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The topological susceptibility of the SUð3Þ random vortex world-surface ensemble, an effective model

of infrared Yang-Mills dynamics, is investigated. The model is implemented by composing vortex world

surfaces of elementary squares on a hypercubic lattice, supplemented by an appropriate specification of

vortex color structure on the world surfaces. Topological charge is generated in this picture by writhe and

self-intersection of the vortex world surfaces. Systematic uncertainties in the evaluation of the topological

charge, engendered by the hypercubic construction, are discussed. Results for the topological suscepti-

bility are reported as a function of temperature and compared to corresponding measurements in SUð3Þ
lattice Yang-Mills theory. In the confined phase, the topological susceptibility of the random vortex world-

surface ensemble appears quantitatively consistent with Yang-Mills theory. As the temperature is raised

into the deconfined regime, the topological susceptibility falls off rapidly, but significantly less so than in

SUð3Þ lattice Yang-Mills theory. Possible causes of this deviation, ranging from artefacts of the hyper-

cubic description to more physical sources, such as the adopted vortex dynamics, are discussed.
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I. INTRODUCTION

A model of the QCD vacuum which has been successful
in capturing the fundamental phenomena characterizing
the strong interaction in its infrared, strongly coupled
sector is the center vortex picture. It assumes that the
long-wavelength modes of the gluon field are collectively
organized into randomly distributed, percolating tubes of
quantized chromodynamic flux in three-dimensional
space; early in its development [1–12], this picture was
often referred to, employing vivid imagery, as the ‘‘spa-
ghetti vacuum.’’ The aforementioned tubes of flux are
termed ‘‘center vortices’’ since flux quantization is deter-
mined by the center of the underlying gauge group (de-
tailed definitions are given in Sec. II A). Contrary to
spaghetti, vortices have no open ends; this is an expression
of the Bianchi identity, i.e., continuity of flux (modulo
Abelian magnetic monopoles). Also contrary to spaghetti,
vortices can move through one another, i.e., their world
surfaces can intersect. The vortex picture, including its
relation to other models of the QCD vacuum, has been
reviewed in [13,14].

While the vortex picture was originally conceived spe-
cifically as a possible mechanism of quark confinement,
more recent developments have shown that it also provides
viable explanations of the other two central phenomena
observed in the low-energy sector of the strong interaction,
namely, the spontaneous breaking of chiral symmetry and
the axial UAð1Þ anomaly (the latter representing the focus
of the study presented here). The vortex picture thus pro-
vides a comprehensive, consistent account of the gross
features of the strong interaction vacuum. Two main lines

of investigation have contributed to these developments.
On the one hand, sparked by the inception of practicable
algorithms for the detection of vortices in lattice Yang-
Mills configurations [15–17], lattice studies of the vortex
content of Yang-Mills theory and the effects it induces
were carried out [15–23]. On the other hand, an infrared
effective model based directly on center vortex degrees of
freedom with a simplified effective dynamics was intro-
duced to complement the lattice studies and expand on the
range of vortex physics that could be accessed quantita-
tively [24–31].
In the lattice Yang-Mills approach, identifying center

vortices within lattice configurations containing the full
Yang-Mills dynamics is a complex pattern recognition prob-
lem. While center vortices are, in principle, defined gauge
invariantly via their effect onWilson loops, cf. Sec. IIA, this
pattern recognition problem is usually handled by adopting
particular gauges which facilitate projecting out the vortex
content of a given configuration. Two classes of gauges
which have been employed in this respect are maximal
center gauges [15,16] and Laplacian center gauges [17].
On the basis of these methods, lattice Yang-Mills studies
have demonstrated center dominance, i.e., that the vortex
content of lattice Yang-Mills configurations fully accounts
for the asymptotic string tension, both at zero temperature
[15–17] and at finite temperatures [18]; the deconfining
phase transition is revealed as a percolation transition (in
certain three-dimensional slices of space-time) in the vortex
picture [18]. Moreover, vortices account for the topological
content of the Yang-Mills ensemble [19,20]. The study of
the chiral symmetry breaking effects induced by vortices via
the low-lying modes of the Dirac operator has proven to
be technically more challenging due to the fact that center
vortex configurations projected from full lattice Yang-Mills*engel@nmsu.edu
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configurations are not smooth; nevertheless, it has been
shown that chiral symmetry breaking disappears (along
with topological charge and confinement) when vortices
are removed from the full lattice configurations [17,19],
and a detailed study employing asqtad quarks [21] has
demonstrated the emergence of a dense low-lying Dirac
eigenvalue spectrum in the ensemble of vortex configura-
tions projected from their full Yang-Mills counterparts.

These findings have been complemented by further re-
cent investigations focusing on correlations between center
vortices and low-lying overlap Dirac operator eigenmodes
[21–23], which, on the other hand, can be tied to the
topological charge density. Of related interest are studies
of the connection between center vortices and other topo-
logical charge carriers arising in Yang-Mills theory; a de-
tailed analysis of the vortex content of calorons was
presented recently in [32]. Finally, a more formal issue
which arises where correlations between center vortices
and Dirac operator eigenmodes are concerned is the
form of the index theorem in the presence of vortices;
the nonsmoothness of vortex gauge fields already alluded
to further above may introduce complications in this re-
spect. This has been investigated recently in [33,34]. Some
observations on the related question of the quantization
properties of global topological charge are made below in
Sec. III C.

As already indicated, the lattice Yang-Mills studies of
vortex physics highlighted above have been complemented
by the formulation of a corresponding infrared effective
model of center vortices. Since vortices represent lines of
chromodynamic flux in three space dimensions, they cor-
respondingly are described by two-dimensional world sur-
faces in four-dimensional space-time. Implementing the
notion that center vortices are randomly distributed, a
random vortex world-surface model in Euclidean space-
time was introduced and studied in [24–31]. Concentrating
initially on an underlying SUð2Þ gauge group, the confine-
ment properties, including the finite temperature phase
transition to a deconfined phase [24], the topological sus-
ceptibility [25] and the (quenched) chiral condensate [26]
were found to quantitatively reproduce the corresponding
features in SUð2Þ lattice Yang-Mills theory. Subsequently,
the model was generalized to other gauge groups, the
confinement properties being investigated not only for
the SUð3Þ case [27–29], but also for SUð4Þ [30] and
Spð2Þ [31]. For the most relevant case of an underlying
SUð3Þ gauge group, a weakly first order deconfinement
transition [27,29] and a Y-law for the baryonic static
potential [28] were found, in accordance with SUð3Þ lattice
Yang-Mills theory. The present work continues the inves-
tigation of the SUð3Þ model, focusing on the topological
susceptibility, which is instrumental in determining, via
the axial UAð1Þ anomaly, the mass of the �0 meson.
Preliminary accounts of this work have been given in
[35,36].

II. MODELING CENTER VORTICES

A. Center vortex degrees of freedom

The vortex picture of the strong interaction vacuum
assumes that the relevant infrared gluonic degrees of free-
dom are center vortices. On infrared length scales, center
vortices are closed lines of quantized chromomagnetic flux
in three space dimensions. They are therefore described
by closed two-dimensional world surfaces in four-
dimensional space-time. Their flux is quantized according
to the center of the gauge group; if one evaluates a Wilson
loopW encircling an SUð3Þ vortex flux, one obtains one of
the nontrivial1 center elements of the SUð3Þ group, i.e.,

W ¼ expð�2�i=3Þ: (1)

Note that the two center elements in question are complex
conjugates of one another, implying that the SUð3Þ gauge
group only really allows for one type of vortex flux, the two
possible space-time orientations of which determine which
center element is measured.
Note furthermore that the specific structure of the SUð3Þ

center also allows for vortex branching. A vortex flux
associated with W ¼ expð2�i=3Þ branching into two vor-
tex fluxes each associated withW ¼ expð�2�i=3Þ is com-
patible with the Bianchi constraint, i.e., flux continuity
modulo Abelian magnetic monopoles; evaluating a
Wilson loop encircling the latter two fluxes yields W ¼
expð�2�i=3Þ � expð�2�i=3Þ ¼ expð2�i=3Þ, just as for
the original flux.
Viewing center vortices as infrared effective degrees of

freedom implies that their space-time location is only
determined to an accuracy limited by the ultraviolet cutoff.
Equivalently, if one sufficiently increases the space-time
resolution, it is appropriate to represent center vortices as
thickened tubes in three space dimensions, or correspond-
ingly thickened world surfaces in space-time. This thick-
ness, encoding the ultraviolet cutoff, is relevant for
medium-range phenomena such as Casimir scaling of the
static quark potential at intermediate distances [37,38]. It
plays a role in the construction of an infrared effective
vortex dynamics, cf. Sec. IVA.

B. Vortex field strength

To evaluate the topological charge

Q ¼ 1

32�2

Z
d4x����� TrF��F�� (2)

of center vortices, it is necessary to associate a chromody-
namic field strength tensor F�� with them.While it will not

be necessary to give a general construction of F�� for an

arbitrary vortex configuration [39], a few of its properties
need to be specified for the developments further below.

1Of course, the trivial unit center element signals that no flux is
present.
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A vortex world-surface element running in the � and 	
directions carries a field strength F��, localized on the

world surface, such that the � and � directions are per-
pendicular to the � and 	 directions [25,39]. Apart from
this gauge-invariant statement, the field strength also has a
direction in color space, which can be rotated by gauge
transformations. It is convenient to cast vortex configura-
tions in an Abelian gauge, i.e., the 3� 3 color matrix F��

will be chosen diagonal. Vortex color structure can be
usefully characterized by eliminating the space-time de-
tails of the vortex field strength and considering only the
color direction TðrÞ of the vortex at the position r,

2�

3
TðrÞ ¼ 1

2

Z
Sr

F��d
2S�� ¼

Z
@Sr

A�dx�; (3)

where Sr is a two-dimensional surface intersecting the
vortex at r (but intersecting no other fluxes) and A� is a

(diagonal) gauge field generating the field strength F��. In

terms of a parametrization xðs1; s2Þ of Sr, the oriented
surface element is given by d2S�� ¼ �
�ð@x�=@s
Þ�
ð@x�=@s�Þds1ds2. In terms of T, the Wilson loop along
the contour @Sr encircling the vortex is simply given by

W ¼ 1
3 Tr expð2�iT=3Þ; (4)

i.e., T has integer entries. As one travels along the vortex
world surface, T remains constant except possibly at lines
on the surface at which T switches from one color direction
to another, in a manner which must of course be compat-
ible with the Bianchi constraint. In fact, such switches in
the color direction T are unavoidable on generic vortex
world surfaces. In the simpler case of an SUð2Þ gauge
group [25], this comes about purely due to the nonorient-
ability of the surfaces. Nonorientability implies that there
must be lines on the surfaces at which the orientation of
vortex flux is inverted and T therefore displays a disconti-
nuity. In the SUð3Þ case considered here, the picture is
complicated by the branched nature of the surfaces, cf.
further below. Moreover, while in the SUð2Þ case, the
choice of the set of allowed color directions T is essentially
unique, in the SUð3Þ case, one has a certain amount of
(gauge) freedom in the choice of the set of allowed color
directions. These options, leading to different patterns of
discontinuities on the vortex world surfaces, will be dis-
cussed further in the next section.

In more physical terms, a discontinuity in the color
direction of vortex flux described by T implies the presence
of a source or sink of that flux, i.e., the presence of an
Abelian magnetic monopole worldline on the vortex world
surface. In view of the fact that such discontinuities in
general cannot be avoided, Abelian magnetic monopoles
represent intrinsic features of vortex configurations cast in
Abelian gauges. This is, of course, the character of Abelian
gauges; rotations of the field strength tensor in color

space, which in general occur continuously as a function
of space-time location, are compressed into singular
jumps. The precise locations of the monopole worldlines
on the vortex world surfaces can be shifted by gauge
transformations, but certain topological characteristics of
these singularities are gauge-invariant (they are, e.g., in
general noncontractible), and influence, in particular, the
topological charge.2

C. Vortex color structure

As indicated above, for the SUð3Þ gauge group, one has
different options in the choice of the set of allowed color
directions T on vortex world surfaces, corresponding to a
residual freedom in the choice of Abelian gauge. Consider,
to begin with, a minimal set, i.e., let

T 2 f�diagð1; 1;�2Þg: (5)

This is sufficient to generate both nontrivial center ele-
ments of the SUð3Þ group, cf. (1), i.e., both possible
orientations of vortex flux. Consider now the occurrence
of monopoles. Contrary to the SUð2Þ case [25], in this
description, monopoles cannot occur away from branch-
ings, since the flux required to switch from T ¼
diagð1; 1;�2Þ to T ¼ diagð�1;�1; 2Þ does not correspond
to a possible Abelian magnetic monopole flux (which
would be described by diagonal elements which are integer
multiples of 3 in the convention used here). On the other
hand, monopoles must occur at branchings, cf. Fig. 1.
Consider, on the other hand, a nonminimal, more sym-

metric choice,

diag(-1,-1,2)

diag(1,1,-2) diag(1,1,-2)

.
FIG. 1. Vortex color structure at branchings for a minimal
choice of the set of allowed color generators T, cf. (5). The
restricted set of available T forces a monopole to appear at the
branching; the difference between incoming and outgoing
fluxes is diagð�1;�1;2Þ�2 �diagð1;1;�2Þ¼diagð�3;�3;6Þ¼
diagð�3;0;3Þþdiagð0;�3;3Þ, i.e., monopole flux which can be
further decomposed into two elementary monopoles in two
separate SUð2Þ subgroups of SUð3Þ, as indicated by the second
equality.

2Indeed, on a torus with periodic boundary conditions (non-
trivial boundary conditions such as torus twist require additional
consideration), globally oriented vortex world surfaces, i.e., ones
devoid of monopoles, carry no global topological charge [39].
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T 2 f�diagð1; 1;�2Þ;�diagð1;�2; 1Þ;�diagð�2; 1; 1Þg:
(6)

This description, introduced in [40–42], allows for more
flexibility; monopoles can occur away from branchings,
cf. Fig. 2, and branchings are not necessarily associated
with monopoles, cf. Fig. 3. In fact, this description affords
the possibility of deforming monopole worldlines such that
they never coincide with vortex world-surface branching
lines, except for, at most, isolated crossings of the former
and the latter. This property singles out the choice (6) as the
one best suited for the purpose of evaluating the topologi-
cal charge of SUð3Þ vortex configurations, cf. Sec. III B.

D. Vortex world surfaces on a hypercubic lattice

In order to arrive at a practical scheme of generating
model vortex world-surface ensembles, cf. Sec. IVA, the
world surfaces will be composed of elementary squares on
a hypercubic lattice. One can then describe a vortex con-
figuration by recording the chromodynamic flux associated
with each elementary square in the lattice. Associate the
lattice elementary square extending from the lattice site x
into the positive � and � directions with a 3� 3 color
matrix p��ðxÞ, where either p��ðxÞ ¼ 0 (indicating the

absence of vortex flux) or p��ðxÞ ¼ T with T indicating

the color orientation of the vortex flux on the square in
question, as introduced in the previous section, cf. (6).
Note that the order of indices defines a sense of curl and,
accordingly, p��ðxÞ and p��ðxÞ are related by space-time

inversion, i.e., p��ðxÞ ¼ �p��ðxÞ. In practice, it is thus

sufficient to record p��ðxÞ for �< �.

An operation repeatedly used in the following is an
elementary cube transformation, which locally deforms a
given vortex world-surface configuration on the lattice into
a new configuration as follows. An additional closed vortex
flux, of the shape of the surface of an elementary three-
dimensional cube (the smallest possible closed vortex
world surface), and associated with one of the possible
color orientations T from (6), is superimposed onto the
original configuration. This creates a new configuration
while preserving the Bianchi constraint, i.e., continuity of
flux modulo Abelian magnetic monopoles. Specifically, if
the elementary cube in question extends from the lattice
site x into the positive �, � and � directions, the trans-
formation effects

p��ðxÞ ! Modðp��ðxÞ þ TÞ;
p��ðxþ e�Þ ! Modðp��ðxþ e�Þ � TÞ;

p��ðxÞ ! Modðp��ðxÞ þ TÞ;
p��ðxþ e�Þ ! Modðp��ðxþ e�Þ � TÞ;

p��ðxÞ ! Modðp��ðxÞ þ TÞ;
p��ðxþ e�Þ ! Modðp��ðxþ e�Þ � TÞ;

(7)

where Mod denotes a generalized modulo operation, acting
on diagonal 3� 3 color matrices, which maps its argument
back into the set of allowed color orientations, cf. (6); it
acts as follows:

ModðPÞ ¼ 0 if detP ¼ 0;

ModðPÞ ¼ �P=2 if j detPj ¼ 16;

ModðPÞ ¼ P else:

(8)

Note that the first two alternatives in general induce
Abelian magnetic monopole lines in the transformed
configuration.
Elementary cube transformations will be employed fur-

ther below both as Monte Carlo updates3 in the generation
of vortex world-surface ensembles, as well as in the pro-
cess of measuring the topological charge.

III. VORTEX TOPOLOGICAL CHARGE

A. Origin of vortex topological charge density

The topological charge of vortex world surfaces results
from world-surface intersections and world surface writhe
[25,39,40,43,44]. If one considers idealized, infinitely
thin surfaces in four-dimensional space-time, intersections

diag(1,1,-2) diag(-2,1,1)

FIG. 2. Possible monopole not associated with branching for a
nonminimal choice of the set of allowed color generators T,
cf. (6). The difference between incoming and outgoing fluxes is
diagð1; 1;�2Þ � diagð�2; 1; 1Þ ¼ diagð3; 0;�3Þ, i.e., a mono-
pole flux.

diag(-1,2,-1)

diag(1,1,-2) diag(-2,1,1)

FIG. 3. Possible vortex color structure at branchings for a
nonminimal choice of the set of allowed color generators T,
cf. (6). One can choose incoming and outgoing fluxes such that
their difference vanishes, diagð�1; 2;�1Þ � diagð1; 1;�2Þ �
diagð�2; 1; 1Þ ¼ 0. In this description, one thus has the freedom
to disassociate monopoles from branchings.

3Strictly speaking, purely as a matter of technical convenience,
Monte Carlo updates will act directly on the reduced quantities
q��ðxÞ introduced in (11), which carry only part of the infor-
mation contained in p��ðxÞ; the action is entirely analogous and
can be unambiguously inferred from the definition given here.
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occur at isolated points in space-time, whereas writhe in
general is continuously distributed along surfaces. An
illustrative example is given in [44]. In an infrared effective
framework, where locations cannot be specified to higher
accuracy than given by the ultraviolet cutoff, these features
are smeared out over the corresponding length scale (which
in practice can be identified with the vortex thickness).

On the other hand, if for modeling purposes one com-
poses vortex world surfaces from elementary squares on a
hypercubic lattice, as will be done below, additional con-
siderations must be taken into account. In such a setting,
topological charge can only be generated at lattice sites,
since these are the only space-time points at which surface
elements can meet such that their tangent vectors span all
four space-time dimensions.4 Thus, also vortex writhe
becomes concentrated on space-time points instead of
being continuously distributed on vortex world surfaces.

At first sight, it would therefore seem that the topologi-
cal charge Q of hypercubic model surfaces can be eval-
uated simply by considering all lattice sites x, and at each
site counting pairs of mutually orthogonal elementary
squares meeting there, appropriately weighted by the asso-
ciated chromodynamic flux,

Q ¼ X
x

qðxÞ;

qðxÞ ¼ 1

288

X
�<�

X
�<�

X4
i;j¼1

����� TrðpðiÞ
��p

ðjÞ
��Þ;

(9)

where pðiÞ
��, i ¼ 1; . . . ; 4 denotes the four elementary lattice

squares touching the lattice site x and extending into the �
and � directions. The normalization of qðxÞ can be inferred
by noting that vortex world-surface intersection points
generate contributions of magnitude 1=3 or 2=3 to the
topological charge [39] (depending on the relative color
orientation of the surfaces). Note that, as written, each pair
of elementary squares is counted twice as �, �, �, � are
summed over; this is also properly taken into account by
the normalization prefactor.

However, before a measurement of the topological
charge according to (9) can be implemented, certain ambi-
guities in the surface configurations, engendered by the
hypercubic construction, must first be resolved.

B. Ambiguities in measuring topological charge

There are two types of ambiguities which arise in defin-
ing the topological charge of hypercubic model surfaces.
First, intersections of such surfaces do not necessarily
occur only at space-time points, but they can be spread

out into lines, as exemplified in Fig. 4. Contrast this with
the generic intersections found for arbitrary continuous
two-dimensional surfaces in four-dimensional space-
time. In a generic ensemble of random continuous sur-
faces, situations such as depicted in Fig. 4, where two or
more surfaces meet along a whole line (or, in the lattice
language, where four or more elementary squares meet
along a link) represent a set of measure zero. Instead,
intersections occur only at points. In that case, one can
unambiguously identify the two distinct participating sur-
faces, and, moreover, they will each have a well-defined
orientation at the intersection, since monopole worldlines
generally will not run exactly through the intersection
point. This leads to a well-defined contribution to the
topological charge.
By contrast, if an intersection point is spread out into a

line, it can happen that a monopole line crosses the inter-
section line, implying that the surfaces intersecting do not
possess unique orientations throughout the intersection
region. One might contemplate deforming the monopole
line around the intersection region, but it is unclear how to
do so, because, in general, it is not even possible to
unambiguously distinguish between the two surfaces
which are intersecting in the first place. Given a vortex
configuration in which four or more elementary squares
meet along a link, there may be more than one way of
assigning the squares in question to two distinct surfaces;
different assignments may even lead to different conclu-
sions as to whether an actual intersection point is observed
or two surfaces are merely touching.
This ambiguity in identifying the two distinct surfaces

participating in a situation where four or more vortex
elementary squares meet along a lattice link must be
resolved before a topological charge can be assigned.
This is achieved by locally deforming the vortex world
surfaces until at most three vortex elementary squares meet
at each lattice link (the case of three squares meeting,
which does not occur in the SUð2Þ model [25], constitutes
a bona fide vortex branching allowed in the SUð3Þ case
studied here). In practice, the given world-surface configu-
ration is placed on a finer lattice with 1=3 of the original
lattice spacing, and one sweep is performed through the

FIG. 4 (color online). Vortex world surfaces composed of
elementary squares on a hypercubic lattice exhibit ambiguities,
such as two or more surface segments meeting along a whole
line, which do not arise in continuum random surface ensembles.

4Recall that a vortex world surface running in the � and 	
directions is associated with a field strength F�� such that the �
and � directions are perpendicular to the � and 	 directions.
Therefore, to generate a nonvanishing topological density
����� TrF��F��, surface elements must meet such that their
tangent vectors span all four space-time dimensions.
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lattice, carrying out elementary cube transformations,
cf. Sec. II D, such as to eliminate lattice links with more
than three vortex elementary squares attached. This is quite
efficient in practice; almost all such ambiguities disappear
on the first iteration of this algorithm, and only one further
iteration is necessary to completely eliminate residual
cases and arrive at an unambiguous surface configuration.
Thus, in practice, one ends up with a configuration on a
lattice with 1=9 the original lattice spacing. Note that the
algorithm only performs local deformations in the sense
that the original surfaces are displaced by less than half of
the original lattice spacing. The values of Wilson loops
defined in the original configuration are thus manifestly
unchanged. From the point of view of an infrared effective
model, the local deformations performed are smaller than
the uncertainty in defining vortex location implied by the
ultraviolet cutoff. However, while the confinement proper-
ties of the ensemble are thus preserved, there is unfortu-
nately the possibility of spurious additional contributions
to the topological charge being introduced on the finer
lattice scales (similar to the way instantons can ‘‘fall
through the lattice’’ in standard lattice Yang-Mills theory).
The corresponding systematic downward uncertainty in the
measured topological susceptibility will be estimated,
cf. Sec. VB, via the simultaneous increase in vortex den-
sity caused by the algorithm, which turns out to be appre-
ciable. This will in fact represent the chief uncertainty of
the measurement.

The second ambiguity in hypercubic world-surface con-
figurations which needs to be removed is associated with
the structure of vortices in color space. In the hypercubic
description, topological charge density is concentrated at
lattice sites; on the other hand, also magnetic monopole
worldlines are forced to run along lattice links, and, thus,
through lattice sites. The coincidence of a singular con-
centration of topological charge with a magnetic monopole
singularity is ambiguous. Contrast this again with the
generic structures found for arbitrary continuous two-
dimensional surfaces in four-dimensional space-time. In
the case of an intersection point, random monopole world-
lines on the vortex surface will generally pass by that exact
point instead of going through it. In the case of vortex
writhe, which is continuously distributed along continuous
two-dimensional surfaces, a monopole worldline may in-
deed run through the region of writhe; however, this has a
negligible effect on the topological charge density, for the
following reason: Changing the color orientation T of a
vortex surface segment leaves the topological charge den-
sity generated by writhe within that segment invariant.
Thus, the only way in which a monopole worldline can
influence topological charge density is through interfer-
ence of field strengths located on different sides of the
monopole. For thin surfaces, such interference is negli-
gible; for thickened surfaces, the situation is not quite as
clear cut, cf. further comments below. Disregarding for the

moment the complications implied by vortex thickness, the
situation for continuous two-dimensional surfaces is there-
fore this: Topological charge density generated by vortex
writhe is distributed continuously on the surface and in-
sensitive to the presence of monopoles, except exactly at
the location of the monopole worldline; however, when
integrating the topological charge density, the monopole
worldline region, being of lower dimensionality, has mea-
sure zero. This is different from the hypercubic case, where
the lattice description forces the entire topological charge
density to be concentrated at a lattice site, implying spu-
rious finite interference terms between field strengths lo-
cated on either side of a monopole worldline. To faithfully
model the behavior of the topological charge density of
continuous vortex world surfaces within the hypercubic
construction employed here, one should therefore deform
all magnetic monopole worldlines around lattice sites such
that they never intersect points of nonvanishing topological
charge density. Note that this can be, and is, effected
locally and independently for each lattice site, once one
adopts the choice (6) for the description of the color
orientations possible for vortex world surfaces. This is
the point where the adoption of the choice (6) is crucial;
it permits the resolution of the ambiguities associated with
vortex color structure within the hypercubic construction
of the vortex world surfaces employed here. Further dis-
cussion of the choice of vortex color structure in the
dynamical configurations contained in the random vortex
world-surface ensemble follows below in Sec. IVB.
Returning to the case of thickened vortex world surfaces

deferred in the discussion above, in general, one can indeed
construct configurations in which field strengths on differ-
ent sides of a magnetic monopole may interfere and
thereby generate a contribution to the topological charge
density associated specifically with the monopole. An
example of such a configuration is given in [42].
However, presumably, such contributions are merely taken
into account at a different level once one adopts a con-
struction in terms of thin world surfaces. The connection
between thick vortices and their idealized thin representa-
tives is presumably topologically trivial, i.e., one can en-
visage continuously deforming thick chromodynamic
fluxes into thin constrictions thereof; then, the topological
charge density originally present in the thick flux would
remanifest itself in additional writhe and self-intersection
of the constricted flux. The further developments in the
present work will base on this presumption, whether it
represents an auxiliary model assumption or whether it
indeed implies no loss of generality. Monopole lines will,
as described further above, always be deformed such that
space-time points with nonvanishing topological charge
density are avoided; no separate topological charge density
will be associated with magnetic monopole worldlines. In
particular in the hypercubic description with the choice of
allowed color orientations (6), monopoles can always be
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routed on the vortex world surfaces such that all chromo-
dynamic flux in their immediate surroundings is confined
to three dimensions, i.e., cannot contribute to the topologi-
cal charge density. It should be emphasized that, within the
present vortex model, magnetic monopoles are not treated
as separate physical degrees of freedom; rather, they are
merely manifestations of the nonorientedness of the vortex
world surfaces arising in Abelian gauges such as implied
by the choice (6). Accordingly, their exact space-time
location has no physical significance to the extent that it
can be varied by a change of gauge such that vortex world-
surface color orientation is rotated within the set (6). While
there are global constraints to such a change, implied, e.g.,
by nonorientability, cf. also a further discussion of gauge
invariance in Sec. IVB, the local deformations necessary
to remove all interactions between monopole worldlines
and space-time points carrying topological charge density
are always possible.

C. Remarks on topological charge quantization

The global topological charge Q of hypercubic model
vortex world surfaces with SUð3Þ color, evaluated as de-
scribed above, is quantized in half-integer units. The same
property is exhibited in the SUð2Þ case [25], cf. also recent
related work reporting evidence for half-integer topologi-
cal charge in a sample vortex configuration [34], as well as
the example given in [26]. To understand this behavior, it
should first be noted that vortex world surfaces carrying
global topological charge are not defined on smooth, sim-
ple manifolds. In the Abelian gauge language, a vortex
configuration exhibiting nonvanishing global topological
charge must be nonoriented, i.e., carry Abelian magnetic
monopoles [39]. The magnetic monopoles imply the pres-
ence of Dirac string singularities in the vortex gauge field
which must be excised from space-time. As a consequence,
the manifold supporting the vortex gauge field acquires a
complicated topology with internal boundaries, and topo-
logical charge is not necessarily quantized in the manner
which is found on simple manifolds such as spheres or
tori.5 Indeed, the topology of the space-time manifold is
dynamic, in close correspondence to the dynamic nature of
the vortex topological charge.

To understand this correspondence in further detail, it is
useful to associate with any given Abelian vortex gauge
field configuration A a corresponding configuration A0

defined as follows. Let A be identical to A0 everywhere
except at Dirac strings. Instead of excising Dirac string
world surfaces from space-time, let A0 contain physical
thin magnetic fluxes where A exhibits Dirac strings,
cf. Fig. 5. These magnetic fluxes will be referred to as
‘‘auxiliary fluxes’’ in the following. The magnitudes of
these auxiliary fluxes shall be multiples of 3 (in each
diagonal color component, in the same convention as
used for the color orientation matrices T introduced in
Sec. II C), such as to supply precisely the magnetic flux
emanating from the magnetic monopoles in A.
The configuration A0 thus has no sources or sinks of

magnetic flux, i.e., magnetic monopoles, and no Dirac
strings. Instead, at any point where vortex magnetic flux
is discontinuous in A, in A0, this flux is continuously carried
away by the newly introduced auxiliary fluxes. Indeed, one
can view all auxiliary fluxes as superpositions of additional
vortex fluxes with coinciding6 world surfaces, cf. Fig. 5.
Magnetic flux in A0 is completely continuous, and A0 is
defined on a manifold with no internal boundaries.
Consequently, its global topological charge vanishes [39].
This opens the possibility of quantifying the topological

charge of A in an alternative manner, namely, via the
properties of its Dirac strings, or, equivalently, the proper-
ties of the corresponding auxiliary fluxes in A0. Consider
the ways in which the topological charge contributions
found in A0 differ from the ones found in A. Besides the
vortex topological charge proper, as measured in A, A0
contains the following additional contributions:
(i) Contributions from intersections between vortices

and auxiliary fluxes, Q½A \ Aux�. These generate
integer topological charge contributions.

(ii) Contributions from intersections of auxiliary fluxes
with auxiliary fluxes,Qint½Aux�. Also these generate
integer topological charge contributions.

(iii) Contributions from auxiliary flux writhe,
Qwrithe½Aux�.

Note that, in accordance with the comments at the end of
the previous section, additional contributions from flux
writhe at the edges of the auxiliary fluxes, where the
original configuration A displays monopoles, are not con-
templated. Monopoles are always routed such that vortex

5Note that this is not an artefact of the Abelian description;
whereas one can indeed construct (singular) non-Abelian gauge
transformations which eliminate Abelian magnetic monopoles
and the associated Dirac strings [39], these transformations will
not obey smooth boundary conditions at the external boundaries
of the manifold. The singular behavior is merely shifted from
internal boundaries in the region of the vortex carrying topo-
logical charge to the external boundaries, thus precluding com-
pactification of the manifold at the latter to, say, a sphere or a
torus.

6Note that for the present argument, auxiliary fluxes are not
intended to be separated into noncoinciding vortex world sur-
faces. While this would indeed constitute yet another legitimate
point of view, it is not helpful in the present context, since it in
general introduces additional topologically nontrivial features.
For instance, in the slightly displaced depiction of Fig. 5 (right),
consider connecting the two corners of the shown fluxes by an
imaginary line segment; adding another dimension, this line
segment becomes a band. Globally, this band may have the
topology of a Möbius strip, which would imply additional writhe
and self-intersection in the separated vortex fluxes. Such com-
plications do not have to be taken into account if one foregoes
separating the auxiliary fluxes into disjoint center vortex units.
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flux in their immediate surroundings extends purely in
three dimensions, and one can convince oneself that attach-
ing auxiliary fluxes to lines routed in this fashion can also
always be achieved such that no writhe contributing to the
topological charge density results.

As a result of this construction, one can thus equate

0 ¼ Q½A0�
¼ Q½A� þQ½A \ Aux� þQint½Aux� þQwrithe½Aux�;

(10)

which implies that the quantization properties of Q½A� are
determined by the quantization properties of Qwrithe½Aux�
(given that Q½A \ Aux� and Qint½Aux� are integers). In this
sense, there is a correspondence between the topology of
the space-time manifold and the quantization of the topo-
logical charge of the vortex world surfaces. Moreover, it
thus becomes plausible that this quantization is indepen-
dent of the gauge group employed, as observed in practice
and mentioned at the beginning of this section.7 After all,
the magnitudes of the auxiliary fluxes determining
Qwrithe½Aux� are independent of the gauge group,8 and
consequently, it is plausible that also the quantization
properties of Qwrithe½Aux� (and, therefore, Q½A�) would
be independent of the gauge group.

A caveat to this argument is the following: Whereas,
from a purely local point of view, the contributions to
Qwrithe½Aux� generated by writhe of the auxiliary fluxes
are indeed independent of the gauge group, globally, the
topologies of the auxiliary flux world surfaces differ. For
example, for SUð3Þ, auxiliary flux may branch, whereas it
cannot for SUð2Þ. Now, in complete analogy to the argu-
ment used further above, excluding auxiliary flux writhe at
the edges where auxiliary flux is attached to the physical
vortices, one can also always configure SUð3Þ auxiliary
flux branching lines such that they do not carry writhe.

Thus, both for SUð2Þ and for SUð3Þ, Qwrithe½Aux� is deter-
mined by writhe in the interior of open auxiliary flux world
surfaces, with the only difference that, in the SUð3Þ case,
the edges of the open world surfaces include not only the
lines where the auxiliary flux is attached to the physical
vortices, but may also include auxiliary flux branching
lines. It thus remains plausible that Qwrithe½Aux� is quan-
tized in the same way for both gauge groups. Nevertheless,
at this point there is no stringent argument excluding the
possibility that global space-time constraints may induce
differences in the available sets of open auxiliary flux
world surfaces for the two gauge groups. As a result, the
above observations, motivating the coinciding topological
charge quantization properties of SUð2Þ and SUð3Þ model
center vortices, should be taken as no more than an
a posteriori plausibility argument.

IV. VORTEX ENSEMBLE

A. Dynamics

The dynamics of the SUð3Þ random vortex world-
surface model were constructed and discussed in detail in
[27]. Vortex world surfaces are composed of elementary
squares on a hypercubic lattice, as described in Sec. II D.
An ensemble of random vortex world surfaces is generated
via Monte Carlo methods, where preservation of the
Bianchi constraint (continuity of flux modulo Abelian
magnetic monopoles) is guaranteed by using the elemen-
tary cube transformations of Sec. II D as the elementary
updates. The ensemble is weighted by an action penalizing
curvature of vortex surfaces. In terms of the reduced
quantities9

q��ðxÞ ¼ sgn ImTr expð2�ip��ðxÞ=3Þ; (11)

i.e., q��ðxÞ 2 f�1; 0; 1g, the action is

diag(1,1,-2) diag(-2,1,1) diag(1,1,-2) diag(-2,1,1)

FIG. 5. Magnetic monopoles present in a generic vortex configuration A (left, where the broken line indicates the Dirac string) are
replaced by additional physical auxiliary fluxes in the corresponding configuration A0 (right). The auxiliary flux can furthermore be
decomposed into a superposition of coinciding vortex fluxes (depicted slightly displaced from one another in the right-hand panel for
better visibility).

7Note that the mechanism generating fractional topological
charge in the present context thus differs, e.g., from the topo-
logical charge fractionalization found using twisted boundary
conditions on a torus, which does depend on the gauge group
[45–47].

8Of course, for more than two colors, N > 2, more than one
SUð2Þ subgroup exists in which the gauge field can exhibit an
Abelian magnetic monopole and the associated Dirac string;
however, any given Dirac string in any specific SUð2Þ subgroup
of an SUðNÞ group carries the same quantum of magnetic flux,
independent of N.

9Note that previous discussions of the SUð3Þ random vortex
world-surface model [27–29] were formulated directly in terms
of the reduced variables q��ðxÞ, since these are sufficient for
encoding the values taken by Wilson loops in vortex configura-
tions, and thus sufficient for the discussion of confinement
properties, on which [27–29] focus. By contrast, for the discus-
sion of topological properties, it is useful to introduce the more
detailed specification of color orientation provided by the vari-
ables p��ðxÞ used in the present work. The space-time dynamics
of the ensemble, depending only on the absolute values jq��ðxÞj,
are unchanged.
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S ¼ c
X
x

X
�

� X
�<�

���;���

ðjq��ðxÞq��ðxÞj

þ jq��ðxÞq��ðx� e�Þj þ jq��ðx� e�Þq��ðxÞj
þ jq��ðx� e�Þq��ðx� e�ÞjÞ

�
: (12)

Thus, for every link in the lattice, the attached elementary
squares carrying vortex flux are considered, and every
instance of a pair of these squares not lying in the same
plane costs an action increment c. The value of c,

c ¼ 0:21 (13)

is fixed [27] by demanding that the ratio of the deconfine-
ment temperature to the square root of the zero-
temperature string tension reproduce the value obtained
in SUð3Þ Yang-Mills theory [48], Tc=

ffiffiffiffi
	

p ¼ 0:63.
Note, finally, that the lattice spacing is a fixed physical

quantity, encoding the ultraviolet cutoff of this infrared
effective model; physically, it implements the notion that
vortices possess a finite transverse thickness. For example,
a pair of parallel thick vortices can only approach one
another up to a minimal distance, below which their fluxes
cease to be distinguishable from one another and should
instead be represented as one combined flux with an ap-
propriate new color orientation. It is therefore not mean-
ingful to consider configurations in which two vortices run
in parallel at a distance smaller than the aforementioned
minimal one. This is reflected in the fixed lattice spacing
used in conjunction with the hypercubic construction of the
vortex world surfaces. Fixing the scale by setting the zero-
temperature string tension to 	 ¼ ð440 MeVÞ2, the lattice
spacing takes the value a ¼ 0:39 fm, cf. [27].

B. Color structure

The action (12) contains no bias with respect to the color
orientation of vortex flux. Also, the Bianchi identity only
constrains the reduced quantities q��ðxÞ, but does not

distinguish between different color orientations of p��ðxÞ
corresponding to the same q��ðxÞ. This is in accordance

with the fact that the color orientation of the (vortex) field
strength can be locally rotated by gauge transformations in
the underlying full Yang-Mills theory.10

Nevertheless, it is necessary to make a specific choice of
color orientation, i.e., of the full quantities p��ðxÞ for the
purpose of evaluating the topological charge according to
(9). In practice, vortex configurations are generated as in

previous investigations of the SUð3Þ random vortex world-
surface model [27–29], i.e., in terms of q��ðxÞ. Then, all
vortex elementary squares are assigned random color ori-
entations from the allowed set of T, cf. (6), consistent with
the given q��ðxÞ, thus arriving at an initial model descrip-

tion in terms of the full quantities p��ðxÞ.
Before continuing, it should be emphasized that this

assignment is not necessarily just a particular choice of
gauge. Certainly, smooth local color rotations of the (vor-
tex) field strength amount to gauge transformations, and
one might therefore be tempted to regard a choice of
p��ðxÞ for a given q��ðxÞ purely as a choice of gauge.

However, while different choices of color orientation in-
deed fall into gauge equivalence classes, there is, in gen-
eral, more than one class. Gauge-inequivalent choices are
possible, in particular, at vortex intersection points: If one
assigns color orientations to vortex world-surface elements
completely independently, this also allows one to change
the color orientation of one, but not the other, vortex
surface meeting at the intersection point in question. This
goes beyond what is possible using gauge transformations,
which only allow one to rotate the entire gauge field
strength present at a given point coherently. Thus, the
assignment of color orientation to the vortex world sur-
faces is related to, but not synonymous with a choice of
gauge. Gauge-inequivalent p��ðxÞ for a given q��ðxÞ are
possible, and these, in general, also differ in their topologi-
cal charge. The topological charge can vary within certain
bounds depending on the color orientation chosen for the
configuration; it is not determined exclusively by the
space-time location of the vortex world surfaces.
It is thus certainly a relevant question to what extent the

measurement of the topological susceptibility is biased by
the way vortex color orientation is modeled. In order to
glean some information regarding this issue, in practice,
two alternative models are considered: Starting with the
initial random assignment of color orientation in p��ðxÞ
described above, sweeps through the lattice are performed
in which the color orientations of individual elementary
squares are changed with a bias towards either aligning or
not aligning the orientations of adjacent squares; this cor-
responds to minimizing or maximizing the Abelian mag-
netic monopole density, respectively.11 In this way, one
arrives at alternative ensembles comprised of configura-
tions pmin

�� ðxÞ and pmax
�� ðxÞ, on both of which topological

charge is measured (after removing the lattice ambiguities
discussed in Sec. III B). While the two ensembles will be
seen to differ widely in monopole density, the results
obtained in either case for the topological susceptibility
exhibit only minor deviations from each other. To this

10Note that, in general, not all p��ðxÞ corresponding to the
same q��ðxÞ are related by gauge transformations; this point will
be revisited in more detail presently. Thus, the dynamics em-
bodied in (12) are invariant not only under bona fide gauge
transformations, but under a larger class of transformations
connecting all possible color orientations of the vortex field
strength.

11The, in general, nonorientable nature of the vortex world
surfaces implies a lower bound on the monopole density achiev-
able in this way, while the lattice spacing provides an upper
cutoff.
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extent, thus, an unambiguous prediction of the topological
susceptibility emerges despite the freedom one has in
modeling vortex color orientation. The reason for this
lies in the fact that the topological charge of generic vortex
world surfaces is dominated by vortex writhe, as will be
seen in more detail in Sec. VB. Vortex intersections, at
which gauge-inequivalent color orientation choices lead-
ing to differing topological charge are possible, cf. the
discussion further above, by contrast only generate a minor
contribution to the overall vortex topological charge. Note
that entirely analogous observations were already made in
the SUð2Þ random vortex world-surface model, cf. [25].

V. NUMERICAL RESULTS AND DISCUSSION

A. Measurement parameters

Measurements were carried out at the physical value of
the curvature coefficient, c ¼ 0:21, on 123 � Nt lattices,
variation of Nt permitting the study of a collection of
temperatures including both the confined as well as the
deconfined phases. Note that a spatial extent of 12 lattice
spacings corresponds to 4.7 fm; this is sufficiently large
compared to typical strong interaction scales to render
finite size effects insignificant. Furthermore, in order to
obtain more closely spaced data as a function of tempera-
ture than provided by the direct measurements at c ¼ 0:21,
the following interpolation procedure was used in addition:
A determination [29] of the critical values of c at which
the deconfinement transition occurs for Nt ¼ 1, 2, 3,
cf. Table I, yields aTc ¼ 1=Nt for those values of c. An
interpolating parabola in c then defines aTc for a continu-
ous range of c (in particular, aTc ¼ 0:5655 for c ¼ 0:21,
i.e., a Nt ¼ 1 lattice corresponds to T=Tc ¼ 1:77 at the
physical value of c). On this basis, then, T=Tc ¼ 1=
ðNt � aTcðcÞÞ is defined for any combination of c, Nt.
Now, one can perform measurements at a given fixed value
of T=Tc for different Nt and the corresponding c.
Interpolating the results as a function of c to the physical
point c ¼ 0:21 finally yields the desired supplementary
data at the chosen T=Tc. Table II lists the additional
combinations of Nt and c at which measurements were
performed for use in the above interpolation procedure;
note that only values of c inside, or very close to the range
covered by the critical values listed in Table I were used, in
order to preclude extrapolation instabilities. As a conse-
quence, the final interpolation to c ¼ 0:21 relies on three
data points in the cases of T=Tc ¼ 0:98 and T=Tc ¼ 1:02,
whereas it relies on two data points in the other two cases.

In practice, the numerical results discussed below were
generated using about 400 000=Nt samples for each mea-
surement; as Nt is raised, increased volume averaging
implies that correspondingly fewer configurations are
needed to arrive at a similar statistical accuracy. Samples
were taken separated by 50 Monte Carlo sweeps through
the lattice; since the bulk of the computational effort lies in
the evaluation of the topological charge, even this substan-
tial number of decorrelating steps constitutes only a minor
contribution to the overall cost.

B. Numerical results

The results for the topological susceptibility �¼hQ2i=V
(where V denotes the space-time four-volume) are given in
Tables III and IV, the former referring to the ensemble with
minimized Abelian monopole density, cf. the discussion in
Sec. IVB, the latter referring to the ensemble with maxi-
mized Abelian monopole density. For both cases, besides
the total topological susceptibility �, also the susceptibility
�int resulting from counting only the contributions from
vortex world-surface intersection points12 is quoted.
Furthermore, the Abelian magnetic monopole density
�monop ¼ Lmonop=V (evaluated before applying the algo-

rithms removing the ambiguities discussed in Sec. III B) is
given, where Lmonop is the monopole worldline length

present in the configuration (normalized such that a single
monopole worldline occupying a lattice link contributes a
length a). Finally, the aforementioned algorithms, remov-
ing hypercubic lattice surface ambiguities in order to make
an unambiguous evaluation of the topological charge pos-
sible, cf. Sec. III B, involve local deformations of the
vortex world surfaces; this, however, leads to an appre-
ciable increase in the vortex world-surface density. The
ratio of the deformed world-surface density �def to the
original density �orig is reported in the final column in

Tables III and IV; these data are the same in the two tables,
since the ensembles in question differ exclusively in the
choice of color structure, whereas the space-time locations
of the vortices are identical.TABLE I. Critical values of the curvature coefficient c at

which the deconfining phase transition occurs.

Nt 1 2 3

c 0.0872 0.2359 0.335

TABLE II. Temperatures and corresponding curvature coeffi-
cients c at which measurements were performed for Nt ¼ 1, 2, 3,
to supplement the direct measurements at c ¼ 0:21.

T=Tc Nt ¼ 1 Nt ¼ 2 Nt ¼ 3

0.98 0.082 565 0.231 62 0.328 54

1.02 0.091 72 0.240 12 0.3418

1.1 0.108 72 0.256 42 . . .

1.4 0.161 02 0.3143 . . .

12Note that counting only contributions from intersection points
leads to a topological charge Qint quantized in units of 1=3.
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Evidently, the ensembles with minimized and maximized
monopole densities, respectively, differ considerably in
color structure, as quantified by those densities. Yet, the
differences in the topological susceptibilities measured in
the two cases are minor, increasing slightly at high tempera-
tures. To this extent, the prediction for the topological
susceptibility obtained in the SUð3Þ random vortex world-
surface model is unambiguous as far as the modeling of
vortex color structure is concerned. The reason for this
behavior lies in the space-time structure of generic world-
surface configurations. As seen in Tables III and IV, the
topological susceptibility induced by world-surface inter-
section points alone is much smaller than the contribution
from vortex writhe; even when considering the fourth root,

�1=4 and �1=4
int still differ roughly by a factor of 2. Vortex

writhe is the dominant mechanism by which center vortices
generate topological charge. However, the contribution from
vortex writhe is explicitly invariant under color rotations
of the vortex field strength, since only one world surface
is involved in generating such contributions. Only vortex

intersection points involve two distinct surfaces, indepen-
dent color rotations of which can lead to gauge-inequivalent
color configurations, and thus change topological charge.
The relative paucity of such intersection points in generic
world-surface configurations, as evidenced by the magni-
tude of �int, explains the very similar results for the topo-
logical susceptibility obtained in the two ensembles
investigated, despite their considerably differing color
structure.
The results for the topological susceptibility summarized

in Tables III and IV suffer from one significant systematic
uncertainty. Namely, as discussed in Sec. III B, an unambig-
uous evaluation of the topological charge of a hypercubic
vortex world-surface configuration only becomes possible
after an algorithm is applied during which the configurations
are placed on finer lattices and subjected to suitable local
deformations. These deformations appreciably increase the
vortex density, as evidenced by the ratio �def=�orig reported

in Tables III and IV. In general, in the process, also spurious
additional topological charge density will be generated con-
comitantly on the finer lattices. To obtain a rough estimate of
this effect, by simply counting dimensions, the topological
susceptibility would be expected to scale with the square of
the vortex world-surface density (a critique of this estimate
is given below). On this basis, an estimate for the amount by
which the raw data for the fourth root of the topological
susceptibility given in Tables III and IV may need to be
systematically revised downward, to offset the effects of the
deformation procedure, can be obtained by dividing those
data by the square root of the ratio �def=�orig. This yields the

lower ends of the error bars depicted in Fig. 6, which, for
definiteness, shows the results obtained from the ensemble
with minimized magnetic monopole density.

TABLE III. Numerical results for ensemble with minimized
magnetic monopole density. Statistical uncertainties are smaller
than the accuracy to which quantities are quoted. The various
columns are explained in detail in the main text.

T=Tc �1=4=MeV �1=4
int =MeV �monop � fm3 �def=�orig

0.15 222 98 12.6 1.39

0.29 222 98 12.6 1.39

0.44 222 98 12.6 1.39

0.59 222 98 12.5 1.39

0.88 221 100 11.9 1.39

0.98 222 105 11.0 1.40

1.02 209 102 9.41 1.38

1.1 189 99 6.42 1.39

1.4 156 92 3.25 1.43

1.77 150 93 1.96 1.47

TABLE IV. Numerical results for ensemble with maximized
magnetic monopole density. Statistical uncertainties are smaller
than the accuracy to which quantities are quoted. The various
columns are explained in detail in the main text.

T=Tc �1=4=MeV �1=4
int =MeV �monop � fm3 �def=�orig

0.15 224 98 63.2 1.39

0.29 223 98 63.2 1.39

0.44 223 98 63.2 1.39

0.59 223 99 63.2 1.39

0.88 223 101 63.4 1.39

0.98 223 107 61.7 1.40

1.02 210 105 58.0 1.38

1.1 191 104 47.1 1.39

1.4 161 98 30.9 1.43

1.77 156 98 23.5 1.47
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FIG. 6. Fourth root of the topological susceptibility measured
in the SUð3Þ random vortex world-surface model, as a function
of temperature. The results from the ensemble with minimized
Abelian magnetic monopole density are depicted. Statistical
uncertainties of the data are smaller than the filled circle symbols
displaying the measured values; the downward uncertainty
shown is a systematic one, discussed in detail in the main text.

CENTER VORTEX MODEL FOR THE INFRARED SECTOR . . . PHYSICAL REVIEW D 83, 025015 (2011)

025015-11



One may alternatively contemplate interpreting the
lower ends of the error bars in Fig. 6 not merely as
estimates of a systematic uncertainty, but as appropriately
adjusted data in their own right, akin to renormalized
quantities. Of course, this is mainly a metaphorical inter-
pretation, since no systematic scheme has been developed
within the present infrared effective model which would
allow one to quantify the dependence on the lattice spac-
ing. However, on the finer lattices on which the deforma-
tions of the vortex world surfaces and the ensuing
evaluation of their topological charge are performed, pre-
sumably a suitably renormalized effective action exists
which would directly generate the deformed world sur-
faces if one worked from the very beginning on those finer
lattices. The measurement of the topological susceptibility
is carried out on the finer lattice, in the ensemble controlled
by the corresponding renormalized action. Thus, it seems
plausible that translating the measurement back to the
original scale should be accompanied by a suitable renor-
malization, and that it is in principle appropriate to discuss
the results in terms of corresponding renormalized quanti-
ties. Of course, the rescaling by the density ratio �def=�orig

employed here is no more than a rough phenomenological
estimate of this renormalization; after all, the fluctuations
of the vortex world surfaces engendered by their local
deformation on the finer lattices, while to a certain extent
random, are not governed by a simple curvature action of
the form (12), and therefore one must expect corrections to
the simple scaling with the vortex density. These caveats
must be kept in mind in the context of interpreting the
rescaled topological susceptibility as a physical quantity in
its own right.

Comparing to the SUð2Þ random vortex world-surface
model studied in [25], the modifications of the world sur-
faces in the course of the deformation algorithm, as quanti-
fied by the density ratio �def=�orig, become stronger as

one progresses to SUð3Þ. At low temperatures, �def=
�orig ¼ 1:39 in the SUð3Þ model, whereas one has only

�def=�orig ¼ 1:19 for SUð2Þ. Similarly, in the deconfined

phase, the ratio rises to �def=�orig ¼ 1:47 at T ¼ 1:77Tc

in the SUð3Þ model, whereas, in the SUð2Þ model at
T ¼ 1:66Tc, one finds �def=�orig ¼ 1:20. This behavior is

plausible in view of the fact that SUð3Þ vortices each carry
less chromomagnetic flux than SUð2Þ vortices. As a conse-
quence, a given amount of flux will be fragmented into more
world surface area in the SUð3Þ case. Indeed, this is borne
out by the data: In the SUð2Þ model, at low temperatures,
27% of elementary squares in the lattice carry vortex flux
(on the original coarse lattice, before deformation); by con-
trast, in the SUð3Þ model, this rises to 36% of elementary
squares. It seems plausible that, the higher the percentage of
occupied squares, the more elaborate the deformations nec-
essary to eliminate all world-surface ambiguities become.
Hence, the enhanced �def=�orig ratio for SUð3Þ as compared

to SUð2Þ.

In terms of the topological susceptibility,13 the raw data
for the SUð3Þ vortex model are considerably higher than
for the SUð2Þ model14 investigated in [25]; namely, at low

temperatures, �1=4
raw ¼ 222 MeV for SUð3Þ vs �1=4

raw ¼
190 MeV for SUð2Þ. Here and in the following, �1=4

raw

simply denotes the measured data labeled as �1=4 in
Table III and displayed by the filled circles in Fig. 6; on
the other hand, the data rescaled with �def=�orig as dis-

cussed above, corresponding to the lower ends of the error

bars displayed in Fig. 6, will be denoted by �1=4
rescaled, i.e.,

�1=4
rescaled ¼ �1=4

raw=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�def=�orig

q
. In terms of the rescaled quan-

tities, the comparison between the SUð3Þ and SUð2Þ mod-
els at low temperatures is much closer, although the SUð3Þ
result still lies above the SUð2Þ one, namely, �1=4

rescaled ¼
188 MeV vs �1=4

rescaled ¼ 174 MeV. At high temperatures,

the contrast is stronger: In the SUð3Þmodel at T ¼ 1:77Tc,

one has �1=4
raw ¼ 150 MeV, whereas the SUð2Þ model at

T ¼ 1:66Tc yields �1=4
raw ¼ 109 MeV. On the other hand,

in terms of the rescaled quantities at the same tempera-

tures, �1=4
rescaled ¼ 124 MeV for SUð3Þ, while �1=4

rescaled ¼
100 MeV for SUð2Þ. These comparisons will be revisited
below in relation to corresponding lattice Yang-Mills
results.

C. Comparison to lattice Yang-Mills theory

Lattice Yang-Mills results for the SUð3Þ topological
susceptibility have been reported in a number of works,
cf., e.g., [49–58], and reviewed in [59]; cf. the latter also
for a much more extensive list of related studies. There is a
considerable spread in the reported results, obtained using

various methods, with values as high as �1=4 ¼
213ð7Þ MeV and as low as �1=4 ¼ 168ð11Þ MeV obtained
at zero temperature in the last decade, cf. Table 1 in [59].
The corresponding raw data at low temperatures found in
the SUð3Þ random vortex world-surface model lie some-

what above this range, at �1=4
raw ¼ 222 MeV. On the other

hand, the rescaled result, �1=4
rescaled ¼ 188 MeV, lies near

the center of the range of lattice Yang-Mills data; the
vortex model results thus appear compatible with the lat-
tice Yang-Mills results at low temperatures.
Continuing to finite temperature, above the deconfining

phase transition, the topological susceptibility is seen to
fall off rapidly with temperature in SUð3Þ lattice Yang-
Mills theory [49–52]. Quantitatively, [49] reports a drop

in �1=4 by a factor 2.4 as the temperature is raised from

13For definiteness, the discussion in the remainder of this
section and also in the next section will refer specifically to
the results obtained in the ensemble with minimized Abelian
magnetic monopole density, cf. Table III.
14The comparison between SUð3Þ and SUð2Þ is performed on
the basis of positing an identical zero-temperature string tension,
	ðT ¼ 0Þ ¼ ð440 MeVÞ2, to set the scale in both cases.
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T ¼ 0:834Tc to T ¼ 1:402Tc; [50] reports a drop in

�1=4 by a factor 1.9 as the temperature is raised from
T ¼ 0:88Tc to T ¼ 1:31Tc. An even stronger suppression
is reported by [51], namely, by a factor 2.8 as the tempera-
ture rises from just below the deconfinement temperature,
T ¼ 0:99Tc, up to T ¼ 1:25Tc. This seems significantly
different from the former two measurements, which appear
compatible with each other. Finally, [52] gives only data in

the deconfined phase, reporting a drop in �1=4 by a factor
1.9 as the temperature is raised from just above the tran-
sition, T ¼ 1:03Tc, to T ¼ 1:38Tc (using the data obtained
on 163 � 4 lattices quoted in [52]). If one combines this
with data on the discontinuity across the deconfining phase

transition [51], indicating a drop in �1=4 by an additional
factor 1.15 across the transition, this cumulatively amounts

to a drop in �1=4 by a factor 2.2 as one increases the
temperature from the confined phase up to T ¼ 1:38Tc.
This again seems compatible with the results from [49,50].
These lattice Yang-Mills data are also summarized in
Fig. 7, along with the result obtained in the SUð3Þ random
vortex world-surface model for comparison. Also in the
SUð3Þ random vortex world-surface model, the topological
susceptibility quickly becomes suppressed in the decon-
fined phase as temperature rises, cf. Fig. 6; however,
quantitatively, the suppression is not as strong as the one

seen in SUð3Þ lattice Yang-Mills theory. The raw topologi-

cal susceptibility data in Table III show a drop in �1=4
raw from

�1=4
raw ¼ 221 MeV to �1=4

raw ¼ 156 MeV, i.e., by a factor
1.42, as the temperature is raised from T ¼ 0:88Tc to
T ¼ 1:4Tc. This does not change substantially when the
rescaled data are considered, since the density ratio
�def=�orig does not vary strongly with temperature; in

terms of rescaled data, �1=4
rescaled drops by a factor 1.44 in

the same temperature range. Thus, the topological suscep-
tibility found in the SUð3Þ random vortex world-surface
model in the deconfined phase does appear to remain
appreciably above the corresponding lattice Yang-Mills
results. The comparison with lattice Yang-Mills theory in
the present SUð3Þ case in the deconfined phase therefore is
less favorable than for the previously studied SUð2Þ model
[25], which is quantitatively compatible with correspond-
ing lattice Yang-Mills results even above the deconfining
transition. Possible causes of this will be discussed in the
next section.
Another way to cast the comparison between the random

vortex world-surface model and lattice Yang-Mills theory
is in terms of the trend, already alluded to at the end of the
previous section, as one progresses from the SUð2Þ to the
SUð3Þ gauge group. This in fact yields the starkest contrast.
In lattice Yang-Mills theory, at low temperatures, the to-
pological susceptibility is expected to fall as the number of
colors N is increased [59]. The preponderance of evidence
points to this already being the case as one goes from
SUð2Þ to SUð3Þ [51,53–55], although it should be noted
that agreement on this only emerges when the results are
extrapolated to vanishing lattice spacing [53,55]; at finite
lattice spacing, a slight increase of the zero-temperature
topological susceptibility going from SUð2Þ to SUð3Þ has
been seen [51,53]. A detailed discussion of the continuum
extrapolation can be found in [53]. Disregarding these
details, in the confined phase, the lattice Yang-Mills topo-
logical susceptibilities found in the SUð2Þ and SUð3Þ cases
only differ mildly. In this respect, the random vortex world-
surface model can still be viewed as compatible with lattice
Yang-Mills theory; as already observed at the end of the
previous section, while the raw topological susceptibility
data obtained at low temperatures in the SUð3Þ and SUð2Þ
cases differ substantially, �1=4

raw ¼ 222 MeV for SUð3Þ vs
�1=4
raw ¼ 190 MeV for SUð2Þ, in terms of the rescaled

quantities, the SUð3Þ result only lies slightly above the

SUð2Þ result, namely, �1=4
rescaled ¼ 188 MeV vs �1=4

rescaled ¼
174 MeV.
The picture changes qualitatively as one crosses into the

deconfined phase. While the vortex model does display a
strong drop in the topological susceptibility both for SUð3Þ
and SUð2Þ as the temperature is raised, as already dis-
cussed further above, the suppression seen is substantially
stronger for SUð2Þ than for SUð3Þ, even in terms of the
rescaled quantities. In the SUð3Þmodel at T ¼ 1:77Tc, one
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FIG. 7. Ratio of the topological susceptibility at a temperature
T above the deconfinement transition to the topological suscep-
tibility in the confined phase, from various SUð3Þ lattice Yang-
Mills calculations and the present vortex model. Fourth root of
the ratio is shown, as a function of T=Tc. Open circle depicts
data from [49], filled circle data from [50], open square data
from [51], and filled square data from [52] complemented by
information from [51], cf. discussion in main text. In the former
three cases, uncertainties are estimated from error bars given in
the corresponding publications, in the latter case, from compari-
son of results obtained on lattices of different sizes, which make
an error estimate of about 10% seem appropriate. Finally, the
‘‘�’’ symbolizes the vortex model result; in this case, statistical
uncertainties are negligible. The vortex model result appears to
remain appreciably above the lattice results; possible systematic
effects leading to this deviation are discussed in Sec. VI.
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has �1=4
rescaled ¼ 124 MeV, whereas already at T ¼ 1:66Tc,

the SUð2Þ model yields �1=4
rescaled ¼ 100 MeV. This does

seem clearly at odds with the behavior seen in lattice
Yang-Mills theory. There, all evidence points towards
the reverse relation15: [56] shows (cf. Fig. 4 therein), at
T ¼ 1:3Tc, a SUð3Þ topological susceptibility which is
smaller by roughly a factor 10 compared to the SUð2Þ
susceptibility; in terms of the fourth root, �1=4, this means
a suppression of the SUð3Þ result compared to the SUð2Þ
result by a factor 1.8 at T ¼ 1:3Tc. Also [52] reports data
for both SUð3Þ at T ¼ 1:38Tc, and for SUð2Þ at T ¼ 1:4Tc.
The data are in lattice units; using the results obtained
in [52] at the aforementioned temperatures on
163 � 4 lattices, one has ð�½SU2�=�½SU3�Þ � ða½SUð2Þ�=
a½SUð3Þ�Þ4 ¼ 5:1 at roughly T ¼ 1:4Tc. One can convert
to physical units, e.g., by observing that Tca is roughly the
same in both measurements; then, using Tc=

ffiffiffiffi
	

p ¼ 0:69 for
SUð2Þ and Tc=

ffiffiffiffi
	

p ¼ 0:63 for SUð3Þ (	 denoting the
zero-temperature string tension), this implies that
a½SUð2Þ�=a½SUð3Þ� ¼ 0:9. Taken together, therefore, at

roughly T ¼ 1:4Tc, the SUð3Þ result for �1=4 is suppressed
compared to the SUð2Þ result by a factor 1.67, similar to the
behavior shown in [56]. Thus, in the deconfined phase,
substantial disagreement is seen between the random vor-
tex world-surface model and lattice Yang-Mills theory, as
far the comparison between the topological susceptibilities
obtained in the SUð3Þ and SUð2Þ cases is concerned.

VI. OUTLOOK

The results presented and discussed in the previous
section indicate that the topological properties of the
SUð3Þ random vortex world-surface model investigated
in this work are consistent with SUð3Þ Yang-Mills
theory in the confined phase. However, in the deconfined
phase, while the vortex model does qualitatively exhibit a
strong suppression of the topological susceptibility as
temperature is raised, on a quantitative level, this suppres-
sion is significantly less abrupt than the one found in
SUð3Þ lattice Yang-Mills measurements. This stands in
contrast to the SUð2Þ random vortex world-surface model
investigated previously [25], which is quantitatively com-
patible with the corresponding SUð2Þ Yang-Mills theory
even in the deconfined phase. At this point, not sufficient
information is available to pinpoint the source of the
discrepancy found in the SUð3Þ case. Possible causes are
the following:

The discrepancy may be an artefact of the hypercubic
description, which, as discussed in Sec. III B, engenders a
significant systematic uncertainty in the determination of
the topological charge. Indeed, this uncertainty is consid-
erably larger in the SUð3Þ case than in the SUð2Þ case, as

evidenced by the change of vortex density in the course
of the vortex world-surface deformations applied,
cf. Sec. III B, in order to remove ambiguities in the sur-
faces. Essentially, the constraint implied by the hypercubic
description, namely, that only six discrete space-time
planes are available in which world surfaces can extend,
is considerably more stringent in the SUð3Þ model. Since
vortex flux is fragmented into smaller units in the SUð3Þ
case, already to begin with, a higher proportion of lattice
elementary squares is occupied by vortex flux; this makes
it correspondingly more difficult to find deformations of
the surfaces, within the restricted set of space-time planes,
suited to remove surface ambiguitites. Further to this issue,
it should also be recognized that the topologies of the
surfaces qualitatively differ for SUð3Þ and SUð2Þ; only
the former permits vortex branching. As a result, compar-
ing the behavior of the world-surface ambiguities in the
two cases is not straightforward; it is entirely possible that
the rough phenomenological prescription applied in
Sec. VB to estimate the systematic uncertainty, namely,
scaling by the appropriate power of �def=�orig, is subject to

sizeable corrections which may behave very differently for
SUð3Þ and SUð2Þ. It should again be emphasized that the
aforementioned effects are not generic to the random vor-
tex world-surface concept, but are introduced by the spe-
cific hypercubic construction of the world surfaces. More
comments follow below on how this limitation may be
circumvented.
To the extent that artefacts of the hypercubic description

do not account for the discrepancies compared to Yang-
Mills theory observed in the deconfined phase, several
physical causes are possible. For one, as one raises the
temperature past the deconfining phase transition and fur-
ther into the deconfined phase, one rapidly approaches the
ultraviolet cutoff of the model. This may appreciably
distort the results (again, in a fashion which may differ
considerably for the SUð3Þ and SUð2Þ cases due to the
qualitatively different topology of the world surfaces). The
good agreement with lattice Yang-Mills theory found for
SUð2Þ at high temperatures could, in this context, be co-
incidental to an extent.
Furthermore, the pure vortex world-surface curvature

action employed in the model investigated here may not
completely capture all relevant dynamics. Indeed, on gen-
eral grounds, one expects a shift in the dynamical charac-
teristics of center vortices as the number of colors N in the
underlying Yang-Mills theory is raised [60]. The necessity
for such a shift, moreover, was observed explicitly in the
SUð4Þ random vortex world-surface model investigated in
[30]. There, already the confinement properties of the
corresponding Yang-Mills theory could only be repro-
duced by introducing new terms into the effective vortex
action beyond a pure world-surface curvature term. In the
present SUð3Þ case, the confinement properties obtained
using a pure world-surface curvature action still do not

15Indeed, one expects the topological susceptibility to vanish in
the deconfined phase as N ! 1 [59].
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differ significantly from SUð3Þ Yang-Mills theory,
cf. [27–29]. Possibly, the topological susceptibility inves-
tigated in the present work is more sensitive to the details
of the vortex dynamics, and the discrepancy compared to
SUð3Þ Yang-Mills theory observed at high temperatures
may thus signal the need for an adjustment of the effective
vortex dynamics already for SUð3Þ.

One possibility which comes to mind in this respect is
the inclusion of explicit action terms for thickened mono-
pole worldlines residing on the vortex world surfaces.
Variational estimates for the energies of various
monopole-type objects have been given in [40]; the objects
referred to as ‘‘monopoles’’ in the present work correspond
to the ‘‘fully non-Abelian nexi’’ of [40]. It is argued there
that SUð3Þ monopoles have considerably higher energy
than SUð2Þ monopoles. This mechanism would therefore
be consistent with the phenomena observed in the random
vortex world-surface model in more than one way: On the
one hand, it seems plausible that the deconfined phase is
less entropy-dominated than the confined phase, since the
former is, effectively, dimensionally reduced compared to
the latter. Thus, one would expect the energetics of, say,
monopoles to be more relevant in the deconfined phase,
where, indeed, the discrepancies compared to Yang-Mills
theory are observed. Furthermore, if SUð3Þ monopoles
imply a much larger action penalty than SUð2Þmonopoles,
this would simultaneously explain why the discrepancies
are only observed in the SUð3Þ model and not the SUð2Þ
model. Finally, the fact that monopoles are intimately tied
to the topological properties of vortex world surfaces (by
encoding their nonorientedness) would seem consistent
with the discrepancies becoming apparent specifically in
the topological susceptibility.

It would certainly be useful to be able to discriminate
between the different possible sources of the deviation
observed at high temperatures between the SUð3Þ random
vortex world-surface model studied here and SUð3Þ Yang-
Mills theory. In particular, it would be interesting to dis-
tinguish whether this deviation is an artefact of the hyper-
cubic construction of the world surfaces or whether it has a
more physical origin. To this end, an alternative formula-
tion in terms of random triangulations offers itself, with a
minimal area of the triangles serving as the ultraviolet
cutoff. By providing a continuum of directions into which
the vortex surfaces can extend, the most pernicious world-
surface ambiguities discussed in Sec. III B would be
avoided from the outset; intersections between surfaces
would generically occur at isolated space-time points.
This would obviate the need to transfer configurations to
a finer scale and perform deformations, thus avoiding the

associated renormalization uncertainties. The topological
charge can be well defined at the original scale in such a
formulation. The drawback of a construction in terms of
triangulations is that bookkeeping of vortex locations is
considerably more unwieldy, raising questions concerning,
e.g., appropriate rules for dynamically disconnecting and
fusing world surfaces. Given that the deconfining phase
transition is a percolation transition, such processes play a
crucial role in the vortex picture.
A complementary line of investigation which would

mitigate some of the artefacts engendered by the hyper-
cubic construction, without abandoning it altogether,
lies in evaluating the index of the Dirac operator in the
model vortex ensemble. This can be achieved without
transferring vortex configurations to finer lattices, thus
again avoiding the associated renormalization uncertain-
ties. On the other hand, it must be emphasized that, in
light of the discussion in Sec. III C, the generalization of
the index theorem to generic vortex configurations is
not obvious. Since the configurations are defined on mani-
folds with a complicated, dynamic topology, corrections
to the index theorems valid on simple manifolds such
as spheres or tori must be expected; this already manifests
itself in the fractionalization of global topological charge
found for the model vortex configurations studied here.
It would certainly be interesting to study the correlation
between the topological charge and the Dirac operator
index in the vortex ensemble. A construction of the
Dirac operator in the context of the SUð2Þ vortex world-
surface model has been given in [26], albeit discarding the
exact zero-mode sector (which is irrelevant for the chiral
condensate discussed there). A suitable generalization per-
mitting the study of the spectral flow of that type of
operator is needed in order to access the Dirac operator
index.
Finally, on a more formal level, it would be interesting

to understand the extent to which the specific half-integer
quantization of global topological charge observed for the
model vortex configurations investigated in this work is
determined by the hypercubic description. Surfaces com-
posed of elementary squares in hypercubic fashion only
constitute a particular subset of continuum surfaces in four
dimensions; further fractionalization of topological charge
for more general surfaces is conceivable. This more gen-
eral case remains to be explored.
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