchy between
Planck masses and TeV scales comes from brane world
scenarios in which our world is a negative tension brane,
lying at a distance rc� in a five-dimensional bulk from
a hidden brane. The five-dimensional metrics, which are
solutions of Einstein’s equations in a (necessarily) anti-de-
Sitter bulk space, have warped factors

ds2 ¼ e��ðzÞ���dx
�dx� þ dz2; (4.1)

where z is the bulk (fifth) dimension, and x� are coordi-
nates in our four-dimensional space time.

Because of the warp factor e��ðzÞ in the metric, fields on
our world of mass m0, with canonically normalized kinetic
terms, will have physical masses of the form

mphys ¼ m0e
��ðziÞ; (4.2)

where zi denotes the location of our brane world along the
bulk dimension. If, as natural, m0 is of the order of the
(reduced) four-dimensional Planck mass 2� 1018 GeV,
then a large hierarchy between the Planck scale and the
particle masses mphys in our world may be provided,

depending on the size of the exponent �ðziÞ of the warp
factor.

In the Randall-Sundrum (RS) scenario [21], involving
just two branes, with opposite tensions, our world is iden-
tified with the negative tension one, located at zi ¼ rc�
and � ¼ �kjzj, k > 0. In this scenario, the hierarchy is
resolved for krc� ’ Oð50Þ. Notice that in RS the exponent
�ðziÞ is positive, and thus the hierarchy factor only de-
creases the masses as compared to m0.

In [22], a more complicated scenario, involving many
brane worlds, and higher-order curvature terms in the
bulk (of Gauss-Bonnet type) has revealed the possibility
of exact solutions to the respective bulk Einstein equations,
which however allowed for our world to be identified with
a positive tension brane, and moreover, and more impor-
tantly for our purposes here, for the exponent of the warp
factor to take negative values, �ðziÞ< 0, thus introducing
an inverse RS hierarchy.

The bulk geometry is characterized by a gravitational
action which includes Gauss-Bonnet higher-derivative cor-
rections:

S ¼ S5 þ S4; (4.3)

where

S5 ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
�R� 4

3
ðr��Þ2

þ fð�ÞðR2 � 4R2
�� þ R2

��	�Þ þ �ðzÞe
�

þ c2fð�Þðr��Þ4 þ � � �
�

(4.4)

with�ðzÞ the dilaton field, and the � � � denoting other types
of contraction of the four-derivative dilaton terms which
will not be of interest to us here, given that by appropriate
field redefinitions, which leave the (perturbative) string
amplitudes invariant, one can always cast such terms in
one of the above forms.
The above action is compatible with closed string am-

plitude computations in the five-dimensional space times.
Such a compatibility is necessary in view of the assumption
of closed string propagation in the bulk. In the stringy case,
one has [22] fð�Þ ¼ �e��, � ¼ �0=8g2s > 0, c2 ¼ 16

9
D�4
D�2 ,


 ¼ �� ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffi
3ðD�2Þ

p , where �0 ¼ 1=M2
s is the Regge slope,

Ms is the string mass scale, gs is the string coupling, and
Dð¼ 5Þ is the number of space-time dimensions.
The four-dimensional part S4 of the action (4.3) is

defined as

S4 ¼
X
i

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi�gð4Þ
p

e!�vðziÞ; (4.5)

where

g��
ð4Þ ¼

�
g��; �; � < 5
0; otherwise

(4.6)

and the sum over i extends over D-brane walls located at
z ¼ zi along the fifth dimension. Embedding the model
(2.1) in such scenarios, identifies (2.1) with the effective
four-dimensional field theory Lagrangian that describes
the low-energy dynamics of open strings (representing
the photons) with their ends attached to one of the branes
that corresponds to the physical world.
On assuming warp five-dimensional geometries, of the

form (4.1), the analysis of [22], where we refer the inter-
ested reader for details, has demonstrated that for the
actions (4.3), the multibrane situation depicted in Fig. 1,
which involves bulk singularities restricting dynamically
the available bulk space, is an exact solution. In the bulk
regions adjacent to the bulk singularities (z� zs), one has a
logarithmic solution for the warp factor,

�ðzÞ ¼ �2 þ �1 logjz� zsj;
while in the other segments of the bulk space, induced by
the various brane worlds, one has linear solutions,

�ðzÞ ¼ �0 þ kz;

with the parameter k alternating sign between the various
segments of the bulk space, as indicated in Fig. 1.
Matching the various solutions on each brane yields a
consistent scenario.
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The detailed analysis of [22] has proven the existence of
solutions of the low-energy gravitational bulk equations
which imply mass hierarchies of the form

mphys ¼ m0e
kð2z1�z2Þ; k ¼

ffiffi
2
3

q
gsMs > 0; (4.7)

where z2 is the location of our world (z2 ¼ 0 in the
symmetric scenario of the right picture of Fig. 1). The
bulk string scale, Ms, is an arbitrary scale in the modern
version of string theory and thus can be very different from
the four-dimensional Planck scale MP. In this scenario,
though,MP is not lying far fromMs, e.g. it can be of order
[22] MP �Ms=

ffiffiffiffiffi
gs

p
. We stress again that, in these scenar-

ios, our physical world is a positive tension brane, which
makes physical sense.

It is clear that in such a situation, it is possible to
have inverse RS hierarchies, by arranging appropriately
the positions of the various branes. For instance, we may
have z2 < 2z1. One may then identify m0 in (4.7) with
our dynamically generated gauge-invariant mass (3.6), in
which case the physical mass we would observe in our
brane world would be

mdyn ¼ M exp

�
� �

2�
þ

ffiffiffi
2

3

s
gsMsjz2 � 2z1j

�
: (4.8)

In this way, phenomenologically desired electron masses
are obtained by arranging appropriately the distance
jz2 � 2z1j in the arrangement of Fig. 1.

We finally note that, once we puncture the bulk space in
such warped scenarios with D-particles, then the quantum-
gravity D-foam scenario, discussed inSec. V, may be in
operation, in which the scaleM is related to the string scale
Ms and the foam fluctuation parameter via (5.23) below.

V. LV QED AS AN EFFECTIVE THEORY
OFA D-PARTICLE SPACE-TIME FOAM MODEL

In this section we consider it as useful, or at least
intriguing, to attempt and discuss a possible microscopic
origin of the model (2.1) in the context of a stringy space-
time foam scenario [7–9]. We should stress that the mate-
rial presented here may be omitted by those readers who
are not interested in such explanations. Nevertheless, the
fact that LV structures, like the ones appearing in (2.1),
characterize parts of the effective action describing the
interactions of a space-time foamy defect with photons,
gives the model a rather different perspective: it provides,
for the first time in our opinion, a concrete realization of
the conjecture that space-time foam as a vacuum medium
may be responsible for ‘‘slowing down’’ particles by giving
them a mass. Caution, however, is needed here. The so-
generated mass refers to the charged electrons here, the
photon remaining massless, as it is revealed by the pole
structure of the gauge propagator (3.1) in the model.
However, this masslessness should be disentangled from
an induced nontrivial vacuum refractive index in the
model, which is associated with purely stringy effects
[9], namely, time-space uncertainties, not captured by the
local effective action.
Below we shall demonstrate that LV Lagrangians of

the form (2.1) may arise as (parts of) the low-energy,
weak-photon-field limits of an effective Born-Infeld
Lagrangian describing the propagation of photons
(represented as open strings) on a three spatial brane,
punctured by a uniform background of stochastically
fluctuating pointlike D0-brane defects. Such models have
been termed D-particle foam [7–10] and may find a variety
of applications, ranging from providing microscopic
string-inspired situations with Lorentz-violating vacuum

’
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FIG. 1. Left: A multibrane scenario, in which our world is represented as a positive tension brane (at z ¼ z2), having from the left
branes with alternating-sign tensions, which shield a bulk naked singularity [which may be thought of as a limiting (singular) case of a
negative tension brane]. To the right of the brane world, on the other hand, the bulk dimension extends to infinity. Right: A multibrane
scenario, in which our world is represented as a positive tension brane (at z ¼ 0), surrounded by branes with alternating-sign tensions
that shield two symmetrically positioned bulk naked singularities.
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refractive indices [9–11], to enhancing dark matter thermal
relics, with interesting astro-particle phenomenology [12].

A. Features of a D-foam model

The basic idea of the D-foam can be described as follows
(see Fig. 2). A (possibly compactified from higher-
dimensions) three-brane world is moving in a higher-
dimensional bulk space, punctured by D-particles.
Depending on the string theory considered, the latter can
be either pointlike D0-branes (type IIA strings) [7–9] or
D3-branes wrapped up around appropriate three cycles
(type IIB strings [10]). As the brane world and the
D-particles move in the bulk, they cross each other, and
thus, for an observer on the D3-brane, the D-particle
defects appear as flashing on and off vacuum structures.
In these scenarios, ordinary matter and radiation are rep-
resented by open strings with their ends attached on the

D3-brane. Gravitational degrees of freedom propagate in
the bulk.
There are nontrivial interactions of open strings with

D-particles, provided there is no electric charge flux along
the open-string excitations, that is, provided the pertinent
excitations are electrically neutral.1 This is because the
electrically neutral D-particles can ‘‘cut’’ an open string,
leading to the emission of intermediate strings stretched
between the D-particles and the D3 brane [9,11]. If the
open-string state carries electric flux, such a cutting pro-
cedure is not allowed, due to charge conservation.
As discussed in [11], the first-quantization picture for an

open-string-D-particle interaction is provided by a world-
sheet �model with the following deformation:

V impulse
recoil velocity part ¼

1

2��0
XD
i¼1

Z
@D

duiX
0�ðX0Þ@nXi;

(5.1)

where Ms is the string (mass) scale, gs is the string cou-
pling, and ui is the recoil velocity of the D-particle, the
latter assumed heavy (in fact ui is the spatial part of the
four-velocity of the D-particle, but for nonrelativistic, slow
moving, heavy D-particles this is well approximated by the
ordinary velocity, to leading order). D in the sum denotes
the appropriate number of spatial target-space dimensions.
For a recoiling D-particle confined on a D3 brane, as is our
case here, D ¼ 3. The operator �"ðX0Þ ¼ �i

R1
�1

d!
!þi" ,

" ! 0þ, is a regularized Heaviside world-sheet operator.
There is a specific type of conformal algebra, termed

logarithmic conformal algebra [23], that the recoil opera-
tors satisfy [13,24]. This algebra is the limiting case of
world-sheet algebras that can still be classified by confor-
mal blocks. The impulse operator �ðX0Þ is regularized so
that the logarithmic conformal field theory algebra is
respected.2 The conformal algebra is consistent with mo-
mentum conservation during recoil [13,24], which allows
for the expression of the recoil velocity ui in terms of
momentum transfer during the scattering,

ui ¼ gs
p1 � p2

Ms

; (5.2)

with Ms

gs
being the D-particle ‘‘mass’’ and �p � p1 � p2

the associated momentum transfer of a string state during
its scattering with the D-particle.

D−brane stack

D−brane stack

D3−branes

F−strings

F−strings

D3−branes

D−particles

R2R1

R0

FIG. 2. Schematic representation of a generic D-particle
space-time foam model. The model of Ref. [8], which acts as
a prototype of a D-foam, involves two stacks of D8-branes, each
stack being attached to an orientifold plane. Owing to their
special reflective properties, the latter provide a natural compac-
tification of the bulk dimension. The bulk is punctured by
D0-branes (D-particles), which are allowed in the type IA string
theory of [8]. The presence of a D-brane is essential due to gauge
flux conservation, since an isolated D-particle cannot exist. Open
strings live on the brane world, representing standard model
matter and they can interact in a topologically nontrivial way
with the D-particle defects in the foam.

1For type IIB strings, where the D-particles are not pointlike,
one may have such interactions between electrically charged
excitations and the D-particles, however the foam effects on such
charged particles are suppressed [10] compared to those on
neutral particles. In our discussion below, therefore, we shall
not differentiate between these two cases.

2This can be done by using the world-sheet scale, "�2 �
lnðL=aÞ2, with a an ultraviolet scale and L the world-sheet
area, as a regulator [13,24]: �"ðX0Þ ¼ �i

R1
�1

d!
!�i" e

i!X0
. The

quantity " ! 0þ at the end of the calculations.

QUANTUM-GRAVITY INDUCED LORENTZ VIOLATION AND . . . PHYSICAL REVIEW D 83, 025018 (2011)

025018-7



We next note that one can write the boundary recoil/
capture operator (5.1) as a total derivative over the bulk of
the world sheet, by means of the two-dimensional version
of Stokes theorem. Omitting from now on the explicit
summation over repeated i indices, which is understood
to be over the spatial indices of the D3-brane world, we
write then

V impulse
recoil valocity part ¼

1

2��0
Z
D
d2z���@

�ð½uiX0��"ðX0Þ@�XiÞ

¼ 1

4��0
Z
D
d2zð2uiÞ���@�X0

� ½�"ðX0Þ þX0�"ðX0Þ�@�Xi; (5.3)

where �"ðX0Þ is an "-regularized � function.
For relatively large times after the after the moment of

impulse, X0 ¼ 0, at which the open-string state splits into
intermediate open-string ones, as a result of the topologi-
cally nontrivial interactions with the D-particle, which we
assume for our phenomenological purposes in this work,
the expression (5.3) is equivalent to a deformation describ-
ing an open string propagating in an antisymmetric B��

background (B field) corresponding to a constant external
‘‘electric’’ field in target space:

T�1Bi0 ¼�T�1B0i ¼ ui ¼ gs�pi

Ms

; T ¼ 1

2��0 ; (5.4)

where T denotes the (open) string tension, 0 is a temporal
index, and i is a spatial index. The reader should notice
here the phase-space dependence of the background field,
which resembles an electric field background but in mo-
mentum space [11], and therefore of Finsler type [25].

In the above analysis we have ignored a possible angular
momentum operator, which also arises as a result of the
nontrivial scattering of photons with the D-particle defects.
At a �-model level, the latter is also described by a
logarithmic conformal algebra deformation, which for a
three-brane, which we restrict our attention to here, as-
sumes the form

V
impulse
ang mom D-part ¼ T�1

Z
@�

ui�ijkX
j�"ðX0Þ@nXk

¼ T�1
Z
�
"��ðui�ijk�"ðX0Þ@�Xj@�X

k

þ ui�ijkX
j�"ðX0Þ@�X0@�X

kÞ; (5.5)

where we have again applied the two-dimensional Stokes
theorem (�;� ¼ 1; 2 are world-sheet indices, and ��� is
the world-sheet Levi-Cività tensor). On the other hand, �ijk
is the antisymmetric symbol in the three spatial dimensions
of the brane world. The logarithmic conformal properties
[24] of the deformation arise from the XJ parts. For rela-
tively large times X0 > 0 after the impulse, we consider
here, we may ignore the �-function terms, and in this case
the effects of the angular momentum deformation in target
space are equivalent to the open string propagating in an

antisymmetric tensor ‘‘magnetic-field’’ type background
with spatial components given by

T�1Bij ¼ �T�1Bji ¼ �ijku
k: (5.6)

This should be combined with (5.4) in order to provide a
complete description of the average interactions of the
photons with the D-foam, in a first-quantized version.

B. Finsler-Born-Infeld (FBI) effective actions

The effective target-space action on the D3-brane world,
where the D-particle meets the open-string photon state, is
described by the following Born-Infeld Lagrangian
[26,27]:

SBI ¼ T2

gs

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ T�1ðBþ FÞÞ

q
; (5.7)

where F�� ¼ @�A� � @�A� is the Maxwell tensor of the

photon field A�.

In fact, the field theory of photons in the presence of the
electric field type background B0i implies a time-space
noncommutativity for the model [11], with noncommuta-
tivity parameter ui which is of Finsler type [25], in the
sense that it is proportional to the photon momentum trans-
fer (5.4). On the other hand, the presence of magnetic-field
type backgrounds (5.6) also implies Finsler-type spatial
noncommutativity among Xj target-space coordinates.
As a result of this, it is not in general possible to write

down a local effective action for the description of the
photon-D-particle interactions. The Lagrangian (5.7) de-
pends on both space-time coordinates and the momentum
transfer, which cannot be expressed as an ordinary local
term in an effective action framework. Nevertheless, as we
shall argue now, there is an approximation, namely the
stochasticD-foam background, for which construction of a
low-energy local effective action becomes possible and, in
fact, for weak photon fields, and under some other special
circumstances to be described below, assumes the Lorentz-
violating form (2.1).
To this end, we first remark that, in the phase space of a

D3-brane world, the function ui, [cf. (5.4)], involving a
momentum transfer, �pi, can be modeled by a local
operator using the following parametrization [28]:

ui ¼ gs
�pi

Ms

¼ gs
Ms

ripi; no sum over i¼ 1;2;3; (5.8)

where the (dimensionless) variables ri, i ¼ 1; 2; 3 appear-
ing above, are related to the fraction of momentum that is
transferred at a collision with a D-particle in each spatial
direction i. In the stochastic foam approximation [28],
these parameters are taken as Gaussian normal random
variables with a range �1 to þ1 and defining moments

hrii ¼ 0; (5.9)

hrirji ¼ 0; if i � j (5.10)
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and

�2
i ¼ hr2i i � hrii2 ¼ hr2i i � 0: (5.11)

An isotropic foam situation, which we consider here,
would require ri ¼ r, for all i ¼ 1; 2; 3. In such a case
the variances

hðriÞ2i ¼ �2; i ¼ 1; 2; 3; (5.12)

are equal along all spatial directions.
However, for fully rotational invariance in three space of

the Born-Infeld action (5.7), involving interactions be-
tween the velocity fields ui and the photon Maxwell tensor
F��, one more requirement is necessary. When consider-
ing the application of the above averages to the recoil
velocities, the latter must assume the form

huii ¼ 0; huiuji ¼ �ij

�2g2s
M2

s

pkpk: (5.13)

The averages h� � �i denote both statistical averages, over
populations of D-particle defects in the foam (c.f. Fig. 2),
as well as target-space quantum fluctuations. The latter can
be induced by considering appropriate summation over
world-sheet genera [13]. This is quite important for our
purposes and we shall come back to this issue and its
implications later.

For the moment, we remark that the stochasticity
conditions (5.9) imply restoration of Lorentz invariance
as an average phenomenon, with nontrivial fluctuations
expressed in the isotropic and three-space rotationally
invariant case by (5.10), (5.12), and (5.13). Hence, although
at individual scatterings of photons with D-particles,
Lorentz invariance (and isotropy of space) will be lost
locally, due to the presence of the recoil velocity of the
D-particle, ui, the isotropic foam washes out on average
such violations and isotropy and rotational invariance are
restored.

Let us now go back to the effective action (5.7). On
defining the generalized field F �� � F�� þ B��, we

make use of the fact [29] that in four space-time dimen-
sions (assumed Minkowski flat for concreteness from now
on), the determinant det4ð�þ T�1FÞ has special proper-
ties, that allow the following representation of the Born-
Infeld action (we work from now on in units where the
string tension is T ¼ 1):3

SBI ¼ 1

gs

Z
d4xðI2 þ I4ð1þOðF 2ÞÞÞ þ const

I2 ¼ 1

4
F ��F ��;

I4 ¼ � 1

8

�
F��F �	F 	�F �� � 1

4
ðF ��F ��Þ2

�
:

(5.14)

In the weak-photon-field approximation, of interest to us
here, we shall ignore terms of order higher than quadratic
in the photon field and the (small) recoil velocity ui field.
This is a consistent approximation for relatively heavy
D-particles, whose recoil is suppressed by their mass. We
also take a quantum average over stochastic fluctuations
of the B-field, using (5.13), and keep terms quadratic in
photon (A) or (averaged) recoil (hu2i) fields, including
mixed terms of order A2hu2i.

C. Target-space quantization proposal for the FBI
action and minimal LV QED

There is an important and novel feature associated with
the proper quantization in target space of the Finsler back-
ground B0i (5.4), which is provided by summation over
world-sheet genera. As discussed in detail in Ref. [13],
making proper use of the (logarithmic) conformal field
theory properties of the D-particle recoil vertex operator
in a �-model approach [24], the summation over world-
sheet topologies results in quantum uncertainty relations
involving the fluctuations of the recoil velocities and of the
collective coordinates describing the initial position of the
D-particle. Such uncertainties have been shown to corre-
spond to those induced by canonically quantized collective
D-particle momentum and position operators in target
space. In this way, it has been argued in [13] that summa-
tion over world-sheet genera converts, via (5.8), the recoil
velocity fields ui into quantum-fluctuating momentum
operators in target space.4

More specifically, one has the correspondence

Bi0 ¼ ui ) B̂i0 ¼ ûi ¼ �igs
ri
Ms

ℏ
@

@Xi � �igs
ri
Ms

ℏri;

no sum over i ¼ 1; 2; 3:

Bij ¼ �ijku
k ) B̂ij ¼ �ijkû

k: (5.15)

In view of this, the noncommutativity uncertainty relations
½Xi; t� � ui of the classical recoil background [11] become
now complicated quantum operator relations. En passant,
we also note that the correspondence (5.15) can also lead to

3The reader is reminded at this stage that the indices are raised
and lowered with the background metric g, which in our case,
has been assumed to be Minkowski flat, for brevity and definite-
ness. In a general situation, where the metric g is not trivial, the
pure foam contributions, proportional to the various powers of u2i
contribute to (dark) vacuum energy [8,9] and can be constrained
by cosmological considerations, for instance. We ignore such
terms for our discussion here.

4Technically speaking, we should mention here that the effects
of the summation over genera on the fluctuations of the back-
ground fields ui can be expressed in closed form only in the
bosonic string case. In the world-sheet supersymmetric case
[30], such closed expressions were not possible. Nevertheless,
this does not invalidate our arguments on the correspondence
principle (5.15), which we conjecture to characterize all types of
string models.
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master equations for the study of the induced decoherence
of quantum matter propagating in the stochastic D-foam
quantum-fluctuating backgrounds [28].

We now wish to make a technical but important obser-
vation regarding the correspondence (5.15), which we shall
make use of in our analysis below. As already mentioned,
we have inferred this correspondence by studying the
corresponding �-model approach to recoil [24], in which,
in order to guarantee the convergence of the world-sheet
path integrals, one is forced to use time fields X0 with
Euclidean signature. In this sense, the correspondence
(5.15), should be augmented to include the following:

Bi0 ) B̂i0 ¼ g00E gikE B̂k0 ¼ þB̂i0; (5.16)

where the subscript E indicate Euclidean signature. Only
at the very end of the computations, after we replace the
background B-field by appropriate operators, and only
then, we revert back to Minkowski signature, by means
of analytic continuation.

In this picture, where the quantum-fluctuating aspects
of the recoil operators are taken care of by means of the
correspondence (5.15) and (5.16), the statistical aspects of
the foam are implemented by averaging the momentum
transfer statistical variable r (h� � �i) over populations of
quantum-fluctuating D-particles, using the relations (5.13)
for the case of isotropic foam. In fact, we now have the
correspondence:

huii ¼ 0;

huiuji ¼ �ij

�2g2s
M2

s

pkpk )�ℏ2�
2g2s
M2

s

�ij�; �� ~r � ~r:

(5.17)

This is our prescription, which, as we shall show below,
maps the effective action (5.14) to particularly simple local
effective actions containing terms of the form (2.1).

Indeed, on implementing (5.15) and (5.16), the relevant
photon-dependent terms of the Finsler-Born-Infeld (FBI)
action, which we restrict our attention upon in this work,
assume the form

SBI 3 1

gs

Z
d4x:

�
1

4
F��

�
1þ b

16
B̂��B̂

��

�
F��

þ a

64
F��B̂

��B̂��F
�� � 1

8
F��B̂

�	B̂	�F
��

�
:þ � � � :
(5.18)

The � � � represent higher-order terms in the fields B and F
and the symbol : � � � : denotes appropriate quantum opera-
tor ordering and the ordering constants a, b are such that

aþ b ¼ 2: (5.19)

Above we have ignored terms involving odd powers of

the operators B̂�� since such terms vanish in our stochastic

Gaussian background (5.17). Also we dropped terms

involving the operators B̂0i or B̂ij lying on the far left-

hand side of the integrand in (5.18), as these correspond to
total spatial-derivative terms and, hence, do not contribute,
upon the assumption that the fields decay away at spatial
infinity on the brane world.
Upon recalling that, when making the correspondence

(5.17), one uses as an intermediate step target-space times
with Euclidean signature, i.e. (5.16), we observe, after
some straightforward algebra, that (5.18) reduces to [using
(5.19)]

SBI 3 1

gs

Z
d4x

�
1

4
F��

�
1þ 1

4

�
1� b

2

�
g2s�

2

M2
s

�

�
F��

�

þ � � � ; (5.20)

where the � � � denote terms higher order in derivatives and
the Maxwell tensor F��, and � is the 3-space Laplacian,

� � riri ¼ ~r � ~r.
In the classical limit the FBI action is recovered trivially.

The quantum ordering ambiguities are an issue here.
Usually, quantum ordering of operators is associated with
Hermiticity of the effective Lagrangian, which is not an
issue here, due to the foam-background stochasticity (5.17)
. The physics which selects the correct quantum ordering in
this picture is encoded in the full (still elusive) underlying
theory of quantum gravity in this context, and at this stage
the so-constructed effective action should be considered
as somewhat phenomenological. For instance, the choice
b ¼ 2 would eliminate any LV terms, however, from the
point of view of avoiding infrared (IR) divergences and
the associated instabilities, the solution that leads to dy-
namical mass generation is preferred. Adopting the point
of view that the full quantum-gravity theory should act as
an IR regulator, one then is forced to select an ordering
with b � 2.
Moreover, we observe that any ordering with b < 2

would lead to terms which would affect the three-space
pole structure of the photon propagator. Indeed, the photon
propagator stemming from (5.20), assumes the form (up to
gauge-fixing terms that we do not write explicitly here): the
bare photon propagator is given by [14]

Dbare
�� ð!; ~pÞ ¼ � i

1�p2=M2

�
���

�!2 þ p2
þ gauge fixing

�
;

M2 � 4M2
s

ð1� b=2Þg2s�2
> 0: (5.21)

Thus, in Fourier space, this would imply that the effective
action would no longer be unitary for momenta above the
scale M, since the overall signature of the photon propa-
gator would change. This would be fine for a low-energy
effective action in a classical background, and indeed this
is exactly what happens [9,11] when the classical recoil
velocity (5.2) exceeds the speed of light in vacuo. Such
mass scales define the range of validity of the low-energy
local effective action.
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However, in our prescription wewould like to go beyond
such classical effective field theories. If we could find a
quantum ordering which allows extension of the action
beyond this cutoff then, in principle, we could describe
some aspects of the foam on radiation for arbitrarily large
momenta. This would provide a sort of partial ultraviolet
(UV) completion of the low-energy theory (as far as dy-
namical mass generation is concerned—the reader’s atten-
tion is called at this stage to the fact that other aspects of
the foam, such as vacuum refraction induced photon de-
lays, cannot be described within the framework of local
effective field theories [9,11], see below). Dynamical mass
generation is, of course, an IR phenomenon and one would
have thought that the detailed structure of the theory at the
UV would not affect it. This is, for instance, what arguably
may happen with the Landau pole of QED, whose presence
may not affect dynamical mass generation (there is support
towards this result from lattice calculations but, as far as
we are aware of, no rigorous proof exists as yet [18,31]).
However, this is not quite the case if an effective theory
itself breaks down at a given momentum scale, in the
sense, as is the case here, that the unitarity of the effective
Lagrangian (sign of photon propagator terms) is lost above
such scales. If one were to study dynamical generation in
such cases, the momentum integrals in the SD equations
had to be cut off from above at the specific scale M. This
would be an unwelcome feature for a consistent SD treat-
ment, such as the one in [14], which requires cancellation
of potential UV divergences, and thus implicit extension of
the model beyond any UV cutoff.

Fortunately in our model, such UV cutoffs can be
avoided by a judicious choice of quantum ordering. A
minimal class of such orderings, which respect the pole
structure of the photon propagator (5.21) in three space, is
the one in which the ordering parameter is in the range

b > 2: (5.22)

After a formal analytic continuation back to Minkowski
space-time, the corresponding actions (5.20) become pre-
cisely of the form (2.1) of Ref. [14] with the mass scale:

M ¼ Ms

gs
ffiffiffiffiffiffi
~�2

p ; ~�2 � �2 1

4

��������1� b

2

��������: (5.23)

Any residual ordering ambiguity is thus absorbed in the
fluctuations of the foam, which is thus a (small) phenome-
nological parameter in our first-quantized approach. It is
hoped that when a full, second-quantized quantum-gravity
model for D-foam fluctuations becomes available, such
ambiguities will be removed.5 In this sense the so-chosen

quantum ordering leads to an effective action that is char-
acterized by maximal suppression of the LV effects, and
through mass generation, cures IR instabilities.
We next come to the fermion sector. In view of the

properties of the D-foam, according to which the latter is
transparent to charged fermion fields, due to charge con-
servation, the lowest order (in weak field) effective action
term in the fermion sector will be given by the ordinary
QED fermion-photon coupling. There will be no tree-level
coupling of fermions to the foam recoil velocity field ui:

Sc ¼
Z

d4x �c��iD�c ; D� ¼ @� þ iA�: (5.24)

Thus, the renormalizability argument of [14] on the ab-
sence of higher-derivative noncovariant fermion-gauge-
boson couplings (2.2), is replaced here by the transparency
of the D-foam to charged fermions, as a consequence of
charge conservation.6

In view of the dynamical mass generation arguments,
presented previously, one expects the D-foam models to
lead to masses for fermions of the type (2.3) [or (3.6)], with
the scale M being replaced by (5.23). Since, in the context
of our string-inspired foam and the Born-Infeld action, the
gauge coupling is directly related to the string couplingffiffiffiffiffi
gs

p
, the dynamical mass (2.3) [or (3.6)] in this case is

nonanalytic in both the (weak) string coupling and the
(small) D-foam fluctuation parameter ~�2.
The effective action (5.20) and (5.24) describes part of

the effects of foam on radiation and charged matter.
However, as already discussed in the relevant literature
[9,11], the induced vacuum refraction cannot be captured
solely by this local effective action. The causal time delays
of the reemitted photons after their topologically nontrivial
interactions with the D-foam, which scale linearly with the
photon energy, and are thus suppressed only by a single
power of the string mass scale, are purely stringy effects,
associated with time-space uncertainties [9–11,27] as a
result of intermediate string (and hence nonlocal) states,
stretched between the D-particles and the D3 brane uni-
verses. On the other hand, the modifications due to the
foam in the local string effective action (5.20) are quadrati-
cally suppressed by the string scale, (5.23), as a result of the
stochasticity assumption (5.17).
Finally, before closing this section, we mention that by

embedding the D-foam model into the multibrane world
scenarios of Sec. IV, we may enhance the dynamical mass
generation to phenomenologically acceptable values, via
the (inverse) Randall-Sundrum hierarchies (4.7) and (4.8).

5We also note that for the unique (in this range of b) value
b ¼ 10, ~�2 ¼ �2 and thus the scale M of the LV terms in the
action (5.20) becomes identical to the one at which the foam-
averaged recoil velocity equals the speed of light in vacuo [9,11].
This choice of ordering then allows for a unique quantum-
gravity scale to enter in the model in various forms.

6This argument is strictly speaking valid only for type IIA
string theory D-foam, in which the D-particles are pointlike.
For type IIB string theory D-foam models, on the other hand,
D-particles are compactified D3-branes, and as such there
are nontrivial, but much more suppressed fermion-foam cou-
plings [10].
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VI. CONCLUSIONS AND OUTLOOK

In this note I have elaborated on a recently proposed
model [14] of quantum electrodynamics with minimal
Lorentz violation, associated with higher-order spatial-
derivative terms in the Lagrangian, suppressed by a scale
M, which lead to dynamical mass generation for the
charged fermions. I have proposed a way of extracting
the physical part of the fermion mass function, which is
independent of the gauge-fixing parameter. My arguments
were based on the so-called pinch technique of particle
physics. According to this approach, only a certain class
of Feynman diagrams can be resummed and play a role in
the evaluation of the final physical quantities, such as
the observable value of the dynamical fermion mass. The
upshot of the analysis was that the physical value of the
dynamically generated mass corresponds to the one
derived in the Feynman gauge, � ¼ 1. For the problem
at hand, this, unfortunately, yields phenomenologically
unrealistic small masses for the fermions.

However, if the model is embedded in a multibrane
world scenario, with five-dimensional warp bulk geome-
tries, then an enhancement mechanism is possible, through
the dependence of the masses on the nontrivial warp factor
in the observable (positive tension) brane world. The
enhancement presupposes a reversed Randall-Sundrum
hierarchy, which is possible in five-dimensional models
with higher curvature gravitational corrections, of Gauss-
Bonnet type (the latter is consistent with the effective
target-space-time action corresponding to string theory
scattering amplitudes in the bulk space).

I have also discussed a possible microscopic origin of
these LV terms in the context of stringy space-time foam
models, in which a brane world, over which photons
propagate, is punctured by D-particle defects, with which
the photons interact nontrivially. Electric charge conserva-
tion arguments necessitate that tree-level couplings be-
tween the foam and the fermions vanish, thereby making
the effects of the D-particle quantum fluctuations on the
fermions felt only through their coupling with the gauge
(photon) fields. On the other hand, the interactions of the
photons with the D-particles can be partly summarized by
means of a Born-Infeld type effective Lagrangian. The
latter involves, in addition to the Maxwell field strength
of the photon field, also LV B-type fields, representing the
recoil velocity fields of the D-particle defect during its
scattering with the photon. The B-fields become quantum
derivative momentum operators upon summing up world-
sheet genera, and thus a true quantum D-foam situation is
described by a complicated Finsler-Born-Infeld (FBI)
Lagrangian, which is, in general, nonlocal.

However, for weak fields and foam, appropriate
truncations and approximations can be made, with the
implication that the relevant parts of the effective action,
describing the interactions of photons and electrons with
the foam, are provided by a (local) effective Lagrangian of

the form (2.1), with minimal LV. This exercise had pro-
vided the first concrete realization of the conjecture that
the stochastic D-foam is responsible for generating masses
for the fermions, by catalyzing, through its Lorentz-
violating terms in the gauge sector, weak-gauge-coupling
dynamical fermion mass generation. The reader should
bear in mind, though, that this local effective action is
not capable of capturing the vacuum refraction aspects of
the D-foam. The latter are associated [9] with purely
stringy (and thus nonlocal) time-space uncertainty effects,
associated with intermediate string states of finite length,
stretched between the D-particle and the brane world,
during the quantum scattering of photons off the foamy
defects.
Before closing, I would like to make some general re-

marks about effects of the space-time foam on neutral
fermions, such as neutrinos. In our mechanism, dynamical
mass is catalyzed by the LV terms in the gauge action, even
for weak gauge couplings, and proceeds through the cou-
pling of the gauge fields to the charged fermions. In this
sense, our space-time foam mechanism does not apply to
neutrino (assumed electrically neutral), at least to leading
order. However, the neutrinos of the standard model even-
tually couple to photons via effective higher-loop vertices
involving the weak-interaction gauge bosons. In this way,
one obtains an ‘‘effective running neutrino charge’’ and
an associated ‘‘radius’’ [32]. In this sense, the D-foam,
through its LV coupling to photons, may also catalyze a
(much more suppressed) neutrino mass, and in fact the
electric neutrality of the neutrino, would provide a natural
reason for the observed hierarchy of the neutrino masses,
as compared to the electron mass. This is something
one should look at more carefully. Moreover, since the
stochastic effects of the D-foam will violate CPT [33],
the so-generated neutrino masses may experience a
medium-induced CPT violation [34]. It would be
interesting also to see whether a mass hierarchy among
different flavors can be generated this way, for example, by
means of a judicious combination of LV terms in the gauge
sector of the standard model and flavored neutrino
interactions.
We hope to come back to such fundamental issues in

future works. For the moment, we can only provide the
reader with the above-described toy ideas and speculations
on how Lorentz-violating effects in the standard model
sector, that may have a microscopic origin in some
foamy structures of quantum space time, may be respon-
sible for the generation of fermion masses, through the
coupling of the foam ‘‘medium’’ with the gauge fields
that, in turn, interact with matter fermions. In the toy model
we have discussed in this work, the photon gauge field
remains massless, as evidenced by the structure of its
propagator and one-loop vacuum polarization. In general,
this may not be true in more complicated situations of
anisotropic foam.
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APPENDIX: THE PINCH TECHNIQUE (PT)
AND GAUGE-FIXING-PARAMETER

INDEPENDENT MASS

1. General remarks on PT

It is well known that off-shell Green’s functions depend
in general on the gauge-fixing procedure used to quantize
the theory, and, in particular, on the gauge-fixing parameter
(GFP) chosen within a given scheme. The fermion self-
energy �ðpÞ, for example, of interest to us here, is GFP-
dependent already at the one-loop level. The dependence
on the GFP is in general nontrivial and affects the proper-
ties of a given Green’s function. It is understood that,
when forming observables, the gauge dependencies of
the Green’s functions cancel among each other order by
order in perturbation theory, due to powerful field-
theoretical properties. Nevertheless, these dependencies
pose a major difficulty when one attempts to extract physi-
cally meaningful information from individual Green’s
functions. This is the case when studying the SD equations;
this infinite system of coupled nonlinear integral equations
for all Green’s functions of the theory is inherently non-
perturbative and can accommodate phenomena such as
chiral symmetry breaking and dynamical mass generation.

The main problem in this context is that the SD equa-
tions are built out of gauge-dependent Green’s functions;
since the cancellation mechanism is very subtle, involving
a delicate conspiracy of terms from all orders, a casual
truncation often gives rise to gauge-dependent approxima-
tions for ostensibly gauge-independent quantities [35]. The
study of SD equations, and especially of ‘‘gap equations,’’
has been particularly popular in many studies.

To address the problems of the gauge-dependence of off-
shell Green’s functions a method known as the pinch
technique (PT) has been introduced [15]. For a detailed
and up-to-date review on this technique and its diverse
applications, the reader is referred to [16]. For a compre-
hensive review, of relevance to our (one-loop approximate)
discussion here, and its application to the infrared struc-
ture on low-dimensional gauge theories, with potential
application to condensed-matter systems, such as high-
temperature superconductors, see [20].

The PT is a diagrammatic method which exploits the
underlying symmetries encoded in a physical amplitude
such as an S-matrix element, or a Wilson loop, in order to
construct effective Green’s functions with special proper-
ties. The aforementioned symmetries, even though they
are always present, are usually concealed by the gauge-
fixing procedure. The PT makes them manifest by means
of a fixed algorithm, which does not depend on the gauge-
fixing scheme one uses in order to quantize the theory, i.e.

regardless of the set of Feynman rules used when writing
down the S-matrix element. The method exploits the
elementary Ward identities triggered by the longitudinal
momenta appearing inside Feynman diagrams in order to
enforce massive cancellations. The realization of these
cancellations mixes nontrivially contributions stemming
from diagrams of different kinematic nature (propagators,
vertices, boxes). Thus, a given physical amplitude is reor-
ganized into subamplitudes, which have the same kine-
matic properties as conventional n-point functions and, in
addition, are endowed with desirable physical properties,
such as GFP independence.
Finally, the PT amounts to a nontrivial reorganization of

the perturbative expansion. The role of the PT when deal-
ing with SD equations is to (eventually) trade the conven-
tional SD series for another, written in terms of the new,
gauge-independent building blocks [15,36,37]. The upshot
of this program would then be to truncate this new series,
by keeping only a few terms in a ‘‘dressed-loop’’ expan-
sion, and maintain exact gauge-invariance, while at the
same time accommodating nonperturbative effects. We
hasten to emphasize that the aforementioned program is
still not complete; however, a great deal of important
insight on the precise GFP-cancellation mechanism has
been accumulated, and the field-theoretic properties of
gauge-independent Green’s functions have been estab-
lished in detail. The generalization of the PT to all orders
for Lorentz-invariant quantum gauge field theories has
been recently accomplished [38].
It would be interesting to discuss extensions of these

ideas to LV gauge theories, either of Lifshitz type or in the
framework of the standard model extension [1]. In the
model (2.1), however, the validity of the PT is straightfor-
ward, due to the specific minimal form of LV, as we now
proceed to discuss.

One-loop application of PT to dynamical mass
generation in LV QED

In this part of the Appendix, we explain how the PT
gives rise to effective, gauge-independent fermion self-
energies at one-loop, in our Lorentz-violating QED model.
The discussion parallels the cases of Lorentz-invariant
theories of QED [20,38], due to the specific form of the
(gauge fixed) photon propagator (3.1), which we may write
compactly as

���ð‘; �Þ ¼ ð�LVð ~‘ � ~‘ÞÞ
�
� i

‘2

�
g�� � ð1� �Þ ‘�‘�

‘2

��
;

�LVð ~‘ � ~‘Þ ¼ 1

1þ ~‘� ~‘
M2

: (A1)

The off-shell propagator depends of course on the gauge-
fixing parameter (GFP) �. It is important for our discussion

below that the Lorentz-violating (LV) terms �LVð ~‘ � ~‘Þ,
factorize and do not introduce any extra pole singularities
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in momentum space. The quantity ‘� denotes the contra-
variant four momentum ‘� ¼ ð!; ~pÞ.

The form of ���ð‘; �Þ for the special choice � ¼ 1

(Feynman gauge) will be of central importance for the
PT application in our discussion below. We denote it by
�F

��ð‘Þ, i.e.

���ð‘; 1Þ � �F
��ð‘Þ ¼

�
� i

‘2
g��

�
ð�LVð ~‘ � ~‘ÞÞ: (A2)

���ð‘; �Þ and �F
��ð‘Þ will be denoted graphically as in

Fig. 3 [the LV factor ð�LVð ~‘ � ~‘ÞÞ is suppressed in the
graphs, but its presence is always understood as a factor]
[16,20].

For the diagrammatic proofs that will follow, in addition
to the propagators ���ð‘Þ and �F

��ð‘Þ introduced above,

we will need six auxiliary propagatorlike structures, as
shown in Fig. 4 [again suppression of the LV factors

(�LVð ~‘ � ~‘Þ) is understood].
All of these six structures will arise from algebraic

manipulations of the original ���ð‘Þ. For example, in

terms of the above notation we have the simple diagram-
matic relation depicted in Fig. 5 (we will set � � �� 1).

We next turn to the study of the gauge dependence of
the fermion self-energy in our LV QED (but of course the
discussion parallels that of electron in QED, quarks in
QCD [16]). First we observe that, in view of the fact that
in the theory (2.1) of [14] the fermion part of the action
retains its form in Lorentz-invariant QED, the inverse
electron propagator of order n in the perturbative expan-
sion has the standard form:

S�1
n ðp; �Þ ¼ p�m� �ðnÞðp; �Þ; (A3)

where �ðnÞðp; �Þ is the nth order self-energy. Clearly,

�ð0Þ ¼ 0, and S�1
0 ðpÞ ¼ p�m. The quantity �ðnÞðp; �Þ

depends explicitly on � already for n ¼ 1. In particular,

�ð1Þðp; �Þ ¼
Z
½d‘���S0ðpþ ‘Þ�����ð‘; �Þ

¼ �ð1Þ
F ðpÞ þ ��ð1Þ

L ðpÞ (A4)

with ½d‘� � g2 d4‘
ð2�Þ4 and

�ð1Þ
F ðpÞ � �ð1Þðp; 1Þ ¼

Z
½d‘���S0ðpþ ‘Þ���F

��ð‘Þ
(A5)

and

�ð1Þ
L ðpÞ ¼ �S�1

0 ðpÞ
Z ½d‘�LV

‘4
S0ðpþ ‘Þ��‘�

¼ �
Z ½d‘�LV

‘4
‘��

�S0ðpþ ‘ÞS�1
0 ðpÞ

¼ S�1
0 ðpÞ

Z ½d‘�LV
‘4

S0ðpþ ‘ÞS�1
0 ðpÞ

� S�1
0 ðpÞ

Z ½d‘�LV
‘4

: (A6)

Notice that in the above formulas we have absorbed the LV
factors of the propagator (3.1) into the integration measure
for brevity,

FIG. 3. Graphic representation (Feynman rules) for gauge bo-
son (photon) propagator in the Lorentz-violating (LV) QED
model. The curly line denotes the full propagator in the covariant
gauge �, while the wavy line denotes the photon propagator in
the Feynman gauge � ¼ 1.

FIG. 4. Auxiliary propagatorlike structures, needed for dia-
grammatic proof of certain identities in the LV QED model.

FIG. 5. Simple diagrammatic relation, which can be proven
using the structures of Figs. 3 and 4.

FIG. 7. Combination of graphs used in the diagrammatic rep-
resentation of Eqs. (A4)–(A6).

FIG. 6. The elementary Ward identity in Lorentz-violating
QED.
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½d‘�LV � g2�LVð ~‘ � ~‘Þ d4‘

ð2�Þ4 ;

�LVð ~‘ � ~‘Þ � 1

1þ ~‘� ~‘
M2

:

(A7)

The role of these LV terms as ultraviolet regulators (as
p ! 1) in graphs with internal photon lines is clear.
The ordinary Lorentz-invariant case is recovered in the
limit M ! 1. In the latter limit of course, ½dl�M!1 !
½d‘� needs regularization (e.g. dimensional [20]). In our
discussionM is fixed and finite and such a regularization is
unnecessary for our discussion below. The quantity g is the
gauge coupling (g � e for ordinary QED). The subscripts
‘‘F’’ and ‘‘L’’ stand for ‘‘Feynman’’ and ‘‘Longitudinal,’’

respectively. Notice that �ð1Þ
L is proportional to S�1

0 ðpÞ
and thus vanishes ‘‘on-shell’’. The most direct way to
arrive at the results of Eq. (A6) is to employ the funda-
mental Ward identity (WI)

‘ ¼ S�1
0 ðpþ ‘Þ � S�1

0 ðpÞ; (A8)

which is valid in our case in view of the unaltered form of
the fermion sector of the theory (2.1), as compared to the
standard QED.

This WI is triggered every time the longitudinal mo-
menta of ���ð‘; �Þ gets contracted with the appropriate �

matrix appearing in the vertices. Diagrammatically, this
elementary WI gets translated to the combination shown

in Fig. 6 [again appropriate LV factors �LVð ~‘ � ~‘Þ are
understood].

Then, the diagrammatic representation of Eqs. (A4)–
(A6) will be given by the combination of graphs depicted
in Fig. 7.

This diagrammatic analysis is all one needs to prove the
validity of the PT to our case. Indeed, when considering
physical amplitudes, the characteristic structure of the
longitudinal parts established above allows for their can-
cellation against identical contributions originating from
diagrams which are kinematically different from fermion
self-energies, such as vertex graphs or boxes, without the
need for integration over the internal virtual momenta.
This last property is important because in this way
the original kinematical identity is guaranteed to be

maintained; instead, loop integrations generally mix the
various kinematics.7 Diagrammatically, the action of the
WI is very distinct: it always gives rise to unphysical
effective vertices, i.e. vertices which do not appear in the
original Lagrangian; all such vertices cancel in the full,
gauge-invariant amplitude.
To actually pursue these special cancellations explicitly,

one may choose among a variety of gauge-invariant quan-
tities. For our interest, such an example is provided by the
fermion-current correlation function I�� defined as (in

momentum space)

I��ðqÞ ¼ i
Z

d4xeiq�xh0jT½J�ðxÞJ�ð0Þ�j0i
¼ ðg��q

2 � q�q�ÞIðq2ÞILVð ~q � ~qÞ; (A9)

where the current J�ðxÞ is given by J�ðxÞ ¼
: �c ðxÞ��c ðxÞ:. I��ðqÞ coincides with the photon

vacuum polarization of QED. The quantity q denotes
four momentum, ~q the spatial part, and the factoring
out of the LV term Ið ~q � ~qÞ is a consequence of the
photon propagator (2.1), which maintains gauge invariance

FIG. 8. One-loop diagram contributing to the Lorentz-violating QED fermion self-energy. The diagram is formally the same as in the
Lorentz-invariant case due to the specific form of the action (2.1).

FIG. 9. A typical diagrammatic relation in (LV) QED, used to
demonstrate the appearance of unphysical vertices in off-shell
processes.

FIG. 10. Feynman rule for the unphysical effective vertex
describing an interaction of the form �� �c c , where � denotes
a photon field and � is the index of the external current.

7It is now clear to the reader that it is also this property that
guarantees the straightforward application of the PT of Lorentz-
invariant gauge theories to our LV QED (2.1), as a result of the
factorization of the LV terms in the photon propagator.
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(and hence masslessness of the photon) in the presence
of LV [14].

To see explicitly the mechanism enforcing these cancel-
lations, we first consider the one-loop photonic corrections
to the quantity I��. Clearly such corrections are GFP

independent, since the current J�ðxÞ is invariant under

both the Uð1Þ gauge transformations. The relevant dia-
grams are those shown in Fig. 8.

To see the appearance of the unphysical vertices, we
carry out the manipulations presented in Eqs. (A4)–(A6),
or, equivalently, in the diagrammatic equation depicted
in Fig. 7, this time embedded inside I��ðqÞ. Thus, from
diagrams (b) and (c) we arrive at the relation depicted
in Fig. 9.

Again, the reader should understand the presence of

LV factors �LVð ~k ~kÞ in the appropriate parts of the graphs,
but they do not affect the general arguments on the GFP
dependence cancellation.

We thus see that, since the action of the elementary WI
of Eq. (A8) amounts to the cancellation of internal propa-
gators, its diagrammatic consequence is that of introducing
an unphysical effective vertex, describing an interaction of
the form �� �c c , where � denotes a photon field. This type
of vertex may be depicted by means of a Feynman rule of
the form shown in Fig. 10, where � is the index of the
external current.

To see how the above unphysical contributions cancel
inside I�� we turn to diagram (a). The action of the WI

may be translated to the diagrammatic picture depicted in
Fig. 11.
It is then elementary to establish that the two diagrams

on the right-hand side of the above diagrammatic equation
add up.
Summing up the two equations above, it is clear how

the gauge-dependent part of the one-loop amplitude
cancels completely. Having proved that the GFP-
dependent contributions coming from the original graphs

containing �ð1Þðp; �Þ, i.e. Figs. 8(b) and 8(c), cancel ex-
actly against equal but opposite propagatorlike contribu-
tions coming from Fig. 8(a), one is left with the ‘‘pure’’

GFP-independent one-loop fermion self-energy, �̂
ð1ÞðpÞ.

Clearly, it coincides with the �ð1Þ
F ðpÞ of Eq. (A5), i.e.

�̂ ð1ÞðpÞ ¼ �ð1Þ
F ðpÞ: (A10)

This implies that in any physically measurable quanti-
ties, such as scattering amplitudes or dynamically gener-
ated masses, of interest at hand, the only relevant part of the
self-energy that will contribute is the one (A10) associated
with the Feynman gauge � ¼ 1. With this in mind, the
relevant computations in the SD analysis for dynamical
mass generation, for instance, are simplified by going to
this gauge and dropping the longitudinal parts of the pho-
ton propagator [16,20], for reasons explained above.
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