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We study the beta functions of the leading, two-derivative terms of the left-gauged SUðNÞ nonlinear �
model in d dimensions. In d > 2, we find the usual Gaussian ultraviolet fixed point for the gauge coupling

and an attractive non-Gaussian fixed point for the Goldstone boson coupling. The position of the latter

fixed point controls the chiral expansion, unitarity and the strength of the tree-level Goldstone boson

scattering amplitudes. For large N the model is weakly coupled, unitary at all energies and well described

by the lowest order of chiral perturbation theory. Attention is paid to the gauge and scheme dependence of

the results.
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I. MOTIVATIONS

Any theory where a global symmetryG is spontaneously
broken to some subgroup H at some characteristic energy
scale � can be described at energies k <� by a nonlinear
� model (NL�M), a theory describing the dynamics of
a set of scalars with values in the coset space G=H [1].
These scalars are the Goldstone bosons. Because the coset
space is (in general) not a linear space, the physics of the
Goldstone bosons is rather different from that of scalars
carrying linear representations of G. The most important
phenomenological application of this theory is chiral per-
turbation theory (�PT) [2,3]: it describes the dynamics of
the pions, regarded as Goldstone bosons of the flavor
symmetry SUðNÞL � SUðNÞR, which in QCD is broken
to the diagonal subgroup by the quark condensate. The
theory is characterized by a mass scale f� and for energies
k < f�, terms with n derivatives give contributions that
are suppressed by factors ðk=4�f�Þn. So one can usefully
expand the action in powers of derivatives.

When such a theory is coupled to gauge fields for the
group G, the physical interpretation changes completely.
The Goldstone bosons are acted upon transitively by the
gauge group, which means that any field configuration
can be transformed into any other field configuration by a
gauge transformation. So, in a sense, they are now gauge
degrees of freedom. It is then possible to fix the gauge in
such a way that the Goldstone bosons disappear completely
from the spectrum. In this ‘‘unitary’’ gauge no residual
gauge freedom is left, so the spectrum of the theory con-
sists just of massive gauge fields, the masses originating
from the covariant kinetic term of the Goldstone bosons.
This is the essence of the Higgs phenomenon, but in this
variant where the scalars carry a nonlinear realization ofG,
there is no physical Higgs field left over.

The most important phenomenological application of
this idea is electroweak chiral perturbation theory
(EW�PT) [4]. It is similar to �PT, except that the ‘‘pions’’
are identified with the angular degrees of freedom of the

standard model (SM) Higgs field, and are coupled to the
electroweak gauge fields. The pion decay constant is iden-
tified with the Higgs vacuum expectation value (VEV) �.
The target space is ðSUð2ÞL �Uð1ÞYÞ=Uð1ÞQ � SUð2Þ,
just as in the simplest �PT. At tree level one can view
this as the SM Higgs sector in the limit when the quartic
coupling � ! 1 at fixed VEV �, so that the mass of the
Higgs field goes to infinity. Thus EW�PT can be seen as an
approximation to the SM when the energy is sufficiently
low that the Higgs degree of freedom cannot be excited.
This is actually the domain that has been experimentally
studied so far.
This model is perfectly adequate to give mass to the

gauge bosons. The main reason why the SM uses a linearly
transforming Higgs field, rather than a nonlinear one, is
that the NL�M is perturbatively nonrenormalizable. In
practice, when one computes scattering amplitudes, more
and more terms are needed to achieve a predetermined
precision, as the energy is increased. Thus EW�PT
becomes less and less useful and eventually the perturba-
tive procedure breaks down for momenta of order 4��,
where terms with any number of derivatives are equally
important.
One might also worry about the experimental fact that a

very heavy Higgs particle is disfavored by precision elec-
troweak data. If the NL�M was really equivalent to the
� ! 1 limit of the Higgs model, then this would be
enough to essentially rule it out. However, at the quantum
level, the two models are not equivalent: since the coupling
grows together with the mass, the decoupling theorem
fails [5,6]. The issue of the compatibility of the gauged
NL�M with precision electroweak data has to be analyzed
separately [7]
For these reasons, is important to have a good under-

standing of the UV behavior of this model. Here we would
like to explore the possibility that the gauged NL�M could
be asymptotically safe, which means that its renormaliza-
tion group (RG) flow has a fixed point with a finite number
of attractive directions. As discussed in [8], this would
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make the theory UV complete and predictive. So far
asymptotic safety has been thought of mainly as a way
of constructing a consistent quantum field theory of
gravity [9], but for this idea to give a physically viable
theory it is necessary that also all the other interactions
should behave in this way. There are then two possibilities:
one is that asymptotic safety of all interactions is closely
related to gravitational effects and only manifests itself at
the Planck scale [10]; the other that each interaction inde-
pendently becomes asymptotically safe at its own charac-
teristic scale. We will find here some evidence for the latter
behavior. At least, our findings suggest that the range of
validity of EW�PT could be extended to higher energies
than normally thought, in which case one might not see a
fundamental Higgs field at the LHC at all.

Asymptotic safety could also manifest itself with a
linearly realized Higgs field, in the presence of Yukawa
interactions [11]. In both cases the evidence is not con-
clusive, but the results indicate that this line of thought
deserves to be pursued further. In forthcoming publications
we will discuss the more realistic case of SUð2Þ �Uð1Þ
gauging, the effect of fermions coupled to the gauged
NL�M and the compatibility of this model with electro-
weak precision tests [12]. In this paper we will not try to
derive any phenomenological consequence, but merely
consider the theoretical problem of a chiral NL�M with
values in SUðNÞ coupled to SUðNÞL gauge fields.

II. SUðNÞ GAUGED NONLINEAR SIGMA MODEL

The NL�M describes the dynamics of a map ’
from spacetime, a d-dimensional manifold M, to a
D-dimensional target manifold N . Given a coordinate
system fx�g on M and fy�g on N , one can describe the
map ’ by D scalar fields ’�ðxÞ. Physics must be indepen-
dent of the choice of coordinates, and this can be achieved
by using standard methods of differential geometry.
We will restrict ourselves to the case N ¼ SUðNÞ,
endowed with a left- and right-invariant metric h��. In

order to describe this geometry we begin by choosing
matrix generators fTig in the fundamental representation
satisfying ½Ti; Tj� ¼ fij

kTk where fij
k are the structure

constants. The Ad-invariant Cartan-Killing form is Bij ¼
TrðAdðTiÞAdðTjÞÞ ¼ fi‘

kfjk
‘ ¼ �N	ij, whereas in the

fundamental representation TrðTiTjÞ ¼ ð1=2Þ	ij. We

choose to work with the inner product in the Lie algebra
�ð1=NÞBij ¼ 	ij. The Ad invariance of this inner product

implies that fijk ¼ fij
‘	‘k is totally antisymmetric.

Under the identification of the Lie algebra with the
tangent space to the group at the identity, to each abstract
generator Ti there corresponds a left-invariant vector field
L�
i and a right-invariant vector field R�

i , coinciding with Ti

in the identity. They satisfy the commutation relations

½Li; Lj� ¼ fij
kLk; ½Ri; Rj� ¼ �fij

kRk: (1)

They form fields of bases on the group. We will often use
also the dual bases Li

� and Ri
�:

Li
�L

�
j ¼ 	i

j; Ri
�R

�
j ¼ 	i

j; Ri
�L

�
j ¼ AdðUÞij; (2)

where U denotes the n� n matrix corresponding to the
group element with coordinate ’. The dual bases are the
components of the Maurer-Cartan forms: LiTi ¼ U�1dU,
RiTi ¼ dUU�1.
The metric h�� on the group is defined as the unique

left- and right-invariant metric that coincides with the
inner product in the Lie algebra: 	ij ¼ hð1ÞðRi; RjÞ ¼
hð1ÞðLi; LjÞ. Thus, the vector fields Ri and Li are Killing

vectors, generating SUðNÞL and SUðNÞR respectively, and
they are also orthonormal fields of frames on the group:

h�� ¼ Ri
�R

j
�	ij ¼ Li

�L
j
�	ij: (3)

We will consider the case when only SUðNÞL is gauged,
and call A� the corresponding gauge field. The covariant

derivative and the gauge field strength are defined to be

D�’
� ¼ @�’

� þ Ai
�R

�
i ð’Þ;

Fi
�
 ¼ @�A

i

 � @
A

i
� þ fjl

iAj
�Al


:
(4)

Restricting our attention to terms containing two deriva-
tives of the fields, the Euclidean action of this gauged
NL�M, in d dimensions, reads

S ¼ 1

2f2

Z
ddxh��D�’

�D�’� þ 1

4g2

Z
ddxFi

�
F
�

i ;

(5)

where f and g are couplings. The action (5) is invariant
under local SUðNÞL infinitesimal transformation

	�’
�¼��iLR

�
i ð’Þ 	�A

i
�¼@��

i
Lþfj‘

iAj
��‘L: (6)

To evaluate the beta functions we expand around
(nonconstant) background fields �Ai

� and �’�. The gauge

field is expanded as Ai
�ðxÞ ¼ �Ai

�ðxÞ þ ai�ðxÞ whereas for
the NL�M the fluctuation is best described by its normal
coordinates ��ðxÞ centered at �’�ðxÞ: Exp �’ðxÞð�ðxÞÞ ¼ ’ðxÞ
[13]. This relation can be expanded as

’� ¼ �’� þ �� � 1

2
��

�
�

�� þ . . . ; (7)

where ��
�
 are the Christoffel symbols of the metric h��

evaluated at �’ðxÞ. The background field expansions for the
geometric objects entering in (5) are given by [13]:

h��ð’Þ ¼ h��ð �’Þ � 1
3R�����

��� þ � � � ;
@�’

� ¼ @� �’� þr��
� � 1

3@� �’R�
�
��

��� þ � � � ;
R�
i ð’Þ ¼ R�

i ð �’Þ þ ��r�R
�
i � 1

3R
�
��R


i �

��� þ � � � ;
D�’

� ¼ D� �’� þr��
� þ Ai

�r�R
�
i �

�

� 1
3D� �’R�

�
��

��� þ � � � (8)
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where r is the Riemannian covariant derivative of the
metric h and all tensors on the right-hand side are evaluated
at �’. The background field expansion for the gauge field
strength tensor is given by

Fi
�
 ¼ �Fi

�
 þ �D�a
i

 � �D
a

i
� þ fj‘

iaj�a‘
; (9)

where �D�a
i

 ¼ @�a

i

 þ fj‘

i �Aj
�a‘
.

To the action we add a background gauge fixing term:

Sgf ¼ 1

2�g2

Z
ddx	ij�

i�j with

�i ¼ �D�ai� þ �
g2

f2
Ri
��

�:
(10)

where � and � are gauge fixing parameters. The case
� ¼ � is a generalization of �-gauge fixing (what is
usually known as R� gauge) to the background field

method. Moreover, for � ¼ � ¼ 1 we have the general-
ization of the ’t Hooft-Feynman gauge fixing.

In order to obtain the Faddeev-Popov operator we need
the gauge variations of the fields, keeping the background
fixed. In (6) we have given the transformation of the
coordinates ’�. The variation of the corresponding normal
coordinates �� can be worked out using (7): 	’� ¼
	�� þ ��

�
�

�	� þ . . . and inverting this series. For

our purposes only the first term matters:

	�L�
i ¼ �D�

�D��iL � �
g2

f2
�iL þ . . . ; (11)

where the dots stand for terms containing �. In this way we
obtain the ghost action Sgh ¼ SghF þ SghI, where

SghF ¼
Z

ddx �ci
�
� �D2 þ �

g2

f2

�
	j
icj (12)

is the free ghost action and SghI are interaction terms.

The action (5) can be expanded in functional Taylor
series around the backgrounds

Sð’;AÞ ¼ Sð �’; �AÞ þ Sð1Þð �’; �A; ;�; aÞ
þ Sð2Þð �’; �A; ;�; aÞ þ . . . (13)

where SðnÞ is of order n in the fluctuations. The second
order piece is

Sð2Þ ¼ 1

2f2

Z
ddx��ð� �D2h�� �D� �’�D� �’�R����Þ��

þ 1

f2

Z
ddxai�ðh�D� �’�r�R


i þ h��R

�
i
�D�Þ��

þ 1

2g2

Z
ddxai�

�
� �D2	ij	

�
 þ �D
 �D�	ij

þ g2

f2
h��R

�
i R

�
j 	

�
 þ �F‘�
f‘ij

�
aj
; (14)

where �D��
� ¼ r��

� þ �Ai
�r�R

�
i �

�.

In the following we drop all bars from background
quantities, since no confusion should arise. In the second
integral we can perform an integration by parts to remove
the derivative on �, and use the Killing property r�R

i
� ¼

�r�R
i
� to rewrite the mixed terms as

1

f2

Z
ddxð2ai�D�’�r�R

i
� � Ri

�D
�ai�Þ��:

Now we add the gauge fixing and the free ghost action to
obtain the complete gauge fixed quadratic action:

Sð2Þ ¼ 1

2f2

Z
ddx��

�
�D2h�� �D�’

�D�’�R����

þ �2

�

g2

f2
h��

�
�� þ 1

2g2

Z
ddxai�

�
�D2	ij	

�


þ
�
1� 1

�

�
	ijD

�D
 þ g2

f2
	ij	

�
 � 2F‘�
fi‘j

�
aj


þ 2
1

f2

Z
ddxa�iD�’

�h�r�R

i �

�

þ 1

f2

�
�

�
� 1

�Z
ddxD�ai�	ijR

j
��

� þ SghF: (15)

From here onwards we will set � ¼ � in order to get rid
of the second mixed term.
At this point it is convenient to define �i ¼ Ri

��
�,

and to introduce a Dð1þ dÞ component bosonic field
�T ¼ ð�i; ai�Þ in order to write (15) in a more compact

form

Sð2Þ ¼ 1

2

Z
ddx�TðQ� EÞ�þ

Z
ddx �ci

�
�D2

c þ�
g2

f2

�
	j
icj:

(16)

The differential operator Q and the block matrix E are

Q ¼
1
f2

�
�D2

� þ � g2

f2

�
0

0 1
g2

��
�D2

a þ g2

f2

�
	�
 þ

�
1� 1

�

�
D�D


�
0
BB@

1
CCA; E ¼

1
f2
Mij

1
f2
B�
ij

1
f2
B
T�
ij

2
g2
F
�

ij

0
@

1
A; (17)
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where

Mij ¼ R�
i R

�
j D�’

�D�’�R����;

F
�

ij ¼ F‘�
fi‘j;

B
�
ij ¼ �2D�’�R�

i r�R�j:
(18)

III. BETA FUNCTIONS

We compute the beta functions of the theory using func-
tional renormalization group methods. We start from the
‘‘effective average action’’ �kð’;A;�; a; �c; cÞ, depending
on the background fields ’ and A, and on the ‘‘classical
fields’’ �, a, �c, c (the variables that are Legendre conju-
gated to the sources coupling linearly to the quantum field
by the same name; we trust this notational abuse will not be
cause of misunderstandings). The effective average action
is defined exactly as the usual background field effective
action except for an infrared modification of the propaga-
tors. In the present context, this modification is specified

by adding to the inverse propagators 	2�k

	�	� and 	2�k

	 �c	c some

kernels R�
k and Rc

k which go to zero for momenta greater

than k. This functional obeys a functional differential
equation [14] which in the present context reads

d�k

dt
¼ 1

2
Tr

�
	2�k

	�	�
þR�

k

��1 dR�
k

dt

� Tr

�
	2�k

	 �c	c
þRc

k

��1 dRc
k

dt
; (19)

where t ¼ logðk=k0Þ. This functional equation is exact.
There is no reference to a bare action and there is no
need to introduce an UV regulator, on account of the fact
that the properties of the cutoff kernels R�

k andR
c
k ensure

that the right-hand side of (19) is UV finite. For earlier
applications of this equation to gauge theories see [15].

In order to extract the beta functions of the theory we
assume that the functional �kð’; A; 0; 0; �c; cÞ has the form
of the functional S introduced in (5), with the bare cou-
plings f and g replaced by renormalized coupling that
depend on k, plus the gauge fixing action (10), with the
gauge parameters assumed to be fixed. Inserting this ansatz
for �k in (19) will yield the beta functions of g and f.
Notice that we will be reading off the beta functions from
the background field monomials. This truncation of �k is
strictly speaking not consistent, because the beta functions
of the couplings that are being neglected are not zero. In

any case this method reproduces the results of perturbation
theory when suitable approximations are made and it is
‘‘nonperturbative’’ in the sense that it does not rely on the
couplings being small. Improved results can be obtained by
keeping more terms in the average effective action. This
method has been applied to the NL�M with two and four
derivatives in [16,17] respectively. The novelty here is the
presence of the gauge field.
There is a lot of freedom in the choice of the cutoff

kernels. Generally, one chooses them in such a way as to
make the calculations simpler, but it is also interesting to
examine the dependence of the results on such choices.
We will refer to this as ‘‘scheme dependence,’’ because in
the context of perturbation theory it is closely related to
the dependence of results on the renormalization scheme.
Results that have a direct physical significance should be
scheme independent. We will calculate the beta functions
in two different cases. The first calculation uses the
’t Hooft-Feynman gauge � ¼ 1 and is valid in any dimen-
sion. The second calculation is in an arbitrary � gauge but
is restricted to four dimensions. It will be convenient to
adopt slightly different schemes in the two cases. We will
then compare the results of the two calculations in four
dimensions.

A. Arbitrary dimension, ’t Hooft-Feynman gauge

In this subsection we choose � ¼ 1. The a-a terms in
(15) or (17) then become a minimal second order operator
(the highest order part is a Laplacian) and this simplifies
the calculation significantly. We choose the cutoff kernels
to be functions of the background covariant Laplacians, of
the form

R�
k ¼

1
f2
Rkð�D2

�Þ 0

0 1
g2
Rkð�D2

aÞ

0
@

1
A;

Rc
k ¼ Rkð�D2

cÞ:
(20)

In the terminology of [18] this is called a ‘‘type I’’ cutoff.
For the cutoff profile function Rk we choose the
‘‘optimized’’ form RkðzÞ ¼ ðk2 � zÞ�ðk2 � zÞ [19], which
ensures that the integrations over momenta are finite and
explicitly calculable. Being constructed with the back-
ground Laplacians, this cutoff prescription preserves the
background gauge invariance. The t derivative of this
cutoff is

dR�
k

dt
¼

1
f2
½@tRkð�D2

�Þ þ ��Rkð�D2
�Þ� 0

0 1
g2
½@tRkð�D2

aÞ þ �aRkð�D2
aÞ�

 !
; (21)

where �� ¼ �2@t logf and �a ¼ �2@t logg. The other parts of Eq. (19) are
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	2�k

	�	�
þR�

k � Pk � E;

Pk ¼ QþR�
k

¼
1
f2

�
Pkð�D2

�Þ þ g2

f2

�
0

0 1
g2

�
Pkð�D2

aÞ þ g2

f2

�
0
BBB@

1
CCCA (22)

and

	2�k

	 �c	c
þRc

k ¼ Pkð�D2
cÞ þ g2

f2
; (23)

where we defined the function PkðzÞ ¼ zþ RkðzÞ, which is
equal to k2�ðk2 � zÞ þ z�ðz� k2Þ for the optimized cutoff.

By expanding the first term of (19) in powers of ðPkÞ�1E,
we therefore have

d�k

dt
¼ 1

2
TrðP�1

k þ P�1
k EP�1

k þ P�1
k EP�1

k EP�1
k þ . . .Þ

� dR�
k

dt
� Tr

�
Pkð�D2

cÞ þ g2

f2

��1 dRc
k

dt
: (24)

Note that in so doing we keep the entire dependence on
g2=f2 but we expand in powers of E, which depends on the
background fields. These traces can be evaluated using heat
kernel methods, described e.g. in Appendix A of [18].

Summing all contributions and reading off the coeffi-
cients of ð1=4ÞRFi

�
F
i�
 and ð1=2ÞRD�’

�D�’�h�� we

obtain the beta functions for 1=g2 and 1=f2:

d

dt

1

g2
¼ � 1

ð4�Þd=2
N

3

1

�ðd2 � 1Þ
kd�4

1þ ~g2

~f2

�
�
1

4
þ d� 2þ ��=4þ d�a

d� 2

� 192

dðd� 2Þ
1

ð1þ ~g2

~f2
Þ2
�
1þ �a

dþ 2

��
; (25)

d

dt

1

f2
¼ 1

ð4�Þd=2
N

2

1

�ðd2 þ 1Þ
kd�2

ð1þ ~g2

~f2
Þ2

�
�
1þ ��

dþ 2
þ 4~g2=~f2

1þ ~g2

~f2

�
2þ �� þ �a

dþ 2

��
: (26)

A few comments are in order at this point. As they stand,
these are not yet explicit beta functions, because the right
hand sides contain the beta functions themselves inside
the factors of �� and �a. Thus, these can be regarded as

algebraic equations for the beta functions. We do not give
the explicit expressions of the beta functions here because
they are somewhat unwieldy and can easily be obtained by
solving the above equations. We observe that omitting the
terms containing �� and �a in the right-hand sides gives

the one loop beta functions.

These equations give the beta functions of the
(generally) dimensionful couplings. The corresponding
beta functions of the dimensionless combinations
~f2 ¼ f2kd�2 and ~g2 ¼ g2kd�4 can be obtained by simple
algebra. Note that on the right-hand side the dimensions
are carried just by the explicit powers of k, all the rest is
dimensionless.
As we mentioned earlier, the only approximation made

in this calculation consists in neglecting higher derivative
terms. We know that this is a good approximation at
sufficiently low energy and we are implicitly assuming
that it remains a reasonably good approximation also at
higher energy. Provided this important assumption is true,
these beta functions are valid at all energy scales: having
used a mass-dependent renormalization we get automati-
cally the effect of thresholds, which are represented by the

factors 1=ð1þ g2=~f2Þ (note that g2=f2 has dimensions of
mass squared in any dimension). For k2 � g2=f2 these
factors become equal to one, whereas for k2 � g2=f2 the
denominators become large and suppress the running,
reflecting the decoupling of the corresponding massive
field modes.
Finally we observe that (25) has an apparent pole at

d ¼ 2, which is actually cancelled by the pole of the
function �ðd=2� 1Þ in the denominator.

B. Four dimensions, generic R� gauge

We now consider a general R� gauge, where the parame-

ter � is now called � in order not to generate confusion
with the Goldstone modes. In this case the operator acting
on the gauge fluctuations is nonminimal (meaning that the
highest order terms are not simply a Laplacian). Because of
the increased complication, from here on we will restrict
ourselves to four dimensions. A standard way of dealing
with nonminimal operators is to decompose the field they
act on in irreducible components, in the present case the
longitudinal and transverse parts of a. The resulting opera-
tors acting on the irreducible subspaces are typically of
Laplace type. We thus define operators DL and DT by

D T�
 ¼ �D2	�
 � 2F�
; DL�
 ¼ �D�D
;

(27)

where it is understood that F acts to the fields on its right in
the adjoint representation, as in Eq. (18). Assuming that the
background gauge field is covariantly constant, one easily
proves that the following operators are projectors:

P L ¼ D�1
T DL; PT ¼ 1� PL: (28)

We can then decompose a� ¼ t� þD�c , where t� ¼
PTa�, D�t

� ¼ 0 and c ¼ �D�D�1
T��a�. We then intro-

duce the cutoff separately in the transverse and longitudi-
nal subspaces as follows:
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R �
k ¼

1
f2
Rkð�D2�MÞ 0

0 1
g2

�
RkðDTÞPTþ 1

�RkðDTÞPL

�
0
B@

1
CA:

(29)

Note that the cutoff is now a function of the kinetic
operator acting in each irreducible subspace, including
the background-dependent terms M and F, but not the
masslike term g2=f2. Following the terminology of [18],
we call this a ‘‘type II cutoff.’’ For the ghosts we use the
same cutoff as before.
The modified bosonic inverse propagator is now
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To calculate the running of the gauge coupling we can set
D�’

� ¼ 0. Then B ¼ 0, the inverse bosonic propagator is
diagonal and Eq. (19) reduces to
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We find
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The first term is the gauge boson contribution, while in
the second term the first term in bracket is the contribution
of the ghosts and the second is the contribution of the
Goldstone bosons.

The beta function of the Goldstone boson coupling can
be computed setting A� ¼ 0. Then one can use standard

momentum space techniques. The result is
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C. Comparison

We make here some observations concerning the gauge-
and scheme dependence of the beta functions. Specializing
Eq. (25) to the case d ¼ 4 we obtain
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This does not agree with Eqs. (32), specialized to the case
� ¼ 1. However, if we restrict ourselves to the one loop
part of the beta function, i.e. if we neglect all the terms
involving�� and�a, and we consider energies much larger

than the threshold at g
2

f2
, then g2

~f2
� 1 and the beta function

of the gauge coupling reduces to
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This is the same in both calculations and illustrates the
universality of these beta functions.
On the other hand specializing Eq. (26) to the case

d ¼ 4, we obtain
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At one loop and high energy it becomes
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whereas Eq. (33) reduces in the same limit to
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As already observed in [17], the difference in the coeffi-
cient is the effect of passing from the type I cutoff to a
type II cutoff. Thus, even the leading terms of these
beta functions are scheme dependent. We note however
that being the integral of a positive function it is always
strictly positive. Note also that in this approximation, the
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difference could be absorbed in a redefinition of k if one
wanted. Finally, it is also worth noting that if we assume

g2=~f2 � 1, the beta function of 1=f2, in any one of these
schemes, reduces to the one of the pure NL�M.

IV. RESULTS

A. Fixed points in d ¼ 4

In this subsection we restrict ourselves to d ¼ 4. As
mentioned before, due to the presence of the terms involv-
ing �a and ��, Eqs. (25), (26), (32), and (33) are not the

beta functions themselves but linear equations for the beta
functions. They do become the one loop beta functions if
one drops all the terms involving �a and ��. Otherwise,

before solving for the flow, one has to solve them. The
general structure of the beta functions is

d
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where Ai and Bij are (dimensionless) functions of
~f and g that one can easily read off from Eqs. (25), (26),
(32), and (33). The solution of these algebraic equations
has the form
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Notice that it is the beta functions of the dimensionless
couplings that have to vanish in the definition of fixed
point. In the one loop approximation one just sets all the
Bij coefficients to zero, so that the denominators simplify

to one, and in the numerators only the terms A1 and A2

survive. Comparison of Eqs. (32) and (34) shows that even
at one loop the beta function of g is scheme and gauge
dependent. However, this dependence only affects the
threshold behavior due to the fact that this model describes
massive gauge fields. For k2 � g2=f2 the massive modes
decouple and this is reflected in the large denominators,
which effectively switch off the beta functions. If one
considers the regime k2 � g2=f2, the denominators re-
duce to one. In this case the beta function of g is given
by Eq. (35):

dg

dt
¼ � 1

2
A2g
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with a universal coefficient A2 ¼ N
ð4�Þ2

29
4 . Note that 29=4

differs from the coefficient 22=3 of the pure gauge theory
by the Goldstone boson contribution �1=12. This contri-
bution is quite small and does not spoil the asymptotic
freedom of g. On the other hand, in the same limit the beta

function of ~f becomes
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with A1 ¼ 1
ð4�Þ2
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2 for cutoffs of type I or II,

respectively. This beta function has a nontrivial fixed point
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ffiffiffiffiffiffiffiffiffiffiffi
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p
.

The solution of the beta functions (41) and (42), includ-
ing the ‘‘RG improvement’’ (due to the � terms) requires a
bit more work. In addition to the Gaussian fixed point at

g ¼ 0, ~f ¼ 0, there is always also a non-Gaussian fixed

point where ~f � 0. The position of this fixed point and the
scaling exponents �i (defined as minus the eigenvalues of
the linearized flow equations) are given in the following
table:

Cutoff and gauge ~f	 g	 �1 �2

Type I, � ¼ 1 4�
ffiffiffiffiffiffiffiffiffi
6=N

p
0 8=3 0

Type II, � ¼ 1 8�
ffiffiffiffiffiffiffiffiffiffiffiffi
2=3N

p
0 3 0

Type II, � ¼ 0 8�
ffiffiffiffiffiffiffiffiffiffiffiffi
2=3N

p
0 3 0

This gives an idea of the scheme dependence of the
results. Note that g is always asymptotically free, and
when we set g ¼ 0 the beta function of f becomes �
independent. Therefore, the position of the fixed point is
actually gauge independent.

B. Fixed points in other dimensions

We briefly consider the solutions of the beta functions
(25) and (26) in arbitrary dimension. The existence of
nontrivial fixed points in Yang-Mills theories in d > 4
has been discussed earlier in [20]. It is due to the nontrivial
dimensionality of the gauge coupling. One would expect it
to be there also in the presence of the Goldstone bosons. As
usual, the simplest way to see this is to consider the one
loop beta functions
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where ~f ¼ kðd�2Þ=2f and ~g ¼ kðd�4Þ=2g. From (25) and
(26) one finds
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In the limit k2 � g2=f2, A1 and A2 become positive con-
stants implying a fixed point at

~f 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

A1

s
; ~g	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
d� 4

A2

s
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We note that the value of ~g2

~f2
¼ d�4

d�2
A1

A2
at this fixed point is

indeed rather small, so that the approximation is justified
a posteriori. For a better approximation one has to solve
the equations numerically.

C. Comments

The nontrivial fixed point that has been found in these
calculations could be the basis of asymptotic safety
in a spontaneously broken chiral theory. Although its ex-
istence was known in the NL�M in 2< d< 4 [21], its
presence has been obscured by the widespread use of
dimensional regularization. The use of this regularization
method artificially removes power divergences, which
give important contributions to the beta function of
dimensionful couplings such as f. These contributions
are essential in generating the nontrivial fixed point. It is
enough to use a cutoff regularization at one loop to see the
emergence of the fixed point. The functional RG tech-
niques used here allow us to go beyond one loop by
resumming infinitely many perturbative contributions.
Further improvements using these techniques can be
achieved by going to higher orders of the derivative
expansion.

We have seen here that, within the truncation we work
with, the presence of the Goldstone bosons does not affect
the asymptotic freedom of the gauge fields, so that the fixed
point in the Goldstone boson sector is the same as in the
ungauged case. We expect that the same will be true when
the four-derivative terms are added. If this is the case, the
fixed point structure of the chiral NL�M couplings should
be the same as described in [17].

A somewhat worrying aspect of these results, especially
if one restricts oneself to the one loop approximation, is
that they generally require strong interactions. This follows

from the fact that in the beta function of ~f the loop
contribution has to cancel the classical scaling term.
Addressing this worry is actually the main reason for using
functional RG methods: their validity does not rely on the
coupling being small. Of course, one is then making other
approximations, namely, neglecting higher order terms in
the derivative expansion.
There is however a situation when the theory can gen-

erate a nontrivial fixed point while still remaining in the
weak coupling regime, and this is the large N limit. In this
approximation, the small contributions of many fields can
add up to generate the required fixed point, while remain-

ing in a nearly perturbative setting. For ~f	 < 8� the lead-
ing order term of �PT that we have studied is the dominant
one, and due to the existence of the fixed point �PT is
convergent at all energies. In EW�PT, f is related to the
electroweak VEV via the identification 1=f2 ¼ �2=4. If
one follows an RG trajectory towards higher energies one
will encounter essentially two distinct regimes. For ener-
gies below the mass of the gauge fields, the beta functions
are suppressed by the threshold terms. For energies
above the mass of the gauge fields the coupling f runs,
behaving asymptotically like 1=k and giving rise to a
nearly scale invariant regime (scale invariance is broken
by the running of g, which is however very slow in com-
parison). The onset of the nearly scale invariant regime
depends on the position of the fixed point and occurs earlier

for smaller values of ~f	. For instance, if ~f	 ¼ 8�, the scale
invariant regime begins at approximately 20 TeV, whereas

if ~f	 ¼ 2, the scale invariant regime begins at approxi-
mately 1 TeV.
Large N is also beneficial from another point of view.

The strength of Goldstone boson interaction is given by the

four-point elastic scattering amplitude A ¼ ~f2=4. In the
UV the amplitude becomes energy-independent, and only
depends on the value of the fixed point since asymptoti-

cally A ¼ ~f2	=4. For energies smaller than the gauge boson
masses, the running of f is suppressed and the amplitude

goes into the usual one. For ~f	 < 4
ffiffiffiffiffiffiffi
2�

p
the four-point

elastic amplitude is unitary for all energies, whereas at
tree level it would require a cutoff at 4��.
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