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I. INTRODUCTION

Noncommutative geometry [1] has a long history. The
advent of the flurry of activity in this field related to
physics was the discovery of noncommutativity in string
theory [2]. Subsequently, noncommutative field theories,
which appear in a decoupling limit of string theories, have
been the focus of extensive research. Noncommutative
geometry is most elegantly described in the context of
noncommutative algebra [1], and, in particular, noncom-
mutative algebra of functions, which is an ingenious gen-
eralization of the commutative C� algebra of ordinary
function as the Gelfand-Naimark dual of ordinary commu-
tative geometry. Thus, general noncommutative star alge-
bras of functions are primary objects in noncommutative
geometry and, in particular, in the field theories based on
such geometries. The first example of the noncommutative
geometry arising from string theory was constructed on the
basis of the canonical commutation relation

½x�; x��? ¼ i���; (1.1)

where, in the simplest case, ��� is a constant real antisym-

metric matrix, and the Moyal product of functions derived
from (1.1) is [3]

ðf ? gÞðxÞ ¼ fðxÞ exp
�
i

2
���@

 �
@
!�
�
gðxÞ: (1.2)

This noncommutative product of functions has the addi-
tional properties of star algebra

ðf ? gÞ� ¼ g� ? f�; and f�� ¼ f: (1.3)

In addition the function space is usually a unital algebra,

f ? 1 ¼ 1 ? f ¼ f: (1.4)

The three properties (1.1)–(1.3) are essential properties of
a noncommutative star algebra which, when added with a

norm, define a Banach algebra, a cornerstone of noncom-
mutative geometry.
At this stage, let us notice that the Moyal star product

(1.2) is not the unique choice compatible with (1.1).
A second alternative to quantize the classical Poisson
structure is the Wick-Voros product [4]. In [5], a non-
commutative �’4 theory is formulated using these two
products, and the differences between them are studied.
It turns out that whereas the Lagrangian densities of these
two apparently different theories, and consequently their
tree level vertices and propagators as well as their one-loop
Green’s functions are different, they have the same
S-matrix element. They are therefore ‘‘physically’’ equiva-
lent. Moreover, it is shown that since both products are the
realization of the same canonical commutation relation
(1.1), the one-loop Feynman integrals arising from these
two formulations have the same ultraviolet (UV) behavior.
This is why the UV/IR mixing [6], appearing in the more
elaboratedMoyal formulation cannot be cured in theWick-
Voros formulation. To have a satisfactory interpretation of
these remarkable results, the authors in [5] use a symmetry
argument. They relate the equivalence between Moyal and
Wick-Voros formulations at the level of S-matrix elements
to the invariance of the physical observables, in general,
and the S-matrix elements, in particular, under the Poincaré
transformation. To prove this equivalence, they use instead
of (1.1), which is not invariant under the ‘‘ordinary’’
Poincaré transformation, a twisted theory [7], which is
formulated so that it is invariant under a certain twisted
Poincaré symmetry [8]. The latter is based on a deformed
Poincaré Lie algebra, that builds a noncommutative, non-
cocommutative Hopf algebra. Using a consistent twisting
procedure, where the field operators (oscillators) of the
theory are also deformed and new commutation relations
between creation and annihilation operators are defined,
they finally recalculate the twisted S-matrix element,
which is shown to have the same expression as in the
Moyal and Wick-Voros case. Different twisted formula-
tions of quantum field theories are discussed in [9]. The
deformation of field oscillators in a more general frame-
work of braided algebras is discussed in [10].
In this paper, we will use a third, more general product

than Moyal and/or Wick-Voros products. It is based on the
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crucial requirement, that ensures the existence of energy-
momentum conservation in the usual sense, and that is the
property of translation invariance

T aðfÞ ?T aðgÞ ¼ T aðf ? gÞ; (1.5)

where

T aðfÞðxÞ � fðxþ aÞ: (1.6)

The general translational-invariant associative star product
was originally introduced in [11,12] in terms of a certain
function �ðp; qÞ, which is constrained mainly by the asso-
ciativity requirement of the product. Constructing a simple
scalar field theory using this new product, it was further
shown that the nonplanar Feynman integrals of the theory
are mainly modified by a combination of �ðp; qÞ that
reproduces, in particular, the same antisymmetric phase
factor that appears in the Feynman integrals of noncom-
mutative gauge theories constructed by the ordinary Moyal
product. This phase factor, given by the commutator of
coordinates (1.1) is responsible for the famous UV and
IR connection of noncommutative field theory [6]. In the
present work, we study these theories further. Apart from
generalizing the results arising from noncommutative
translational-invariant bosonic formulation to Uð1Þ gauge
theory, the goal is to present the general structure of
the characteristic function �ðp; qÞ in order to understand
the relation between the novel translational-invariant non-
commutative product with the other two, Moyal and Wick-
Voros, products. This is something which is not completely
discussed in [11]. In light of this comparison, and follow-
ing the line of arguments in [5] (see also our descriptions
above), the fact that even the translational-invariant for-
mulation is not able to cure the UV/IR mixing of non-
commutative field theories will be clarified.

The paper is organized as follows: In Sec. II, after
determining the general structure of the new
translational-invariant noncommutative product in terms
of the real and the imaginary part of �ðp; qÞ, we perform
a complete specification of the product structure for two
noncommutative directions, and determine in this way the
general solution of the cocycle relation which is, as before
mentioned, the main restriction on�ðp; qÞ. The main result
of this section is Eq. (2.53), which states that the non-
commutative structure function �ðp; qÞ is the sum of a
quadratic term !ðp; qÞ which enters in the loop diagrams
and an arbitrary complex function �ðpÞ, with real part even
and imaginary part odd parity, that does not appear in the
loop integrations. In particular, the real even part of �ðpÞ
seems to be the generalization of the phase factor appear-
ing in the three-level propagator of noncommutative field
theory formulated with the Wick-Voros product. In
Secs. III and IV, we construct the noncommutative gauge
theory and its one-loop Feynman diagrams. Our goal is to
study the effect of the elements of the characteristic func-
tion �ðp; qÞ on the divergence properties of the Feynman

integrals. We will determine the loop integrations of one-
loop corrections to the fermion and photon propagators and
vertex function and present general arguments to show that
loop integrations in any order of perturbation theory in-
volve only !ðp; qÞ and not �ðpÞ. We conclude that only
!ðp; qÞ is responsible for the well-known noncommutative
UV/IR mixing [6], and �ðpÞ does not play any role in the
divergence properties of Feynman integrals. Section V
consists of a study of axial anomalies of these gauge
theories. Quantum anomalies of the ordinary Moyal
noncommutative gauge theories are studied intensively in
[13–15], where it is shown that they consist of a planar
(covariant) as well as a nonplanar (invariant) anomaly. As
in the ordinary Moyal noncommutative gauge theory, we
will show in Sec. V that whereas the planar anomaly is a
noncommutative generalization of the well-known Adler-
Bell-Jackiw axial anomaly, the nonplanar axial anomaly
consists of a generalized star product [16] now modified
with a phase factor consisting of a symmetric function in
the momenta. Section VI is devoted to concluding remarks.

II. TRANSLATIONAL-INVARIANT PRODUCT

A. General structure

In a translationally invariant noncommutative product
[11], the kernel of the product as defined by

fðxÞ ? gðxÞ �
Z ddp

ð2�Þd
ddq

ð2�Þd
ddr

ð2�Þd
� e�irx ~fðpÞ~gðqÞKðr; p; qÞ; (2.1)

has the following form:

Kðr; p; qÞ ¼ e�ðr;pÞ�dðpþ q� rÞ: (2.2)

Translational invariance is defined by (1.5) and (1.6). The
noncommutative star product is therefore characterized by
the complex function �ðp; qÞ. The main restriction on
�ðp; qÞ follows from associativity of the star product

f ? ðg ? hÞ ¼ ðf ? gÞ ? h; (2.3)

which restricts the kernel function Kðr; p; qÞ by
Z

dd‘Kðp; ‘; qÞKð‘; r; sÞ ¼
Z

dd‘Kðp; r; ‘ÞKð‘; s; qÞ;
(2.4)

and imposes the associativity condition

�ðp; qÞ þ �ðq; rÞ ¼ �ðp; rÞ þ �ðp� r; q� rÞ; (2.5)

on the characterizing function �ðp; qÞ. There is another
significant restriction on �ðp; qÞ coming from the require-
ment of the existence of conjugation on the function space
(1.3), which imposes the condition

�ðp; qÞ� ¼ �ð�p; q� pÞ; (2.6)
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on the function �ðp; qÞ. Here, we will be requiring the
star algebra to have the constant function 1 as its identity
[see (1.4)], resulting in

�ðp; pÞ ¼ �ðp; 0Þ ¼ 0: (2.7)

The primary example of a noncommutative star product is
the Moyal product defined by (1.2), which is equivalent to

�ðp; qÞ ¼ � i

2
���p

�q�; (2.8)

with ��� a constant antisymmetric matrix defined in (1.1).

In the rest of this section, we will find the most general
form of the complex function �ðp; qÞ, with the additional
assumption that �ðp; qÞ can be expanded in a series in the
components of p and q

�ðp;qÞ¼X1
n¼0

X
fi1 ;���;ingfj1 ;���;jng

ai1;���;in;j1;���jnp
i1
1 ���pin

n q
j1
1 ���qjnn : (2.9)

In the expression (2.9), there are no constant terms. This is
because of the unitality condition (2.7). Moreover, each
term in the series contains at least one power of pi and
one of qi.

With these restrictions, the main constraint to be satis-
fied will be the condition of associativity (2.5), which we
will proceed to analyze. The first step in the analysis of
associativity condition is to separate the function�ðp; qÞ in
its real and imaginary part

�ðp; qÞ ¼ �1ðp; qÞ þ i�2ðp; qÞ; (2.10)

where �1ðp; qÞ and �2ðp; qÞ are now real functions.

1. The real part of �ðp; qÞ
The condition of conjugation (2.6) implies

�1ðp; qÞ ¼ 1
2½�ðp; qÞ þ �ð�p; q� pÞ�: (2.11)

Using the associativity condition (2.5) by substituting
p! 0, q! q, and r! p, we get

�ð0; qÞ þ �ðq; pÞ ¼ �ð0; pÞ þ �ð�p; q� pÞ: (2.12)

Using the associativity condition (2.5) again, but this time
with the substitutions p! p, q! q, and r! p, we have

�ðp; qÞ þ �ðq; pÞ ¼ �ð0; q� pÞ; (2.13)

where we have used the condition for existing of identity
(2.7), �ðp; pÞ ¼ 0. The net result is

�1ðp; qÞ ¼ �1ðqÞ � �1ðpÞ þ �1ðp� qÞ; (2.14)

where �1ðpÞ � 1
2�ð0; pÞ. We note that �1ðpÞ is real, by

complex conjugation (2.6), and an even function of p,

�1ð�pÞ ¼ �1ðpÞ; (2.15)

from the associativity condition (2.5), again, this time with
the substitution p! r and q! 0. It can be readily verified

that �1ðp; qÞ as given by (2.14) satisfies the associativity
condition identically for arbitrary even function �1ðpÞ.
Moreover,

�1ð0Þ ¼ 0; (2.16)

by the existence of the unit of the algebra (2.17). Therefore,
the real part of �ðp; qÞ is given by (2.14) in terms of an
arbitrary real even function �1 satisfying (2.16). Note that
the function �1ðpÞ plays the role of a weighting function
for the integral of the trace relationZ

ddxfðxÞ ? gðxÞ ¼
Z

ddxgðxÞ ? fðxÞ

¼
Z ddp

ð2�Þd e
2�1ðpÞfðpÞgðpÞ: (2.17)

For that reason, it effectively determines the function space
on which the star algebra is built.

2. The imaginary part of �ðp; qÞ
The determination of the imaginary part of �ðp; qÞ is

more involved. It was observed in [11] that only a certain
part of �2ðp; qÞ in (2.10) defined by

� 2i!ðp; qÞ ¼ �ðpþ q; pÞ � �ðpþ q; qÞ; (2.18)

appears in the loop integrals of the scalar �’4 theory.1

Wewill show in the subsequent section that this persists for
the gauge theory also. However, we will find that �2ðp; qÞ,
the imaginary part of �ðp; qÞ, has an additional contribu-
tion that we call 	ðp; qÞ,

�2ðp; qÞ ¼ !ðp; qÞ þ 	ðp; qÞ: (2.19)

We will proceed to determine the form of both !ðp; qÞ and
	ðp; qÞ. In [11], the form of !ðp; qÞ was correctly identi-
fied; however, the arguments required are more rigorous
and we will provide it.
To begin with, it is straightforward to see that !ðp; qÞ

is real, as can be seen from the fact that the real part of
�ðpþ q; pÞ from (2.14) is symmetrized in the exchange
of p and q. It is also clear that !ðp; qÞ is antisymmetric in
p$ q. Thus,

!ðp; qÞ is real; (2.20)

!ðp;qÞ¼�!ðq;pÞ; !ðp;qÞ is antisymmetric inpandq:

(2.21)

We can also show that!ðp; qÞ is an even function of p and
q. First, we have

� 2i!ð�p;�qÞ ¼ �ð�p� q;�pÞ � �ð�p� q;�qÞ:
But from associativity (2.5), with the substitution p! 0,
q! p, and r! pþ q, we get

�ð�p� q;�qÞ ¼ �ðp; pþ qÞ þ �ð0; pÞ � �ð0; pþ qÞ:
(2.22)

1Note that in the definition of !ðp; qÞ, there is an additional
�2i in Ref. [11].

TRANSLATIONAL-INVARIANT NONCOMMUTATIVE GAUGE . . . PHYSICAL REVIEW D 83, 025014 (2011)

025014-3



Then, using (2.13), we get

!ð�p;�qÞ¼!ðp;qÞ; !ðp;qÞis odd inpandq: (2.23)

More significantly !ðp; qÞ satisfies the same associativity
relation (2.5) as �ðp; qÞ:
!ðp; qÞ þ!ðq; rÞ ¼ !ðp; rÞ þ!ðp� r; q� rÞ: (2.24)

To prove this, first we note that using the associativity
relation as,

�ðpþq;pÞþ�ðp;rÞ¼�ðpþq;rÞþ�ðpþq�r;p�rÞ;
and substituting r! q, we get

� 2i!ðp; qÞ ¼ �ðp; p� qÞ � �ðp; qÞ: (2.25)

Then, proving associativity for !ðp; qÞ reduces to proving
that �ðp;p�qÞþ�ðq;q�rÞ��ðp;p�rÞ��ðp�r;p�qÞ
vanishes. Using now ��ðp;p�rÞ¼�ðp�r;pÞ��ð0;rÞ,
we get �ðp� r; pÞ þ �ðp; p� qÞ � �ðp� r; p� qÞ þ
�ðq; q� rÞ � �ð0; rÞ, which upon using associativity
again becomes�ðq� r; qÞ þ �ðq; q� rÞ � �ð0; rÞ, which
vanishes by (2.13). Thus we have proved (2.24).

Now clearly as �ðp; qÞ satisfies associativity and also
�1ðp; qÞ, we conclude that so does 	ðp; qÞ,

	ðp; qÞ þ 	ðq; rÞ ¼ 	ðp; rÞ þ 	ðp� r; q� rÞ: (2.26)

Antisymmetry of 	ðp; qÞ,
	ðp; qÞ ¼ �	ðq; pÞ; (2.27)

follows from (2.13) and antisymmetry of !ðp; qÞ, together
with the relation

�1ðp; qÞ þ �1ðq; pÞ ¼ �ð0; p� qÞ:
The parity of 	ðp; qÞ,

	ð�p;�qÞ ¼ �	ðp; qÞ; (2.28)

is obtained from the definition of !ðp; qÞ and 	ðp; qÞ,
which gives, using both (2.18) and (2.25),

	ðpþ q; pÞ ¼ 	ðpþ q; qÞ: (2.29)

B. Determination of !ðp; qÞ and �ðp; qÞ for
two noncommutative dimensions

From now on we assume that the noncommutativity
occurs for only two spatial coordinates ðx1; x2Þ, and, as-
suming a series expansion for !ð ~p; ~qÞ and 	ð ~p; ~qÞ,
find their most general form. Of the three basics conditions
on !ð ~p; ~qÞ and 	ð ~p; ~qÞ the most restrictive is the associa-
tivity condition (2.24) and (2.26), which follows from
associativity condition on �ð ~p; ~qÞ, (2.5), and the complex
conjugation condition (2.6).2 We will in fact see shortly

that condition (2.6) is indeed incorporated in (2.24) and
(2.26). There remains for us to impose the condition of the
unit of star algebra, (2.7). Imposing this condition implies
that in each term in the series (2.9)

X
fi1 ;i2 ;j1 ;j2g

i1þi2þj1þj2¼N

ai1;i2;j1;j2p
i1
1 p

i2
2 q

j1
1 q

j2
2 ; (2.30)

we have, i1 þ i2 > 0 as well as j1 þ j2 > 0. Note that we
have picked a particular term in the series (2.9) of total
degree of N, as the associativity condition being a linear
operation within the terms of a fixed total degree N.
The task on hand is therefore to extract the restriction of

associativity conditions (2.24) and (2.26) on the coeffi-

cients a~i; ~j, where we denote ~i ¼ ði1; i2Þ and ~j ¼ ðj1; j2Þ.
We will show that for total degree N even, appropriate for
!ðp; qÞ, the only solution of the (2.24) is

!ð ~p; ~qÞ ¼ ~p ^ ~q � �

2
ðp1q2 � p2q1Þ; (2.31)

with N ¼ 2. Here, � is a multiplicative constant. But, we
see that there are many solutions for N odd, appropriate for
	ð ~p; ~qÞ, and we will determine them. We will use the
polynomial (2.30) for both !ð ~p; ~qÞ and 	ð ~p; ~qÞ, corre-
sponding to even and odd N, respectively. We will then
insert the sum (2.30) into the corresponding associativity
condition (2.24) and (2.26), not in the original form


ð ~p; ~qÞ þ 
ð ~q; ~rÞ ¼ 
ð ~p; ~rÞ þ 
ð ~p� ~r; ~q� ~rÞ;

where 
ð ~p; ~qÞ stands generically for !ð ~p; ~qÞ and 	ð ~p; ~qÞ,
but with a change of variable ~q� ~r! ~q,


ð ~p; ~qþ ~rÞþ
ð ~qþ ~r; ~rÞ¼
ð ~p; ~rÞþ
ð ~p� ~r; ~qÞ; (2.32)

and substitute


ð ~p; ~qÞ ¼X
~i; ~j

a~i; ~jp
iqj; (2.33)

where we are using two-dimensional vector notation pi �
pi1
1 p

i2
2 , q

j � qj11 q
j2
2 , and the sum is over fi1; i2; j1; j2g with

i1 þ i2 þ j1 þ j2 ¼ N. Equation (2.32) then becomes:

X
~i; ~j; ~k

a~i; ~jp
iqj�krk

j

k

 !
þX

~i; ~j; ~k

a~i; ~jq
i�krjþk

i

k

 !

�X
~i; ~j; ~k

a~i; ~jp
i�kqjrkð�1Þk i

k

 !
¼X

~i; ~j; ~k

a~i; ~jp
irj; (2.34)

where2In two dimensions, ~p denotes ðp1; p2Þ.
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i
k

� �
� i1

k1

� �
i2
k2

� �

etc., and ð�lÞk � ð�1Þk1þk2 . It is not hard to derive the
recurrence relation for a~i; ~j from this equation. However,

the limits on the indices require careful attention. We will
not go into this tedious discussion and simply write down
the solution

iþk
k

� �
a~iþ ~k; ~j� ~k¼ð�1Þk

j
k

� �
a~i; ~j; with ~k� ~j: (2.35)

We note that a~i; ~j are antisymmetric

a~j;~i ¼ �a~i; ~j; (2.36)

by the antisymmetry of !ð ~p; ~qÞ and 	ð ~p; ~qÞ, (2.21) and
(2.27), respectively. Imposing this condition on the recur-

rence relation (2.35) by letting ~iþ ~k! ~j, ~j� ~k! ~i, we get

a~j;~i ¼ ð�1Þj�ia~i; ~j; (2.37)

which implies

ðj1 þ j2Þ � ði1 þ i2Þ is odd: (2.38)

But thismeans that the function has odd paritywhich is only
satisfied by 	ð ~p; ~qÞ. However, there is an except,

~i ¼ ð0; 1Þ; ~j ¼ ð1; 0Þ; and ~k ¼ ð0; 0Þ; (2.39)

where the generic function 
ð ~p; ~qÞ is even and the recur-
rence relation (2.35) yields only an identity

a0;1;1;0 ¼ a0;1;1;0: (2.40)

This is in fact the single possible solution of !ð ~p; ~qÞ ¼
~p ^ ~q from (2.30) observed in [11].3Wewill now proceed to
solve the recurrence relation (2.35) and find the most gen-
eral form for 	ð ~p; ~qÞ: Eq. (2.35) is

a~iþ ~k; ~j� ~k ¼ ð�1Þk
i!j!

ðiþ kÞ!ðjþ kÞ!a~i; ~j;
~k � ~j; (2.41)

which written in the components is

ai1þk1;i2þk2;j1�k1;j2�k2 ¼ ð�1Þk1þk2

� i1!i2!j1!j2!

ði1 þ k1Þ!ði2 þ k2Þ!ðj1 � k1Þ!ðj2 � k2Þ!ai1;i2;j1;j2 ;
(2.42)

with 0 � k1 � j1, 0 � k2 � j2, and k1 þ k2 < j1 þ j2. We
can start from a0;1;j1;2n�j1 , where N ¼ 2nþ 1 is the degree

of the term in the expansion of 	ð ~p; ~qÞ, and apply (2.42) to
find all the terms required by associativity, which results in
the expansion

1

j2 þ 1
fðq1 � p1Þj1½qj2þ12 � ðq2 � p2Þj2þ1� � pj1

1 p
j2þ1
2 g;
(2.43)

with j1 þ j2 ¼ 2n. We have taken care of the intricacies of
the limits in the summations over k1 and k2. There is a
further subtlety related to the generation of various terms
and their antisymmetric partner terms in the expansion
(2.43) in the application of (2.42). The point is that for
each k1 and k2, by applying (2.42) there is another term
ðk01; k02Þ generated likewise which is the antisymmetric
partner of ðk1; k2Þ, provided

k1 þ k01 ¼ j1; k2 þ k02 ¼ j2 � 1: (2.44)

However, in the special cases j2 ¼ 0 or k2 ¼ j2 when
j2 � 0, there are no antisymmetric partners present in
(2.43), via (2.42); thus they should be added to (2.43) to
complete the polynomial of order N ¼ 2nþ 1 satisfying
both associativity (2.24) and antisymmetry (2.27) and of
course unitality (2.7). The final result is

	j1j2ð ~p; ~qÞ ¼ ðq1 � p1Þj1ðq2 � p2Þj2þ1
þ pj1

1 p
j2þ1
2 � qj11 q

j2þ1
2 ; (2.45)

where j1 þ j2 ¼ 2n. Noting that there is no distinction
between direction 1 and 2 in the two-dimensional space we
are considering, we could start from a1;0;j1;j2 and arrive at

	j1j2ð ~p; ~qÞ ¼ ðq1 � p1Þj1þ1ðq2 � p2Þj2
þ pj1þ1

1 pj2
2 � qj1þ11 qj22 ; (2.46)

which leads to the general solution for 	Nð ~p; ~qÞ including
all polynomials of order N,

	Nð ~p; ~qÞ ¼
X
n1;n2

Cn1n2	n1n2ð ~p; ~qÞ; (2.47)

with n1 þ n2 ¼ N, and

	n1n2ð ~p; ~qÞ ¼ ðq1 � p1Þn1ðq2 � p2Þn2 þ pn1
1 pn2

2 � qn11 qn22 :

(2.48)

We have verified that the expression (2.48) agrees with the
computer generated polynomials 	3, 	5 of order N ¼ 3, 5.
For N ¼ 3, 	j1j2 are given by

3In [11], the form (2.31) was obtained from the equation
!ðp; qÞ ¼ !ðp� q; pÞ, which is readily derived from the asso-
ciativity condition. However, this equation can be shown to have
a multitude of solutions of the form !ðp; qÞ ¼ P

ncnðp ^ qÞn.
(We are grateful to M. Alishahiha and H Arfaei for pointing this
to us.) One has to use the associativity condition (2.5) in its
entirety to prove that only n ¼ 1 is permissible.
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	03ð ~p; ~qÞ ¼ 3p2
2q2 � 3p2q

2
2; 	12ð ~p; ~qÞ ¼ p2

2q1 þ 2p1p2q2 � 2p2q1q2 � p1q
2
2;

	21ð ~p; ~qÞ ¼ 2p1p2q1 � p2q
2
1 þ p2

1q2 � 2p1q1q2; 	30ð ~p; ~qÞ ¼ 3p2
1q1 � 3p1q

2
1;

(2.49)

whereas for N ¼ 5, they read

	05ð ~p; ~qÞ ¼ 5p4
2q2 � 10p3

2q
2
2 þ 10p2

2q
3
2 � 5p2q

4
2;

	14ð ~p; ~qÞ ¼ p4
2q1 þ 4p1p

3
2q2 � 4p3

2q1q2 � 6p1p
2
2q

2
2 þ 6p2

2q1q
2
2 þ 4p1p2q

3
2 � 4p2q1q

3
2 � p1q

4
2;

	23ðp; qÞ ¼ 2p1p
3
2q1 � p3

2q
2
1 þ 3p2

1p
2
2q2 � 6p1p

2
2q1q2 þ 3p2

2q
2
1q2 � 3p2

1p2q
2
2 þ 6p1p2q1q

2
2 � 3p2q

2
1q

2
2

þ p2
1q

3
2 � 2p1q1q

3
2;

	32ð ~p; ~qÞ ¼ 3p2
1p

2
2q1 � 3p1p

2
2q

2
1 þ p2

2q
3
1 þ 2p3

1p2q2 � 6p2
1p2q1q2 þ 6p1p2q

2
1q2 � 2p2q

3
1q2 � p3

1q
2
2

þ 3p2
1q1q

2
2 � 3p1q

2
1q

2
2;

	41ð ~p; ~qÞ ¼ 4p3
1p2q1 � 6p2

1p2q
2
1 þ 4p1p2q

3
1 � p2q

4
1 þ p4

1q2 � 4p3
1q1q2 þ 6p2

1q
2
1q2 � 4p1q

3
1q2;

	50ð ~p; ~qÞ ¼ 5p4
1q1 � 10p3

1q
2
1 þ 10p2

1q
3
1 � 5p1q

4
1: (2.50)

Noting that any odd function of a two-dimensional vector
~p can be expanded as

�2ð ~pÞ �
X1
n¼1

X2nþ1
‘¼0

C‘;2nþ1�‘p‘
1p

2nþ1�‘
2 ; (2.51)

from (2.48), we observe that, in general, 	ð ~p; ~qÞ is given by
	ð ~p; ~qÞ ¼ �2ð ~qÞ � �2ð ~pÞ þ �2ð ~p� ~qÞ; (2.52)

with �2ð ~pÞ an arbitrary odd function in the form (2.51).
Thus, we have found the most general form for �ð ~p; ~qÞ,
describing the translational-invariant star product of a
function of two variables, as

�ð ~p; ~qÞ ¼ �ð ~p; ~qÞ þ i!ð ~p; ~qÞ; (2.53)

with

�ð ~p; ~qÞ ¼ �ð ~qÞ � �ð ~pÞ þ �ð ~p� ~qÞ; where

�ð ~pÞ � �1ð ~pÞ þ i�2ð ~pÞ: (2.54)

In (2.53), !ð ~p; ~qÞ ¼ ~p ^ ~q, and in (2.54), �1ð ~pÞ is an
arbitrary even function of ~p and �2ð ~pÞ an arbitrary odd
function ~p, satisfying �1ð~0Þ ¼ �2ð~0Þ ¼ 0, and �ð� ~pÞ ¼
��ð ~pÞ.

At the end it is of interest to obtain the form of the star
commutation of coordinates x1 and x2, derived for the
above star algebra product (see (4.25) in [11])

½xi; xj�? ¼ i�ij;

as there is no quadratic term in 	ð ~p; ~qÞ, and in the real part
of �ð ~p; ~qÞ only �1ð ~p� ~qÞ can contribute but not as �1ðpÞ
is even. In the next section, we will introduce the non-
commutative gauge theory using the general translational-
invariant noncommutative star product (2.1) and (2.2). The
goal is to study the effect of the elements of the non-
commutative structure function �ð ~p; ~qÞ, i.e., �ð ~pÞ and
!ð ~p; ~qÞ on the divergence properties of Feynman integrals
of this theory.

III. TRANSLATIONAL-INVARIANT
NONCOMMUTATIVE Uð1Þ GAUGE THEORY

Let us start with the Lagrangian density of translational-
invariant noncommutative Uð1Þ gauge theory, which is
given by the ordinary Lagrangian of QED with the com-
mutative products replaced by the translational-invariant
noncommutative star product (2.1) and (2.2). The full
Lagrangian density consists of a gauge/ghost and a fermi-
onic part, L ¼ Lg þLf. The gauge/ghost Lagrangian is

given by

Lg ¼ � 1

4
F�� ? F�� � 1

2	
ð@�A�Þ ? ð@�A�Þ

þ 1

2
ði �c ? @�D�c� i@�D�c ? �cÞ; (3.1)

where the non-Abelian field strength tensor is defined by

F��ðxÞ ¼ @�A�ðxÞ � @�A�ðxÞ þ ig½A�ðxÞ; A�ðxÞ�?:
(3.2)

The fermionic part of L reads

L f ¼ i �c ? ��@�c � g �c ? ��A� ? c �m �c ? c :

(3.3)

It arises from the commutative Dirac Lagrangian LD ¼
�c ðxÞði��@� �mÞc ðxÞ and the minimal coupling

@�c ðxÞ!D�c ðxÞ�@�c ðxÞþ igA�ðxÞ?c ðxÞ: (3.4)

Note that similar to the case of Moyal noncommutativity,
the minimal coupling (3.4) is not unique. There are two
other possibilities for introducing the gauge fields in the
Lagrangian,

@�c ðxÞ!D�c ðxÞ�@�c ðxÞ� igc ðxÞ?A�ðxÞ; (3.5)

and

@�c ðxÞ!D�c ðxÞ�@�c ðxÞþ ig½A�ðxÞ;c ðxÞ�?: (3.6)
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Whereas in (3.4) the fermions are in the fundamental
representation and the resulting noncommutative action
is invariant under the transformation

c ðxÞ!eig�ðxÞ?c ðxÞ; and A�ðxÞ!A�ðxÞ�D��ðxÞ;
(3.7)

the fermions in (3.5) and (3.6) are in the antifundamental
and adjoint representations, respectively, and the resulting
noncommutative actions are invariant under

c ðxÞ! c ðxÞ?eig�ðxÞ; and A�ðxÞ!A�ðxÞþD��ðxÞ;
(3.8)

and

c ðxÞ ! eig�ðxÞ ? c ðxÞ ? e�ig�ðxÞ; and

A�ðxÞ ! A�ðxÞ �D��; (3.9)

respectively. Here D��ðxÞ � @��� ig½�ðxÞ; A�ðxÞ�?. In
this paper, we will work with fermions in the fundamental
representation withLf from (3.3). The Lagrangian density

of translational-invariant Uð1Þ gauge theory is of course
invariant under the global Uð1Þ transformation

��c ðxÞ ¼ i�c ðxÞ; and ��
�c ðxÞ ¼ �i� �c ðxÞ: (3.10)

Following the standard procedure, the Noether currents
corresponding to the global Uð1Þ transformation can be
determined, and it can be shown that the noncommutative
gauge theory described by (3.1) possesses two different
Noether currents4

J�ðxÞ¼ c ðxÞ? �c ðxÞ��; and j�ðxÞ¼ �c ðxÞ��?c ðxÞ:
(3.11)

Depending on their transformation properties under local
Uð1Þ gauge transformation (3.7), they will be designated,
in the rest of this article, as covariant and invariant cur-
rents, respectively. Using the equations of motion for �c ðxÞ
and c ðxÞ

@� �c�� ¼ ig �c�� ? A� þ im �c ; and

��@�c ¼ �igA� ? ��c � imc ; (3.12)

the classical continuity equations of the invariant and co-
variant currents read

D�J
�ðxÞ ¼ 0; and @�j

�ðxÞ ¼ 0; (3.13)

where the covariant derivative D� ¼ @� þ ig½A�; ��?.
Using further the trace property of the star productZ

ddxfðxÞ ? gðxÞ ¼
Z

ddxgðxÞ ? fðxÞ; (3.14)

it is easy to check that both currents from (3.11) lead to the
same conserved charge

Q �
Z

dd�1xj0ðxÞ ¼
Z

dd�1xJ0ðxÞ; with @0Q ¼ 0:

(3.15)

Similarly, there are two different axial vector currents

J�;5ðxÞ ¼ c ðxÞ ? �c ðxÞ���5; (3.16)

j�;5ðxÞ ¼ �c ðxÞ���5 ? c ðxÞ; (3.17)

arising from the invariance of the Lagrangian density (3.1)
under global UAð1Þ axial transformation ��c ¼ i��5c .
In the chiral limit, m! 0, similar classical conservation
laws as in (3.13) hold also for axial vector currents (3.16)
and (3.17). We will compute the quantum corrections
(anomalies)
to the vacuum expectation values @�J�;5 and D�J�;5

in Sec. V.

IV. PERTURBATIVE DYNAMICS
OF TRANSLATIONAL-INVARIANT

Uð1Þ GAUGE THEORY

In this section, we will first present the Feynman rules of
translational-invariant Uð1Þ gauge theory and determine
eventually the Feynman integrals of one-loop quantum
corrections corresponding to fermion and photon propaga-
tors and the three-point vertex function. The goal is to
clarify the role played by �ðp; qÞ, that characterizes the
translational-invariant star product (2.1) and (2.2). In par-
ticular, we will show that �ðpÞ from (2.53) does not appear
in the internal loop integrals, and, similar to the case of
scalar �’4 theory discussed in [11], the divergence prop-
erties of the Feynman integrals are only affected by
the antisymmetric function !ðp; qÞ which is given in
two-dimensional noncommutative space by (2.31). To
start, we present the Feynman rules corresponding to
the translational-invariant Uð1Þ gauge theory described
by (3.1).
Fermion Propagator:

where � � p � ��p
�.

Photon propagator (in Feynman gauge 	 ¼ 1):

Ghost propagator:

4See [14] for the arguments leading to the invariant and
covariant currents in Moyal noncommutative Uð1Þ gauge theory.
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�c �A�c 
 Vertex:

A�1
A�2

A�3
Vertex:

A�1
A�2

A�3
A�4

Vertex:

�ccA� Vertex:

According to (2.53), �ðpÞ ¼ �1ðpÞ þ i�2ðpÞ and
�ð�pÞ ¼ ��ðpÞ. Using the above Feynman rules, the
one-loop corrections to fermion and photon propagators
and three-point vertex can be computed. The Feynman
integral of the one-loop fermion self-energy function
[Fig. 1] is given by

� i�ðkÞ ¼ �g2��e2�1ðkÞ
Z ddp

ð2�Þd

� ��½� � ðkþ pÞ þm���

p2½ðpþ kÞ2 �m2� : (4.8)
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In Fig. 2, the one-loop diagrams contributing to one-loop
photon self-energy are presented. The corresponding
Feynman integrals to Figs. 2(a)–2(d) are given by

i�ðaÞ��ðqÞ¼�g2��e2�1ðqÞ
Z ddp

ð2�Þd

� trðð� �p�mÞ��ð� � ðpþqÞþmÞ��Þ
ðp2�m2Þ½ðpþqÞ2�m2� ;

i�ðbÞ��ðqÞ¼1

2
ð�4g2��Þe2�1ðqÞ

Z ddp

ð2�Þd
sin2ð!ðp;qÞÞN��

p2ðpþqÞ2 ;

i�ðcÞ��ðqÞ¼4g2��ðd�1Þg��e2�1ðqÞ

�
Z ddp

ð2�Þd
sin2ð!ðp;qÞÞ

p2
;

i�ðdÞ��ðqÞ¼4g2��e2�1ðqÞ
Z ddp

ð2�Þd
p�ðpþqÞ�sin2ð!ðp;qÞÞ

p2ðpþqÞ2 ;

(4.9)

where in i�ðbÞ��ðqÞ, N�� is defined by

N���ðg��ð�2q�pÞ�þg��ðq�pÞ�
þg��ð2pþqÞ�Þðg��ð�2p�qÞ�
þ��

�ð2qþpÞ�þ��
�ðp�qÞ�Þ:

The one-loop diagrams contributing to the three-point
vertex function are presented in Fig. 3, and the correspond-
ing Feynman integrals to Figs. 3(a) and 3(b) are given by

VðaÞ� ðk;k0;q¼ k� k0Þ ¼ g3�3�=2e½�ð�kÞþ�ðk0Þþ�ðqÞ�e�i!ðk;k0Þ

�
Z ddp

ð2�Þd e
2i!ðp;qÞ

�
��

1

½� � ðpþ kÞ�m�
���

1

½� � ðpþ k0Þ �m��
� 1

k2

�
;

VðbÞ� ðk;k0;q¼ k� k0Þ
¼ g3�3�=2e½�ð�kÞþ�ðk0Þþ�ðqÞ�e�i!ðk;k0Þ

�
Z ddp

ð2�Þd ðe
2i½!ðp;qÞþ!ðk;k0Þ� � 1Þ

� ��ð� �pþmÞ��

ðp2�m2Þðk�pÞ2ðk0 �pÞ2
�ðg��ð2p� k� k0Þ�þg��ð2k� k0 �pÞ�
þg��ð2k0 � k�pÞ�Þ: (4.10)

Comparing (4.8)–(4.10) with the one-loop integrals in
commutative Uð1Þ gauge theory, there are phases depend-
ing on �ðpÞ and !ðp; qÞ, that arise from the definition of
the translational-invariant star product and the form of
propagators and vertices. The appearance of momentum
dependent phases in the Feynman integrals is indeed a
characteristic feature for noncommutative quantum field
theory. Here, similar to the ordinary Moyal noncommuta-
tive gauge theory, we will classify the Feynman integrals
into two categories of planar and nonplanar integrals: The
planar integrals involve phases that do not depend on
the loop integration momenta. The phases appearing in

FIG. 3. Diagrams contributing to three-point function.

FIG. 1. One-loop fermion self-energy diagram.

FIG. 2. One-loop photon self-energy diagram.

TRANSLATIONAL-INVARIANT NONCOMMUTATIVE GAUGE . . . PHYSICAL REVIEW D 83, 025014 (2011)

025014-9



the nonplanar integrals, however, depend on loop momen-
tum and cause the mixing of UVand IR divergencies in the
loop integrations [6]. Comparing the one-loop integrals
from (4.8)–(4.10) with their counterparts in the ordinary
Moyal noncommutative Uð1Þ gauge theory from, e.g.,
[17,18], it turns out the loop integrations from (4.8)–
(4.10) are the same as the loop integrations of the corre-
sponding diagrams in the Moyal noncommutative case,
and the additional phases involving �ðpÞ in (4.8)–(4.10)
are only functions of the momenta of external legs. We
conclude therefore that the UV and IR divergence proper-
ties of the above one-loop integrals are similar to the
divergence properties of the integrals appearing in ordinary
Moyal noncommutative gauge theory.

It is easy to see the cancellation of the phases involving
�ð‘Þ ¼ �1ð‘Þ þ i�2ð‘Þ in the loop integrations over ‘. The
point is that as can be seen from the expressions for the
vertices (4.4)–(4.7), each vertex contains a sum

P
i�2ðpiÞ,

with pi the outgoing momenta of the legs of the vertex.
Now since in a loop, each internal line of momentum ‘i
from a vertex matches a single internal line from another
vertex’s leg with opposite momenta, and also because
�2ð‘iÞ is odd under ‘i ! �‘i, all contributions of �2ð‘iÞ
with internal loop momenta ‘i cancel out for all i. On the
other hand, although the contributions of even parity�1ð‘iÞ
from the vertices on both sides of an internal line of
momentum ‘i add to 2�1ð‘iÞ, the total contribution of
�1ð‘iÞ cancels due to the presence of an additional
�2�1ð‘iÞ from the propagators between two vertices. We
are therefore left only with the antisymmetric !ðp; qÞ as a
function of internal loop integration in the nonplanar loop
integrals.

V. PLANAR AND NONPLANAR AXIAL
ANOMALIES OF TRANSLATIONAL-INVARIANT

Uð1Þ GAUGE THEORY

Quantum anomalies of the Moyal noncommutative
gauge theory are widely discussed in the literature
[13–15]. In this section, the axial anomalies of the
translational-invariant gauge theory corresponding to the
covariant current J�;5 from (3.16) and the invariant current

j�;5 from (3.17) will be determined. We will show, that

whereas the axial anomaly corresponding to the covariant

current arises from planar integrals and is given by a star
modification of the axial anomaly of commutative Uð1Þ
gauge theory, the axial anomaly corresponding to the
invariant current is affected by the above mentioned UV/
IR mixing that arises from the phase factor !ðp; qÞ in the
nonplanar Feynman loop integrals. The remaining phases
involving the functions �1ðpÞ and 	ðp; qÞ are independent
of the loop integration momentum and do not affect the UV
and IR behavior of the Feynman integrals. Note that, apart
from the appearance of these additional phase factors, the
situation is similar to the case of Moyal noncommutativity
(see, e.g., in [13,14]).

A. Planar axial anomaly

As we have noted in the Sec. II, the classical equations
of motion of the translational-invariant gauge theory (3.12)
lead, in the chiral limit m! 0, to the classical continuity
equation D�J

�;5 ¼ 0, where D� ¼ @� þ ig½A�; ��?. It is
the purpose of this section to determine the quantum
correction to this conservation law by computing the
vacuum expectation value hD�J

�;5i. To do this, let us

consider the following three-point function of one axial
vector current and two vector currents:

����
P ðx; y; zÞ ¼ hTðJ�5 ðxÞJ�ðyÞJ�ðzÞÞi; (5.1)

and determine @x��
���
P ðx; y; zÞ. The vector currents appear-

ing in (5.1) are given in (3.11). Expressing the currents in
terms of fermionic fields and performing the corresponding
Wick contractions, it can be shown that two triangle
diagrams contribute to (5.1) (see Fig. 4).
The corresponding Feynman integrals are given by

�
���
P ðx; y; zÞ ¼

Z ddk2
ð2�Þd

ddk3
ð2�Þd e

�iðk2þk3Þxeik2yeik3z

�
Z dd‘

ð2�ÞD ½Trð�
��5D�1ð‘þ k3Þ��

�D�1ð‘Þ��D�1ð‘� k2ÞÞFaðk2; k3Þ
þ ððk2; �Þ $ ðk3; �ÞÞFbðk2; k3Þ�; (5.2)

where Dð‘Þ � � � ‘�m, and

FIG. 4. Triangle diagrams for the anomaly in the axial vector current J�ð5ÞðxÞ, indicated by the dashed line.
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Faðk2; k3Þ ¼ e�ðk2þk3;‘þk3Þþ�ð�k2;‘�k2Þþ�ð�k3;‘Þ�2½�1ð‘�k2Þþ�1ð‘Þþ�1ð‘þk3Þ�;

¼ expð�½�1ðk2 þ k3Þ þ �1ðk2Þ þ �1ðk3Þ� þ i½	ð�k2; k3Þ þ!ðk2; k3Þ�Þ;
¼ e�2½�1ðk2Þþ�1ðk3Þ�þ�ðk2þk3;k3Þ; (5.3)

arises from the contribution of Fig. 4(a). The phase factor
appearing on the first line of (5.3) is simplified using the
definition of�ðp; qÞ in terms of�1ðpÞ; 	ðp; qÞ and!ðp; qÞ,
as well as the properties of !ðp; qÞ and 	ðp; qÞ (see
the Appendix for a list of these properties). The contribu-
tion of Fig. 4(b) is given, as is denoted in the second term
of (5.2), by replacing k2 $ k3 as well as �$ �. The
phase factor corresponding to Fig. 4(b), i.e., Fbðk2; k3Þ

can be read from (5.3) by replacing k2 with k3 and vice
versa. As it turns out, both phase factors are independent
of the loop momentum ‘. The Feynman integral appear-
ing in (5.2) are therefore, planar. The planar anomaly
is given by @x��

���
P . Taking the partial derivative with

respect to x� from ����
P in (5.2) and following the

same steps as is described in detail in [13], we arrive
first at

@x��
���
P ðx; y; zÞ ¼ � i

4�2
����


Z ddk2
ð2�Þd

ddk3
ð2�Þd e

�iðk2þk3Þxeik2yeik3ze�2½�1ðk2Þþ�1ðk3Þ�k2�k3
ðe�ðk2þk3;k2Þ þ e�ðk2þk3;k3ÞÞ:
(5.4)

Using now the definition of hJ�5 ðxÞi in terms of the three-
point function ����,

hJ�5 ðxÞi ¼
1

2

Z
ddyddzA�ðyÞ ? �

���
P ðx; y; zÞ ? A�ðzÞ;

(5.5)

and the definition of the translational-invariant star product
(2.1) and (2.2), we get

h@�J�;5ðxÞi ¼ i

4�2
����
@�A�ðxÞ ? @
A�ðxÞ: (5.6)

After considering the contribution of the square and penta-
gon diagrams Figs. 5(b) and 5(c), we arrive at

hD�J
�;5ðxÞi ¼ i

16�2
F��ðxÞ ? ~F��ðxÞ; (5.7)

where ~F�� � �����F��. Thus, similar to the case of
Moyal noncommutativity, the planar (covariant) anomaly
corresponding to the covariant current J�;5ðxÞ of
translational-invariant Uð1Þ gauge theory is given by a
star modification of the axial anomaly of commutative
Uð1Þ gauge theory.

B. Nonplanar axial anomaly

Let us consider the invariant current j�;5 from (3.17). It

satisfies the classical conservation law @�j
�
5 ¼ 0. This can

be shown using the equations of motion of the
translational-invariant Uð1Þ gauge theory in the chiral
limit, (3.12). The quantum anomaly corresponding to this
current can be computed from the definition of j�;5 in

terms of the three-point function ����
NP

hj�5 ðxÞi ¼
1

2

Z
dDydDzA�ðyÞ ? �

���
NP ðx; y; zÞ ? A�ðzÞ;

(5.8)

where in contrast to (5.1),

�
���
NP ðx; y; zÞ ¼ hTðj�5 ðxÞJ�ðyÞJ�ðzÞÞi; (5.9)

is a time ordered product of one invariant axial current and
two covariant vector currents. Similar to the previous case,

�
���
NP receives a contribution from two triangle diagrams

from Fig. 4, where J
�
5 is replaced by j

�
5 . It is given by

FIG. 5. Triangle, square, and pentagon diagrams contributing to the anomaly in the axial vector current, which is indicated by the
dashed line.
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����
NP ðx; y; zÞ ¼

Z ddk2
ð2�Þd

ddk3
ð2�Þd e

�iðk2þk3Þxeik2yeik3z
Z dd‘

ð2�Þd ½Trð�
��5D�1ð‘þ k3Þ��D�1ð‘Þ��D�1ð‘� k2ÞÞFað‘; k2; k3Þ

þ ððk2; �Þ $ ðk3; �ÞÞFbð‘; k2; k3Þ�; (5.10)

where the first (second) term is the contribution from Fig. 4(a) (4(b)). The phase factor Fað‘; k2; k3Þ in (5.10) is given by

Fað‘; k2; k3Þ ¼ e�ðk2þk3;k2�‘Þþ�ð�k2;‘�k2Þþ�ð�k3;‘Þ�2½�1ð‘þk3Þþ�1ð‘�k2Þþ�1ð‘Þ�;

Fbð‘; k2; k3Þ ¼ e�ðk2þk3;k3�‘Þþ�ð�k3;‘�k3Þþ�ð�k2;‘Þ�2½�1ð‘þk2Þþ�1ð‘�k3Þþ�1ð‘Þ�:
(5.11)

After simple algebraic manipulations, where the definition of �ðp; qÞ in terms of �1ðpÞ; 	ðp; qÞ and!ðp; qÞ, as well as the
properties of!ðp; qÞ and 	ðp; qÞ are used,5 it can be shown that Fa=bð‘; k2; k3Þ can be separated into an ‘-independent and
an ‘-dependent part

Fað‘; k2; k3Þ ¼ expð�½�1ðk2 þ k3Þ þ �1ðk2Þ þ �1ðk3Þ� þ i	ð�k2; k3Þ � i!ðk2; k3Þ þ 2i½!ð‘; k2Þ þ!ð‘; k3Þ�Þ;
Fbð‘; k2; k3Þ ¼ expð�½�1ðk2 þ k3Þ þ �1ðk2Þ þ �1ðk3Þ� þ i	ð�k3; k2Þ þ i!ðk2; k3Þ þ 2i½!ð‘; k2Þ þ!ð‘; k3Þ�Þ:

(5.12)

This is in contrast to the ‘-independent (planar) phase factor that appears in (5.2). To add the contributions of both
graphs, we will use the fact that 	ð�k2; k3Þ ¼ 	ð�k3; k2Þ from (A11) and will separate the ‘-dependent and ‘-independent

part of Fa=bð‘; k2; k3Þ appropriately. Using further the definition of !ðp; qÞ from (2.31), and building @��
���
NP , we arrive at

(see also [14] for notations)

@x��
���
NP ¼

Z ddk2
ð2�Þd

ddk2
ð2�Þd e

�ik1xeik2yeik3ze�½�1ðk1Þþ�1ðk2Þþ�1ðk3Þ�þi	ð�k2;k3Þ½A��ðk2; k3Þ þR��ðk2; k3Þ�; (5.13)

with k1 � k2 þ k3. The anomalous part of @x��
���
NP is

given by

A��ðk2; k3Þ

��2i
Z dd‘

ð2�Þd ½TrðD
�1ð‘� k2Þ�5‘? ��?D�1ð‘þ k3Þ

���D�1ð‘Þ��ÞGað‘;k2; k3Þ
þ ððk2; �Þ $ ðk3; �ÞÞGbð‘;k2; k3Þ�; (5.14)

with ‘? ¼ ð‘4; � � � ; ‘d�1Þ, and6

Gað‘; k2; k3Þ ¼ e�ik2^k3þ2i‘^ðk2þk3Þ;

Gbð‘; k2; k3Þ ¼ eik2^k3þ2i‘^ðk2þk3Þ; (5.15)

and the rest term of @x��
���
NP by

R��ðk2; k3Þ

� i
Z dd‘

ð2�Þd ½TrðD
�1ð‘� k2Þ�5��D�1ð‘Þ��

þ �5D�1ð‘þ k3Þ��D�1ð‘Þ��ÞGað‘; k2; k3Þ
þ ððk2; �Þ $ ðk3; �ÞÞGbð‘; k2; k3Þ�: (5.16)

After performing an appropriate shift of the integration
variable, the rest term can be shown to vanish and we are
therefore left with the anomalous part, which is the same as

appears also in [14] for Moyal noncommutative Uð1Þ case.
Simple algebraic manipulations lead to

A��ðk2; k3Þ

¼ �16"���
k2�k3

Z 1

0
d
1

Z 1�
1

0
d
2

Z dd‘

ð2�Þd

� ‘2?Fað‘þ k2
1 � k3
2; k2; k3Þ
ð‘2 þ �Þ3 ; (5.17)

with � � k23
1ð1� 
1Þ þ k23
2ð1� 
2Þ þ 2k2k3
1
2.
Following the same steps as is described in detail in [14],
A�� is given by

A��ðk2; k3Þ
¼ � 2

�2
"���
k2�k3


Z 1

0
d
1

Z 1�
1

0
d
2

� cos½k2 ^ k3ð1� 2
1 � 2
2Þ� 1

ln�2

�
�
E1ðk1;�;�effÞ � k1 � k1

8
E2ðk1;�;�effÞ

�
; (5.18)

where q � q � �q�������q
� and 1

�2
eff

� 1
�2 þ k1�k1

4 .
Moreover, we have used

5In the Appendix, we have summarized useful relations for
!ðp; qÞ and 	ðp; qÞ.

6Here, we have restricted ourselves to noncommutativity be-
tween two space coordinates x1 and x2.
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E1ðk1;�;�effÞ ¼
Z 1
0

d�

�
exp

�
���� 1

�eff2�

�

¼ 2K0

�
2

ffiffiffiffiffiffiffiffiffi
�

�2
eff

s �
’�eff!1

ln
�2

eff

�
;

E2ðk1;�;�effÞ ¼
Z 1
0

d�

�2
exp

�
���� 1

�eff2�

�

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
��2

eff

q
K1

�
2

ffiffiffiffiffiffiffiffiffi
�

�2
eff

s �
’�eff!1

�2
eff

� � ln
�2

eff

�
: (5.19)

Plugging A�� back in (5.13), and using

h@�j�5 ðxÞi ¼
1

2

Z
ddyddzA�ðyÞ ? @x��

���
NP ðx; y; zÞ ? A�ðzÞ;

(5.20)

we arrive, after performing the integration over y and z and
inserting Eiðk1;�; �;�effÞ, i ¼ 1, 2, from (5.19), at

h@�j�5 ðxÞi ¼ �
1

�
"���


Z ddk2
ð2�Þd k2�

~A�ðk2Þe�ik2x

�
Z ddk3
ð2�Þd k3


~A�ðk3Þe�ik3xe�ðk2;k3Þ
Z 1

0
d
1

�
Z 1�
1

0
d
2 cos½k2 ^ k3ð1� 2
1 � 2
2Þ�

� 1

ln�2

��
ln

1
1
�2 þ ðk1�k1Þ4

� ln�

�
� ðk1 � k1Þ

8

�
�

1
1
�2 þ ðk1�k1Þ4

�� ln
1

1
�2 þ ðk1�k1Þ4

þ � ln�

��
;

(5.21)

where the exponent �ðk2; k3Þ on the first line is defined by

�ðk2; k3Þ � ��1ðk2 þ k3Þ þ i	ð�k2; k3Þ: (5.22)

Comparing to the Moyal noncommutative case an addi-
tional factor e�ðk2;k3Þ appears on the first line of (5.21). The
UV/IR behavior of the remaining expression is the same as
in the Moyal case. In [14], we have shown that while the
above nonplanar anomaly vanishes in the UV limit,
k1�k1
4 	 1

�2 , a finite anomaly arises due to the IR singularity
for k1�k1

4 
 1
�2 . In this limit, all terms proportional to

k1 � k1 in (5.21) can be neglected, and the finite anomaly

arises from the factor 1
ln�2 ln

1
1

�2
!�!11 on the third line of

(5.21). After integrating over 
1 and 
2, it is then given by

h@�j�5 ðxÞi ¼ �
1

2�2
"���


Z
ðk1�k1=4Þ
ð1=�2Þ

ddk2
ð2�Þd

ddk3
ð2�Þd

� @� ~A�ðk2Þe�ik2xe�ðk2;k3Þ sinðk2 ^ k3Þ
k2 ^ k3

� @
 ~A�ðk3Þe�ik3x: (5.23)

Defining, similar to the Moyal noncommutative case [14],
a new generalized star product

fðxÞ?0 gðxÞ �
Z ddp

ð2�Þd
ddq

ð2�Þd

� ~fðpÞe�ðp;qÞ sinðp^qÞ
p^q ~gðqÞe�iðpþqÞx;

(5.24)

with the symmetric function �ðp; qÞ � ��1ðpþ qÞ þ
i	ð�p; qÞ and the antisymmetric construction p ^ q de-
fined in (2.31), the resulting nonplanar anomaly, that arises
due to the UV/IR mixing is then given by

h@�j�5 ðxÞi ¼ �
1

2�2
"���


Z
ðk1�k1=4Þ
ð1=�2Þ

ddk2
ð2�Þd

ddk3
ð2�Þd

� F��ðk2Þe�ik2x ?0 F
�ðk3Þe�ik3x: (5.25)

Here, the contributions from square and pentagon diagrams
in Fig. 5 are also added to (5.23).

VI. CONCLUDING REMARKS

According to its definition (2.1) and (2.2), the
translational-invariant noncommutative star product is
characterized by a function �ðp; qÞ, whose dependence
on the momenta p and q is mainly restricted by the
associativity condition on this product. In the first part of
this paper, we have determined the structure of �ðp; qÞ, for
a general noncommutative case, in terms of an arbitrary
real even function �1ðpÞ and two real antisymmetric func-
tions 	ðp; qÞ and !ðp; qÞ that appear in the imaginary part
of �ðp; qÞ [see (2.14) for the real part and (2.19) for the
imaginary part of �ðp; qÞ]. Focusing then on a special two-
dimensional noncommutative space, we have derived the
general form of 	ðp; qÞ and !ðp; qÞ from a recursive
relation arising from the associativity. We have shown
that !ðp; qÞ, as an even antisymmetric function, is given
by !ðp; qÞ ¼ p ^ q, and 	ðp; qÞ, as an odd antisymmetric
function, is given in terms of an arbitrary real odd function
�2ðpÞ [see (2.52)]. Combining 	ðp; qÞ from (2.52) with the
real part of �ðp; qÞ appearing in (2.14), we have defined an
arbitrary function �ðpÞ ¼ �1ðpÞ þ i�2ðpÞ, with �1ðpÞ an
arbitrary even and �2ðpÞ an arbitrary odd function of p,
satisfying �1ð0Þ ¼ �2ð0Þ ¼ 0. The characteristic function
�ðp; qÞ is then expressed alternatively in terms of �ðpÞ and
!ðp; qÞ, i.e., �ðp; qÞ ¼ �ðp; qÞ þ i!ðp; qÞ. Note that
�ðp; qÞ ¼ �ðqÞ � �ðpÞ þ �ðp� qÞ, from (2.54), and
!ðp; qÞ ¼ p ^ q are two distinct and unique solutions for
the associativity relation �ðp; qÞ þ �ðq; rÞ ¼ �ðp; rÞ þ
�ðp� r; q� rÞ, where �ðp; qÞ is a generic function of
two-dimensional momenta p and q. It is interesting to
look for the solutions of this characteristic relation for
d-dimensional vectors p and q for higher dimensions.
In the second part of the paper, we have explored the

effect of functions �ðpÞ and !ðp; qÞ on the divergence
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properties of Feynman integrals appearing in the noncom-
mutative Uð1Þ gauge theory including the translational-
invariant star product. At the one-loop level, it turned out
that �ðpÞ appears only as a function of external loop
momenta, and only !ðp; qÞ is responsible for the UV/IR
mixing that appears also in the ordinary Moyal noncom-
mutative field theory. Using the algebraic properties of
�ðpÞ, however, it was shown that �ðpÞ cancels out of all
internal loop integrations and appears only as a function of
external momenta. It cannot therefore affect the divergence
properties of the Feynman integrals. The general topologi-
cal arguments leading to this simple but remarkable result
is described in the last paragraph of Sec. IV. Our findings
confirm the fact indicated in [5], that the UV behavior of
noncommutative theories is in general described by the
canonical commutation relation between the coordinates
(1.1), which is unchanged between the translational-
invariant product and the Moyal as well as Wick-Voros
products considered in [5,11].

Finally, the planar and nonplanar anomalies of the above
gauge theory were also discussed. As it turned out the non-
planar anomaly, once nonvanishing, is given, in contrast of
nonplanar anomaly of ordinaryMoyal noncommutativity, as
a function of a new generalized star product including the
symmetric function �ðp; qÞ ¼ ��1ðpþ qÞ þ i	ð�p; qÞ
and the antisymmetric combination !ðp; qÞ ¼ p ^ q. The
planar anomaly, however, is given, as in the ordinary Moyal
noncommutativity, by the star modification of the well-
known Adler-Bell-Jackiw axial anomaly.

In the case of the Moyal product, the noncommutative
gauge theory appears in the decoupling limit of string
theory, on a brane, where !ðp; qÞ is related to the back-
ground bulk antisymmetric field B. Here, in the general
noncommutative gauge theory, we have, in addition, the
function �ðpÞ appearing as a profile function for each field
in the momentum representation. It is intriguing to explore
the string theoretical origin of this factor.
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APPENDIX: USEFUL RELATIONS FOR !ðp; qÞ
AND �ðp; qÞ

The antisymmetric functions !ðp; qÞ and 	ðp; qÞ that
appear in the imaginary part of �ðp; qÞ satisfy the follow-
ing relations:

!ðp; pÞ ¼ !ð0; pÞ ¼ !ðp; 0Þ ¼ 0; (1)

!ðp; qÞ ¼ �!ðq; pÞ; (2)

!ð�p;�qÞ ¼ !ðp; qÞ; (3)

!ðp� q; pÞ ¼ !ðp; qÞ; (4)

!ð�q; pÞ ¼ !ðp; qÞ; (5)

!ðp� r; q� rÞ ¼ !ðp; qÞ þ!ðq; rÞ �!ðp; rÞ; (6)

as well as

	ðp; pÞ ¼ 	ð0; pÞ ¼ 	ðp; 0Þ ¼ 0; (7)

	ðp; qÞ ¼ �	ðq; pÞ; (8)

	ð�p;�qÞ ¼ �	ðp; qÞ; (9)

	ðp� q; pÞ ¼ �	ðp; qÞ; (10)

	ð�q; pÞ ¼ 	ð�p; qÞ; (11)

	ðp� r; q� rÞ ¼ 	ðp; qÞ þ 	ðq; rÞ � 	ðp; rÞ: (12)
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