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In this work we present 3-algebraic constructions and representations for three-dimensional N ¼ 5

supersymmetric Chern-Simons theories, and show how they relate to theories with additional super-

symmetries. The N ¼ 5 structure constants give theories with Spð2NÞ � SOðMÞ gauge symmetry, as

well as more exotic symmetries known from gauged supergravity. We find explicit lifts fromN ¼ 6 to 8,

and N ¼ 5 to 6 and 8, for appropriate gauge groups.
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I. INTRODUCTION

Over the past few years, there has been an explosion of
interest in three-dimensional supersymmetric Chern-
Simons gauge theories. Much progress was sparked by
the N ¼ 8 theory put forth in [1–3], and independently
in [4], that was proposed to describe the world volume
theory of coincident M2-branes [5,6].

The theory contains 8 scalars, XI, which take values in
the transverse space, and a 16-component real fermion �,
which is a two-component real d ¼ 3 spinor in one of
the 8-dimensional spinor representations of the SO(8)
R-symmetry group; the supersymmetry parameter � is in
the other. The fields take values in a 3-algebra, defined by a
totally antisymmetric triple product, given by

½Ta; Tb; Tc� ¼ fabcdT
d: (1)

The invariant, symmetric inner product ðTa; TbÞ ¼ hab

raises and lowers indices, so that fabcd is real and totally
antisymmetric. The theory is gauged, with gauge field

~A�
a
d ¼ fabcdA�bc: (2)

The gauge field is constrained, so the degrees of freedom
balance between bosons and fermions. The 3-algebra sat-
isfies the so-called fundamental identity,

½Ta; Tb; ½Tc; Td; Te�� ¼ ½½Ta; Tb; Tc�; Td; Te�
þ ½Tc; ½Ta; Tb; Td�; Te�
þ ½Tc; Td; ½Ta; Tb; Te��; (3)

which implies that the gauge transformations act as deri-
vations. These constraints define the N ¼ 8 theory, of
which there is only one (unitary) example: fabcd � "abcd

and hab � �ab, for which the gauge group is SO(4).
More theories can be found by reducing the number of

supesymmetries. These include the Aharony-Bergman-
Jafferis-Maldacena (ABJM) theories, with N ¼ 6 super-
symmetry and UðNÞ � UðNÞ gauge symmetry [7], and

the Aharony-Bergman-Jafferis (ABJ) theories [8], with
N ¼ 6 and UðNÞ � UðMÞ gauge symmetry, as well as
N ¼ 5 with Spð2NÞ � OðMÞ. Similar theories were con-
structed in [9]. A classification of the possible N ¼ 6
theories of ABJM type was presented in [10].
None of these constructions made use of a 3-algebra, so

it is natural to ask whether they play any role in theories
with N < 8. In fact, the most general N ¼ 6 theory was
constructed from a 3-algebra in [11]. One realization gives
rise to an N ¼ 6 theory with SUðNÞ � SUðNÞ gauge
symmetry; another describes the N ¼ 6 UðNÞ � UðMÞ
ABJ theories. It has recently been shown that the SUðNÞ �
SUðNÞ theory is related to the UðNÞ � UðNÞ ABJM theory
[12], so the 3-algebraic approach indeed describes the
complete set of N ¼ 6 ABJM and ABJ theories.
Given these results, one would also like to know the role

that 3-algebras play in N ¼ 5 theories. The quaternionic
unitary 3-algebras were classified in [13], where it was
found that they are in one-one correspondence with the
N ¼ 5 Chern-Simons theories presented in [9,14]. In this
paper we take a more direct approach and construct the
most general three-dimensional N ¼ 5 superconformal
Chern-Simons theories from first principles. We work in
components and close the supersymmetry transformations
on the fields. We find that the theories depend on real
structure constants with four upstairs indices, satisfying
N ¼ 5 versions of the fundamental identity. When the
structure constants obey fabcd ¼ �fbacd ¼ fcdab, they
give rise to N ¼ 5 truncations of N ¼ 6 theories, with
supersymmetry transformations given in [11]. When they

obey gabcd ¼ gbacd ¼ gcdab, with gðabcÞd ¼ 0, the theories
are purely N ¼ 5. For this case, our N ¼ 5 transforma-
tion laws agree with those presented in [15]. Our results are
in accord with the classification derived in [13]. In addi-
tion, they clarify the connection between N ¼ 5 and
N ¼ 6 theories and show that they both arise as indepen-
dent solutions to a single set of constraints.
In what follows we also present explicit 3-algebra rep-

resentations for various N ¼ 5 theories. We recover all
the examples discussed in [9,13,14]. We find an Spð2NÞ �
SOðMÞ theory of ABJ-type, with matter fields transforming
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in the bifundamental representation of the gauge group, as
well as an SOð4Þ � SUð2Þ theory with one free parameter.
We also find more exotic theories with gauge groups
G2 � SUð2Þ, with bifundamental matter, and SOð7Þ �
SUð2Þ, with matter in the 8-dimensional spinor representa-
tion of SO(7). These theories can also found using the
‘‘embedding tensor’’ approach to d ¼ 3, N ¼ 8 gauged
supergravity in the conformal limit [16,17], or using
N ¼ 1 superspace, as was done in [18].

Finally, in this paper we also show how to lift certain
theories with N ¼ 5 and N ¼ 6 supersymmetry to
N ¼ 6 and N ¼ 8. We first lift the N ¼ 6 theory
with SUð2Þ�SUð2Þ’SOð4Þ gauge symmetry to N ¼ 8.
We then lift the Spð2NÞ � SOð2Þ invariant N ¼ 5 theory
to N ¼ 6. As a third example, we lift the N ¼ 5
theory with SOð4Þ � SUð2Þ gauge symmetry to N ¼ 6
at one point in its parameter space. At that point, the gauge
symmetry is reduced to SOð4Þ ¼ SUð2Þ � SUð2Þ, as re-
quired for N ¼ 6 supersymmetry.

The layout of the paper is as follows. In the next section,
we review the 3-algebraic construction of the N ¼ 6
theories. We present specific representations of the various
gauge groups that arise, and we demonstrate the lift to
N ¼ 8. We then turn our attention to N ¼ 5 and con-
struct the most general theory based on a 3-algebra. We
find the fundamental identity, and solve it in terms of
structure constants of two different kinds. We discuss
explicit representations, and present the lifts from
N ¼ 5 to N ¼ 6.

II. REVIEW OF THE N ¼ 6 CONSTRUCTION

In this section, we review the relevant features of the
construction in [11]. We start by decomposing the SO(8)
global symmetry into SOð6Þ � SOð2Þ ¼ SUð4Þ � Uð1Þ.
The matter fields are a scalar ZA

a and a spinor �Aa, both
with U(1) charges þ1, together with their conjugates �Za

A

and�Aa, where A ¼ 1; . . . 4 is the SU(4) index and a spans
a representation of some gauge group. The 3-algebra struc-
ture constants fabcd are no longer necessarily real or totally
antisymmetric, but satisfy fabcd ¼ �fbacd ¼ fbadc ¼
f�cd

ab. The six supersymmetry parameters "AB are antisym-

metric in A and B, and obey the reality condition

"AB ¼ 1
2"

ABCD"CD: (4)

TheN ¼ 6 supersymmetry transformations on the sca-
lar and the fermion are

�ZA
d ¼ i �"AD�Dd;

��Dd ¼ ��"ADD�Z
A
d þ fabcdZ

A
aZ

B
b
�Zc
A"BD

þ fabcdZ
A
aZ

B
b
�Zc
D"AB;

(5)

where the gauge-covariant derivative on the scalar is
defined by

D�Z
A
d ¼ @�Z

A
d � ~A�

a
dZ

A
a: (6)

The transformations on the scalar close according to the
supersymmetry algebra,

½�1; �2�ZA
d ¼ v�D�Z

A
d þ ~�a

dZ
A
a ; (7)

where

v� ¼ i

2
�"CD2 ��"1CD; (8)

and

~� a
d ¼ i �"CE½2 "1�BEfabcdZ

B
b
�Zc
C; (9)

where the antisymmetrization is done without a factor of 12 .

The transformations on the fermions close similarly,

½�1; �2��Dd ¼ v�D��Dd þ ~�a
d�Da; (10)

provided the equations of motion are satisfied:

EDd ¼ ��D��Dd � 2fabcd�BaZ
B
b
�Zc
D þ fabcd�DaZ

B
b
�Zc
B

þ "ABCDf
ab

cd�
CcZA

aZ
B
b ¼ 0: (11)

Finally, the gauge field transformations

� ~A�
a
d ¼ �ifabcdð �"BC���Bb

�Zc
C þ �"BC���

CcZB
b Þ (12)

close as follows:

½�1; �2� ~A�
a
d ¼ D�ð~�a

dÞ þ v� ~F��
a
d þOðZ4Þ; (13)

provided the field strength obeys the following condition:

~F��
a
d¼�@� ~A�

a
dþ@� ~A�

a
dþ ~A�

a
b
~A�

b
d� ~A�

a
b
~A�

b
d

¼�"���ðD�ZB
b
�Zc
B�ZB

bD
� �Zc

B� i ��Bc���BbÞfabcd:
(14)

Canceling theOðZ4Þ-terms leads to theN ¼ 6 fundamen-
tal identity,

fefgbf
cb

ad þ ffeabf
cb

gd þ f�gafbfcebd þ f�agebfcfbd ¼ 0:

(15)

The fundamental identity ensures that the gauge transfor-
mation acts as a derivation. With these ingredients, it is not
hard to construct the N ¼ 6 Lagrangian, written in terms
of the 3-algebra. In the next section, we discuss represen-
tations of the N ¼ 6 gauge groups.

III. N ¼ 6 REPRESENTATIONS

A representation of the 3-algebra can be constructed
from rectangular M� N matrices, X, Y, Z, as follows:

½X; Y;Z� ¼ XZyY � YZyX; (16)

where Zy is the conjugate transpose of Z. This can be
interpreted as a gauge transformation on Xdl, acting via
left and right multiplication, with X carrying bifundamen-
tal indices d and l,
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�Xdl ¼ ½X; Y;Z�dl ¼ XdkZ
ykbYbl � YdkZ

ykbXbl: (17)

In this case, the 3-algebra structure constants are given by

faibjckdl ¼ �a
d�

b
c�

i
k�

j
l � �a

c�
b
d�

i
l�

j
k: (18)

The structure constants have the correct symmetries and
satisfy the N ¼ 6 fundamental identity.

Using (9), it is a simple matter to determine the gauge
theories that are constructed in this way. For this particular
3-algebra, we find

�ZA
dl ¼ ~�ai

dlZ
A
ai

¼ i �"CE½2 "1�BEZB
bl
�Zbk
C ZA

dk � i �"CE½2 "1�BEZB
dj
�Zcj
C Z

A
cl: (19)

The matrix ~�ai
dl is anti-Hermitian, with a nonvanishing

trace for M � N and a vanishing trace for M ¼ N.
As expected, these N ¼ 6 theories have UðNÞ � UðMÞ
and SUðNÞ � SUðNÞ gauge symmetry. The original
UðNÞ � UðNÞ ABJM model can be recovered by gauging
the global U(1) symmetry, as was done in [12].

A second choice of structure constants is given by

fabcd ¼ JabJcd þ ð�a
c�

b
d � �a

d�
b
cÞ; (20)

where Jab ¼ ið�2 � IN�NÞab is the antisymmetric invari-
ant tensor of Spð2NÞ. The fabcd also obey the fundamental

identity and have the correct symmetries. As before, we
close the algebra to find the gauge transformation on ZA

d ,

�ZA
d ¼ ~�a

dZ
A
a

¼ i �"CE½2 "1�BEðZB
d
�Za
C þ JabJcdZ

B
b
�Zc
CÞZA

a

� i �"CE½2 "1�BEZB
b
�Zb
CZ

A
d : (21)

This transformation is a sum of two parts. The first is of the

form �0ZA
d ¼ ~�0a

dZ
A
a ; the second is a phase. It is easy to

see that Jab�
0b
cJ

cd ¼ �0d
a, so the gauge group is simply

Spð2NÞ � Uð1Þ.

IV. LIFT: N ¼ 6 ! N ¼ 8

From the above construction, it is possible to find an
explicit lift from the N ¼ 6 theory with SUð2Þ � SUð2Þ
gauge symmetry to the uniqueN ¼ 8 theory. We begin by
writing the matter fields ZA

� _� in SO(4) notation,

ZA
d ¼ ZA

� _� �� _��
d ; (22)

using the ordinary Pauli matrices of [19] (except taking
�0 ! i�0 ¼ i ��0 to make the gauge space Euclidean).
Because of the well-known identity

ð ��a�b ��c � ��c�b ��aÞ _�� ¼ �2"abcd �� _��
d ;

the representation of the SUð2Þ � SUð2Þ transformation
given in (16) exactly reproduces the 3-algebra of the

N ¼ 8 theory, with fabcd ¼ "abcd (we absorb the constant
of proportionality into "abcd).
In this notation, we start with the original N ¼ 6

supersymmetry transformations presented above, parame-
trized by "AB, and construct two additional supersymme-
tries, parametrized by a complex spinor 	 of global U(1)
charge þ2. The most general supersymmetry transforma-
tions consistent with these assignments are

�ZA
d ¼ i �"AD�Dd þ i�1 �	�

A
d ;

��d
D ¼ ��"ADD�Z

Ad þ�2�
�	D�

�Zd
D

þ "abcdZA
aZ

B
b
�ZDc"AB � "abcdZA

aZ
B
b
�ZBc"AD

��3"
abcdZA

a
�ZAb

�ZDc	

þ�4"ABCD"
abcd	�ZA

aZ
B
bZ

C
c ; (23)

for some complex numbers �1, �2, �3, �4. Note that
since the gauge group is SO(4), the gauge indices can be
raised and lowered at will.
Imposing the supersymmetry algebra on the scalar trans-

formation leads to �1 ¼ �3 and �1 ¼ �2. In particular,
we find

½�1; �2�ZA
d ¼ v�D�Z

A
d þ ~�a

dZ
A
a ; (24)

where

v� ¼ i

2
�"BC2 ��"1BC þ ij�1j2 �	½2��	�

1� (25)

and

~�ad ¼ i �"CE½2 "1�BE"abcdZB
b
�ZCc þ 3i�4 �"½2BC	�

1�"
abcdZB

bZ
C
c

þ i�1 �	½2"BC1� "
abcd �ZBb

�ZCc

þ ij�1j2 �	½2	�
1�"

abcdZB
b
�ZBc: (26)

Anti-Hermicity of the generator ~�ad requires�1 ¼ �3��
4.

This leaves only �1 independent; it can be absorbed into
the parameter 	.
With these results, the supersymmetry transformations

are

�ZA
d ¼ i �"AD�Dd þ i �	�A

d ;

��d
D ¼ ��"ADD�Z

Ad þ ��	D�
�Zd
D þ "abcdZA

aZ
B
b
�ZDc"AB

� "abcdZA
aZ

B
b
�ZBc"AD � "abcdZA

a
�ZAb

�ZDc	

� 1
3"ABCD"

abcd	�ZA
aZ

B
bZ

C
c : (27)

Closing on the fermion gives

½�1; �2��Dd ¼ v�D��Dd þ ~�a
d�Da þ i

2
�"CB½2 "1�CDEBd

� i

4
�"BE2 ��"1BE��EDd þ i �	½2"1�CDEC

d

� i

2
ð �	½2	�

1� þ �	�
½2�

�	1���ÞEDd; (28)
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as required, where EDd denotes the fermion equation of
motion (11). The same calculation also fixes the trans-
formation of the gauge field,

� ~A�
ad¼�i"abcd �"BC���

B
bZ

C
c � i"abcd �"BC���Bb

�ZCc

þ i"abcd �	����BbZ
B
c þ i"abcd �	���

B
b
�ZBc: (29)

Closing on ~A�
ad imposes the constraint (14).

The above transformations are manifestly SUð4Þ � Uð1Þ
covariant. However, they must also be covariant under
SO(8), the N ¼ 8 R-symmetry group. As a check, there-
fore, we compute their transformations under the 12 re-
maining generators of SOð8Þ=ðSUð4Þ � Uð1ÞÞ, which we
denote gAB, with U(1) charge 2. The transformations are

�ZA
a ¼ gAB �ZBa;

��Ba ¼ �1
2"BCDEg

DE�C
a ;

�"AB ¼ gAB	� þ 1
2"

ABCDg�CD	;

�	 ¼ �1
2g

AB"AB;

(30)

consistent with the fact that ZA
a , �Bb, and "AB live in

different SO(8) representations. The transformations (30)
close into SUð4Þ � Uð1Þ, as required by the SO(8) algebra.
Moreover, it is not hard to show that the supersymmetry
transformations (27) and (29) are covariant under (30), as
they must be. Thus, for the case of SO(4) gauge symmetry,
the supersymmetry transformations (27) and (29) do in-
deed lift the N ¼ 6 theory to N ¼ 8.

V. N ¼ 5 CONSTRUCTION

In this section, we proceed along similar lines to con-
struct the most generalN ¼ 5 theories that make use of a
3-algebra. We start by decomposing the SO(8) global
symmetry into SOð5Þ � SOð3Þ ¼ Spð4Þ � SUð2Þ. We
take the eight scalar fields to have the index structure
XA
id, where A ¼ 1; . . . 4 and i ¼ 1, 2 are indices that refer

to the Sp(4) R symmetry and the global SU(2), respec-
tively; the index d spans a representation of the gauge
group. The Sp(4) indices are raised or lowered with the
Sp(4)-invariant tensor,

!AB ¼ ið�2 � I2�2ÞAB;
for which !AB!BC ¼ ��A

C. Here and elsewhere we adopt

the convention XA ¼ !ABXB, XA ¼ �!ABX
B for any sym-

plectic structure. The supersymmetry parameters are real
spinors 
AB, antisymmetric in A and B and traceless,

!AB

AB ¼ 0; (31)

so the 
AB are in the 5 of Sp(4). The superpartner fermions
are real spinors as well, with index structure �Aid.

The most general supersymmetry transformations are of
the following form:

�XA
id ¼ i �
AD�Did;

��Dld ¼ ��
ADD�X
A
ldþ!BD
AC�

jkðfabcdXA
laX

B
jbX

C
kc

þ gabcdX
A
kaX

B
lbX

C
jcÞþ!AC
BD�

jkðhabcdXA
laX

B
jbX

C
kc

þ jabcdX
A
kaX

B
lbX

C
jcÞ; (32)

where the Levi-Civita tensor �ij raises and lowers the
SU(2) indices. Without loss of generality, we may take
gabcd and jabcd to be symmetric in a and c.
The tensors gabcd, h

abc
d, and jabcd are fixed by closing

the supersymmetry algebra on the scalar,

½�1; �2�XA
id ¼ v�D�X

A
id þ ~�a

dX
A
ia; (33)

with v� ¼ i
2
�
BC
2 ��
1BC. We find

fabcd ¼ 2gcabd ¼ hacbd ¼ 2jcabd; (34)

which implies

~� a
dX

A
ia ¼

i

2
�jk �
EF

½2 
1�CF!EBf
abc

dX
B
jbX

C
kcX

A
ia: (35)

Because of conflicting symmetries, ~�a
d vanishes, so no

gauge transformation appears in the closure of the algebra.
With these conditions, the fermion supersymmetry

transformation becomes

��Dld ¼ ��
ADD�X
A
ld þ �jkð!BD
AC þ!AC
BDÞ

� ðfabcdXB
jbX

C
kcX

A
la � 1

2f
abc

dX
B
laX

C
kcX

A
jbÞ: (36)

Closing this transformation leads to a trivial theory. All
interaction terms cancel in the equation of motion. Indeed,
upon closer inspection, it is possible to show that the
interaction terms in the fermion transformation (36) also
vanish, as indeed they must.
To find a nontrivialN ¼ 5 theory, we need to impose a

less restrictive global symmetry group. Therefore, in what
follows, we will take the global symmetry group to be the
R-symmetry group SOð5Þ ¼ Spð4Þ. Since Spð4Þ � SUð4Þ,
we can carry over many results from N ¼ 6.
We start by examining the supersymmetry parameters.

We write the N ¼ 6 parameters "AB in terms of the
N ¼ 5 parameters 
AB, together with a real
R-symmetry singlet spinor 	, as follows:

"AB ¼ 
AB þ i!AB	; "AB ¼ 
AB � i!AB	: (37)

In an N ¼ 5 theory, the Sp(4) indices are raised and
lowered using the antisymmetric tensors !AB and !AB,
respectively. For the N ¼ 5 parameters 
AB, this conven-
tion is consistent with the SU(4) R symmetry of the
N ¼ 6 theory:


AB � !AC!BD
CD

¼ 1
2ð!AC!BD �!AD!BC �!AB!CDÞ
CD

¼ 1
2"

ABCD
CD: (38)
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The sign change in the singlet follows from the group
theory,

!AB	 � !AC!BD!CD	

¼ �1
2ð!AC!BD �!AD!BC �!AB!CDÞ!CD	

¼ �1
2"

ABCD!CD	: (39)

It is also necessary for the closure of the supersymmetry
transformations, as can be checked for the free case.

We next consider the fields. The 4 of Sp(4) is obtained
from the 4 and �4 of SU(4) by imposing a reality condition.
For the case at hand, we impose the following constraints
on the fields of the N ¼ 6 theory [20]:

�Z a
A ¼ �Jab!ABZ

B
b ; �Aa ¼ �Jab!AB�Bb: (40)

Here !AB is the antisymmetric Sp(4) invariant tensor,
while Jab is an invariant (antisymmetric) tensor of the
gauge group, with JabJ

bc ¼ ��c
a. The minus sign in the

second term renders the constraint consistent with
the N ¼ 5 supersymmetry transformations. The con-
straint is inconsistent with the transformation parametrized
by 	, so it explicitly breaks N ¼ 6 supersymmetry to
N ¼ 5.

With this constraint, we can write the N ¼ 5 super-
symmetry transformations entirely in terms of the fields
ZA
a and �Dd. The most general transformations take the

following form:

�ZA
d ¼ i �
AD�Dd;

��Dd ¼ ��
ADD�Z
A
d þ fabc1 dZ

A
aZ

B
bZ

C
c 
DC!AB

þ fabc2 dZ
A
aZ

B
bZ

C
c 
AB!DC; (41)

where, without loss of generality, we take fabc1 d and fabc2 d

to be antisymmetric in their first two indices. Closing on
the scalar gives

½�1; �2�ZA
d ¼ v�D�Z

A
d þ ~�a

dZ
A
a ; (42)

with

~� a
d ¼ ifabc2 dZ

B
bZ

C
c !DC

�
DF
½2 
1�BF; (43)

where

fabc1 d ¼ 1
2ðfbca2 d � facb2 dÞ: (44)

This implies

��Dd ¼ ��
ADD�Z
A
d � facb2 dZ

A
aZ

B
bZ

C
c 
DC!AB

þ fabc2 dZ
A
aZ

B
bZ

C
c 
AB!DC: (45)

Closing on the fermion gives

½�1; �2��Dd ¼ v�D��Dd þ ~�a
d�Da � i

2
�
AC
½1 
2�ADECd

þ i

4
ð �
AB

1 ��
2ABÞ��EDd;

with the following fermion equation of motion:

EDd ¼ ��D��Dd � fabc2 dð�DcZ
A
aZ

B
b þ�DbZ

A
aZ

B
c Þ!AB

þ 2fabc2 dð�AbZ
A
aZ

C
c þ�AcZ

A
aZ

C
b Þ!DC ¼ 0: (46)

With these assignments, the gauge field transforms as

� ~A�
a
d ¼ �iðfacb2 d þ fabc2 dÞ!BE �
EC���BbZ

C
c : (47)

Closing on the gauge field imposes additional constraints:

fabc2 gðfedg2 fþfegd2 fÞZA
aZ

B
bZ

C
c Z

D
d !AD!BC¼0

fabc2 gðfedg2 fþfegd2 fÞZA
aZ

B
bZ

C
c Z

D
d
�
AB½1��
2�CD¼0:

(48)

These two constraints must be satisfied by the N ¼ 5
fundamental identity.
Up to now, we have worked in complete generality. To

proceed further, we impose symmetries on the structure
constants fabc2 d. The most obvious choice is

fabcd2 ¼ fabcd ¼ �fbacd ¼ fcdab; (49)

as in N ¼ 6. With this choice, the calculations work out
just as before. In particular, the conditions (48) are satisfied
by the N ¼ 5 restriction of the N ¼ 6 fundamental
identity:

JgjðfabfgfjhcdþfagfdfhbjcþfahfgfjbdcþfagfcfbhjdÞ¼0:

(50)

In this case, the supersymmetry transformations are those
of Ref. [11].
A second and more interesting choice is to take

fabcd2 ¼ gacbd � gbcad; (51)

where

gacbd ¼ gcabd ¼ gbdac; (52)

so fabcd2 has all the right symmetries. As we shall see, this
choice generates N ¼ 5 theories that are not restrictions
of N ¼ 6. The conditions (48) are satisfied if [21]

gðacbÞd ¼ 0 (53)

and

JgjðgafbggjchdþgafgdghjbcþgafhggjdbcþgafgcgbjhdÞ¼0:

(54)

This is the N ¼ 5 fundamental identity, which was also
found in [14] by taking the conformal limit of three-
dimensional gauged supergravity.
Substituting gabcd for fabc2 d in (41), (45), and (47), we

find the N ¼ 5 supersymmetry transformations
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�ZA
d ¼ i �
AD�Dd;

��Dd ¼ ��
ADD�Z
A
d � gabcdZ

A
aZ

B
bZ

C
c 
DB!AC

þ 2gabcdZ
A
aZ

B
bZ

C
c 
AC!DB;

� ~A�
a
d ¼ 3igbcad!

BE �
EC���BbZ
C
c : (55)

These transformations close into a translation and a gauge
variation, with parameter

~� a
d ¼ � 3i

2
gbcadZ

B
bZ

C
c !DC

�
DF
½2 
1�BF: (56)

These are the same transformations that were found, start-
ing from different assumptions, in Ref. [15].

VI. N ¼ 5 REPRESENTATIONS

In this section we constructN ¼ 5 gauge theories, built
from symmetric structure constants gabcd, with gauge
transformations

�ZA
d ¼ ~�a

dZ
A
a ¼ � 3i

2
gbcadZ

B
bZ

C
c !DC

�
DF
½2 
1�BFZA

a : (57)

We will see that there are a host of such theories, including
some with free parameters or exceptional gauge groups, in
stark contrast to N ¼ 6 or 8.

We start by constructing a set of gabcd that lead to an
Spð2NÞ � SOðMÞ gauge group. There are four combina-
tions of the invariant tensors of Spð2NÞ and SOðMÞ that
have the symmetries (52):

gaibjckdl1 ¼ ð�ac�bd � �ad�bcÞJijJkl;
gaibjckdl2 ¼ ðJikJjl þ JjkJilÞ�ab�cd;

gð	Þaibjckdl
3 ¼ ð�ac�bd 	 �ad�bcÞðJikJjl 	 JjkJilÞ;

(58)

where i; j; . . . ¼ 1; . . . 2N are Spð2NÞ indices, and
a; b; . . . ¼ 1; . . .M are SOðMÞ. From them, we must select
linear combinations that satisfy (53) and the fundamental
identity (54).

In fact, there are just two linear combinations that do the
job:

gaibjckdl ¼ gaibjckdl1 � gaibjckdl2 ;

gaibjckdl ¼ gðþÞaibjckdl
3 þ gð�Þaibjckdl

3 :

(59)

Let us focus in detail on the first case. The structure
constants are

gaibjckdl ¼ ð�ac�bd � �ad�bcÞJijJkl
� �ab�cdðJikJjl þ JjkJilÞ: (60)

They give rise to the following gauge transformation:

�ZAdl ¼ � 3i

2
�
DF
½2 
1�BF!DCZ

B
bkZ

Cl
b ZAdk

� 3i

2
�
DF
½2 
1�BF!DCZ

Bk
b ZCd

k ZAl
b : (61)

The two terms are Spð2NÞ and SOðMÞ transformations,
respectively, with matter fields in the fundamental repre-
sentations of each [8,14,18].
For the second case, the structure constants are simply

gaibjckdl ¼ JikJjl�ac�bd þ JilJjk�ad�bc: (62)

The indices are in standard direct product form, so the
theory has gauge group Spð2MNÞ, with matter fields in the
2MN dimensional fundamental representation.
For the special case of SOð4Þ � Spð2Þ ’ SOð4Þ �

SUð2Þ, it is possible to add another term to the structure
constants [14,18]:

gaibjckdl ¼ gaibjckdl1 � gaibjckdl2 þ �"abcdJijJkl; (63)

where "abcd is the totally antisymmetric SO(4)-invariant
tensor. The resulting gaibjckdl satisfy (53) and the funda-
mental identity, for any choice of the free parameter�. The
gauge group closes into SOð4Þ � SUð2Þ for � � 1. In the
next section, we will see that this example, in the limit
� ! 1, has gauge group SO(4). In this limit, it lifts to
N ¼ 6 and 8.
There are also two ‘‘exceptional’’ theories withN ¼ 5.

The first arises from the tensor

gaibjckdl ¼ gaibjckdl1 � gaibjckdl2 þ �CabcdJijJkl; (64)

where a; b; . . . ¼ 1; . . . 7 and i; j; . . . ¼ 1, 2 are SO(7) and
SU(2) indices, respectively. Here Cabcd is the totally anti-
symmetric tensor that is dual to the octonionic structure
constants Cefg,

Cabcd ¼ 1

3!
"abcdefgCefg: (65)

[For a concise introduction to G2, SO(7) and the octonians,
as well as a host of useful identities, see Sec. 2 and
Appendix A of [22].] The tensor (64) satisfies (53) and
the fundamental identity for � ¼ 0 or � ¼ 1

2 . When

� ¼ 0, the gaibjckdl are just the Spð2Þ � SOð7Þ structure
constants discussed above.
When � ¼ 1

2 , the gauge group is G2 � SUð2Þ. In this

case, the structure constants take the form

gaibjckdl ¼ ð�ac�bd � �ad�bc þ 1
2C

abcdÞJijJkl
� �ab�cdðJikJjl þ JjkJilÞ; (66)

where i; j; . . . ¼ 1, 2. The gauge transformation is then

�ZAdl ¼ ~�aidlZA
ai;

with
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~�aidl ¼ 3i

2
�
DF
½2 
1�BF!DC�

adZBi
b ZCl

b

� 3i

4
�
DF
½2 
1�BF!DC

�
�ab�cd � �ac�bd þ 1

2
Cabcd

�

� JjkJilZB
bjZ

C
ck: (67)

The first term is clearly an SU(2) transformation. The
second is a G2 � SOð7Þ transformation, as can be seen
by recognizing that the operator

P abcd
14 ¼ 1

3ð�ab�cd � �ac�bd þ 1
2C

abcdÞ (68)

is a projector from the adjoint 21 of SO(7) to the adjoint 14
of G2,

P abcd
14 Cbce ¼ 0: (69)

In this way we construct the N ¼ 5, G2 � SUð2Þ gauge
theory from a 3-algebra, recovering the result found in
[14,18].

The second exceptional theory has SOð7Þ � SUð2Þ
gauge symmetry with matter transforming in the spinor 8
of SO(7) [14,18]. To find the structure constants, we start
with the tensor

gaibjckdl ¼ �ab�cdðJikJjl þ JjkJilÞ þ ��ab
mn�

cd
mnJ

ijJkl:

(70)

where a; b; . . . ¼ 1; . . . 8 and i; j; . . . ¼ 1, 2, and �ab
mn ¼

1
2 ð�m�n � �n�mÞab is built from the SO(7) gamma matri-

ces. The gaibjckdl have the correct symmetries and satisfy
the fundamental identity for � ¼ � 1

6 , in which case the

structure constants become

gaibjckdl ¼ �ab�cdðJikJjl þ JjkJilÞ � 1
6�

ab
mn�

cd
mnJ

ijJkl:

(71)

The gauge transformations reduce to

�ZAdl ¼ ~�aidlZA
ai; (72)

where

~�aidl¼�3i

2
�
DF
½2 
1�BF!DC�

adZBi
b ZCl

b

þ i

8
�
DF
½2 
1�BF!DC�

ad
mn�

bc
mnJ

jkJilZB
bjZ

C
ck: (73)

We see that the gauge group is SOð7Þ � SUð2Þ, with the
matter fields in the spinor representation of each.

VII. LIFTS N ¼ 5 ! N ¼ 6

In this section, we lift two theories with N ¼ 5 super-
symmetry to N ¼ 6, along the lines of the lift from
N ¼ 6 to N ¼ 8. In particular, we lift the N ¼ 5
theories with Spð2NÞ � SOð2Þ and SOð4Þ � SUð2Þ gauge

symmetry to N ¼ 6 theories with Spð2NÞ � Uð1Þ and
SO(4) gauge symmetry, respectively. As we showed pre-
viously, the latter theory can then be lifted to N ¼ 8.
To carry out the lifts, we first define unconstrained

complex-conjugate scalars ZA
a and �Za

A, consistent with
the constraint (40):

Z A
a ¼ ZA

a1 þ iZA
a2;

�Za
A ¼ �Za1

A � i �Za2
A : (74)

Supersymmetry then requires that the superpartner �Aa be
defined as follows:

�Aa ¼ �Aa1 þ i�Aa2; ��Aa ¼ �Aa1 � i�Aa2: (75)

The indices 1 and 2 refer to either SU(2) or SO(2), while a
refers to SO(4) or Spð2NÞ, respectively. The constraint (40)
allows us to write the complex-conjugate expressions in
terms of the original fields. Note that this procedure only
works when one of the N ¼ 5 gauge groups is SU(2) or
SO(2).
We first consider the theory with Spð2NÞ � SOð2Þ gauge

symmetry, where a; b; . . . ¼ 1; . . . 2N are Spð2NÞ indices,
and i; j; . . . ¼ 1, 2 are SO(2). The conjugate scalar �Za

A

takes the form

�Z a
A ¼ �!ABJ

abðZB
b1 � iZB

b2Þ; (76)

and likewise for the conjugate spinor ��Aa. With these
definitions, it is straightforward to check that the N ¼ 5
transformations, with

gaibjckdl ¼ �2
3ðð�ik�jl � �il�jkÞJabJcd

� �ij�klðJacJbd þ JbcJadÞÞ; (77)

coincide with the N ¼ 6 transformations, with

fabcd ¼ JabJcd þ ð�a
c�

b
d � �a

d�
b
cÞ; (78)

for five of the six supersymmetries.
To find the sixth, we plug "AB ! �i!AB	 into the

transformations (5) and collect terms. After some calcula-
tion, we find:

�ZA
dl¼�!AD �	�Ddl;

��Ddl¼�i��!AD	D�Z
A
dlþ ifabcdð!AB!CD�!AC!BDÞ

�ð�ik�jlþ�jk�ilþ i�ij�klÞZA
aiZ

B
bjZ

Cc
k 	;

� ~A�
aidl¼ ifabcdð �	���BbjZ

B
ck� �	���BckZ

B
bjÞ

�ð�jk�ilþ�jk�ilÞ; (79)

where �ij is the antisymmetric, invariant tensor of SO(2).
This is the extra supersymmetry transformation that lifts
the N ¼ 5 theory with Spð2NÞ � SOð2Þ gauge symmetry
to the N ¼ 6 theory with Spð2NÞ � Uð1Þ.
Finally, we consider the N ¼ 5 theory with SOð4Þ �

SUð2Þ gauge symmetry, with gaibjckdl given in (63), in the
limit � ! 1. In this limit, the structure constants reduce to
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gaibjckdl ! �"abcd�ij�kl; (80)

where a; b; . . . ¼ 1; . . . 4 are SO(4) indices, and i; j; . . . ¼
1, 2 are SU(2), and �ij is the antisymmetric, invariant
tensor of SU(2). We first compute the gauge transforma-
tion. Using (43), we find

�ZD
dl / �
EF

½2 
1�BF!EC"
abcd�jkZB

bjZ
C
ckZ

D
al: (81)

This is a pure SO(4) gauge transformation; it suggests that
the SOð4Þ � SUð2Þ invariantN ¼ 5 theory, in the � ! 1
limit, can be lifted to the SO(4) theory withN ¼ 6 and 8.

We now construct the lift. We start by defining the

complex-conjugate scalars ZA
a and �Za

A. For the case at
hand, we find

�Z Aa ¼ �i!ABðZB
a1 � iZB

a2Þ; (82)

and likewise for the spinor ��Aa. As above, it possible to
show that the N ¼ 5 transformations with

gaibjckdl ¼ �2
3"

abcd�ij�kl; (83)

and the N ¼ 6 transformations with

fabcd ¼ �abcd; (84)

coincide for five of the six supersymmetries.
The sixth supersymmetry is derived in the same way as

before. Plugging "AB ! �i!AB	 into (5) and collecting
terms, we find:

�ZA
dl ¼ �!AD �	�Ddl;

��Ddl ¼ �i��!AD	D�Z
A
dl

þ 2"abcd!AB!CD�ik�jlZ
A
aiZ

B
bjZ

C
ck	;

� ~A�
aidl ¼ �2i"abcd�il �	���BbjZ

B
cj:

(85)

Note that the interaction term explicitly breaks the SU(2)
symmetry. The transformation is just what we need to lift
the N ¼ 5 theory with SUð2Þ � SOð4Þ gauge symmetry
to the N ¼ 6 theory with SO(4) gauge symmetry. In
Sec. IV, we proved that this theory can again be lifted to
N ¼ 8.

It is worth emphasizing that these lifts arise from
N ¼ 5 theories that are not simply N ¼ 6 theories
with a reality constraint. Instead they arise from purely
N ¼ 5 theories, using very special properties of the gauge
groups in question.

VIII. CONCLUSIONS

In this paper, we constructed the most general three-
dimensionalN ¼ 5 superconformal Chern-Simons gauge
theory from first principles. We identified the 3-algebra,
found the fundamental identity, and constructed various
representations of it. We used 3-algebras to demonstrate
how certain theories can be lifted to N ¼ 6 or 8 for an
appropriate choice of gauge group.

Our results confirm that 3-algebras provide a powerful
approach to superconformal Chern-Simons theories in
three dimensions [18]. They unify and simplify the con-
struction of theories with N 
 5. The number of super-
symmetries is determined by the structure of the
underlying 3-algebra. Antisymmetric structure constants,
with fabcd ¼ �fbacd ¼ fcdab, give rise to N ¼ 6 theo-
ries, corresponding to UðMjNÞ and OSpð2jNÞ in the
Kac classification [23]. Symmetric structure constants,
with gabcd ¼ gbacd ¼ gcdab, give N ¼ 5 theories, corre-
sponding to OSpðMjNÞ, Dð2j1;�Þ and the exotic pair F(4)
and G(3).
Perhaps our most surprising result is that theories with

different gauge groups can be continuously connected
through their 3-algebras. How does this occur in an M2
brane construction? We have seen that the N ¼ 5 super-
symmetric SOð4Þ � SUð2Þ theory can be continuously de-
formed to the N ¼ 6 SO(4) theory, changing both gauge
group and the number of supersymmetries along the way. It
is surely of interest to find the M theory realization of this
phenomenon.

ACKNOWLEDGMENTS

We would like to thank Neil Lambert, Steve Naculich,
Raman Sundrum, and especially Arthur Lipstein for help-
ful discussions during the course of this work. We would
also like to thank Andreas Gustavsson, José Figueroa-
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APPENDIX

The theories we consider are constructed in three di-
mensions, with �� ¼ fi�2; �1; �3g, with Minkowski met-
ric 	�� ¼ ð�;þ;þÞ. Therefore, f��; ��g ¼ þ2	��. In
three dimensions, the Fierz transformation is

ð ���Þc ¼ �1
2ð ��c Þ�� 1

2ð ����c Þ���: (A1)

We use the symmetrization conventions FA½BGC�D ¼
FABGCD � FACGBD and FAðBGCÞD¼FABGCDþFACGBD,
for any parameters F, G, and indices A, B, C, D. We adopt
the convention XA ¼ !ABXB, XA ¼ �!ABX

B for any sym-
plectic structure.
Throughout the paper, we denote spinors that are

R-symmetry singlets by 	. Those in the 6 of SU(4) are
denoted by "AB; those in the 5 of Sp(4) are denoted by 
AB.
We note the following useful identities, which hold for
both "AB and 
AB, although they are presented for the latter,
with the appropriate definition of "ABCD:

1
2
�
CD
1 ��
2CD�

A
B ¼ �
AC

½1 ��
2�BC; (A2)
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2 �
AC
½1 
2�BD ¼ �
CE

½1 
2�DE�
A
B � �
AE

½1 
2�DE�
C
B

þ �
AE
½1 
2�BE�C

D � �
CE
½1 
2�BE�A

D; (A3)

1
2"ABCD

�
EF
1 ��
2EF ¼ �
AB½1��
2�CD þ �
AD½1��
2�BC

� �
BD½1��
2�AC; (A4)

"ABCD ¼ !AC!BD �!AD!BC �!AB!CD: (A5)

In our calculations concerning G2 and the spinor repre-
sentation of SO(7), we made considerable use of the rep-
resentations and identities listed in [22]. The SO(7) gamma
matrices are

�mab ¼ iðCmab þ �ma�b8 � �mb�a8Þ: (A6)

They lead to the SO(7) generators

�mnab ¼ Cmnab þ Cmna�b8 � Cmnb�a8 þ �ma�nb

� �mb�na; (A7)

which require the following SO(7) identities:

CabeCcde ¼ �Cabcd þ �ac�bd � �ad�bc; (A8)

CacdCbcd ¼ 6�ab; (A9)

CabpqCpqc ¼ �4Cabc: (A10)

The Cabc are the structure constants for the octonian alge-
bra, and

Cabcd ¼ 1

3!
"abcdefgCefg: (A11)
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