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In this work we present 3-algebraic constructions and representations for three-dimensional N = 5
supersymmetric Chern-Simons theories, and show how they relate to theories with additional super-
symmetries. The JN" = 5 structure constants give theories with Sp(2N) X SO(M) gauge symmetry, as
well as more exotic symmetries known from gauged supergravity. We find explicit lifts from 2N = 6 to 8,

and N = 5 to 6 and 8, for appropriate gauge groups.
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L. INTRODUCTION

Over the past few years, there has been an explosion of
interest in three-dimensional supersymmetric Chern-
Simons gauge theories. Much progress was sparked by
the N = 8 theory put forth in [1-3], and independently
in [4], that was proposed to describe the world volume
theory of coincident M2-branes [5,6].

The theory contains 8 scalars, X!, which take values in
the transverse space, and a 16-component real fermion W,
which is a two-component real d = 3 spinor in one of
the 8-dimensional spinor representations of the SO(8)
R-symmetry group; the supersymmetry parameter € is in
the other. The fields take values in a 3-algebra, defined by a
totally antisymmetric triple product, given by

[Ta’ Tb, Tc] — fabchd' (1)

The invariant, symmetric inner product (T¢ T?) = h
raises and lowers indices, so that f‘”’Cd is real and totally
antisymmetric. The theory is gauged, with gauge field

Aula = I yA b 2

The gauge field is constrained, so the degrees of freedom
balance between bosons and fermions. The 3-algebra sat-
isfies the so-called fundamental identity,

[Te, 7%, [T, T, T]] = [T, T*, T°], T, T°]
+ [1¢,[T4, T?, T], T¢]
+[1e, T4, [T, Tb, T¢],  (3)

which implies that the gauge transformations act as deri-
vations. These constraints define the N = 8§ theory, of
which there is only one (unitary) example: f*¢d ~ gabed
and h® ~ §7, for which the gauge group is SO(4).

More theories can be found by reducing the number of
supesymmetries. These include the Aharony-Bergman-
Jafferis-Maldacena (ABJM) theories, with N° = 6 super-
symmetry and U(N) X U(N) gauge symmetry [7], and
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the Aharony-Bergman-Jafferis (ABJ) theories [8], with
N =6 and U(N) X U(M) gauge symmetry, as well as
N =5 with Sp(2N) X O(M). Similar theories were con-
structed in [9]. A classification of the possible N = 6
theories of ABJM type was presented in [10].

None of these constructions made use of a 3-algebra, so
it is natural to ask whether they play any role in theories
with N" < 8. In fact, the most general N" = 6 theory was
constructed from a 3-algebra in [11]. One realization gives
rise to an N = 6 theory with SU(N) X SU(N) gauge
symmetry; another describes the N = 6 U(N) X U(M)
ABJ theories. It has recently been shown that the SU(N) X
SU(N) theory is related to the U(N) X U(N) ABIM theory
[12], so the 3-algebraic approach indeed describes the
complete set of N = 6 ABIM and ABIJ theories.

Given these results, one would also like to know the role
that 3-algebras play in JN° = 5 theories. The quaternionic
unitary 3-algebras were classified in [13], where it was
found that they are in one-one correspondence with the
N = 5 Chern-Simons theories presented in [9,14]. In this
paper we take a more direct approach and construct the
most general three-dimensional N = 5 superconformal
Chern-Simons theories from first principles. We work in
components and close the supersymmetry transformations
on the fields. We find that the theories depend on real
structure constants with four upstairs indices, satisfying
N =5 versions of the fundamental identity. When the
structure constants obey febcd = — fbacd — fedab  they
give rise to N = 5 truncations of N' = 6 theories, with
supersymmetry transformations given in [11]. When they
obey g@bed = ghacd = gedab yith glabdd = () the theories
are purely N' = 5. For this case, our /N = 5 transforma-
tion laws agree with those presented in [15]. Our results are
in accord with the classification derived in [13]. In addi-
tion, they clarify the connection between N =35 and
N = 6 theories and show that they both arise as indepen-
dent solutions to a single set of constraints.

In what follows we also present explicit 3-algebra rep-
resentations for various N = 5 theories. We recover all
the examples discussed in [9,13,14]. We find an Sp(2N) X
SO(M) theory of ABJ-type, with matter fields transforming
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in the bifundamental representation of the gauge group, as
well as an SO(4) X SU(2) theory with one free parameter.
We also find more exotic theories with gauge groups
G, X SU(2), with bifundamental matter, and SO(7) X
SU(2), with matter in the 8-dimensional spinor representa-
tion of SO(7). These theories can also found using the
“embedding tensor” approach to d = 3, N = 8 gauged
supergravity in the conformal limit [16,17], or using
N = 1 superspace, as was done in [18].

Finally, in this paper we also show how to lift certain
theories with N =5 and N = 6 supersymmetry to
N =6 and N = 8. We first lift the N = 6 theory
with SU(2) X SU(2)~S0O(4) gauge symmetry to N = 8.
We then lift the Sp(2N) X SO(2) invariant N° = 5 theory
to N =6. As a third example, we lift the N =35
theory with SO(4) X SU(2) gauge symmetry to N =6
at one point in its parameter space. At that point, the gauge
symmetry is reduced to SO(4) = SU(2) X SU(2), as re-
quired for N' = 6 supersymmetry.

The layout of the paper is as follows. In the next section,
we review the 3-algebraic construction of the N =6
theories. We present specific representations of the various
gauge groups that arise, and we demonstrate the lift to
N = 8. We then turn our attention to N° = 5 and con-
struct the most general theory based on a 3-algebra. We
find the fundamental identity, and solve it in terms of
structure constants of two different kinds. We discuss
explicit representations, and present the lifts from

N =5t0 N =6.

II. REVIEW OF THE N = 6 CONSTRUCTION

In this section, we review the relevant features of the
construction in [11]. We start by decomposing the SO(8)
global symmetry into SO(6) X SO(2) = SU(4) X U(1).
The matter fields are a scalar Z4 and a spinor W,,, both
with U(1) charges +1, together with their conjugates Z¢
and W44 where A = 1, ...4is the SU(4) index and a spans
a representation of some gauge group. The 3-algebra struc-
ture constants f9°_, are no longer necessarily real or totally
antisymmetric, but satisfy fe , = —fbe = fbe, =
£+, The six supersymmetry parameters £ are antisym-
metric in A and B, and obey the reality condition

— 1
8AB — ESABCDSCD- (4)

The N = 6 supersymmetry transformations on the sca-
lar and the fermion are

62‘2 = l.éAD\I’Dd,
8Vpy = yteapD, Z4 + [ ZaZ8 7 epp ®)
+ [ ZaZB 2 e,

where the gauge-covariant derivative on the scalar is
defined by
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D,Z4=09,74 — A, 78 (6)

The transformations on the scalar close according to the
supersymmetry algebra,

[8), 8,124 = v*D,Z4 + A°,Z4, (7)
where
i _
vH ZESZCDY“MCD, ®)
and
ANy = isGFe1pef™ 428 Z¢, ©)

where the antisymmetrization is done without a factor of % .
The transformations on the fermions close similarly,

[81, 8:1¥py = vAD,Vp, + AV, (10)
provided the equations of motion are satisfied:
Epy = v*D,Vpg = 2 Vs Z) 25 + f* iV paZ} 25
+ SABCDfude‘IrCCZQZE == 0 (1 1)
Finally, the gauge field transformations
8A, = —if® 8Py, Vg, Z¢ + Epcy, VEZE) (12)
close as follows:

[81,8,0A,% = D,(A“) + v"F ., + O(Z*), (13)
provided the field strength obeys the following condition:
F,'=-0,A+0d,A,° +A" A", —A," AL,

= —&,,\(DZBZ5 — ZBDAZG — iV y Wy, ) f .
(14)

Canceling the O(Z*)-terms leads to the N' = 6 fundamen-
tal identity,

fefgbfchad + ffeabfchgd + f;afhfcebd + f:gehfcfbd =0.
(15)

The fundamental identity ensures that the gauge transfor-
mation acts as a derivation. With these ingredients, it is not
hard to construct the N' = 6 Lagrangian, written in terms
of the 3-algebra. In the next section, we discuss represen-
tations of the JN" = 6 gauge groups.

III. N = 6 REPRESENTATIONS

A representation of the 3-algebra can be constructed
from rectangular M X N matrices, X, Y, Z, as follows:

[X,V;Z]=XZtYy — vZX, (16)

where Z! is the conjugate transpose of Z. This can be
interpreted as a gauge transformation on X, acting via
left and right multiplication, with X carrying bifundamen-
tal indices d and [,
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8Xa =X, Y Zly = X ZWoYy — Y ZTo Xy (17)

In this case, the 3-algebra structure constants are given by

faibi o= 89825187 — 52846187, (18)
The structure constants have the correct symmetries and
satisfy the JN' = 6 fundamental identity.

Using (9), it is a simple matter to determine the gauge
theories that are constructed in this way. For this particular
3-algebra, we find

5231 = Amdlzgi

— i85 e e 2B 22, — 18 8578 2071, (19)
The matrix /~\“id1 is anti-Hermitian, with a nonvanishing
trace for M # N and a vanishing trace for M = N.
As expected, these N = 6 theories have U(N) X U(M)
and SU(N) X SU(N) gauge symmetry. The original
U(N) X U(N) ABJM model can be recovered by gauging
the global U(1) symmetry, as was done in [12].
A second choice of structure constants is given by

[ g =T% g + (888% — 8487), (20)

where J% = i(0? ® Iyxy)® is the antisymmetric invari-
ant tensor of Sp(2N). The ¢, also obey the fundamental
identity and have the correct symmetries. As before, we
close the algebra to find the gauge transformation on Z4,

8724 = A, z4
= ié[CzEsl]BE(ZgZ_‘é +JbJ,.,Z8Z¢)Z4
N @1)
This transformation is a sum of two parts. The first is of the
form §'Z4 = A" ,Z4; the second is a phase. It is easy to

see that J,, A" .J! = A’ so the gauge group is simply
Sp2N) X U(1).

IV.LIFT: N =6— N =8

From the above construction, it is possible to find an
explicit lift from the N = 6 theory with SU(2) X SU(2)
gauge symmetry to the unique JN° = 8 theory. We begin by
writing the matter fields Z4 , in SO(4) notation,

z4 = 74,057, (22)

using the ordinary Pauli matrices of [19] (except taking
0’ — io® = i3° to make the gauge space Euclidean).

Because of the well-known identity

the representation of the SU(2) X SU(2) transformation
given in (16) exactly reproduces the 3-algebra of the
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N = 8 theory, with feb¢d = gabcd (we absorb the constant
of proportionality into £%<?).

In this notation, we start with the original N = 6
supersymmetry transformations presented above, parame-
trized by &2, and construct two additional supersymme-
tries, parametrized by a complex spinor n of global U(1)
charge +2. The most general supersymmetry transforma-
tions consistent with these assignments are

52‘3 = l.éAD\I,Dd + l@l'ﬁq’g,
5‘1’;1) = y“sADD#ZAd + G)zy'“”r]DMZdD

+ SadeZgZEZDCSAB - SadeZ;gZEZBCSAD

— O3 737, Zpem

+ Oueppcpe® I ZLZEZE, (23)
for some complex numbers 0, ©,, 05, 0,. Note that
since the gauge group is SO(4), the gauge indices can be

raised and lowered at will.
Imposing the supersymmetry algebra on the scalar trans-

formation leads to ®; = @3 and ®; = 0,. In particular,
we find
(81, 8,]Z4 = v*D,Z4 + A“,Z4, (24)
where
i_ . _ *
vh = §8§C7“813c + l|®1|277[27’””71] (25)
and

Aad légEsl]BEgadeZEZCc + 3i®4é[23C7]T]8“deZEZLC.
+ l@l'f][za?]CE‘ledZ_BbZCC
+il0, P ez Zg,. (26)
Anti-Hermicity of the generator A“? requires @, = —30;.
This leaves only ®; independent; it can be absorbed into
the parameter 7.

With these results, the supersymmetry transformations
are

874 = ig"\PWy, + inWh,
S\If% = ')’#8ADDMZALI + YﬂﬂDMZ% + SahchgZEZDcSAB
8abcdzAzBZB08AD _ 8adeZéZ_AbZDcn
_ %SABCDSade ><ZAszC (27)

Closing on the fermion gives
~ i _
[61, 8:]¥py = v*D,Wpy + Ay Wp, + ES[CzBSl]CDEBd
i _ L
- ngE'yMSlBE')’,uEDd + ifpencpES

i - * — %
~ 5 (i + Ay g yW)Epe (28
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as required, where Ep,; denotes the fermion equation of
motion (11). The same calculation also fixes the trans-
formation of the gauge field,

A ad — __ ;. abed z B~C _ ;.abcd zBC 7
0A, " = —ie" gy, VyZ; — i &y WV, Zc,

+iged gty Wy, 78 + igabedqyy WEZ,  (29)

Closing on A M“d imposes the constraint (14).

The above transformations are manifestly SU(4) X U(1)
covariant. However, they must also be covariant under
SO(8), the N = 8 R-symmetry group. As a check, there-
fore, we compute their transformations under the 12 re-
maining generators of SO(8)/(SU(4) X U(1)), which we
denote g4Z, with U(1) charge 2. The transformations are

52‘1‘1‘ = gABZ_Ba’

oWp, = _%SBCDEgDE‘I’g ) (30)
SehB = gABp* 4 %SABCDg*CDn’
on = _%gABSAB:

consistent with the fact that Z4, Wy, and £*® live in
different SO(8) representations. The transformations (30)
close into SU(4) X U(1), as required by the SO(8) algebra.
Moreover, it is not hard to show that the supersymmetry
transformations (27) and (29) are covariant under (30), as
they must be. Thus, for the case of SO(4) gauge symmetry,
the supersymmetry transformations (27) and (29) do in-
deed lift the N = 6 theory to N = 8.

V. N =5 CONSTRUCTION

In this section, we proceed along similar lines to con-
struct the most general N' = 5 theories that make use of a
3-algebra. We start by decomposing the SO(8) global
symmetry into SO(5) X SO(3) = Sp(4) X SU(2). We
take the eight scalar fields to have the index structure
Xﬁi, where A =1,...4 and i = 1, 2 are indices that refer
to the Sp(4) R symmetry and the global SU(2), respec-
tively; the index d spans a representation of the gauge
group. The Sp(4) indices are raised or lowered with the
Sp(4)-invariant tensor,

w*® = i(0? ® Ipx,)*%,

for which w*®wp- = —52. Here and elsewhere we adopt
the convention X4 = w48Xy, X, = —w45X°? for any sym-
plectic structure. The supersymmetry parameters are real
spinors §AB , antisymmetric in A and B and traceless,

wapét? =0, (31)

so the &P are in the 5 of Sp(4). The superpartner fermions
are real spinors as well, with index structure Wy, .

The most general supersymmetry transformations are of
the following form:
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BX‘::Z' - l.EAD\IIDid,
8Wpia = y*EapD X1 + wBDfACEjk(fabchﬁ/sz%)XIgc
+ 8 Xp X1 X5 + wacEppe(he X7 X5 XL
+ P XX R XS, (32)
where the Levi-Civita tensor €/ raises and lowers the
SU(2) indices. Without loss of generality, we may take
g€, and j*°, to be symmetric in a and c.

The tensors g€, h“b¢ ,, and j**¢, are fixed by closing
the supersymmetry algebra on the scalar,

[8), 8,0X2 = v#D, X4 + A, X4, (33)
with v# = 1 E8Cyr & pe. We find
fabcd — chabd — hacbd — zjcabd’ (34)

which implies

- i .
NeaXs, = 3 e el Encrwps T XXX (35)
Because of conflicting symmetries, /~\“d vanishes, so no
gauge transformation appears in the closure of the algebra.
With these conditions, the fermion supersymmetry
transformation becomes

SVpi = y*éapD Xy + €M(wppéac + ®acépp)
X (fPe XBXEX0 = 5f 7 XEXEXD,).  (36)

C
Closing this transformation leads to a trivial theory. All
interaction terms cancel in the equation of motion. Indeed,
upon closer inspection, it is possible to show that the
interaction terms in the fermion transformation (36) also
vanish, as indeed they must.

To find a nontrivial N" = 5 theory, we need to impose a
less restrictive global symmetry group. Therefore, in what
follows, we will take the global symmetry group to be the
R-symmetry group SO(5) = Sp(4). Since Sp(4) C SU(4),
we can carry over many results from N = 6.

We start by examining the supersymmetry parameters.
We write the N = 6 parameters 4? in terms of the
N =5 parameters &8, together with a  real
R-symmetry singlet spinor 7, as follows:

et = & + iy, €ap = &ap — iwapm.  (37)

In an N = 5 theory, the Sp(4) indices are raised and
lowered using the antisymmetric tensors w*® and wypg,
respectively. For the JN' = 5 parameters &5, this conven-
tion is consistent with the SU(4) R symmetry of the

N = 6 theory:
§AB = wACwBD§CD
= LA€W — AP wBC — AP D) ),

= QSABCD &ep- (38)
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The sign change in the singlet follows from the group
theory,

0Py = 0 Cwwepn

_1(, AC, BD _ , AD, BC _ _AB, CD
0w P w 0B P)ocpn

= —1ePycpn. (39)

It is also necessary for the closure of the supersymmetry
transformations, as can be checked for the free case.

We next consider the fields. The 4 of Sp(4) is obtained
from the 4 and 4 of SU(4) by imposing a reality condition.
For the case at hand, we impose the following constraints
on the fields of the N = 6 theory [20]:

Z4=—J%wupZy, WA= —J AWy (40)
Here w,p is the antisymmetric Sp(4) invariant tensor,
while J,, is an invariant (antisymmetric) tensor of the
gauge group, with J,,J?¢ = —8¢. The minus sign in the
second term renders the constraint consistent with
the N =5 supersymmetry transformations. The con-
straint is inconsistent with the transformation parametrized
by 7, so it explicitly breaks N = 6 supersymmetry to
N =5.

With this constraint, we can write the N = 5 super-
symmetry transformations entirely in terms of the fields
74 and Vp,;. The most general transformations take the
following form:

874 = iEPW
8Vpg = y*éspD,Z5 + [P ZAZEZE Epcwag
+ 157 G ZaZEZE Enp e, (41)
where, without loss of generality, we take f¢%¢ 4 and f‘le

to be antisymmetric in their first two indices. Closing on
the scalar gives

[8), 8,124 = v*D,Z4 + A Z2, (42)

with

“4=ifs" ZRZE wpc €D Enpr, (43)
where

fabe :% bea — fpach ) (44)
This implies

oVpy = 7“§ADD,LZQ - adeZAZBchbchB
§ 4 ZaZPZE Enpw e (45)

Closing on the fermion gives
_ i-
[61, 6,]1¥p, = v*D,Vp, + AW, — Eff‘lcfz]ADECd

i -
+ 1 (&18y,&48) 7" Epas
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with the following fermion equation of motion:
Epg = y*D, Ypy — f5%¢ (VU ZAZE + Vo, ZAZB) w 4
+ 2fgbe (W, ZAZE + W, ZAZS)wpe = 0. (46)

With these assignments, the gauge field transforms as
8A "y = —i(f5t , + f57¢ DwPEEpey Vg, ZE.  (47)
Closing on the gauge field imposes additional constraints:
fabc edg T f;gdf)ZAZEZCZfJ) w pwpc =0

(48)
g (5" +f§gdf)ZAzBZCZD§ABUw&m—0

These two constraints must be satisfied by the N =5
fundamental identity.

Up to now, we have worked in complete generality. To
proceed further, we impose symmetries on the structure
constants f“’“ The most obvious choice is

fﬁ"’"d — fabcd — _fbacd — de“b, (49)

as in 2N = 6. With this choice, the calculations work out

just as before. In particular, the conditions (48) are satisfied

by the N =5 restriction of the N = 6 fundamental

identity:

Jgj(fabfgfjhcd +fagfdfhbjc +fahfgfjbdc +fagf0fbhjd) =0.
(50)

In this case, the supersymmetry transformations are those

of Ref. [11].
A second and more interesting choice is to take

fgbcd — gacbd gbcad (51)
where
gachd — gcabd — gbdac’ (52)

so f4bc? has all the right symmetries. As we shall see, this
choice generates N = 5 theories that are not restrictions
of N = 6. The conditions (48) are satisfied if [21]

g(ucb)d =0 (53)

and
Jgj(gafbggjchd + gafgdghjbc + gafhggjdbc + gafgcgbjhd) =0.
(54)

This is the N = 5 fundamental identity, which was also
found in [14] by taking the conformal limit of three-
dimensional gauged supergravity.

Substituting g*>¢, for £4%¢, in (41), (45), and (47), we
find the N" = 5 supersymmetry transformations
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874 = ieAPwy,
oVp, = 7M§ADDM23 - gabcdzl;‘ZEZggDBwAC
+2gP¢ ZAZEZE Epcw s
514;/4 = 3i8bwdeE§Ec7’,L‘I’BbZCC- (55)

These transformations close into a translation and a gauge
variation, with parameter

~ 3, z
Ay=— Eghwdzlgzccchf[gFfl]BF' (56)

These are the same transformations that were found, start-
ing from different assumptions, in Ref. [15].

VI. N = 5 REPRESENTATIONS

In this section we construct N = 5 gauge theories, built
from symmetric structure constants g*?, with gauge
transformations

3

67} = N4z = = S 8" Z} ZE wpcd € Zi (5T
We will see that there are a host of such theories, including
some with free parameters or exceptional gauge groups, in
stark contrast to N" = 6 or 8.

We start by constructing a set of g?*? that lead to an
Sp(2N) X SO(M) gauge group. There are four combina-
tions of the invariant tensors of Sp(2N) and SO(M) that
have the symmetries (52):

g?bjckdl _ (6ac5bd _ 5ad6bC)Jij‘]kl’

guibiekdl _ (jik it 1 pik Jit) gab ged, (58)
ggi)diijkdl _ (6acb‘bd + 5ad6bc)(Jiijl + ij]il)’

where i,j,...=1,...2N are Sp(2N) indices, and
a,b,...=1,...M are SO(M). From them, we must select
linear combinations that satisfy (53) and the fundamental
identity (54).

In fact, there are just two linear combinations that do the
job:

aibjckdl — aibjckdl __ aibjckdl
Mt =g & (59)
gaihjckdl _ gng)aibjckdl + gg*)aibjckdl

Let us focus in detail on the first case. The structure
constants are

gaibjckdl — (5a05bd _ 50d5bc)]ij]kl
_ aub 5cd(]iijl + ijJil). (60)
They give rise to the following gauge transformation:

3i -
677 = — EfﬁFﬁ]BFchkaZbClZAdk

3i -
) fﬁFfl]BFchZEngdZQZ- (61)
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The two terms are Sp(2N) and SO(M) transformations,
respectively, with matter fields in the fundamental repre-
sentations of each [8,14,18].

For the second case, the structure constants are simply

gaibjckdl — Jiijl(sac 5bd + Jilekaadabc. (62)

The indices are in standard direct product form, so the
theory has gauge group Sp(2MN), with matter fields in the
2MN dimensional fundamental representation.

For the special case of SO(4) X Sp(2) =~ SO(4) X
SU(2), it is possible to add another term to the structure
constants [14,18]:

gaihjckdl _ g?ibjckdl _ gczzihjckdl + qgabed gij sz’ (63)
where £%7¢? is the totally antisymmetric SO(4)-invariant

tensor. The resulting g®?/°k! satisfy (53) and the funda-
mental identity, for any choice of the free parameter «. The
gauge group closes into SO(4) X SU(2) for @ # oo. In the
next section, we will see that this example, in the limit
a — o0, has gauge group SO(4). In this limit, it lifts to
N =6 and 8.

There are also two “exceptional” theories with N = 5.
The first arises from the tensor

gaibjdel _ g?ibjckdl _ g;ibjckdl + Bcabcdjijjkl’ (64)

where @, b,...=1,...7and i, j,... = 1, 2 are SO(7) and
SU(2) indices, respectively. Here C%“? is the totally anti-
symmetric tensor that is dual to the octonionic structure

constants Cefg,

l 8abcdefgc

bed —
Cabe _3‘ efe-

(65)

[For a concise introduction to G,, SO(7) and the octonians,
as well as a host of useful identities, see Sec. 2 and
Appendix A of [22].] The tensor (64) satisfies (53) and
the fundamental identity for 8 =0 or B = % When
B =0, the g@bickdl are just the Sp(2) X SO(7) structure
constants discussed above.

When B =1, the gauge group is G, X SU(2). In this
case, the structure constants take the form

gaihjckdl — (é‘acé‘bd _ 5ad5bc + %Cahcd)‘]ij]kl

— 5ab 5cd(]ik]jl + ijJil)’ (66)
where i, j, ... = 1, 2. The gauge transformation is then
_ Aaidl
SZA = Nz,
with
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oo 37 - .
A = Eg[gF‘fl]BFwDCSadzglzgl
30
4
X JRJNZY 25, (67)

_ 1
g[DzF‘fl]BFwDC(aah 50(1’ _ Bacé‘bd + 5 Cabcd)

The first term is clearly an SU(2) transformation. The
second is a G, C SO(7) transformation, as can be seen
by recognizing that the operator

g)clzipcd — %(5(1/950:1 _ 6ac5bd + %Cabcd) (68)

is a projector from the adjoint 21 of SO(7) to the adjoint 14
of Gz,

?tlléllwdcbce =0. (69)

In this way we construct the N = 5, G, X SU(2) gauge
theory from a 3-algebra, recovering the result found in
[14,18].

The second exceptional theory has SO(7) X SU(2)
gauge symmetry with matter transforming in the spinor 8
of SO(7) [14,18]. To find the structure constants, we start
with the tensor

gaibjckdl — 5ab5c‘d(]ik‘,jl + ijJil) + ,yl";tlbnl";nzijl]]kl
(70)

where a,b,...=1,...8 and i,j,... =1, 2, and T'%, =
%(Fmrn - F,”.F’”)ab is built from the SO(7) gamma matri-
ces. The g¢bjckdl have the correct symmetries and satisfy
the fundamental identity for vy = — é, in which case the
structure constants become

gaibjckdl — 5ab5cd(Jiijl + ijJil) _ %rranl;zrfndnJ”Jkl

(71)
The gauge transformations reduce to
szAd = NaidizA (72)
where
Rl — S EB Erppnc5 2 2

i .
+ gg[[;Fgl]BFwDCF;{:ﬂLF%anlelzngEk' (73)

We see that the gauge group is SO(7) X SU(2), with the
matter fields in the spinor representation of each.

VILLIFTS N =5— N =6

In this section, we lift two theories with N° = 5 super-
symmetry to N = 6, along the lines of the lift from
N =6 to N =8. In particular, we lift the N =5
theories with Sp(2N) X SO(2) and SO(4) X SU(2) gauge
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symmetry to N = 6 theories with Sp(2N) X U(1) and
SO(4) gauge symmetry, respectively. As we showed pre-
viously, the latter theory can then be lifted to N = 8.

To carry out the lifts, we first define unconstrained
complex-conjugate scalars Z4 and Z4, consistent with
the constraint (40):

Z4=74+izh,  Z4 =274 —ize (74)
Supersymmetry then requires that the superpartner = 4, be
defined as follows:

Eaa = VYaar + iVsu, graa = pAal — ppaa (75)

The indices 1 and 2 refer to either SU(2) or SO(2), while a
refers to SO(4) or Sp(2N), respectively. The constraint (40)
allows us to write the complex-conjugate expressions in
terms of the original fields. Note that this procedure only
works when one of the N' = 5 gauge groups is SU(2) or
SOQ2).

We first consider the theory with Sp(2N) X SO(2) gauge
symmetry, where a, b, ... = 1,...2N are Sp(2N) indices,
and i, j,... =1, 2 are SO(2). The conjugate scalar Zﬁ
takes the form

Z4 = —wpl (28, — iZB), (76)

and likewise for the conjugate spinor Z*A*. With these
definitions, it is straightforward to check that the N =5
transformations, with
gaibickdl — _%((51‘1(5;1 — §ilgikyjab yed
— 8ij6kl(JaCde + ch‘]ad))’ (77)
coincide with the 2N° = 6 transformations, with

f .y = I + (888% — 846D), (78)

for five of the six supersymmetries.

To find the sixth, we plug e, — —iwypm into the
transformations (5) and collect terms. After some calcula-
tion, we find:

824, =—w* PV,
SVpa=—iv*wapnD, Z5 +if* (@pwcp — wac@pp)

X (€€ t+ €€+ i5ijsz)Z‘2iZ§;ch n,
agluaidl = l-fath(’f]’)’M\Pthka - ﬁYM‘PBcngj)

X (87k€ll + €1k '), (79)
where €'/ is the antisymmetric, invariant tensor of SO(2).
This is the extra supersymmetry transformation that lifts
the N = 5 theory with Sp(2N) X SO(2) gauge symmetry
to the N = 6 theory with Sp(2N) X U(1).

Finally, we consider the N" = 5 theory with SO(4) X

SU(2) gauge symmetry, with g®?/kd! giyen in (63), in the
limit « — oo, In this limit, the structure constants reduce to
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gaibjckdl — as"deeijek], (80)

where a, b, ... = 1,...4 are SO(4) indices, and i, j, ... =
1, 2 are SU(2), and € is the antisymmetric, invariant
tensor of SU(2). We first compute the gauge transforma-
tion. Using (43), we find

8Zle oe E[EZFgl]BFwECSudeEijngngla)]' (81)

This is a pure SO(4) gauge transformation; it suggests that
the SO(4) X SU(2) invariant N° = 5 theory, in the @ — o0
limit, can be lifted to the SO(4) theory with N" = 6 and 8.
We now construct the lift. We start by defining the
complex-conjugate scalars Z4 and Z4. For the case at
hand, we find
Z 4q = —iwap(Z8 —iZB)), (82)
and likewise for the spinor E*4%. As above, it possible to
show that the N = 5 transformations with

gaibjckdl — _%Sabcdeijekl, (83)

and the N = 6 transformations with
fabcd — eabcd (84)

coincide for five of the six supersymmetries.

The sixth supersymmetry is derived in the same way as
before. Plugging €45 — —iw,pm into (5) and collecting
terms, we find:

87y = =" P Vpy,

Wy = ~iy"wspnD, 2 5
SAMML” — —2i8ab0d€ili]'}’p.\1f3bjzgf'

Note that the interaction term explicitly breaks the SU(2)
symmetry. The transformation is just what we need to lift
the N = 5 theory with SU(2) X SO(4) gauge symmetry
to the N = 6 theory with SO(4) gauge symmetry. In
Sec. IV, we proved that this theory can again be lifted to
N =8.

It is worth emphasizing that these lifts arise from
N =5 theories that are not simply N = 6 theories
with a reality constraint. Instead they arise from purely
N = 5 theories, using very special properties of the gauge
groups in question.

VIII. CONCLUSIONS

In this paper, we constructed the most general three-
dimensional N* = 5 superconformal Chern-Simons gauge
theory from first principles. We identified the 3-algebra,
found the fundamental identity, and constructed various
representations of it. We used 3-algebras to demonstrate
how certain theories can be lifted to 2N" = 6 or 8 for an
appropriate choice of gauge group.

PHYSICAL REVIEW D 83, 025003 (2011)

Our results confirm that 3-algebras provide a powerful
approach to superconformal Chern-Simons theories in
three dimensions [18]. They unify and simplify the con-
struction of theories with 2N° = 5. The number of super-
symmetries is determined by the structure of the
underlying 3-algebra. Antisymmetric structure constants,
with fabed = — fbacd — fedab " give rise to N = 6 theo-
ries, corresponding to U(M|N) and OSp(2|N) in the
Kac classification [23]. Symmetric structure constants,
with gebed = ghacd — gedab oiye IN' =5 theories, corre-
sponding to OSp(M|N), D(2|1; @) and the exotic pair F(4)
and G(3).

Perhaps our most surprising result is that theories with
different gauge groups can be continuously connected
through their 3-algebras. How does this occur in an M2
brane construction? We have seen that the N = 5 super-
symmetric SO(4) X SU(2) theory can be continuously de-
formed to the N" = 6 SO(4) theory, changing both gauge
group and the number of supersymmetries along the way. It
is surely of interest to find the M theory realization of this
phenomenon.
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APPENDIX

The theories we consider are constructed in three di-
mensions, with y* = {io?, o', o3}, with Minkowski met-
ric n*” = (-, +, +). Therefore, {y*, y*} = +21n*". In
three dimensions, the Fierz transformation is

AP = —3Ah)x = 5Ayv,.¥)y"'x.  (AD
We use the symmetrization conventions FABGCIP =
FABGCD — FACGBD anq FABGOD — FABGCD | FACGBD.
for any parameters F, G, and indices A, B, C, D. We adopt
the convention X4 = 08Xy, X, = —w45X? for any sym-
plectic structure.

Throughout the paper, we denote spinors that are
R-symmetry singlets by 5. Those in the 6 of SU(4) are
denoted by &2; those in the 5 of Sp(4) are denoted by £45.
We note the following useful identities, which hold for
both 48 and £48, although they are presented for the latter,
with the appropriate definition of gA8¢P:

L&Dy, &rcpdy = Eﬁcyyfz]Bc, (A2)
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2gﬁcf2]BD = E[C{Eé:Z]DE&g - 5{‘?62}0555

+ & Enppdh — EFExpedh, (A3
%8ABCD§112F7M§2EF = EAB[I’Yp.fz]CD + éT:AD[l’Y,u.gZ]BC

— Epp1 Y uéanac (A4)

SABCD — wACwBD _ wADwBC _ wABwCD_ (AS)

In our calculations concerning G, and the spinor repre-
sentation of SO(7), we made considerable use of the rep-
resentations and identities listed in [22]. The SO(7) gamma
matrices are

I"mab _ i(Cmgb + 5ma5b8 _ 5mb5a8). (A6)

They lead to the SO(7) generators

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]

PHYSICAL REVIEW D 83, 025003 (2011)

I‘mnab — Cmmzb + (Cmna 5b8 _ Cmnb6a8 + §ma anb

— amb 5”“, (A7)

which require the following SO(7) identities:
Cabeccde — _Cabcd + 5ac§bd _ 5ad5hc, (Ag)
Cacdcbcd — 65ab, (A9)
CebPaCPic = —4Cbe, (A10)

The C%" are the structure constants for the octonian alge-
bra, and

Cabcd —

1
—etbedefsC, (Al1)
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