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We identify a particularly simple class of supergravity models describing superconformal coupling of

matter to supergravity. In these models, which we call the canonical superconformal supergravity models,

the kinetic terms in the Jordan frame are canonical, and the scalar potential is the same as in the global

theory. The pure supergravity part of the total action has a local Poincaré supersymmetry, whereas the

chiral and vector multiplets coupled to supergravity have a larger local superconformal symmetry. The

scale-free globally supersymmetric theories, such as the NMSSM with a scale-invariant superpotential,

can be naturally embedded into this class of theories. After the supergravity embedding, the Jordan frame

scalar potential of such theories remains scale free; it is quartic, it contains no mass terms, no

nonrenormalizable terms, no cosmological constant. The local superconformal symmetry can be broken

by additional terms, which, in the small field limit, are suppressed by the gravitational coupling. This can

be achieved by introducing the nonminimal scalar-curvature coupling, and by taking into account

interactions with a hidden sector. In this approach, the smallness of the mass parameters in the

NMSSM may be traced back to the original superconformal invariance. This allows one to address the

� problem and the cosmological domain wall problem in this model, and to implement chaotic inflation in

the NMSSM. We discuss the gravitino problem in the NMSSM inflation, as well as the possibility to

obtain a broad class of new versions of chaotic inflation in supergravity.
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I. INTRODUCTION

This work is a continuation of our previous paper [1],
where we studied generic supergravity in the Jordan frame
and the possibility to implement the Higgs-type inflation
[2] in the context of the next-to-minimal supersymmetric
standard model (NMSSM) [1,3,4].

These recent developments were based on a combina-
tion of long efforts of many authors in several seemingly
unrelated directions.

(1) Many decades ago, one of the most popular ways to
describe gravitational interactions of a scalar field’was to
assume that it is conformally coupled to gravity, which

means that its Lagrangian contains a term� ffiffiffiffiffiffiffi�g
p ’2

12 R; see

e.g. [5]. With the invention of inflation, which was difficult
to achieve for conformally coupled scalars, the concept of
scalar fields conformally coupled to gravity gradually lost
part of its appeal. On the other hand, several authors
emphasized that inflation may occur in a very natural
way if a scalar field nonminimally couples to gravity,
with a sign opposite to that of the conformal coupling;
see e.g. [6]. Recently there was a revival of interest in this
possibility after it was realized that it may allow inflation in
the standard model, with the Higgs field playing the role of
the inflaton [2]. However, for a while it was not clear
whether one could implement this idea in supersymmetric
generalizations of the standard model. Some progress in
this direction was reached only very recently [1,3,4]. In this

paper we will develop a more systematic approach to this
issue.
(2) Conformal invariance plays an important role in the

formulation of supergravity. The general formulation of
supergravity starts with the superconformal theory. Then,
after gauge fixing, which, in particular, makes the confor-
mal compensator field proportional to the Planck mass, one
derives the standard textbook formulation of supergravity
[7–13]. Once this step is made, the theory is formulated in
the Einstein frame, all scalars have minimal coupling to
gravity, and the superconformal origin of supergravity
becomes well hidden.
In [1] we performed an alternative gauge fixing of the

version of the superconformal theory, which allows one to
derive the supergravity action in an arbitrary Jordan frame.
This provides a complete locally supersymmetric theory
for scalars with a nonminimal coupling to gravity.
(3) Prior to the discovery of supergravity, the develop-

ment of particle physics was successfully guided by the
principle of gauge invariance and renormalizability.
However, supergravity is nonrenormalizable. In general,
one can write any kind of superpotential which may lead
to nonrenormalizable interactions which become impor-
tant even at low energy. It would be nice to have a
formulation of supergravity where the low-energy renor-
malizability appears as a result of some general principle,
similar to the principle of spontaneously broken gauge
invariance.
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The extraordinary smallness of the Higgs mass, as com-
pared to the Planck mass, can be protected by supersym-
metry, but only if the Higgs mass was extremely small to
start with. The minimal supersymmetric standard model
(MSSM) and the general NMSSM include several other
dimensional parameters which are required to be extraor-
dinary small (� problem, tadpole problem). These issues
can be addressed in the context of the Z3-invariant
NMSSM, which requires that the superpotential describing
the standard model is scale invariant [14]. However, it
would be important to find some fundamental underpin-
nings of this requirement. Moreover, Z3 symmetry of the
scale-invariant superpotential leads to the cosmological
domain wall problem.

All of these problems have been discussed extensively in
the existing literature, but recent developments stimulated
us to look at these issues again in [1], returning back to the
superconformal origin of supergravity. As we will see,
many of these problems become much easier to address
in a class of models where the original superconformal
invariance remains at least partially preserved, being bro-
ken only by gravitational effects, or by anomalies. This
symmetry may naturally explain renormalizability and
smallness of the mass parameters in the standard model.
It leads to a formulation of supergravity in the Jordan
frame, where in certain cases the potentials and kinetic
terms look as simple as in the global supersymmetry
(SUSY). In this context, one can achieve inflation and
simultaneously solve the domain wall problem with the
help of the terms describing scalars nonminimally coupled
to gravity.

To explain our main idea, let us consider a nonsuper-
symmetric conformally invariant toy model describing
gravity and two real scalar fields, � and h:

L ¼ ffiffiffiffiffiffiffi�g
p �

1

2
@��@��g�� þ�2

12
RðgÞ

� 1

2
@�h@�hg

�� � h2

12
RðgÞ � �

4
h4
�
: (1.1)

The field �ðxÞ is referred to as a conformal compensator.
This theory is locally conformal invariant under the fol-
lowing transformations:

g0�� ¼ e�2�ðxÞg��; �0 ¼ e�ðxÞ�; h0 ¼ e�ðxÞh:
(1.2)

Note that the kinetic term of the conformal compensator�
has a wrong sign. This is not a problem because there are
no physical degrees of freedom associated with it; the field
� can be removed from the theory by fixing the gauge

symmetry (1.2). If we choose the gauge�ðxÞ ¼ ffiffiffi
6

p
MP, the

� terms in (1.1) reduce to the Einstein action. The full
Lagrangian in the Jordan frame is

Ltotal ¼ LE þLconf

¼ ffiffiffiffiffiffiffi�g
p M2

P

2
RðgÞ

� ffiffiffiffiffiffiffi�g
p �

1

2
@�h@�hg

�� þ h2

12
RðgÞ þ �

4
h4
�
: (1.3)

It consists of two parts, the Einstein Lagrangianffiffiffiffiffiffiffi�g
p M2

P

2 RðgÞ, which is not conformally invariant, and the

conformally invariant theory of the canonically normalized
scalar field h,

L conf ¼ � ffiffiffiffiffiffiffi�g
p �

1

2
@�h@�hg

�� þ h2

12
RðgÞ þ �

4
h4
�
:

(1.4)

As we already mentioned, theories of this type played a
very important role in the development of particle physics
and cosmology many decades ago; see e.g. [5]. One of the
main reasons is that the Friedmann universe is conformally
flat. By making a conformal transformation, one could
represent equations of motion of the scalar field in the
Friedmann universe in terms of equations of motion of a
conformally transformed field in Minkowski space, which
is a tremendous simplification.
The theory (1.1) is unique if we require that the local

conformal symmetry of the h part of the action, which has
canonical kinetic terms, should be preserved after the
gauge fixing. It is determined by the condition that
the conformal compensator �ðxÞ is decoupled from the
field hðxÞ.
The conformal symmetry of the matter action in

Eq. (1.4) is manifest in the Jordan frame (1.3). One can
make a certain field and metric transformation and switch

to the Einstein frame, where the term � ffiffiffiffiffiffiffi�g
p h2

12RðgÞ is

absorbed into the Einstein action. This allows one to use
the standard Einstein equations. However, after this trans-
formation both the gravity part as well as the matter part of
the action have conformal symmetry broken.
Similarly, the standard formulation of supergravity in-

teracting with matter brings us directly to the Einstein
frame, where the original superconformal symmetry is
lost even in the special class of models where matter fields
are decoupled from the conformal compensator. That is
why it was hard to see any advantages of this class of
models in the standard textbook formulation of supergrav-
ity. Meanwhile, as we will see shortly, in the class of
models with conformal coupling of scalars, the matter
Lagrangian in the Jordan frame looks exceptionally sim-
ple: all kinetic terms are canonical in the simplest case, the
superpotential contains only cubic terms, and the scalar
potential is quartic with respect to the scalar fields, just as
in our toy model (1.3). The theories of this class provide a
very natural supergravity embedding of the Z3-invariant
NMSSM with a scale-free superpotential.
Of course, at the end of the day we want to make most

of the particles massive. Thus, we would need to break
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superconformal invariance, but we would like to do it in a
way that preserves some of the most attractive features of
the original superconformal theory.

Superconformal symmetry may be broken by anomalies,
by interaction with a hidden sector, or by gravitational
interactions suppressed by inverse powers of the Planck
mass. However, one should try to avoid introducing into
the original theory any terms proportional to the compen-
sator field. For example, one could add to (1.1) a term
c2h2�2 without breaking the conformal invariance of the

model (1.1). However, in the gauge� ¼ ffiffiffi
6

p
MP, the matter

part of the theory (1.3) would acquire the term 6c2M2
Ph

2.
This term strongly breaks the conformal invariance by
giving the field h a mass squared 12c2M2

P, which is enor-
mously large unless the dimensionless constant c is ex-
tremely small. This would lead to the hierarchy problem if
one tries to use the field h for the description of the low-
energy physics. Similarly, the term c�3h would introduce
a huge tadpole�M3

Ph, and the term�4 would introduce an

enormously large cosmological constant �M4
P. We would

like to use the original (super)conformal symmetry to
protect us against such problems.

On the other hand, the terms h4þn=�n, which are in-
versely proportional to �n, would lead to nonrenormaliz-
able interaction terms �h4þn=Mn

P. While such terms are
unpleasant, they usually appear in the Einstein frame any-
way, and they are not expected to affect particle physics at
energies and fields much smaller than MP.

In this paper, we will break the local superconformal
symmetry of the matter coupling via the real part of the
quadratic holomorphic function in scalar-curvature cou-
pling, by the terms in the Kähler potential which are sup-
pressed by the inverse Planck mass, and also by the
interaction to the hidden sector. This produces additional
terms in the action. At small fields and low energies, the
new terms are suppressed by inverse powers of the Planck
mass. In other words, at small fields and low energies, the
original superconformal symmetry is broken only by ef-
fects suppressed by the small gravitational coupling. This
can be very helpful in particle phenomenology. The small-
ness of the new terms helps to explain the smallness of
the Higgs mass and of the � term, which appear only
because of the breaking of the superconformal invariance.
On the other hand, these terms can be large enough to
address the domain wall problem in the NMSSM.
Moreover, in the large field limit, some of the new terms
become dominant and allow one to implement inflation in
supergravity along the lines of [1–4,6].

The paper is organized as follows. In Sec. II we
give a short summary of the results of Ref. [1] on the
supergravity action in an arbitrary Jordan frame defined
by the function of scalars �ðz; �zÞ. We then focus on a

special case of �ðz; �zÞ ¼ �3M2
Pe

�½Kðz;�zÞ=3M2
P� ¼ �3M2

P

þ�� ��z
� �z

�� þ JðzÞ þ �Jð�zÞ, where JðzÞ is a holomorphic

function quadratic in z. It has been found in [1] that in

this case the kinetic term for scalars is canonical since it is
defined by �� �� ¼ �� ��. We explain the role of the auxil-

iary supergravity vector fields A�.

Section III presents the simplest possible embedding of
the globally superconformal theory into supergravity. We
start with the analog of (1.1), the theory with the SUð2; 2j1Þ
local superconformal symmetry and no dimensional pa-
rameters. It contains an extra chiral multiplet, the compen-
sator one. The theory is based on the results obtained in
[8,9], and more recent results of Refs. [1,13]. We then
specify the superconformal action for the case when
(a) all kinetic terms are canonical and (b) the matter
multiplets decouple from the compensator. We find that
in these models the total supergravity action consists of the
pure supergravity part, which breaks superconformal sym-
metry, and the matter part, which remains superconformal
after the gauge fixing. The scalars are conformally coupled
to gravity, kinetic terms are canonical, and the supergravity
potential coincides with the global theory potential. We
call these theories canonical superconformal supergravity
(CSS) models.
In this sense, the embedding of the globally supercon-

formal theory into supergravity in the Jordan frame be-
comes a simple additive operation: One adds the action of
the global SUSY, interacting with gravity with conformal
scalar-curvature coupling, to the action of supergravity;
that is it. However, this simple operation looks much
more complicated in the Einstein frame.
We further develop a geometric way to break the super-

conformal coupling of matter to supergravity. The flat
Kähler geometry of the chiral multiplets, including the
compensator field, is replaced by a nonflat geometry with-
out introducing any new dimensional parameters.
Specifically, we study CSS models with superconformal
symmetry broken by the 	 term: the real part of the
holomorphic function defining the Jordan frame. This leads
to useful applications both in particle physics and
cosmology.
In Sec. IV we apply the method of embedding globally

supersymmetric theories into supergravity described in
Sec. III to the scale-invariant version of the NMSSM.
Section V has a short discussion of the issues of the
NMSSM phenomenology, including the � problem and
domain wall problem. We argue that using the supercon-
formal matter action with the 	 term in combination with a
hidden sector may resolve both of these problems.
Sections VI and VIIare devoted to inflation. We first

review the Higgs-type inflation in the standard model,
following [2]. We argue that this inflationary model, as
well as its NMSSM generalization proposed in [3] and
developed in [1,4], does not suffer from the problems
related to the unitarity bound discussed in [15–18]. We
describe observational implications of inflation in the
NMSSM and find that these implications are invariant
with respect to a certain rescaling of the parameters of
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this model. We describe a mechanism of stabilization of
the inflationary trajectory, which is necessary for consis-
tency of this scenario. It includes a requirement of special
corrections which stabilize some moduli at the origin of the
moduli space. We discuss the gravitino problem, which
may appear in this scenario, and point out the existence of a
broad class of new inflationary models based on the ideas
described in our paper, where the inflaton is not necessarily
related to the Higgs field and the gravitino problem may
not arise [19].

Our results are briefly summarized in the Conclusions.
Appendix A presents a complete action of superconformal
matter coupled to gravity, including vector multiplets and
fermions with canonical kinetic terms. It is given in
Eqs. (A10)–(A14) which provide the generalization of
the scalar-gravity action in Eqs. (3.25) and (3.26), when
all fermions and vectors are included. Appendix B shows
how one can derive the simple CSS potential, which is the
same as in global SUSY theories, starting from the generic
Einstein frame supergravity potential. Appendix C pro-
vides the metric of the moduli space for CSS models
with superconformal symmetry broken by the real part of
the holomorphic function. Appendix D presents a detailed
expression for the potential of the scalar field s and the
inflaton field h in the Jordan frame and in the Einstein
frame.

Thus, the paper essentially consists of two parts. Those
who are interested mainly in phenomenological and cos-
mological implications of our construction, may take a
quick look at Secs. II, III, IV, and V and then proceed
directly to Secs. V, VI, and VII. However, we believe that
the superconformal approach to supergravity and the CSS
models described in Secs. II, III, and IV deserve further
investigation quite independently of their immediate im-
plications for inflation and the NMSSM.

II. SUPERGRAVITY IN THE JORDAN FRAME

The general theory of supergravity in an arbitrary Jordan
framewas derived in [1] by a gauge fixing of the SUð2; 2j1Þ
superconformal theory [13]. This approach is based on
earlier work on superconformal origin of the supergravity
theory in [20]. The extra gauge symmetries of the super-
conformal theory, including a local conformal symmetry,
which rescales the metric, allow a possibility to derive the
supergravity action either in the Einstein frame or in an
arbitrary Jordan frame. The Einstein frame Lagrangian, in
units of MP ¼ 1, is LE ¼ ffiffiffiffiffiffiffiffiffiffi�gE

p 1
2RðgEÞ þ � � � ; there is

no direct scalar-curvature coupling. The Jordan frame

Lagrangian is LJ ¼ � ffiffiffiffiffiffiffiffiffiffi�gJ
p �ðz;�zÞ

6 RðgJÞ þ � � � , where

�ðz; �zÞ is an arbitrary function of complex scalar fields z,
�z. Therefore, in general, there is a scalar-curvature cou-
pling in the Jordan frame. A local conformal symmetry
allows one to make a choice of �ðz; �zÞ ¼ �3 to get the
Einstein frame supergravity. Otherwise with the frame
function depending on scalars we get the Jordan frame

supergravity. The relation between the space-time metrics
is given by g

��
E ¼ �2ðz; �zÞg��

J , where �2ðz; �zÞ ¼
� 1

3�ðz; �zÞ.
The scalar-gravity part of theN ¼ 1, d ¼ 4 supergrav-

ity in a generic Jordan frame with frame function�ðz; �zÞ, a
Kähler potential Kðz; �zÞ independent on the frame func-
tion, and superpotential WðzÞ is, according to [1],

L scalar-grav
J ¼ ffiffiffiffiffiffiffiffiffiffi�gJ

p �
�

�
� 1

6
RðgJÞ þA2

�ðz; �zÞ
�

þ
�
1

3
�g� �� ���� ��

�

�
@̂�z

�@̂� �z
�� � VJ

�
:

(2.1)

Here

�� � @

@z�
�ðz; �zÞ;

� �� � @

@�z
��
�ðz; �zÞ ¼ �� ��;

g� �� ¼ @2Kðz; �zÞ
@z�@�z

��
� K� ��ðz; �zÞ;

(2.2)

and A� is the purely bosonic part of the on-shell value of

the auxiliary field A�. On shell it depends on scalar fields

as follows:

A �ðz; �zÞ � � i

2�
ð@̂�z�@��� @̂� �z

��@ ���Þ: (2.3)

The gauge covariant derivative @̂�z
� in Eqs. (2.1) and

(2.3) is

@̂ �z
� � @�z

� � AA
�k

�
A; (2.4)

where AA
� is the vector gauge field and k�A is the Killing

vector, defining the gauge transformations of scalars,
�z� ¼ 
Ak�A . The Jordan frame potential

VJ ¼ �2

9
VE (2.5)

is defined via the Einstein frame potential

VE ¼ VF
E þ VD

E

¼ eKð�3W �W þr�Wg�
��r ��

�WÞ þ 1
2ðRefÞ�1ABPAPB;

(2.6)

where r�W denotes the Kähler-covariant derivative of the
superpotential and PA is a momentum map. A special
important class of the superconformal models with

�ðz; �zÞ ¼ �3e�ð1=3ÞKðz;�zÞ (2.7)

and the corresponding actions in the Jordan frame were
derived in components in [7,9], and in superspace in
[10,11]. In this case the simpler form of LJ given by
(2.1) was found in [1]:
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L J ¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p �

�

�
� 1

6
RðgJÞ þA2

�ðz; �zÞ
�

��� ��@̂�z
�@̂� �z

�� ��2

9
VE

�
: (2.8)

Also an interesting observation about the Jordan frame
kinetic terms for scalars was made: For a particular choice
of the frame function the kinetic scalar terms are canoni-
cal when the on-shell auxiliary axial-vector field A�

vanishes. This requires that

�ðz; �zÞ ¼ �3e�ð1=3ÞKðz;�zÞ

¼ �3þ �� ��z
� �z

�� þ JðzÞ þ �Jð�zÞ; (2.9)

and it follows that

�� �� � @2�ðz; �zÞ
@z�@�z

��
¼ �� ��; (2.10)

where Kðz; �zÞ is the Kähler potential and JðzÞ is holo-
morphic. For the choice (2.9) the action in the Jordan
frame is

LJffiffiffiffiffiffiffiffiffiffi�gJ
p ¼ �ðz; �zÞ

�
� 1

6
RðgJÞ þA2

�ðz; �zÞ
�

� �� ��@̂�z
�@̂� �z

�� � VJðz; �zÞ; (2.11)

whereA�ðz; �zÞ is defined in Eq. (2.3). It vanishes in many

cosmological applications with either real or imaginary
scalar fields. For such configurations with A� ¼ 0 the

second term in Eq. (2.11) is a canonical kinetic term for
scalars. This simplification of the supergravity theory in
the Jordan frame with regard to kinetic terms of scalars is,
as we will see below, a particular property of the class of
supergravity theories which have a superconformal
matter-supergravity coupling.

III. SUPERCONFORMAL MATTER COUPLING
IN THE JORDAN FRAME SUPERGRAVITY

A. Locally superconformal theory

Superconformal theory is the starting point to derive
supergravity. We will consider here a class of models
where the chiral and vector multiplets do not interact
with the superconformal compensator field. This will pro-
vide a simple embedding of globally supersymmetric mod-
els into supergravity in the Jordan frame. We will further
introduce a geometric mechanism of breaking of the super-
conformal symmetry, which is suitable for phenomenology
and cosmology. The superconformal symmetry will also be
broken by radiative corrections and by terms suppressed by
inverse powers of M2

P.
To embed a given globally supersymmetric model into

supergravity, a particular Kähler potential has to be chosen,
which could be any real function of all scalars (with
positive definite metric of moduli space). In the Einstein

frame, where there is no direct coupling of curvature

to scalars, the kinetic term for scalars is Lkin ¼
K� ��ðz; �zÞ@z�@�z �� and the F-term potential in the

Einstein frame is VF
E ¼ eKðr�WK� ��r ��

�W � 3W �WÞ,
where r�W denotes the Kähler-covariant derivative of
the superpotential. If one would like to preserve the prop-
erty of the globally supersymmetric theory to have canoni-

cal kinetic terms, one has to take K ¼ �� ��z
� �z

��, up to

Kähler transformation. But in such case the F-term poten-
tial is quite different from the global supersymmetry case
Vglobal ¼ j@Wj2.
Here we would like to present a simple case of the

embedding of a class of scale-invariant globally super-
symmetric models into supergravity. Embedding, in gen-
eral, means that the total action of supergravity and chiral
and vector N ¼ 1 multiplets has a local Poincaré super-
symmetry. A special class that we will present here has the
property in which the part of the action describing chiral
and vector multiplets coupled to supergravity has a much
larger local superconformal symmetry. This symmetry is
broken down to the local Poincaré supersymmetry only by
the part of the action describing the self-interacting super-
gravity multiplet. First we start with the analog of (1.1), the
theory with the SUð2; 2j1Þ superconformal symmetry and
no dimensional parameters: it contains an extra chiral
multiplet, the compensator one. The theory is based on
Refs. [1,8,9,13]. We then specify the superconformal ac-
tion for the case when the matter multiplets decouple from
the compensator. As a result, we find in this class of
theories that the total supergravity action consists of the
pure supergravity part, which breaks superconformal sym-
metry, and the matter part which remains superconformal
after the gauge fixing.
The supergravity Weyl multiplet consists of the vierbein,

gravitino, and the vector gauge field of the Uð1ÞR sym-
metry: ea�, c �, and A�. The chiral multiplet has scalars

and spinors, and the vector multiplet has gauge fields and
gauginos.
We start here with the superconformal action described

in detail in [13] in Eqs. (3.3)–(3.8) and more recently1 in [1]
in Sec. 5.1. This action has a local SUð2; 2j1Þ superconfor-
mal symmetry and no dimensional parameters. The
symmetries include local dilatation, special conformal
symmetry, special supersymmetry, and local Uð1ÞR sym-
metry, in addition to all local symmetries of supergravity.
The special conformal symmetry has an independent field
b� as a gauge field, and the local Uð1ÞR symmetry

1The action in Eqs. (3.3)–(3.8) of [13] has an auxiliary vector
field A� as an independent field, before the equations of motion
have been used. In Sec. 5.1 of [1] the superconformal action has
A� already on shell, with purely bosonic and fermionic parts,
respectively, given by the first and second expressions of
Eq. (5.13) of [1]. Here it is important for us to keep A� as an
off-shell independent field.
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has A� as a gauge field. When the local dilatation, special

conformal symmetry, special supersymmetry, and local
Uð1ÞR symmetry are gauge fixed, one finds a generic
supergravity theory without extra symmetries. In notation
of [1] the action contains 3 superconformal-invariant terms

L sc¼½N ðX; �XÞ�Dþ½W ðXÞ�Fþ½fAB ��APL�
B�F: (3.1)

The first one codifies the Kähler potential for the nþ 1

superconformal fields XI, �X
�J, the second introduces a

superpotential, and the third involves the chiral kinetic
matrix fABðXÞ (where A, B are the gauge indices), and
gauginos �A, PL projects on the left-handed fermions. The
superconformal chiral multiplets contain the bosonic fields
XI, fermions �I, and auxiliary fields FI, I ¼ 0; 1; . . . ; n.
One of the multiplets, X0, �0, F0, can be viewed as a
compensator multiplet. Its purpose is to provide the part of
the local superconformal symmetries which are absent in
supergravity.

The dilatation symmetry implies N ðX; �XÞ to be homo-
geneous of first degree in both X and �X, W ðXÞ to be
homogeneous of third degree in X, and fABðXÞ to be
homogeneous of zeroth degree in X. Under chiral Uð1ÞR
symmetry N ðX; �XÞ and fABðXÞ are neutral, W ðXÞ has

chiral weight 3, and �W ð �XÞ has chiral weight �3.
The nþ 1 scalars including the compensator multiplet

form a Kähler manifold with metric, connection, and cur-
vature given, respectively, by

GI �J ¼ @I@ �JN � @N ðX; �XÞ
@XI@ �X

�J
(3.2)

and �I
JK ¼ GI �LN JK �L, RI �KJ �L ¼ N IJ �K �L �

N IJ �MG
M �MN M �K �L. For example, the complete gravity-

scalar part of the SUð2; 2j1Þ invariant superconformal ac-
tion has a gravity part, kinetic terms for scalars, and a
potential:

1ffiffiffiffiffiffiffi�g
p Lscalar-grav

sc ¼�1

6
N ðX; �XÞR�GI �JD

�XID�
�X
�J�Vsc;

(3.3)

where

Vsc ¼ VF þ VD ¼ GI �JW I
�W �J þ 1

2ðRefÞ�1ABP AP B:

(3.4)

Here

W I � @W
@XI ;

�W �J �
@ �W

@ �X
�J
: (3.5)

The F-term potential originates from the solution for the

auxiliary field for the chiral multiplet, FI ¼ GI �J �W �J. The
D-term potential originates from the solution for the aux-
iliary field for the vector multiplet, DA ¼ ðRefÞ�1ABP B,
where P A is the momentum map defining the D-term
potential. The covariant derivative D� in Eq. (3.3) is

D�X
I ¼ @�X

I � b�X
I � iA�X

I � AA
�k

I
A; (3.6)

where AA
� is the vector gauge field and kIA is the Killing

vector, defining the gauge transformations of scalars
�XI ¼ 
AkIA. We have included the gauge vectors AA

�

into the covariant derivatives (3.6) to make clear the rela-
tion between gauge symmetries and D-term potential
where

P A ¼ iN Ik
I
A ¼ P y

A: (3.7)

B. Canonical CSS models

Here we introduce a set of canonical superconformal
supergravity models, starting from the SUð2; 2j1Þ super-
conformal action. In these models, after the gauge fixing of
local dilatation, special conformal symmetry, special su-
persymmetry, and local Uð1ÞR symmetry, the resulting
action for the n chiral multiplets and all vector multiplets
remains superconformal. The reason for this is that the
original superconformal theory before gauge fixing has all
n chiral multiplets and vectors multiplets decoupled from
the compensator multiplet X0, �0, and F0. We focus here
on the simplest version of such superconformal matter
coupling models when kinetic terms are canonical. We
therefore define the CSS class of models by the following
conditions:
(1) We choose2 a flat SUð1; nÞ Kähler manifold for all

nþ 1 chiral multiplets XI, including the compensa-
tor field X0

N ðX; �XÞ ¼ �jX0j2 þ jX�j2; � ¼ 1; . . . ; n:

(3.8)

This means that �0�0 ¼ �1, �� �� ¼ �� ��, where

GI �J ¼ N I �J ¼ �I �J; GI �J ¼ �I �J;

�I
JK ¼ 0; RI �KJ �L ¼ 0: (3.9)

(2) We choose a cubic, X0 independent superpotential,
which breaks the SUð1; nÞ symmetry:

W ðXÞ ¼ 1

3
d���X

�X�X� ) W 0 � @W
@X0

¼ 0:

(3.10)

(3) We choose a constant complex vector kinetic matrix
and RefAB is a constant positive definite matrix.

(4) We choose an X0 independent momentum map. The
conformal requirements respecting (3.8) imply that
the transformations are of the form

2After the compensator field is gauge fixed, the manifold of
physical n complex scalars becomes that of SUð1;nÞ

UðnÞ noncompact
space.
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k�A ¼ ðmAÞ��X
�; k ��

A ¼ ð �mAÞ �� ��
X

��;

P A ¼ i�� ��X
��ðmAÞ��X

� ¼ �i�� ��X
�ð �mAÞ �� ��

�X ��;

(3.11)

where mA are anti-Hermitian matrices:
�� ��ðmAÞ�� ¼ ��� ��ð �mAÞ �� ��

. Hence the gauge

group is part of UðnÞ. This means that the compen-
sator X0 does not participate in Yang-Mills trans-
formations, the zero component of the Killing vector
vanishes, k0A ¼ 0, and other components do not
depend on X0.

For the decoupling of matter from compensator a more
general class of the Kähler manifold for all nþ 1 chiral
multiplets is possible. However, more general choices after
gauge fixing of the local conformal symmetry will lead to
noncanonical kinetic terms for scalars. Our choice of
scalar-independent RefAB was made to have canonical
kinetic terms for vectors. Our choice of ImfAB and of cubic
superpotentials could have included a dependence on some
ratios of homogeneous scalars X�

X� . We do not consider such

theories here for simplicity, and also since they would blow
up at hX�i ¼ 0.

We impose our 4 conditions above on the superconfor-
mal action (3.1) and find a superconformal action of this
special kind. The scalar-gravity part of the superconformal
action (neglecting fermions and gauge vector fields)3

becomes

1ffiffiffiffiffiffiffi�g
p L̂sc ¼ 1

6
ðjX0j2 � jX�j2ÞR� �I �JD

�XID�
�X
�J

� �� ��W �
�W �� � 1

2
ðRefÞ�1ABP AP B:

(3.12)

We may split the total superconformal action into parts
depending on the compensator multiplet X0, �0, F0 and
the part not depending on it. In our class of models we get

1ffiffiffiffiffiffiffi�g
p L̂0

sc ¼ 1

6
jX0j2RþD�X0D�

�X
�0; (3.13)

1ffiffiffiffiffiffiffi�g
p L̂m

sc ¼ � 1

6
jX�j2R� �� ��D

�X�D�
�X
��

� �� ��W �
�W �� � 1

2
ðRefÞ�1ABP AP B:

(3.14)

Each of these two actions is separately superconformal
(when fermions and vectors are added). In the absence of
fermions and vectors they have local conformal and local

Uð1Þ chiral symmetry. The matter part of the action L̂m
sc

does not depend on X0 and therefore it remains super-
conformal after the gauge fixing.

C. Gauge fixing

Now we proceed with the gauge fixing of local symme-
tries that are absent in supergravity. We change variables
from the basis fXIg to a basis fy; z�g, where � ¼ 1; . . . ; n
using XI ¼ yZIðzÞ. We now fix the special conformal
symmetry:

b� ¼ 0: (3.15)

The dilatational and Uð1Þ symmetries are fixed by a choice
N ðX; �XÞ ¼ �jX0j2 þ jX�j2 ¼ �ðz; �zÞ and4

X0 ¼ �X
�0 ¼ ffiffiffi

3
p

MP; y ¼ �y ¼ 1; X� ¼ z�:

(3.16)

The special supersymmetry is fixed5 by the matching
requirement on fermions in which

�0 ¼ 0; �� ¼ 	�: (3.17)

This choice of the gauge fixing provides a de-

coupling of the matter multiplets ðX� ¼ z�;�� ¼
	�; F� ¼ �� �� @ �Wð�zÞ

@�z
�� Þ from the compensator multiplet

ðX0;�0; F0Þ. This leads to
�̂ðz; �zÞ ¼ �3M2

P þ �� ��z
� �z

��;

W ðXÞ ¼ WðzÞ ¼ 1
3d���z

�z�z�:
(3.18)

After the gauge fixing the scalar-gravity part of the super-
gravity action is

1ffiffiffiffiffiffiffi�g
p L̂0

sg ¼ 1

2
M2

PðRþ 6A�A
�Þ; (3.19)

1ffiffiffiffiffiffiffi�g
p L̂m

sg ¼ � 1

6
jz�j2R� �� ��D

�z�D� �z
�� � �� ��W�

�W ��

� 1

2
ðRefÞ�1ABPAPB; (3.20)

where the Uð1Þ R covariant derivative acting on scalars is

D�z
� ¼ @�z

� � iA�z
�; (3.21)

and

3The complete action for this class of models is presented in
Appendix A.

4Here we restore the value of MP to stress that after the gauge
fixing of the superconformal action only one dimensional pa-
rameter,MP, appears in the supergravity action. Moreover, in the
class of models described above, in the Jordan frame, the matter
part of the action does not depend on MP, since it was indepen-
dent on X0.

5While the gauge fixing for dilatations agrees with the choice
made in [1], we made a different gauge choice for special
supersymmetry, which is chosen here in order that the compen-
sating multiplet does not mix with the physical multiplets.
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W� � @WðzÞ
@z�

¼ d���z
�z�: (3.22)

When the corresponding fermion and vector fields are
added to this action, one finds that the total action has an
unbroken local Poincaré supersymmetry. The crucial dif-
ference with a generic case of supergravity theory is that
the matter part of action, whose scalar-gravity part is given
in Eq. (3.20), remains superconformal invariant. In particu-
lar, the scalar-gravity action in Eq. (3.20) is invariant under
simultaneous local conformal transformation of the metric
and scalars, the vector being inert,

g0��¼e�2�ðxÞg��; z0 ¼e�ðxÞz; �z0 ¼e�ðxÞ �z; A0
�¼A�:

(3.23)

It is also invariant under local Uð1Þ R symmetry, which is
part of the superconformal SUð2; 2j1Þ symmetry,

g0�� ¼ g��; z0 ¼ ei�ðxÞz;

�z0 ¼ e�i�ðxÞ �z; A0
� ¼ A� þ @��ðxÞ: (3.24)

The action (3.19) is nonconformal; it describes the gravi-
tational multiplet, including the auxiliary field A�, and it is

not invariant under local conformal transformations nor
under local R symmetry. The total self-coupling of the
gravitational multiplet breaks the superconformal symme-
try down to super-Poincaré.

D. A simple Jordan frame supergravity action with
superconformal matter

Let us summarize what we have learned in the previous
couple of sections. A spectacular property of the super-
gravity total action in this class of models is its local
supersymmetry, whereas the kinetic terms are canonical
and the potential is that of global SUSY. The total action
can be split into the action of the pure supergravity part and
the superconformal matter part. For example, the total
scalar-gravity part of the supergravity action is

L̂0
sg þ L̂m

sc ¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p ½12M2

PðRþ 6A�A
�Þ � 1

6jz�j2R
� �� ��g

��D�z
�D� �z

�� � V̂J�; (3.25)

where

V̂ J ¼ �� ��W�
�W �� þ 1

2ðRefÞ�1ABP AP B: (3.26)

It consists of a pure supergravity part to which one has to
add the global supersymmetry action interacting with the
supergravity multiplet. If we would like to cut out the
supergravity multiplet and get the global SUSY action,
we would have to remove from the action the first 3 terms,
remove

ffiffiffiffiffiffiffi�g
p

, replace the curved metric by the flat one, and

remove theUð1Þ field A� from the covariant derivative. We

would get

L̂ m
susy ¼ ��� ���

��@�z
�@� �z

�� � Vsusy: (3.27)

The potential Vsusy is precisely the same as in supergravity

and given in Eq. (3.26).
Vice versa, if one would like to promote any scale-free

global SUSY theory into supergravity, one starts with the
action (3.27) with the potential in Eq. (3.26). First, one has
to add a factor

ffiffiffiffiffiffiffi�g
p

to the global action and replace the flat

space-time metric ��� in the kinetic term by the curved
metric g��. The partial derivatives of the scalars have to be
made R covariant as in Eq. (3.21) to make the chiral
multiplets superconformal:

L̂ m
susy ¼ ��� ���

��@�z
�@� �z

�� � Vsusy ) L̂m
sc

¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p ð�1

6jz�j2R� �� ��g
��D�z

�D� �z
�� � V̂JÞ;

(3.28)

where

V̂J ¼ Vsusy ¼ �� ��W�
�W �� þ 1

2ðRefÞ�1ABP AP B;

D�z
� ¼ @�z

� � iA�z
�: (3.29)

It remains to add an action of pure supergravityffiffiffiffiffiffiffiffiffiffi�gJ
p ½12M2

PðRþ 6A�A
�Þ�. The result is in Eq. (3.25).

The same for vector multiplets. If we include fermions,
the rules require also to introduce the interaction with
gravitino, as shown in Appendix A. The resulting action
of the form (3.25) and (3.26) has a local super-Poincaré
symmetry and the matter action has a superconformal
symmetry. When fermions and vectors are included, the
generalization of Eqs. (3.25) and (3.26) is given in
Appendix A. The principle is the same, all chiral and
vector multiplets start interacting with the gravitational
Weyl supermultiplet, and the pure supergravity action is
added. The total action, including fermions and vectors,
has local Poincaré supersymmetry.
If we would like to embed the scale-free global SUSY

theory into supergravity in the Einstein frame, we would
have to use the Kähler potential

K̂ðz; �zÞ ¼ �3M2
P log

�
� 1

3M2
P

�̂ðz; �zÞ
�

¼ �3M2
P log

�
1� 1

3M2
P

�� ��z
� �z ��

�
: (3.30)

The total scalar-gravity part of action will be

L̂ E
supergrav ¼ ffiffiffiffiffiffiffiffiffiffi�gE

p ð12M2
PR� K̂� ��g

��
E @�z

�@� �z
�� � VEÞ;

(3.31)

where VE is

VE ¼ eK=M2
P

�
r�Wg�

��r ��
�W � 3W �W

M2
P

�
þ 1

2

�ðRefÞ�1ABPAPB; (3.32)
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and PA ¼ �3 P A

�ðz;�zÞ . The action in the Einstein frame is

significantly different from the global SUSY action, the
kinetic terms are not canonical, the F-term potential is
complicated, and no part of this action has a conformal
or R symmetry. The dependence on MP is all over the
place. Thus, for scale-free globally supersymmetric mod-
els there is an obvious advantage to study their supergrav-
ity embedding in the simple Jordan frame with manifest
superconformal symmetry of the matter action as shown in
Eq. (3.25). Note also that for this class of models the
potential in the Einstein frame can be given in the form

VE ¼ 9
V̂J

�2
¼ �� ��W�

�W �� þ 1
2 ðRefÞ�1ABP AP B

ð1� �� ��z
� �z

��=3M2
PÞ2

; (3.33)

and it is positive semidefinite.
It is instructive to compare the CSS class of models with

no-scale supergravity. The review of no-scale supergravity
models can be found in Sec. XII in [21]. No-scale models
have a positive semidefinite potential in the Einstein frame.
This condition is also satisfied by the CSS models.
However, the second feature of no-scale models is that at
the minimum Vmin ¼ 0 they break supersymmetry sponta-
neously. Meanwhile in the CSS models, the minimum of
the potential is at V ¼ 0, but supersymmetry is not broken
there. Therefore such theories may provide a natural start-
ing point for investigation of the models with a low scale of
SUSY breaking.

An interesting property of the no-scale supergravity is
that the term �3jWj2 is absent in the expression for the
scalar potential. As we already demonstrated, the CSS
models share this property, but, in addition, the expression
for the scalar potential in the Jordan frame does not have

the overall factor eK, the Kähler connection terms, K�W,

drop and K� �� is replaced by �� ��. This is a major simpli-
fication, reducing the F-term potential to its global SUSY
expression. We found this result directly from the super-
conformal approach to supergravity, but one can also con-
firm it by direct calculations presented in Appendix B.

The important property of both CSS and no-scale super-
gravity models is that in order to describe physics, we have
to break some of the symmetries of these models. In the
case of the no-scale model an important example is the
KKLT stabilization of the string theory Kähler moduli
[22], where the breaking of the no-scale property of super-
gravity is achieved via the instanton corrections/gaugino
condensation. In the case of superconformal matter cou-
pling we will introduce in the next section a mechanism of
breaking of superconformal symmetry which is useful for
inflation as well as for a possible solution of the� problem
in the NMSSM. This mechanism is geometric: the moduli
space of chiral fields including the compensator field
is not flat anymore, but no dimensional parameters are
introduced.

E. Breaking of superconformal symmetry
via � terms: The real part of the holomorphic

function in scalar-curvature coupling

An interesting possibility to break the superconformal
symmetry of the matter multiplets in the supergravity
action without introducing dimensional parameters into
the underlying superconformal action (3.1) is to modify
the real function N ðX; �XÞ as follows:

N ðX; �XÞ ¼ �jX0j2 þ jX�j2 � 	

�
a��

X�X� �X
�0

X0
þ H:c:

�
:

(3.34)

Here 	 is a dimensionless parameter and a�� is a numeri-

cal matrix. The functionN ðX; �XÞ has the correct dilatation
weight in each X and �X direction. This means that the new
Kähler manifold for all nþ 1 chiral multiplets XI, includ-
ing the compensator field X0, is not flat anymore. The

metric GI �J ¼ @N ðX; �XÞ
@XI@ �X

�J is not flat and the curvature RI �KJ �L

is proportional to 	. We keep a cubic, X0 independent
superpotential and a flat vector moduli space and an X0,
�X
�0 independent momentum map P A, as above. The gauge

fixing of this class of models with N ðX; �XÞ ¼ �ðz; �zÞ and
X0 ¼ �X

�0 ¼ ffiffiffi
3

p
MP leads to a Jordan frame supergravity,

described in the general case in [1]. The resulting super-
gravity action in which the matter multiplet is not super-
conformal due to 	 terms is given by

1ffiffiffiffiffiffiffiffiffiffi�gJ
p LJ

sg ¼ 1

2
M2

PðRþ 6A�A
�Þ

� 1

6
ðjz�j2 � 	ða��z�z� þ H:c:ÞÞR

� �� ��D�z
�D� �z

�� � VJ; (3.35)

where

VJ ¼ G� ��W�
�W �� þ 1

2ðRefÞ�1ABP AP B: (3.36)

HereG� �� is the matter part of the inverse metric GI �J of the
enlarged space including the compensator. We compute it
in Appendix C. The action corresponds to a Jordan frame
supergravity with the frame function given in Eq. (2.9)
where the holomorphic function is JðzÞ ¼ �	a��z

�z�.

Note that the inverse metric G� �� in the potential (3.36) is
not flat anymore; it depends on moduli. However, the
kinetic term for scalars is canonical since �� �� ¼ �� ��.

An additional simplification is also observed in the poten-
tial (3.36): it has the form rather close to the global super-
symmetry potential. The difference comes from the nonflat

inverse metric G� ��. In particular, certain directions may
still keep a flat metric and the corresponding part of the
potential remains superconformal. As wewill see later, this
property is useful for the studies of inflation in the Jordan
frame.
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F. A simple example

A simple example is the case of two scalars, the field S,
which is not included in the 	 term, and the field H, which
is included in the 	 term. We start with the superconformal
theory (3.34)

N ðX; �XÞ ¼ �jX0j2 þ jSj2 þ jHj2 � 3

4
	

�
H2 �X0

X0
þ H:c:

�
:

(3.37)

After gauge fixing X0 ¼ �X
�0 ¼ ffiffiffi

3
p

MP we find a Jordan
frame supergravity with the frame function

� ¼ �3M2
P þ jSj2 þ jHj2 � 3

4	ðH2 þ �H2Þ
¼ �3M2

P þ jSj2 � 1
4ð1þ 3

2	ÞðH � �HÞ2
þ 1

4ð1� 3
2	ÞðH þ �HÞ2: (3.38)

The action has the following curvature-dependent terms:h
1
2M

2
P � 1

6jSj2 � 1
6jHj2 þ 1

8	ðH2 þ �H2Þ
i
R: (3.39)

If S ¼ 0 and the field H is real, so that H ¼ �H ¼ hffiffi
2

p , we

find the following action:

1
2 ½M2

P þ ð�1
6 þ 1

4	Þh2�R: (3.40)

This will explain a particular relation between the standard
model action [2] and the NMSSM action during inflation,
as well as the relation  ¼ � 1

6 þ 1
4	; see (7.18) in

Sec. VII A.
We may also rewrite the curvature-dependent terms of

the action (3.39) in the following form:h
1
2M

2
P � 1

6ðjSj2 � 1
4ð1þ 3

2	ÞðH� �HÞ2

þ 1
4ð1� 3

2	ÞðH þ �HÞ2Þ
i
R: (3.41)

G. Shift symmetric models

In the main part of the paper we will be interested in the
regime where 	 � 1. However, there are two other special
cases which may be equally interesting, 	 ¼ � 2

3 :

(1) 	 ¼ � 2
3 , in which case the frame function is

given by

�	¼�2=3 ¼ �3M2
P þ jSj2 þ 1

2ðH þ �HÞ2: (3.42)

In this case the field S remains conformally coupled,
but the imaginary part of the field H, which is given
by ðH� �HÞ=2i, decouples from the curvature scalar
in (3.41), i.e. this field becomes minimally coupled.

(2) 	 ¼ 2
3 ,

�	¼2=3 ¼ �3M2
P þ jSj2 � 1

2ðH � �HÞ2: (3.43)

In this case S remains conformally coupled, but
the real part of the field H, which is given by
ðH þ �HÞ=2, decouples from the curvature scalar in
(3.41), i.e. it becomes minimally coupled.

Consider a particular class of superconformal models
with the superconformal symmetry broken by the real
part of the holomorphic function, as shown in (3.34). For
superconformal models we are interested in the relation
between the frame function and the Kähler potential of the
form

K ¼ �3M2
P log

�
� 1

3M2
P

�ðz; �zÞ
�
: (3.44)

If we break the superconformal symmetry of matter pre-
serving this relation between the frame function and the
Kähler potential, we are led to a class of models where the
Kähler potential has a shift symmetry:
(1) 	 ¼ � 2

3 ,

Kðz; �zÞ	¼�2=3 ¼ �3M2
P log

�
�
1� 1

3M2
P

�
jSj2 þ 1

2
ðH þ �HÞ2

��
: (3.45)

This Kähler potential has a shift symmetry with
respect to H� �H.

(2) 	 ¼ 2
3 ,

Kðz; �zÞ	¼2=3 ¼ �3M2
P log

�
�
1� 1

3M2
P

�
�
jSj2 � 1

2
ðH � �HÞ2

��
: (3.46)

This Kähler potential has a shift symmetry with
respect to Hþ �H.

Thus, a new class of models with the shift symmetric
Kähler potential was derived here from the superconformal
approach to supergravity. These models provide a natural
basis for a broad class of new models of chaotic inflation in
supergravity, with a functional freedom of choice of the
inflaton potential [19].

H. Stabilization of moduli at the origin
of the moduli space

We may be interested for applications in a method of
breaking superconformal symmetry which enforces some
scalars to be fixed at the origin of the moduli space. The
method to achieve the moduli stabilization at the origin of
the moduli space due to quartic corrections to the Kähler

potential, KðS; �SÞ ¼ S �S� ðS �SÞ2
�2 , was studied in [23]. It

was argued there that the quartic term originates from the
loop corrections representing the effective potential from
the massive fields which have been integrated out. The sign
of the second term in the Kähler potential is negative. In
such a case the supergravity potential was shown in [23] to
stabilize at S ¼ 0, at the origin of moduli space. Such
quartic terms may be generated by radiative corrections,
or they may even be present in the Kähler potential from
the very beginning.
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Here we will show how these terms may emerge from
superconformal coupling of matter if one introduces an
additional coupling of matter to the compensator. We split
the nþ 1 scalars into a group where X0 is the compensator
field, Xa ¼ fX1; . . . ; Xn�1g are matter scalars, and Xn is the
field which we would like to stabilize at the minimum of
the potential at Xn ¼ 0. We consider a superconformal
theory where the Xn direction is not present in the
a�� matrix:

N ðX; �XÞ ¼ �jX0j2 þ jXaj2 þ jXnj2

� 	

�
aab

XaXb �X
�0

X0
þ H:c:

�
� 3�

jXn �Xnj2
X0 �X0

:

(3.47)

After gauge fixing at X0 ¼ �X0 ¼ ffiffiffi
3

p
MP and using notation

Xa ¼ za, Xn ¼ S, we find the frame function

�ðza; �zb; S; �SÞ ¼ �3e�ð1=3ÞKðza;�zb;S; �SÞ

¼ �3M2
P þ jzaj2 þ jSj2

� 	ðaabzazb þ H:c:Þ � �
jS �Sj2
M2

P

: (3.48)

As we will find later, in agreement with the proposal in [4]

and previous work in [23], the term �� jS �Sj2
M2

P

will allow us

to stabilize the inflationary trajectory in the NMSSM at
S ¼ 0. An interesting feature of this mechanism is that the

term �� jS �Sj2
M2

P

vanishes on the inflationary trajectory when

the moduli stabilization is achieved.

IV. SUPERGRAVITY EMBEDDING
OF THE SCALE-FREE NMSSM

A. Superconformal embedding of the NMSSM
into supergravity

The original motivation for the NMSSM model which,
in addition to two charged Higgs doublets Hu, Hd, has a
gauge singlet Higgs field S, was the hope for the elegant
solution of the � problem. In MSSM there is a problem to
explain a small value of the � term in the quadratic part of
the superpotential W ¼ �Hu �Hd. This term is required
for the phenomenological reasons. In the presence of the
gauge singlet S one can start with the cubic superpotential
�SHu �Hd and hope to find a way to produce a small
vacuum expectation value (VEV) of S so that �eff ¼
�hSiwill produce the effective desired value of the� term.

From the superconformal approach we have a totally
different motivation for the gauge singlet field. The scale-
free NMSSM has cubic potential. Without the gauge sin-
glet the term �SHu �Hd would not be possible. So from
our perspective the motivation for the gauge singlet S is the
requirement of a scale invariance of a globally supersym-
metric theory, which permits a simple promotion to local

supersymmetry with the superconformal matter-
supergravity coupling.
We start with the scale-free NMSSM model reviewed

most recently in [14]. The Higgs field sector of the
NMSSM gauge theory has one gauge singlet and two
gauge doublet chiral superfields zH ¼ fS;Hu;Hdg.

S; Hu ¼ Hþ
u

H0
u

� �
; Hd ¼ H0

d

H�
d

� �
; (4.1)

and Hu �Hd � �H0
uH

0
d þHþ

u H
�
d . The Higgs part of the

model depends on five chiral superfields. The superpoten-
tial is

WHiggs ¼ ��SHu �Hd þ �

3
S3: (4.2)

The quarks and leptons zQL ¼ fQ;UR;DR; L; ERg are in-

troduced via Yukawa cubic superpotential WYukawa so that
the total superpotential for all superfields z� ¼ ðzH; zQLÞ is
cubic

Wtotal ¼ WYukawa þWHiggs ¼ 1
3d���z

�z�z�: (4.3)

TheD- and F-term potentials of the general form (3.26) for
the NMSSM are given explicitly in Eqs. (9) and (10) of
[24], where also the complete set of Feynman rules is
presented. All kinetic terms are canonical, both for chiral
as well as vector superfields. Also the Yukawa and vector
parts of the action as well as interaction between the chiral
and vector multiplets are given explicitly. We do not add
the soft breaking terms to the NMSSM at this point since
we would like first to embed the globally supersymmetric
action into supergravity.
We have shown above that the scale-invariant version of

the NMSSM has all conditions satisfied so that the simplest
possible embedding of the scale-invariant version of it into
supergravity is possible. One should take the globally
supersymmetric action of the form (3.27) with details in
[24] and follow the rules explained around Eqs. (3.28) and
(3.29). This gives the promotion to supergravity of the
scale-invariant globally supersymmetric NMSSM.
The full supergravity action corresponds to the choice of

the frame function

�̂ðz; �zÞ ¼ �3M2
P þ ðS �SþHuH

y
u þHdH

y
d Þ; (4.4)

which corresponds to the underlying superconformal the-
ory (3.3) with an extra compensator field X0

N ðX; �XÞ ¼ �X0 �X
�0 þ ðS �SþHuH

y
u þHdH

y
d Þ: (4.5)

The supergravity potential in the Jordan frame is the same
as the global one given in Eqs. (9) and (10) of [24]. For
example, the Higgs-gravity part of the supergravity action
consists of the supergravity part, given in Eq. (3.19) and the
matter part of supergravity action, which is superconfor-
mal, when interacting with the Weyl multiplet:
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L̂m
sc¼ ffiffiffiffiffiffiffiffiffiffi�gJ

p �
�R

6
ðS �SþHuH

y
u þHdH

y
d Þ�D�H

uD�Hy
u

�D�H
dD�Hy

d �D�SD
�Sy� V̂J

�
; (4.6)

where

V̂J ¼
��������@W

@S

��������2þ
��������@W

@Hu

��������2þ
��������@W

@Hd

��������2

þ g02

8
ðjH0

uj2 � jH0
dj2Þ2 þ

g2

8
ðHy

u ~�Hu þHy
d ~�HdÞ2:

(4.7)

Here D� acting on scalars includes the gauge field of the

Uð1Þ R symmetry A�, which is an auxiliary field of

supergravity; see Eq. (3.21). It can be replaced by its on-
shell value as the function of scalars and fermions; see e.g.
Eq. (5.13) of [1]. For example, its bosonic partA�ðz; �zÞ is
given in Eq. (2.3).

B. Breaking superconformal symmetry of matter
in the NMSSM supergravity

Here we consider a possibility to break the superconfor-
mal symmetry of the matter multiplets in supergravity
action geometrically, without introducing dimensional pa-
rameters into the underlying superconformal action. One
of the possibilities was studied in Sec. III E. It corresponds
to the choice of the frame function

�	ðz; �zÞ ¼ �3M2
P þ jSj2 þ jHuj2 þ jHdj2

þ 3

2
	ðHu �Hd þ H:c:Þ: (4.8)

This choice was proposed in [3] for the purpose of the
Higgs-type inflation in the NMSSM. The underlying super-
conformal action is defined by the function N 	ðX; �XÞ
which is homogeneous of first degree in both X and �X:

N ðX; �XÞ	 ¼ �jX0j2 þ jSj2 þ jHuj2 þ jHdj2

þ 3

2
	

�
Hu �Hd

�X
�0

X0
þ H:c:

�
: (4.9)

Note that there is no superconformal symmetry breaking in
the S direction of the moduli space, namely, the metric

GS �S ¼ 1 ¼ GS �S remains flat, decoupled from the compen-
sator sector, and from the Hu and Hd sectors. Meanwhile,
the moduli space of the Higgs doublets, Hu and Hd, is

mixed with the compensator field X0, �X
�0, and it is nonflat,

with 	-dependent curvature.
The Kähler function of the enlarged space (4.9) after the

gauge fixing with X0 ¼ �X
�0 ¼ ffiffiffi

3
p

MP corresponds to the
frame function (4.8). The bosonic part of the supergravity
action is as before

ffiffiffiffiffiffiffiffiffiffi�gJ
p ½12M2

PðRþ 6A�A
�Þ� and the mat-

ter part of supergravity action, which is superconformal
(up to terms with 	), is

ffiffiffiffiffiffiffiffiffiffi�gJ
p ½�1

6ðjSj2 þ jHuj2 þ jHdj2Þ � 1
4	ðHu �Hd þ H:c:ÞÞR

� jD�Huj2 � jD�Hdj2 � jD�Sj2 � VJ�: (4.10)

In this case, as shown in Sec. III E, the D-term potential in
the Jordan frame is the same as in the case 	 ¼ 0; however,
the F-term potential, as given by (3.36) has a specific
deviation from the quartic superconformal potential, since

the metric G� �� is not flat at 	 � 0:

VJ ¼ G� ��W�
�W �� þ g02

8
ðjH0

uj2 � jH0
dj2Þ2

þ g2

8
ðHy

u ~�Hu þHy
d ~�HdÞ2: (4.11)

The metric G� �� is the part of the inverse GI �J to the GI �J ¼
@N ðX; �XÞ
@XI@ �X

�J metric. It is easy to compute using Eq. (4.9). One

may notice, using WHiggs ¼ ��SHu �Hd þ �
3 S

3 that at

S ¼ 0 the only contribution to the F-term potential comes
from the term

ðVF
J ÞjS¼0 ¼ @W

@S
GS �S @

�W

@ �S
¼ �2GS �SjHu �Hdj2: (4.12)

Since the field S does not enter in the 	 term, one finds that

GS �S ¼ 1 and therefore even after this breaking of super-
conformal symmetry the specific part of the potential
remains quartic. This plays an important role for inflation
where the inflationary trajectory is at S ¼ 0.
To embed the NMSSM gauge theory into the Einstein

frame supergravity with the superconformal symmetry
breaking explained above, we have to use the Kähler
potential

K 	ðz; �zÞ ¼ �3 log½1� 1
3ðS �SþHuH

y
u þHdH

y
d Þ

� 1
2	ðHu �Hd þ H:c:Þ�: (4.13)

V. PHENOMENOLOGICAL ASPECTS
OF THE NMSSM

Here we start with the current point of view on the
NMSSM, and its problems, following [14], where the
globally supersymmetric model is studied in presence of
the terms breaking supersymmetry softly, which originate
from a hidden sector of the theory. We afterward discuss
the issues of the NMSSM from the superconformal sym-
metry approach that we find useful both for the particle
physics phenomenology as well as for cosmology.
One of the reasons to augment the MSSM by the gauge

singlet Higgs field S and study the NMSSM was that the
superpotential of the MSSM contained the term �Hu �Hd.
It is difficult to explain the required smallness of this term.
In the NMSSM, one may generate the� term as��hSiHu �
Hd from the superpotential W� ¼ ��SHu �Hd. The prob-
lem, however, is to explain why one cannot add the term
�Hu �Hd to the NMSSM. To address this problem, one
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may assume that the superpotential of the NMSSM must be
scale invariant. This requirement forbids terms such as
�Hu �Hd, as well as the tadpole term �S and the term
�S2, and allows only the cubic superpotential WHiggs ¼
�SHu �Hd þ �

3 S
3.

Scale invariance of the NMSSM superpotential allows
its consistent embedding into the CSS. From the top-down
perspective, this scale invariance can be interpreted as a
consequence of the original superconformal symmetry,
protected by the decoupling of the light fields from the
conformal compensator. However, scale invariance of the
NMSSM superpotential may result in the cosmological
domain problem, which we are going to analyze now.

At low energies one usually considers adding to the
global SUSY potential the soft SUSY breaking terms.
The soft terms are of two types. There are mass terms for
each Higgs,

Vm
soft ¼ m2

Hu
jHuj2 þm2

Hd
jHdj2 þm2

SjSj2: (5.1)

There are also terms related to a superpotential contribu-
tion to the potential: i.e. there is a coupling A�, A� for each

cubic term in the superpotential, times the real part of the
superpotential. In case of the NMSSM with the cubic
superpotential they are

VW
softðNMSSMÞ ¼ A��SHu �Hd þ A�

1
3�S

3 þ H:c: (5.2)

A continuous global R symmetry of the total potential,
when each scalar transforms as z0 ¼ zi�, �z ¼ e�i� �z, is
broken down to a discrete one due to the VW

softðNMSSMÞ
term. Namely, (5.2) is invariant under Z3 symmetry:

S0 ¼ e2�in=3S;

H0
u ¼ e2�in=3Hu;

H0
d ¼ e2�in=3Hd;

(5.3)

where n 2 Z and we assume that A� and A� are real. In

such a case, the theory has domain walls created once the
Z3 symmetry is spontaneously broken after a restoration of
a symmetric phase in the hot early universe. This creates
large anisotropies of the CMB and contradicts a successful
nucleosynthesis.

An interesting role is played here by the local
Uð1Þ R symmetry, which is part of the superconformal
SUð2; 2j1Þ symmetry (and it is not included into the super-
Poincaré symmetry). As explained in [1], the 	 term re-
quired for inflation in the NMSSM must be a sum of
holomorphic and antiholomorphic terms to keep the

Jordan frame kinetic terms canonical, �ðz; �zÞ ¼ �3M2
P þ

�� ��z
� �z

�� þ JðzÞ þ �Jð�zÞ. These JðzÞ þ �Jð�zÞ terms in the

frame function and in the Kähler potential not only break
the continuousR symmetry, but also break the discrete Z3

symmetry (5.3). A study of the Z3 symmetry breaking
terms in the supergravity Einstein frame potential shows
that the symmetry breaking term is an order six operator

�	 �2h6

M2
P

. According to [25], this amount of Z3 symmetry

breaking may not be sufficient to make the domain walls
disappear before the nucleosynthesis. However, we have to
take into account that the JðzÞ þ �Jð�zÞ terms in the Kähler
potential may change the soft breaking SUSY terms in the
potential, in presence of a hidden sector [26–28]. This
possibility was proposed in [4]. Here we will present a
more detailed investigation of this scenario.
Suppose that chiral superfields z� ¼ f�a;’ig are split

into an observable sector �a and the hidden sector ’i.
Whereas the observable fields have weak scale VEV’s
�10�16MP, the hidden sector scalars have a much larger
scale, but they are still much smaller than MP. Therefore
one may expect that at present W ¼ Wobs þWhid 	 Whid,

and eK=2M2
P 	 1. In what follows, wewill assume thatWobs

is cubic in�a, but we will not specify the superpotential of
the hidden sector. Up to an irrelevant complex phase, the
gravitino mass is given by

m3=2 ¼ eK=2M2
P
hWi
M2

P

	 hWhidi
M2

P

: (5.4)

In what follows, the discussion will proceed in the
Jordan frame supergravity since it makes the conceptual
points very clear. Wewill write the 	 term, which we added
to the Kähler potential, as the real part of the holomorphic
function Jð�Þ, quadratic in fields from the observable
sector, Jð�Þ ¼ �	Cab�

a�b. This allows us to keep the
Jordan frame kinetic terms for the observable sector ca-
nonical and to have only a dimensionless superconformal
symmetry breaking parameter 	:

K ðz; �zÞ¼�3M2
P log

�
1��a ��a

3M2
P

�Jð�Þ
3M2

P

� �Jð ��Þ
3M2

P

����
�
:

(5.5)

Here � � � stands for the terms depending on the hidden
sector superfields. For the values of the fields much smaller
than the Planck scale we may expand the logarithm in
Eq. (5.5):

K ðz; �zÞ ¼ �a ��a þ Jð�Þ þ �Jð ��Þ þ � � � : (5.6)

Now we can use the Kähler invariance to switch to a
different Kähler potential and superpotential,

Keffðz; �zÞ ¼ Kðz; �zÞ � Jð�Þ � �Jð ��Þ þ � � � ;
Weff ¼ WeJð�Þ=M2

P : (5.7)

The new Kähler potential is canonical, but the superpoten-
tial has a correction,

Keffð�; ��Þ ¼ �a ��a; Weff ! WeJð�Þ=M2
P 	 W

þ hWhidi
M2

P

Jð�Þ 	 W þm3=2Jð�Þ: (5.8)

SUPERCONFORMAL SYMMETRY, NMSSM, AND INFLATION PHYSICAL REVIEW D 83, 025008 (2011)

025008-13



Here we took into account (5.4). In the specific case of the
NMSSM, where J ¼ 3

2	Hu �Hd, one finds [4]

Weff ¼ ��SHu �Hd þ �

3
S3 þ 3

2
	m3=2Hu �Hd: (5.9)

Thus, the mere existence of the real part of the holomor-
phic quadratic correction to the frame function for observ-
able Higgs fields, breaking the superconformal symmetry
in a way required for inflation, is responsible also for the
specific contribution 3

2	m3=2Hu �Hd to the � term in the

effective superpotential for small fields,

�eff ¼ 3
2	m3=2 � �hSi: (5.10)

This is a specific realization of the Giudice-Masiero
mechanism [27]. Note that the term 3

2	m3=2Hu �Hd breaks

the Z3 symmetry of the real part of the scale-invariant
superpotential. To evaluate the significance of this effect,
one may estimate the correction to the soft breaking part of
the potential originating from the term 3

2	m3=2Hu �Hd:

VWeff

soft ¼ A��SHu �Hd þ A�

�

3
S3 þ B��effHu �Hd þ H:c:

(5.11)

This term contains the Z3-noninvariant term

�V ¼ 3
2B�	m3=2ðHu �Hd þ H:c:Þ: (5.12)

According to [25], Z3 symmetry does not lead to the cos-
mological domain wall problem if the difference in vacuum
energy between the different vacua separated by the domain
walls is greater than 10�7 v

Mp
v4 � 10�25v4. We may now

compare the potential energy for two vacua, which are

degenerate for 	 ¼ 0. Consider z
jzj ¼ eð2�i=3Þn and take

one vacuum with n ¼ 0 and another one with n ¼ 1. For
B� � 	m3=2 � v, the energy difference is

� 3
2B�	m3=2v

2 � v4, which is many orders of magnitude

greater than the energy separation required for the absence
of domain walls.

One may wonder, whether all of these nice properties
will be spoiled by the tadpole problem? Indeed, in generic
models interactions with heavy particles may induce large
terms linear in S in the superpotential; see e.g. [25,29–31].
Fortunately, this problem can be solved under certain con-
ditions, as explained in [14]. In particular, in the theories
with R symmetry [32] a solution to the tadpole problem
was suggested. We believe that this solution applies to our
model. Some other proposals of how to stabilize the sin-
glets in supergravity and avoid domain walls can be found
in [33].

Let us summarize our approach to the NMSSM
phenomenology.

(i) There are several different versions of the NMSSM,
and many inequivalent ways to incorporate each of
these versions into supergravity. We propose to in-
corporate the NMSSM into a CSS. This singles out
the scale-invariant version of the NMSSM. In gen-
eral, the embedding of a global SUSY model can be
quite complicated, but the embedding of the
NMSSM into the CSS is a trivial exercise in the
Jordan frame: one simply replaces usual derivatives
by covariant derivatives. The resulting theory has
superconformal symmetry, and all kinetic terms are
canonical. This is a unique property of the CSS
approach, not shared by other methods of embedding
of the NMSSM into supergravity.

(ii) After the embedding, all fields in the NMSSM are
massless. Then one introduces masses due to gravi-
tational effects and interaction with hidden sector.
This explains the smallness of all masses in the
NMSSM as a consequence of the underlying super-
conformal symmetry.

(iii) Adding the 	 term to the Kähler potential is equiva-
lent to adding a nonminimal coupling of the Higgs
field to gravity, which is consistent with our ideol-
ogy of breaking the superconformal symmetry by
gravitational effects. Whereas the 	 term was
added in order to realize Higgs inflation, it plays
an additional role: it leads to a specific realization
of the Giudice-Masiero mechanism of generation
of the� term in the NMSSM [27]. This mechanism
breaks Z3 symmetry and resolves the domain wall
problem in the NMSSM, whereas the tadpole prob-
lem may be solved due to R symmetry of our
construction.

VI. ON HIGGS-TYPE INFLATION
WITH NONMINIMAL COUPLING IN

STANDARD MODEL

A. Basic model

Here we review the Higgs-type inflation with nonmini-
mal scalar-curvature  coupling studied in [2]. We will
focus on three different ranges of the Higgs field VEV’s, at
the beginning of the last 60 e-foldings, at the exit from
inflation, and at the present values of the SM Higgs. In [2]
the SM potential with canonical kinetic term for the Higgs
field h is coupled to a gravitational field in the Jordan
frame:

LJ ¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p �

M2 þ h2

2
RðgJÞ � 1

2
@�h@�hg

��
J

� �

4
ðh2 � v2Þ2

�
: (6.1)

At present, h ¼ v� 10�16MP, and M2
P ¼ M2 þ v2.

Since v is extremely small, we will ignore it in our inves-
tigation, and take M ¼ MP ¼ 1. The frame function for
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the action (6.1) in this approximation is� ¼ �3ð1þ h2Þ
and the rescaling of the metric function�2 ¼ 1þ h2 and
the action can be rewritten as

L J ¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p �

1þ h2

2
RðgJÞ � 1

2
@�h@�hg

��
J � �

4
h4
�
:

(6.2)

In the Einstein frame the action is

L E ¼ ffiffiffiffiffiffiffiffiffiffi�gE
p ð12RðgEÞ � 1

2@�c @�c g��
E �Uðc ÞÞ; (6.3)

where

Uðc Þ ¼ �

4

�
h2ðc Þ � v2

1þ hðc Þ2
�
2
; (6.4)

and c is a canonically normalized scalar in the Einstein
frame, defined by

dc � dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 62h2

�4

s
: (6.5)

A solution of this equation is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6�1

q
arc sinhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ 62

q
hÞ

� ffiffiffi
6

p
arc tanh

� ffiffiffi
6

p
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2 þ 62h2
p �

: (6.6)

It is useful to present this solution in a simpler, asymptotic
form for three different ranges of h.

(1) In the interval 0< h 
 1
 one has

c 	 h; Uðc Þ 	 �

4
c 4: (6.7)

(2) In the interval 1
 
 h 
 1ffiffiffi


p one has

c 	
ffiffiffi
3

2

s
h2; Uðc Þ	 �

62

�
c

1þ
ffiffi
2
3

q
c

�
2
: (6.8)

At the upper part of this interval one has c ¼ Oð1Þ.
The existence of this intermediate range was not
taken into account in many recent papers on Higgs
inflation. It will play an important role in our dis-
cussion of the unitarity bound in the next section.

(3) Finally, for h � 1ffiffiffi


p (or, equivalently, c � 1) one

has

c 	
ffiffiffi
3

2

s
lnðh2Þ;

Uðc Þ 	 �

42
ð1þ e�2c =

ffiffi
6

p
Þ�2: (6.9)

In this regime, the potential in the Einstein frame is
very flat, which leads to inflation. As one can see

from (6.9), the constant (c -independent) term in the
potential Uðc Þ is �

42 , so nothing would work with-

out the nonminimal scalar-curvature coupling pro-
portional to .

The slow-roll parameters, for h2 � 1, are

� ’ 4

32h4
; (6.10)

� ’ � 4

3h2
: (6.11)

Slow roll ends when � ’ 1, so the field value at the end of

inflation is hend ’ ð4=3Þ1=4= ffiffiffi


p ’ 1=
ffiffiffi


p
. The number of

e-foldings N � 1 during the slow roll of the field h from
its initial value h0 is given by

N ’ 3
4h

2
0: (6.12)

For a particular case N � 60, the amplitude of scalar
perturbations of metric corresponds to the Cosmic
Background Explorer (COBE) normalization for

ffiffiffiffi
�

p ’ 5� 104: (6.13)

The Hubble constant during inflation in this model is

H 	
ffiffiffi
�
3

q
1
2 .

B. The unitarity bound?

Recently several authors argued that one cannot rely on
the description of various processes in the Higgs inflation
model on an energy scale exceeding the unitarity bound
�� 1= [15–18]. For the nonsupersymmetric standard
model described above, with � ¼ Oð1Þ, this bound is
dangerously close to the Hubble constant during inflation

H 	
ffiffiffi
�
3

q
1
2 . In the NMSSM one may consider the regime

with � 
 1, where the concerns about the unitarity bound
do not seem to appear [4]. This can be done by using the
rescaling of several parameters of the model.
Indeed, one can easily check that all observational con-

sequences of the inflationary model described above, in-
cluding the value of the potential, the Hubble constant, the
slow-roll parameters, the number of e-folds of inflation, the
amplitude of scalar perturbations of metric, the spectral
index ns, and the ratio of tensor perturbations to scalar
perturbations r, depend on only two combinations of pa-
rameters: h2 and �

2
. Therefore all observational conse-

quences of this model are invariant with respect to the
simultaneous rescaling � ! c2�,  ! c, and h !
h=

ffiffiffi
c

p
. This means that one can study the inflationary

regime for � ¼ 1,  ’ 5� 104, and then rescale it to
smaller values of � to avoid the problems with the unitarity
bound.
It is good to know that we have this possibility. However,

whereas it is possible to use small � in the NMSSM, one
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cannot do it in the original nonsupersymmetric model of
[2]. Therefore it would be interesting to double-check
whether one should worry about the unitarity bound in
general.

Most of the arguments suggesting the existence of this
bound are based on the investigation of the theory in the
small field approximation c 	 h, where one can use an
expansion c ¼ hð1þ 2h2 þ � � �Þ. For example, Ref. [16]
considers the potential (6.4) at small values of the field c
where the potential can be expanded in powers of c as

Uðc Þc!0 ) �

4
c 4ð1� 42c 2 þOðð2c 2Þ2Þ þ � � � :

(6.14)

One may consider the term��2c 6, take two of the fields
c , form a loop and integrate. This will produce a term
proportional to �2�2c 4, where � is a cutoff. Repeating
this step for all higher order terms, one may come to a
conclusion that quantum corrections to �

4 c
4 become un-

controllable if �> 1=.
However, it was suggested in [34] that ‘‘the apparent

generation of the new physics is an artifact of considering
only two terms of the expansion when all terms are im-
portant.’’ For example, one-loop quantum corrections to
the scalar potential involve knowledge of the scalar propa-
gator in an external classical field c , which is equivalent to
a resummation of diagrams with an arbitrary number of
external lines of the scalar field. One-loop corrections to
the potential are proportional to ðU00ðc ÞÞ2 lnjU00ðc Þj.
Therefore these corrections during inflation are suppressed
by an extra power of �

2 , as well as by the asymptotic

flatness of the potential (6.9). Here we would like to take
another look at this issue, and give an independent argu-
ment, which can be applied not only to the scalar potential,
but also for kinetic terms and scattering amplitudes.

The key observation used in the derivation of the uni-
tarity bound was that for h 
 1=, the expansion of the
potential contains powers of ð2c 2Þ2n. Replacing the op-
erators c 2 by�2 results in quantum corrections containing
powers of 2�2, and, consequently, to the estimate for the
energy cutoff �� 1=. However, this is true only if one is
interested in quantum effects at very small values of the
Higgs field, h 
 1=, which is very far from the infla-
tionary region h * 1=

ffiffiffi


p
.

As we already mentioned, for h � 1= the expansion of
the potential in powers of c is dramatically different.
Indeed, expansion of the potential Uðc Þ (6.8) in powers
of c in the intermediate range 1

 
 h 
 1ffiffiffi


p does not

contain the dangerous factors ð2c 2Þ2n:

Uðc Þ	 �

62

0
@ c

1þ
ffiffi
2
3

q
c

1
A2

¼ �

62

2
4c 2�2

ffiffiffi
2

3

s
c 3þ���

3
5:

(6.15)

The dependence on  in this expression is extracted into a
single overall coefficient �

62 , and all terms in the expansion

are proportional to c n. This is very much different from
the small field regime, where the higher order terms were
proportional to ð2c 2Þ2n. To estimate how vulnerable
Eq. (6.15) could be with respect to quantum corrections,
one may again replace some of the operators c 2 in this
expansion by �2. One can easily see that the higher order
corrections will remain small for � 
 c . At the lower
boundary of the range 1

 
 h 
 1ffiffiffi


p , this leads to the same

bound as before: �� 1=. However, at the upper bound-
ary one has c ¼ Oð1Þ, which means that quantum correc-
tions are not expected to be important until one reaches
super-Planckian energies, which are well above the energy
scale of inflation.
One can reach similar conclusions for quantum correc-

tions during inflation, when c > 1 and the potential is
given by Eq. (6.9). This means that the typical energy scale

of inflation, H � ffiffiffiffi
�

p
=, is many orders of magnitude

below the UV cutoff during this process. Of course,
for the processes which occur long after inflation, when
h 	 c < 1=, the unitarity bound will be much smaller,
�� 1= [15–17], but this does not affect our ability to
describe physical processes during inflation.
An attempt to derive the unitarity bound without using

the small field approximation was made in [18]. The
authors considered interaction of the inflaton field with
gravity in the Jordan frame and argued that the scattering
amplitude 2h ! 2h exceeds the unitarity bound at energy
E> 1=. However, the estimates made in [18] ignored the
nondiagonal kinetic terms mixing the scalar field with
gravity in the Jordan frame. These terms disappear in the
Einstein frame, and the estimate of the corresponding
2h ! 2h scattering amplitude shows that it does not vio-
late the unitarity bound at sub-Planckian energies.
In [15,17] it was argued that investigation of scattering

of scalar particles on other scalar and vector particles also
gives rise to the unitarity bound �� 1=. Once again,
the calculations in [15,17] are based on the expansion
c ¼ hð1þ 2h2 þ � � �Þ, which is valid only for h < 1=.
In the most interesting interval of the values of the Higgs
field h � 1=, one can repeat the arguments given above
and again come to the conclusion that the higher order
corrections are suppressed for �< c . The authors of
Ref. [35] mentioned a possibility of the unitarity cutoff
�� 1=

ffiffiffi


p
, but for � 104 this cutoff is 2 orders of

magnitude higher than the Hubble constant during infla-
tion, so it is harmless.
In conclusion, we do not think that one should worry too

much about the unitarity bound during inflation in the
Higgs inflation model of Ref. [2]. However, those who
want to feel even better protected against this problem
may either try to find a consistent UV completion of this
model [36], or switch to the NMSSM and study the model
with � 
 1, where the presumed unitarity bound�� 1=
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is well above the typical energy scale of inflation H 	ffiffiffi
�
3

q
1
2 [4]. That is what we are going to do now.

VII. INFLATION IN THE NMSSM

Here we will start with the Jordan frame supergravity
(we setMP ¼ 1 throughout this section) with the following
frame function, as outlined in Secs. III E and III H:

�ðz; �zÞ ¼ �3þ ðS �SþHuH
y
u þHdH

y
d Þ

þ 3
2	ðHu �Hd þ H:c:Þ � �ðS �SÞ2: (7.1)

Here the term ðS �SþHuH
y
u þHdH

y
d Þ corresponds to the

superconformal coupling of the chiral multiplets. The term
þ 3

2	ðHu �Hd þ H:c:Þ is the real part of the holomorphic

quadratic function in the curvature-scalar coupling; it
breaks the superconformal symmetry of the chiral multi-
plet coupling. This term reflects the need of the super-
conformal symmetry breaking to provide a realistic Higgs-
type inflationary model proposed in [3] and developed in
[1,4]. Finally, the term �ðS �SÞ2 is added to provide the
stability of the origin of the moduli space, S ¼ 0, as
proposed in [4] and used in earlier models in [23].

To embed the NMSSM gauge theory into the Einstein
frame supergravity we will use the Kähler potential and the
superpotential

Kðz; �zÞ ¼ �3 log

�
� 1

3
�

�

¼ �3 log

�
1� 1

3
ððS �SþHuH

y
u þHdH

y
d ÞÞ

� 	

2
ðHu �Hd þ H:c:Þ þ �

3
ðS �SÞ2

�
; (7.2)

W ¼ ��SHu �Hd þ �

3
S3; (7.3)

where the Higgs doublets are defined in (4.1). Note that

Hu �Hd � �H0
uH

0
d þHþ

u H
�
d ; (7.4)

HuH
y
u þHdH

y
d ¼ H0

uðH0
uÞy þH0

dðH0
dÞy

þHþ
u ðHþ

u Þy þH�
d ðH�

d Þy: (7.5)

As in [1], we use a consistent truncation in which the
charged superfieldsHþ

u andH�
d are absent. Wewill present

later in Appendix E the condition for the stability of the
inflationary trajectory with regard to the vanishing charged
fields. We will use the fact that the dependence on the

neutral and charged Higgs fields in HuH
y
u þHdH

y
d is

symmetric, whereas the one in Hu �Hd is antisymmetric.
Below we use a simplified action of the NMSSM, con-

taining only three superfields: S, H0
u, and H0

d, such that,

H1 ¼ 0
H0

u

� �
; H2 ¼ H0

d

0

� �
: (7.6)

With this truncation, the frame function, the Kähler poten-
tial, and the superpotential are

�ðz; �zÞ ¼ �3þ ðjSj2 þ jH0
uj2 þ jH0

dj2Þ
� 3

2	ðH0
uH

0
d þH0

u H
0
dÞ � �jSj4; (7.7)

K ðz; �zÞ ¼ �3 log½1� 1
3ðjSj2 þ jH0

uj2 þ jH0
dj2Þ

þ 1
2	ðH0

uH
0
d þH0

u H
0
dÞ þ 1

3�jSj4�; (7.8)

W ¼ �SH0
uH

0
d þ

�

3
S3: (7.9)

The D-term potential in the Jordan frame remains simple

VD
J ¼ g02

8
ðjH0

uj2 � jH0
dj2Þ2 þ

g2

8
ðHy

u ~�Hu þHy
d ~�HdÞ2:

(7.10)

The S-dependent terms in the F-term potential, even in the
Jordan frame, are complicated due to � corrections.
However, we will establish that the stabilization of some
scalars takes place and only one real scalar remains light
during inflation. We will find out that during inflation all
complicated corrections to the potential drop and we can
explain the inflationary dynamics regime using the simple
features of the superconformal matter coupling and its
particular breaking.

A. Basic features of inflation in the NMSSM

For a numerical investigation of inflation in the NMSSM
model with three chiral multiplets and truncated charged
Higgs fields we use the MATHEMATICA code [37] designed
to compute the Einstein frame potentials and scalar kinetic
terms for any number of moduli with generic Kähler
potential Kðz; �zÞ and generic superpotential WðzÞ.
The potential in the NMSSM depends on three complex

superfields:

S ¼ sei�=
ffiffiffi
2

p
; H0

u ¼ h1e
i�1=

ffiffiffi
2

p
;

H0
d ¼ h2e

i�2=
ffiffiffi
2

p
:

(7.11)

Note that here we slightly deviate from the notation of our

previous paper [1]: We divided all fields by
ffiffiffi
2

p
. The main

reason to do it is to keep the fields h canonically normal-
ized in the Jordan frame. It will simplify the comparison of
inflation in the NMSSMwith inflation in the nonsupersym-
metric standard model [2].
The standard mixing of the Higgs fields is defined as

h1 � h cos�; h2 � h sin�; (7.12)
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which leaves us with two real fields, h and �, instead of h1
and h2. The D-flat direction, defined by VD

J ¼ 0, requires
that

� ¼ �=4; h21 ¼ h22 ¼ h2=2: (7.13)

In this section we will consider the simplest inflationary
solution with � ¼ �=4, �i ¼ 0, and s ¼ 0. In the next
sections we will investigate the conditions required for
stability of this solution with respect to the �, �i, and s.

We find that in the Jordan frame the total supergravity
action for the field h, under the condition that � ¼ �=4,
�i ¼ 0, and s ¼ 0, is reduced to

LJðh; gJ;�Þ ¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p �

1

2

�
1� 1

6
h2 þ 1

4
	h2

�
RðgJÞ

� 1

2
ð@�hÞ2 � �2

16
h4
�
: (7.14)

An interesting question to ask here is why the complete
supergravity action of the NMSSM model with the frame
function in (7.7) and superpotential in (7.9) at the infla-
tionary trajectory with all fields real and s ¼ 0 is so simple
in the Jordan frame?

The answer to this question consists of several parts.
(1) The first term appears directly from our expression for
the frame function (7.7). (2) The kinetic term for scalars at
S ¼ 0 is canonical due to our choice of geometric breaking
of superconformal symmetry, which does not affect this
important property. (3) The value of the auxiliary field
A�ðz; �zÞ vanishes for real scalars. (4) The potential in

the Jordan frame (3.36) in the D-flat direction with cubic
superpotential is

VJ ¼ G� ��W�
�W ��: (7.15)

The term 	ðH0
uH

0
d þH0

u H
0
dÞ in the frame function signals

the deviation from the superconformal theory. This devia-
tion, however, is controllable. Namely, with WHiggs ¼
��SHu �Hd þ �

3 S
3 if we succeed to stabilize the theory

at S ¼ 0, the only contribution to the potential at S ¼ 0
comes from the term

VJjS¼0 ¼ @W

@S
GS �S @

�W

@ �S
¼ �2GS �SjHu �Hdj2

¼ �2jHu �Hdj2 ¼ �2

16
h4: (7.16)

The metric GS �S ¼ 1 since the field S does not enter in the
superconformal symmetry breaking 	 term, and therefore
even after this breaking of superconformal symmetry
the h-dependent part of the potential remains quartic: in

the D-flat direction for real fields it is equal to �2

16 h
4.

It is easy to compare the supergravity action on infla-
tionary trajectory (7.14) with the nonsupersymmetric
Jordan frame action (6.2), which we reproduce here again
to simplify the comparison:

L SM
J ¼ ffiffiffiffiffiffiffiffiffiffi�gJ

p �
1þ h2

2
RðgJÞ � 1

2
ð@�hÞ2 � �

4
h4
�
:

(7.17)

These two actions coincide after the following identifi-
cation of the parameters:

 $ � 1

6
þ 1

4
	; � $ �2

4
: (7.18)

On the left-hand side of each equation in (7.18) we have
parameters of the standard model as in Eq. (7.17). On the
right-hand side of each equation above we have parameters
of the NMSSM inflation model as in Eq. (7.14).
After the identification (7.18), all features of inflation in

the NMSSM can be deduced from the results of Ref. [2]
presented in Sec. III. In particular, the slow-roll parameters
are

� ’ 64

3	2h4
; (7.19)

� ’ � 16

3	h2
: (7.20)

Slow roll ends when �, � ’ 1, so the field value at the end
of inflation is hend ’ 2:2=

ffiffiffiffi
	

p
. The number of e-foldings

during the slow roll of the field h from its initial value h0,
for h0 � hend, is given by

N ’ 3

16
h20: (7.21)

ForN � 60, the amplitude of scalar perturbations of metric
corresponds to the COBE normalization for

	 ’ 105�: (7.22)

The asymptotic value of the Einstein frame potential VE at

large h is �2

	2 , and the Hubble constant during inflation in

this model is H 	 1ffiffi
3

p �
	 .

To give a particular example, let us take � ¼ 10�2.
In this case one should have 	 ¼ 103. Inflation ends
at hend � 0:07. The last 60 e-folds of inflation begin at
h0 ’ 0:37. All observational consequences are the same as
in the nonsupersymmetric model [2]. In particular, the
spectral index is ns � 0:97, and the tensor to scalar ratio
is r 	 0:0033. These results are valid for 	 � 1. They
are invariant with respect to the simultaneous rescaling
� ! c�, 	 ! c	, and h0 ! h0=

ffiffiffi
c

p
. For a complete inves-

tigation of inflation in this model one would also need to
study quantum corrections in supersymmetric theory as
was done for the standard model case in [2].

B. Stabilization of the noninflaton
directions in the moduli space

Wewould like to split all 6 components of the 3 complex
scalars S, H0

u, H
0
d in (7.11) into heavy and light ones. First
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of all, we impose a unitary gauge, when one combination
of the neutral components of H0

u and H0
d is the Goldstone

boson and is absent in the unitary gauge. We take a
condition �1 ¼ �2.

We study stabilization of angles �, �, � � �1 þ �2

and of the field s using the complete and explicit
expressions for the kinetic terms and the potential in the
Einstein frame derived using the MATHEMATICA code [37]
for the Kähler potential in (7.8) and superpotential in (7.9).
We present some details of the action in the Jordan frame
and the Einstein frame for the real fields h and s in
Appendix B.

1. Stabilization of angles

Now we must check the stability of the inflationary
solution with respect to the fields � ¼ �=4, � ¼ 0, � �
�1 þ �2 ¼ 0, and s ¼ 0. We already checked in [1] that
during inflation the CP-invariant solution in which S, H0

u,
and H0

d are real, is stable with respect to the field �. The
degree of stability is described by the mass squared of the
field �. During inflation, in the limit 	h2 � 1, one has the
kinetic term 2

	 ð@�Þ2 and the second derivative of the po-

tential over � is V�;�ð� ¼ �=4Þ ¼ 4ðg2þg02Þ
	2 . This means

that the effective mass,

m2
� ¼ g2 þ g02

	
¼ g2 þ g02

�2
3	H2; (7.23)

is greater than H2 ¼ 1
3

�2

	2 . In the most natural case �2 <

3	ðg2 þ g02Þ, one has m2
� � H2. Thus, there is no slow-

roll regime with respect to the change of� during inflation,
because the mass squared of perturbations of the angle � is

much greater than H2 ¼ 1
3
�2

	2 . During inflation the field �

rapidly approaches �=4 and stays there. For �2 
 g2, g02,
the regime with � ¼ �=4, h21 ¼ h22 ¼ h2=2 remains stable
even long after inflation, until the soft supersymmetry
breaking terms become important and change the final
value of � [1].

Now we should study the dependence of the potential
on angles � and �1 ¼ �2 near the inflationary trajectory
s ¼ 0, � ¼ �=4. The potential at s ¼ 0 does not depend
on �. Therefore instead of investigation of excitations of �
one should study stability of the potential with respect to
the field s for different �. For small s and �� < 0,
the minimum of the potential with respect to � occurs at
� ¼ 0 [1]. As we see later, stability in this direction is

achieved by adding the term �
3 ðS �SÞ2 in the Kähler potential,

following the suggestion made in [4] and ideas developed
in [23].

As explained above, the combination �1 � �2 describes
a Goldstone boson, which is replaced by a longitudinal
component of the vector field. In the unitary gauge �1 �
�2 ¼ 0. The remaining combination � ¼ �1 þ �2

corresponds to a scalar field with mass which during
inflation is

m2
� 	 4H2: (7.24)

To see it we should analyze the potential along the infla-
tionary direction s ¼ 0, � ¼ �=4,

Vðh; �Þ ¼ 9�2h4

ð12� 2h2 þ 3	h2 cos�Þ2 ; (7.25)

where � ¼ �1 þ �2. At 	h2 � 1, Vðh; �Þ ¼ �2

	2cos2�
.

Therefore its second derivative at � ¼ 0 is given by

V�;�ð� ¼ 0Þ ¼ 2�2

	2 . The matrix of kinetic terms for the

fields Hi in the limit 	h2 � 1 at S ¼ 0 in the unitary
gauge at � ¼ �=4 simplifies to

L kin ) 3

h2
ð@hÞ2 þ 3

4
ð@�Þ2: (7.26)

Therefore the mass of the canonical field

m2
� ¼ 2

3
V�;�ð� ¼ 0Þ ¼ 4�2

3	2
¼ 4V=3 ¼ 4H2: (7.27)

Since m2
� is of the same order as H2, during inflation the

field � rapidly rolls toward � ¼ 0 and stays there. Therefore
during inflation we have � ¼ 0, or, equivalently, �1 ¼
�2 ¼ 0. During inflation, Z3 symmetry is broken by the
term 3

2	ðHu �Hd þ H:c:Þ in the Kähler potential. The po-

tential has a minimum with respect to � only at � ¼ 0 (or,
more exactly, at � ¼ 2�n); see Fig. 1. Therefore inflation
naturally singles out only one of the three possible minima
related to each other by Z3 symmetry. However, long after
inflation, when soft supersymmetry breaking terms become

FIG. 1 (color online). Stabilization of the angle � ¼
�1 þ �2 ¼ 0 near the inflationary trajectory. The infinitely
high horseshoe barriers correspond to the singularity of the
Kähler geometry. These barriers separate the admissible range
of variables from the forbidden part of the landscape (inside the
horseshoes), where the argument of the logarithm in the ex-
pression for the Kähler potential becomes negative.
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important at small h a new strongmechanism of breakingZ3

symmetry takes place as we have shown in Sec. V. It
originates from the real part of the quadratic holomorphic
term 3

2	ðHu �Hd þ H:c:Þ in the Kähler potential, however,

it removes domain walls via the induced soft term in the
potential, Vsoft � 	ðHu �Hd þ H:c:Þ.

2. Stabilization of the field S

As we have shown in [1], the original version of inflation
in the NMSSM model [3] suffered from the tachyonic
instability with respect to the field S. However, one may
circumvent this problem by taking into account interac-
tions of the field S with superheavy fields that one may add
to the model, or simply by adding a term � 1

3 �ðS �SÞ2 to the

frame function and Kähler potential [4,23]. This term helps
to stabilize the inflationary trajectory in the toy model
considered in [4]. Here we will check what happens in
the NMSSMmodel. An investigation required an extensive
use of the MATHEMATICA program [37]. We will present
here only the main results, with some details given in
Appendix B.

During the inflationary regime, the leading behavior of
the F-term potential in this model for h2 � 1 is given by

VE � �2

	2
�

�
j��j þ �2

6	
ð2� 3�	h2Þ

�
4s2

	2h2
þOðs4Þ:

(7.28)

To find the effective mass of the s field, attention must
be paid to the nonminimal normalization of the field

S ¼ sei�=
ffiffiffi
2

p
. At constant �, the kinetic term of field S is

given by

gS �S@S@ �S ¼ 4

	h2
@S@ �S ¼ 2

	h2
ð@sÞ2: (7.29)

Here, as we already explained before, the � correction to
the kinetic term of the s field is always small compared to
other terms, and so we neglected it. For small s, in the
vicinity of the inflationary trajectory, the Lagrangian of the
field s for 	h2 � 1 is

LE 	 � 2

	h2
ð@sÞ2 � �2

	2

þ
�
j��j þ �2

6	
ð2� 3�	h2Þ

�
4s2

	2h2
: (7.30)

Therefore the mass of the canonical field s is

m2
s � 2

�
�2

6	2
ð3�	h2 � 2Þ � j��j

	

�
: (7.31)

Thus the condition of stability of the inflationary trajectory
at s ¼ 0 is

� >
2j��j
�2h2

þ 2

3	h2
: (7.32)

However, this simple analytic form of the bound can be
used only at

ffiffiffiffi
	

p
h � 1, i.e. well before the end of inflation.

Meanwhile, the greatest danger of instability occurs at the
very end of inflation. A more accurate condition, which is
valid even for 	h2 < 1, is

� >
2j��j
�2h2

þ 2ðy2 � 32Þ
3y2ðyþ 4Þ ; (7.33)

where y ¼ 	h2. The function 2ðy2�32Þ
3y2ðyþ4Þ takes its maximal

value 0.0327 at y ¼ 	h2 	 10:9. This point corresponds to
the moment of maximal vulnerability with respect to the
tachyonic instability. Therefore the trajectory s ¼ 0 re-
mains stable for all h if

� >
2j��j
�2h2

þ 0:0327: (7.34)

This result is illustrated by Fig. 2, which shows the poten-
tial for � ¼ 0 and � ¼ 0:04.
To illustrate the general situation in a more complete

way, we show the contour plot of the potential of the fields
h and s for � ¼ 0 and various values of the coupling
constant � in Fig. 3. The first panel corresponds to the
potential shown in Fig. 2, with � ¼ 0:04. The field s is
stabilized during inflation and after it. For � slightly
smaller than 0.0327, the tachyonic instability of the field
s at the very end of inflation may force the field to deviate
from the straight path, which results in tachyonic preheat-
ing. This possibility is exotic but not dangerous. Further
decrease of � may result in formation of two local minima
of the potential, as shown in the second panel for � ¼ 0:01.
The field may roll to one of the two metastable minima and
be stuck there until it tunnels to the global minimum at h,
s ¼ 0. This leads to large inhomogeneities, as in the old
inflation scenario. Finally, the third panel shows the poten-
tial for � ¼ 0:003. The field rolls down to one of the two
minima with negative values of the potential, looking like
two white eyes of an alien, and the Universe collapses.

FIG. 2 (color online). Stabilization of the field s near the

inflationary trajectory s ¼ 0 for � > 2j��j
�2h2

þ 0:0327.
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Thus, for � significantly below 2j��j
�2h2

þ 0:0327, one may

encounter production of gross inhomogeneities and even a
collapse of the Universe. Fortunately, however, one can
have a successful inflationary scenario if � is greater than
2j��j
�2h2

þ 0:0327, and even if � is slightly below this limit.

C. Higher order corrections

In Sec. VI B we argued that the unitarity bound dis-
cussed in [15–17] is not expected to pose any problems
for the description of inflation in this class of models.
However, for the full investigation of these models
one should also investigate running of the coupling
constants, along the lines of Ref. [2], where it was done
for the standard model case. For our models the quantum
corrections have to be studied with account of
supersymmetry.

Independently of the issue of quantum field theory-type
corrections, one may wonder how stable are our conclu-
sions with respect to modifications of various ingredients
of these models. According to (7.22), our model does
require small � and large 	, so that �=	� 10�5. This,
by itself, does not look much better than the standard
requirement �� 10�6 in the theory �2�4=16, as in
Eq. (7.14). However, the choice of the large 	may provide
an additional robustness of the model with respect to
higher terms in the expression for the Kähler potential.

Indeed, inflation in our model occurs at h� 1=
ffiffiffiffi
	

p
.

Suppose that, in addition to the term breaking supercon-
formal symmetry, � 1

2	ðHu �Hd þ H:c:Þ, there is also a

higher order term cðHu �Hd þ H:c:Þ2 in the Kähler poten-
tial. For c ¼ Oð1Þ, this term remains smaller than the first
one for h <

ffiffiffiffi
	

p
. Therefore if one takes 	 � 1, then for

h &
ffiffiffiffi
	

p
one should not be concerned about higher order

terms described above. According to (7.21), the total num-
ber of e-folds in this regime is N � 	2, which is incredibly
large for the values of 	 considered in our paper. The total
number of e-folds may be even greater if there is some
symmetry which protects the original structure of the
Kähler potential at large values of the inflaton field.

D. Gravitino problem and inflation beyond the NMSSM

The possibility to have an inflationary regime in the
NMSSM does not necessarily mean that the cosmological
theory based on this scenario is fully consistent.
Supergravity is plagued by the cosmological moduli prob-
lem and by the gravitino problem. Inflation helps to solve
the gravitino problem, but only if the reheating temperature
Tr after inflation is sufficiently small. The bounds on Tr

depend on the gravitino mass and other parameters, but
typically it should be smaller than 108 GeV; see [38–43]
for a more detailed discussion of this issue.
One way to avoid this problem is to assume that the

energy scale of inflation is very low, which leads to a small
reheating temperature. However, inflation in the NMSSM

occurs at the energy density �2

	2 � 10�10, in Planck units. If

reheating happens instantly, this energy is converted to
thermal energy T4

r � 10�10. This gives an estimate Tr �
1015 GeV.
One may have a much smaller reheating temperature if

the inflaton field extremely weakly couples to matter,
which leads to a delay in thermalization. During this delay,
the energy of the inflaton field decreases, and the reheating
temperature becomes smaller. For example, one may con-
sider inflationary models where the inflaton belongs to a
hidden sector, and its decay to observable particles is sup-
pressed by the small gravitational coupling. But the Higgs
fields belong to the observable sector and they couple to
matter quite strongly. An investigation of reheating in the
Higgs inflation [44] suggested that the reheating tempera-
ture is about 1013 GeV. A more detailed investigation
performed in [45] demonstrated that the process of reheat-
ing in this theory is quite complex, being a combination of
the perturbative reheating [46], parametric resonance [47],
instant preheating [48], and tachyonic preheating [49]. The
authors argued that the full investigation of this compli-
cated process should be done by lattice simulations [50].
However, there is no obvious reason to expect that this
investigation will yield the reheating temperature 5 orders
of magnitude smaller than the estimate Tr � 1013 GeV
made in [44].
There are several possible ways to address this problem,

even if the future investigation confirms thatTr � 108 GeV.
First of all, the gravitino problem disappears if the gravitino
mass is below keV, or if it is several orders of magnitude
above the TeV scale; see e.g. [41–43] for a recent discussion
and more precise bounds on the gravitino mass. Both of
these possibilities are realistic. For example, in the model

FIG. 3 (color online). Contour plots of the potential for the
fields s and h during the last 60 e-folds of inflation for � ¼ 0,
� ¼ 10�2, and  ¼ 5� 102, for three different values of � . The
darker parts correspond to smaller positive density, and the white
ovals on the right panel correspond to negative values of the
potential. The red arrows show the evolution of the fields during
inflation.
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of conformal gauge mediation one can have gravitino with
mass below 10 eV [51]. A superheavy gravitino has been
discussed in [52–54].

Another solution is to have a second stage of inflation
after the NMSSM inflation. This is a realistic possibility
since the energy scale of the NMSSM inflation is very
high, so it is quite possible to have a second stage of
inflation at a much smaller energy scale after the
NMSSM inflation. If this stage is short, as in the thermal
inflation scenario [55], then it may solve the gravitino
problem, and all observational predictions on the
NMSSM inflation will remain intact. On the other hand,
if the second stage of inflation is sufficiently long, then it
will determine all properties of the observable part of the
Universe. In this respect, it is quite encouraging that one
can develop a large class of newmodels of chaotic inflation
based on the ideas discussed in this paper, but without
necessarily identifying the inflaton field with the Higgs
field of the standard model [19].

VIII. CONCLUSION

Supergravity phenomenology was mostly developed in
the Einstein frame where there is no scalar-curvature cou-
pling. In this paper we propose a superconformal approach
to supergravity phenomenology and cosmology. One can
start with the SUð2; 2j1Þ superconformal theory of chiral
and vector multiplets interacting with supergravity Weyl
multiplet. This theory contains a conformal compensator,
which can be gauged away, giving rise to the Planck mass.
In this paper we identified a special class of supergravity
models: If chiral and vector multiplets of the superconfor-
mal theory are decoupled from the conformal compensator,
the part of the action describing matter fields in the Jordan
frame remains superconformal invariant. This action is
unusually simple: kinetic terms are canonical, supergravity
potential coincides with the global theory potential, and
scalars are conformally coupled to gravity. The potential is
quartic, the theory has no mass terms, no nonrenormaliz-
able terms, and no cosmological constant.

Theories of this type may form a convenient starting
point for constructing phenomenological models. In such
models, one may attribute smallness of all mass parameters
to the effects of breaking of the superconformal symmetry,
which can be achieved e.g. due to gravitational effects. In
particular, these theories may provide a natural supergrav-
ity embedding for the NMSSM. Superconformal symmetry
breaking is introduced by the real part of the holomorphic
quadratic nonminimal scalar-curvature coupling, by terms
designed to stabilize some fields at the origin of moduli
space, and by interactions with a hidden sector. This ap-
proach to supergravity phenomenology from the under-
lying superconformal theory allows one to address the
� problem and the domain wall problem, and to obtain
an inflationary regime in the NMSSM. Efficient reheating

after inflation in the NMSSMmay lead to the cosmological
gravitino problem. This problem can be solved if one
considers models with superlight or superheavy gravitino,
or if one postulates a secondary stage of inflation after the
NMSSM inflation. Fortunately, the general methods devel-
oped during the investigation of the canonical supercon-
formal supergravity and inflation in the NMSSM can be
used for construction of a new broad class of models of
chaotic inflation in supergravity with a functional freedom
of choice of the inflaton potential [19].

ACKNOWLEDGMENTS

We are grateful to S. A. Abel, S. Dimopoulos, M.
Einhorn, U. Ellwanger, J. Garcia-Bellido, C. Germani, P.
Graham, A. Guth, S. Kachru, B. Kyae, H.M. Lee, P. Nilles,
K. Olive, F. Quevedo, S. Shenker, L. Susskind, and A.
Westphal for useful discussions. The work of R. K. and
A. L. is supported by NSF Grant No. 0756174. The work of
S. F. is supported by ERC Advanced Grant No. 226455,
Supersymmetry, Quantum Gravity and Gauge Fields
(Superfields), and in part by INFN, sez. L.N.F. The work
of A.M. is supported by INFN, as a visitor to Stanford
University, Stanford, CA, USA. The work of A. V. P. is
supported in part by the FWO—Vlaanderen, Project
No. G.0235.05, and in part by the Federal Office for
Scientific, Technical and Cultural Affairs through the
‘‘Interuniversity Attraction Poles Programme—Belgian
Science Policy’’ P6/11-P.

APPENDIX A: COMPLETE CSS ACTION

We present here the full action corresponding to the 4
assumptions given in Sec. III B. We will eliminate the
scalar auxiliary fields of supergravity, but leave the auxil-
iary vector A� as an independent field. Wewill make use of

the gauge conditions mentioned in Sec. III C.
Because of the separation of X0 from the other fields, the

action can be split and we can write

S ¼
Z

d4x

�
½�jX0j2 þ jX�j2�D þ

�
1

3
d���X

�X�X�

�
F

þ ½fAB ��APL�
B�F

�
¼

Z
d4x½LSG þLconf�; (A1)

where SSG is the action of pure supergravity, which is
produced from the jX0j2 term, and Sconf is the conformal
action of all the other physical fields. The former is given
by

L SG ¼ e12M
2
P½Rð!ðe; c ÞÞ � �c ��

���ð@�
þ 1

4!
ab
� ðe; c Þ�abÞc � þ 6A�A��; (A2)

where we already replaced X0 by its gauge-fixed valueffiffiffi
3

p
MP. The conformal D terms are
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½jX�j2�D¼e�� ��

�
�D�X

�D� �X
���1

2
���D�

���1

2
��

��D��þF� �F
��� i �X

��kA
�DA� ffiffiffi

2
p

��Að��kA
��þ�

��kA
�

�

þ
�

1

2
ffiffiffi
2

p �c ��ðF��
���D �X

����þX
��PR�

AkA
�Þ� 1

6
ffiffiffi
2

p �X
�� ������R0

��ðQÞþ1

8
i"���� �c ���c �

�
�
�X
��D�X

�þ1

2
������

��þ 1ffiffiffi
2

p �X
�� �c ��

�

�
þH:c:

�
þ1

6
X� �X

��

�
�Rð!ðe;c ÞÞþ1

2
�c ��

���R0
��ðQÞ

��
: (A3)

The fermions are chiral:

PL�
� ¼ ��; PR�

�� ¼ �
��: (A4)

The covariant curvature and covariant derivatives in this
equation are

D�X
� ¼ ð@� � iA�ÞX� � 1ffiffiffi

2
p �c ��

� � AA
�k

�
A;

D��
� ¼

�
@� þ 1

4
!�

abðe; c Þ�ab þ 1

2
iA�

�
��

� 1ffiffiffi
2

p ðDX� þ F�Þc � � ffiffiffi
2

p
X���

� AA
�ðmAÞ���

�;

R0
��ðQÞ ¼ 2

�
@½� � 3

2
iA½��� þ 1

4
!½�

abðe; c Þ�ab

�
c ��:

(A5)

The spin connection !�
ab in this equation contains

c torsion. The field �� is the composite gauge field of
special supersymmetry:

�� ¼ �1
2�

�R0
��ðQÞ þ 1

12���
abR0

abðQÞ: (A6)

The superpotential term is

½13d���X�X�X��Fe�1

¼d���X
�X�F��d���X

� �����

þd���X
�X� �c ����þ 1

6d���X
�X�X� �c �PR�

��c �

þH:c: (A7)

The superconformal-invariant kinetic terms for the gauge
multiplets are

½fAB ��APL�
B�Fe�1

¼ �1
4fAB½2 ��APLD�B þ F̂�A

�� F̂
���B �DADB

þ 1
4
�c � �PLð12���F̂�A

�� � iDAÞ�B

� 1
8
�c ��

��PRc �
��APL�

B� þ H:c: (A8)

Here

F̂ ��
A ¼ 2@½�A��

A þ gfBC
AA�

BA�
C þ �c ½�����A;

D��
A � ð@� þ 1

4!�
abðe; c Þ�ab � 3

2i��A�Þ�A

þ �CA�
BfBC

A � ½14�abF̂ab
A þ 1

2i��DA�c �:

(A9)

Many cancellations occur in terms with gravitinos when
the various covariantizations are written in detail, and the
torsion terms are extracted from the spin connection. The
supergravity action is then

LSG ¼ e12M
2
P½Rð!ðeÞÞ � �c ��

���ð@�
þ 1

4!�
abðeÞ�abÞc � þ 6A�A� þLSG;torsion�;

LSG;torsion ¼ � 1
16½ð �c ���c �Þð �c ���c � þ 2 �c ���c �Þ

� 4ð �c �� � c Þð �c �� � c Þ�: (A10)

We now choose the physical scalars and fermions

z� ¼ X�; 	� ¼ ��: (A11)

After elimination of the auxiliary fields F� and DA, the
conformal part of the action becomes
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e�1Lconf ¼ �� ��

�
�D�z

�D� �z
�� � 1

2
�	� 6D	

�� � 1

2
�	
�� 6D	� � F� �F

�� þ 1

6
z� �z

��½�Rð!ðeÞÞ þ �c �R
� þ e�1@�ðe �c � �c �Þ

�LSG;torsion� þ
�
1

8
i"���� �c ���c � �z

��D�z
� þ 1ffiffiffi

2
p �c � 6Dz

����	� � 2

3
ffiffiffi
2

p �z
�� �	����

�
�
@� þ 1

4
!�

abðe; c Þ�ab � 3

2
iA���

�
c � þ

�
� ffiffiffi

2
p

�	
�� � 1

2
�c � �PLz

��

�
�AðmAÞ��z

� þ H:c:

�

þ 1

16
ie�1"���� �c ���c � �	

����	
� � 1

2
�c �	

�� �c �	
�

�
þ ðRefABÞ

�
� 1

4
FA
��F

��B � 1

2
��A 6D�B � 1

2
DADB

þ 1

8
�c ��

abðFA
ab þ F̂A

abÞ���B þ 1

32
ie�1"���� �c ���c �

��A�����
B

�

þ
�
d���

�
�z� �	�	� þ z�z� �c � �	� þ 1

6
z�z�z� �c �PR�

��c �

�
þ H:c:

�
: (A12)

The covariant derivatives D� have no torsion in the spin
connection, neither supersymmetric covariantization. The
same is true for Fab and R�:

D�z
� ¼ ð@� � iA�Þz� � AA

�mA�
�z�;

D�	
� ¼ ð@� þ 1

4!�
abðeÞ�ab þ 1

2iA�Þ	� � AA
�mA�

�	�;

D��
A ¼ ð@� þ 1

4!�
abðeÞ�ab � 3

2iA���Þ�A � AC
��

BfABC;

F��
A ¼ 2@½�A��

A þ gfBC
AA�

BA�
C;

R� � ����ð@� þ 1
4!�

abðeÞ�ab � 3
2iA���Þc �: (A13)

The auxiliary fields A� in (A12) are to be considered as

independent fields, which should still be solved for by their
field equations. The latter will mix the supergravity part
and the superconformal part of the action. The fields F�

and DA on the other hand are to be considered as their
expressions in terms of the other fields:

�F
�� ¼ ��� ��d���z

�z�;

DA ¼ ðRefÞ�1ABP A ¼ ðRefÞ�1ABi�� ��z
��ðmAÞ��z

�:

(A14)

This does not mix the supergravity and the superconformal
part. Thus, Eqs. (A10)–(A14) provide the generalization of
Eqs. (3.25) and (3.26) when all fermions and vectors are
included.

APPENDIX B: WHY IS THE SUPERGRAVITY
POTENTIAL IN CSS JORDAN FRAME THE SAME

AS IN GLOBAL SUSY?

Starting from the superconformal theory potential in
(3.4) we have already derived the potential of the CSS in
(3.26). The main reason from that point of view is that the
modifications to the global SUSY potential originate
from the compensating multiplet, containing the scalar

ðy �yÞ3 ¼ eK, and the auxiliary field F0 producing the
term �3jWj2. This compensating multiplet has been
decoupled in CSS. The fact that for the CSS models
the supergravity potential is the same as in globally

supersymmetric models with canonical kinetic terms is
somewhat surprising, from the point of view of the com-
plicated Einstein frame F-term potential in generic super-
gravity theory

VE ¼ eKðr�Wg�
��r ��

�W � 3W �WÞ; (B1)

where

r�W � W� þ K�W: (B2)

It is therefore instructive to see directly how the cancella-
tion of various terms in the F-term potential takes place,
leading to a simple CSS Jordan frame potential.
We define the Jordan frame for the CSS via the frame

function �ðz; �zÞ ¼ �3�2 related to the Kähler potential
Kðz; �zÞ ¼ �3 log�2. The metric in the Einstein frame is
related to the metric in the Jordan frame as gE�� ¼ �2gJ��

and
ffiffiffiffiffiffi
gE

p ¼ �4
ffiffiffiffiffi
gJ

p
. The F-term potential in the Jordan

frame specified by the frame function (B4) is related to
the Einstein frame potential as

VJ ¼ �4VE ¼ �4eKðr�Wg�
��r ��

�W � 3W �WÞ: (B3)

We take into account that in CSS

�4eK ¼ ��2; (B4)

which means that

VJ ¼ ��2ðr�Wg�
��r ��

�W � 3W �WÞ: (B5)

In these models we have the following Kähler potential and
generic cubic superpotential:

Kðz; �zÞ ¼ �3 logð1� 1
3�� ��z

� �z
��Þ;

WðzÞ ¼ 1
3d���z

�z�z�; (B6)

and

�2 ¼ 1� 1
3�� ��z

� �z
��: (B7)

It follows that the Kähler geometry with g� ��g
� �� ¼ � ��

��
has

the following properties:
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K� ¼ eð1=3ÞK�� �� �z
��;

g�
�� ¼ eð�1=3ÞKð�� �� � 1

3z
� �z

��Þ ¼ �2ð�� �� � 1
3z

� �z
��Þ;

(B8)

so that

VJ ¼ ��2g�
��ðW� þWK�Þð �W �� þ �WK ��Þ � 3��2jWj2:

(B9)

With an account of the CSS Kähler geometry properties we
may rewrite the potential as follows:

VJ ¼ �� ��W�
�W �� � 3jWj2 þ �WW�z

� þW �W �� �z
��

� 1
3jW�z

�j2: (B10)

Note that all ��2 factors in (B10) have canceled. It
remains to take into account that the CSS superpotential
W is homogeneous of the third degree in z�’s, and it
follows that

W�z
� ¼ 3W; �W �� �z

�� ¼ 3 �W: (B11)

This allows one to bring the F-term potential to the final
form

VJ ¼ �� ��W�
�W ��; (B12)

where it is clear that it coincides with the global super-
symmetric F-term potential.

APPENDIX C: THE MODULI SPACE
GEOMETRY IN CSS MODELS WITH
SYMMETRY BREAKING � TERMS

In CSS models the moduli space geometry is flat as
shown in (3.9). When superconformal symmetry is broken

by the 	 terms of the form given in (3.34), the Jordan frame

potential depends on G� �� according to Eq. (3.36). Here we
study the nonflat geometry for the models in (3.34) and, in

particular, we compute G� ��. We start from Eq. (3.34)
which we repeat here for convenience

N ðX; �XÞ ¼ �jX0j2 þ jX�j2

� 	

�
a��

X�X� �X
�0

X0
þ �a �� ��

�X �� �X
��X0

�X
�0

�
: (C1)

The metric

GI �J �
@2N

@XI@ �X
�J

(C2)

can be computed to read

G0�0 ¼ �1þ 	

2
4a��

X�X�

ðX0Þ2 þ �a �� ��

�X �� �X
��

ð �X �0Þ2
3
5; (C3)

G0 �� ¼ �2	 �a �� ��

�X ��

�X
�0
; (C4)

G��0 ¼ �2	a��
X�

X0
; (C5)

G� �� ¼ �� ��: (C6)

The components of the inverse metric GI �J (such that

GI �JGI �K ¼ �
�J
�K
) can be computed to read

G0�0 ¼ � ðX0 �X
�0Þ2

½ðX0 �X
�0Þ2 � 	a��X

�X�ð �X �0Þ2 � 	 �a �� ��
�X �� �X ��ðX0Þ2 þ 4	2X0 �X

�0�� ��a�
 �a �� ��X

 �X ��� ; (C7)

G0 �� ¼ � 2	�� ��a�X
ð �X �0Þ2X0

½ðX0 �X
�0Þ2 � 	a��X

�X�ð �X �0Þ2 � 	 �a �� ��
�X �� �X ��ðX0Þ2 þ 4	2X0 �X

�0�� ��a�
 �a �� ��X

 �X ��� ; (C8)

G��0 ¼ � 2	�� �� �a �� �
�X
�ðX0Þ2 �X �0

½ðX0 �X
�0Þ2 � 	a��X

�X�ð �X �0Þ2 � 	 �a �� ��
�X �� �X ��ðX0Þ2 þ 4	2X0 �X

�0�� ��a�
 �a �� ��X

 �X ��� ; (C9)

G� �� ¼ �� �� � 4	2X0 �X
�0�� ���� ��a�� �a �� �X

� �X
�

½ðX0 �X
�0Þ2 � 	a��X

�X�ð �X �0Þ2 � 	 �a �� ��
�X �� �X ��ðX0Þ2 þ 4	2X0 �X

�0�� ��a�
 �a �� ��X

 �X ��� : (C10)

By performing the gauge fixing

X0 ¼ �X
�0 ¼ ffiffiffi

3
p

MP; (C11)

X� ¼ yZ�ðzÞ; (C12)

y ¼ �y ¼ 1; (C13)
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Z� ¼ z�; (C14)

one then, respectively, obtains

G0�0 ¼ �1þ 	

3M2
P

ða��z�z� þ �a �� �� �z
�� �z

��Þ; (C15)

G0 �� ¼ � 2ffiffiffi
3

p 	

MP

�a �� �� �z
��; (C16)

G��0 ¼ � 2ffiffiffi
3

p 	

MP

a��z
�; (C17)

G� �� ¼ �� ��; (C18)

G0�0 ¼ � 1

½1� 	
3M2

P

ða��z�z� þ �a �� �� �z
�� �z ��Þ þ 4

3
	2

M2
P

�� ��a�
 �a �� ��z

 �z ���

; (C19)

G0 �� ¼ � 2
ffiffiffi
3

p
MP	�

� ��a�z


½3M2
P � 	ða��z�z� þ �a �� �� �z

�� �z ��Þ þ 4	2�� ��a�
 �a �� ��z

 �z ��� ; (C20)

G��0 ¼ � 2
ffiffiffi
3

p
MP	�

� �� �a �� � �z
�

½3M2
P � 	ða��z�z� þ �a �� �� �z

�� �z ��Þ þ 4	2�� ��a�
 �a �� ��z

 �z ��� ; (C21)

G� �� ¼ �� �� � 4	2�� ���� ��a�� �a �� �z
� �z

�

½3M2
P � 	ða��z�z� þ �a �� �� �z

�� �z ��Þ þ 4	2�� ��a�
 �a �� ��z

 �z ��� : (C22)

In particular, the metric G� �� given by Eq. (C22) is the
metric appearing in Eq. (3.36). Notice that clearly G� ��

given by (C22) is not the inverse of G� �� given by (C18),
because what really holds is

G0 ��G0 �� þG� ��G� �� ¼ �
��
��: (C23)

APPENDIX D: THE h AND s PARTS OF THE
NMSSM POTENTIAL IN THE JORDAN AND THE

EINSTEIN FRAMES

Herewe present some details of the scalar-gravity part of
the supergravity action given in Eq. (2.8). We apply it to the
frame function (7.7) and we consider � ¼ �=4, � ¼ �1 ¼
�2 ¼ 0. The kinetic scalar terms in the Jordan frame are
canonical, except for the contribution to the gauge singlet
one due to �ðS �SÞ2 corrections to the NMSSM frame
function:

L kinetic
J ¼ �

ffiffiffiffiffiffiffiffiffiffi�gJ
p

2
½ð1� 2�s2Þð@�sÞ2 þ ð@�h1Þ2

þ ð@�h2Þ2�; (D1)

where h1 � h cos�, h2 � h sin�. Note that the
� correction to the kinetic term of the s field is always
small compared to 1 and can be safely neglected. Along the

D-flat direction with sinð2�Þ ¼ 1 the curvature term in the
action for real fields h and s is

L curv
J ¼

ffiffiffiffiffiffiffiffiffiffi�gJ
p

2

�
1� 1

6
ðs2 þ h2Þ þ 1

4
	h2

þ 1

12
�s4

�
RðgJÞ: (D2)

The potential in the Jordan frame for the nonvanishing 	
and � and nonvanishing field s is complicated:

VJðs; h;	; �; �; �Þ ¼ A0 þ s2A2 þ s4A4 þ s6A6 þ s8A8

1� 2�s2 þ 1
3 �Gs4

;

(D3)

where we introduced the following notation:

A0 � �2

16
h4; A2 � � h2

4
ðj��j þG�2ð	h2 � 4ÞÞ;

A4 � �2

4
� �Gh2�2

8
ð32� ð12	þ 1=3Þh2Þ;

A6 � 1

12
�Gð�2 � j��j � 6	j��jÞh2; A8 � 1

12
�G�2;

G � 2

8þ ð3	� 2Þ	h2 : (D4)
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At � ¼ 0 the potential simplifies to the form given by VJ ¼
G� ��W�

�W �� when only the 	 term breaks superconformal

symmetry of the matter

VJðs; h;	; �; �; � ¼ 0Þ ¼ �2

4
h4 � h2

4
ðj��j

þ 2G�2ð	h2 � 2ÞÞs2 þ �2

4
s4: (D5)

At s ¼ 0 the Jordan potential VJjS¼0 ¼ GS �SWS
�W �S restores

the superconformal form at any values of 	, �, �, and � .

VJðs ¼ 0; h;	; �; �; �Þ ¼ �2

4
h4: (D6)

In the Einstein frame for the real fields, the expression of
the F-term potential is

VEðs;h;	;�;�;�Þ ¼ 9

�2
VJ

¼ A0 þ s2A2 þ s4A4 þ s6A6 þ s8A8

½1þ 1
4	h

2 � 1
6 ðs2 þh2Þþ 1

12�s
4�2ð1� 2�s2 þ 1

3�Gs4Þ ;

(D7)

where all notations are given above. For � ¼ 0 the poten-
tial in (E2) reduces to the one studied in [1]

VEðs; h;	; �; �; � ¼ 0Þ

¼
�2

4 h
4 � j��js2h2 � 2�2s2h2ð	h2�4Þ

8þ3	2h2�2	h2
þ �2jsj4

4½1� 1
6 ðs2 þ h2Þ þ 1

4	h
2�2 : (D8)

From this equation it is obvious that at large 	h2 the mass
squared of the s field is negative at � ¼ 0, as explained in
detail in [1]. The crucial positive contribution to the gauge
singlet mass term comes from the negative term �2�s2 in
the second bracket in the denominator of (E2), where
1
3 �ðS �SÞ2 is the quartic correction to the Kähler potential

suggested in [4] and also studied before in [23].

APPENDIX E: THE MASS OF THE CHARGED
HIGGS FIELD

The mass of the physical charged Higgs field in globally
supersymmetric NMSSM is e.g. given in [14] in Eq. (2.29).
In the absence of the soft breaking terms the F-term and the
D-term contribution to mass (in our notation) is

ðm2�Þsusy ¼
1

8

�
��2h2 þ g22

2
h2
�
: (E1)

For g22 > 2�2, the charged Higgs field is not tachyonic, i.e.
it is stabilized at h� ¼ 0.
In supergravity we look first at the s ¼ 0 expression of

the F-term potential given by Eq. (D8):

VF
E ðs ¼ 0; h;	; �Þ ¼

�2

16 h
4

½1þ 1
4	h

2 � 1
6h

2�2 : (E2)

As explained in Sec. VII, we can extend this potential using
the SUð2Þ symmetry to include the charged Higgs, so that
h2 ! h2 � h2� in the part of the potential associated with
the holomorphic functions, i.e. in the terms originating from
the superpotential and from the 	 terms in the Kähler
potential. However, one has to replace h2 ! h2 þ h2� in
the 	-independent part of the Kähler potential. This leads to
the following potential:

VF
E ðs ¼ 0; h; h�; 	; �Þ

¼
�2

16 ðh2 � h2�Þ2
½1þ 1

4	ðh2 � h2�Þ � 1
6 ðh2 þ h2�Þ�2

: (E3)

On the other hand, theD-term potential depends on charged
Higgs field as follows:

VD
E ðh;h�; g; 	Þ ¼

g2h2h2�
16½1þ 1

4	ðh2 � h2�Þ � 1
6 ðh2 þ h2�Þ�2

:

(E4)

One can easily see that after inflation, for 	h2 
 1, the
mass squared of the charged Higgs field m2� coincides with
its value in the globally supersymmetric case, and therefore
the stability condition requires that g22 > 2�2. During infla-
tion, one has h2 
 1 
 	h2, and the second derivatives of
(E3) and (E4) respectively read

V00F� �� 16�2

	3h4
; V00D� � g22

	2h2
: (E5)

In this regime, for g22 > 2�2, theD-term contribution tom2�
is much greater than the F-term contribution. In order to
calculate m2�, one should also take into account that the
kinetic terms for the fields h� are not canonical. By doing
so, one finds that during inflation

m2� � g22
2	

� H2 ¼ �2

3	2
: (E6)

This means that this field is strongly stabilized at h� ¼ 0.
In other words, under the condition g22 > 2�2 the

charged Higgs field vanishes during and after inflation.
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