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We investigate finite-size effects on the phase structure of chiral and difermion condensates at finite

temperature and density in the framework of the two-dimensional large-N Nambu-Jona-Lasinio model.

We take into account size-dependent effects by making use of zeta-function and compactification

methods. The thermodynamic potential and the gap equations for the chiral and difermion condensed

phases are then derived in the mean-field approximation. Size-dependent critical lines separating the

different phases are obtained considering antiperiodic boundary conditions for the spatial coordinate.
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I. INTRODUCTION

Investigation on the phase structure of strongly interact-
ing matter is one of the most interesting topics in the realm
of the standard model for the fundamental forces, in par-
ticular, for the confining-deconfining phase transition.
This transition is expected to take place far from the
asymptotic freedom (high energy) domain of quantum
chromodynamics (QCD), and so nonperturbative methods
are needed in order to approach it and other phenomena
occurring in this region. The most currently used non-
perturbative methods involve computer simulations in
lattice field theory and have given many interesting
results, such as, for instance, numerical estimates for the
confining-deconfining transition temperature. In what con-
cerns precise analytical studies, they are very difficult in
the low energy domain of QCD, due to its complex field-
theoretical structure.

Because of these difficulties, phenomenological models
for QCD have been adopted along the years. Simplified
effective theories have been largely employed as a labora-
tory to get, analytically, insights on the behavior of
hadronic matter, particularly in their low-dimensional ver-
sions. One of the most frequently used of these models is
the Nambu-Jona-Lasinio (NJL) model [1]. It is a theory of
nucleons and mesons, defined in a spacetime with an even
number of dimensions, constructed from directly interact-
ing Dirac fermions with chiral symmetry. Phase transition
is considered in a manner analogous to the appearance of
Cooper pairs from electrons in the BCS theory of super-
conductivity. This is the origin of the expression ‘‘color
superconductivity’’ for the hadronic phase transition in
the context of this model. Nowadays, the usefulness of
the NJL model is well known in the description of the
phase diagram of both the chiral broken phase (quark-
antiquark condensation) and the color superconducting
phase (diquark condensation). In addition, the NJL model
is especially convenient in the study of systems under
certain conditions, like finite temperature [2,3], finite

chemical potential, and an external gauge field, among
others [4–6].
An interesting aspect in the study of the phase transitions

of the NJL model is the relevance of the fluctuations due to
finite-size effects in the phase diagram. With this purpose,
different approaches have been used to study various as-
pects of these effects [7–20]. In particular, in Ref. [20] the
influence of finite-size effects on the formation of a difer-
mion condensate was investigated at nonzero chemical
potential and at zero temperature. Other phenomenological
approaches have also been adopted. For instance, in
Ref. [21] a variational procedure is employed to study
finite density QCD in a model in which the interaction
between quarks is supposed to be mediated by instantons.
This is related to the picture of hadrons as assumed in the
MIT bag model, where nucleons are considered as droplets
in a chirally symmetric restored phase. These authors find
that at densities high enough the chirally symmetric phase
fills space, and color symmetry is broken by the formation
of a quark-quark condensate.
In this paper, we intend to generalize, by including

finite-size effects, previous results obtained for finite tem-
perature [2,3]. We make use of the techniques introduced
in Refs. [18,19] and investigate finite-size effects on the
phase structure of chiral and difermion condensates at
finite temperature and density in the framework of the
two-dimensional large-N NJL model. This is done through
zeta-function regularization and compactification methods
[22,23]. This approach allows us to determine analytically
the size dependence of the effective potential and the
gap equation. Then, phase diagrams at finite temperature
and chemical potential, where the symmetric and nonsym-
metric phases are separated by size-dependent critical
lines, are obtained.
Let us remark that our interest in the two-dimensional

version of the NJL model is an attempt to investigate the
qualitative aspects relevant to the chiral and difermion
condensations under the influence of size finiteness of the
system. In fact, many properties of four-fermion interact-
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ing models are similar in lower and higher dimensions,
and so we can expect that results obtained in the 2D NJL
model reflect properties of a more realistic 4D model.

It could be argued that spontaneous symmetry breaking
does not occur in two dimensions, as a consequence of
the Mermin-Wagner-Coleman theorem. However, this is
not the case in the present situation. We emphasize that,
although the Mermin-Wagner-Coleman theorem denies the
spontaneous breaking of continuous symmetries in two
dimensions [24], it does not apply in the large-N limit
[2,3,7,8,17,25–30]. Therefore, since our interest is in the
analysis of the possible breaking of continuous symme-
tries, it is legitimate to study symmetry breaking effects
in terms of the low-dimensional NJL model in the
large-N limit.

We organize the paper as follows. In Sec. II, we calculate
the effective potential of the NJL model in the mean-field
approximation, using the zeta-function method. The analy-
sis of spontaneous symmetry breaking induced by the
chiral and difermion condensates is also done. The size-
dependent gap equations is discussed in Sec. III, while
the phase diagrams are shown and analyzed in Sec. IV.
Finally, Sec. V presents some concluding remarks.

II. THE MODEL

Our starting point is the two-dimensional massless
version of the extended NJL model, described by the
Lagrangian density [2,3,28]:

L ¼ �c ðiÞði@���0Þc ðiÞ þ gS
2
ð �c ðiÞc ðiÞÞ2

þ gDð �c ðiÞ�5c
ðjÞÞð �c ðiÞ�5c

ðjÞÞ; (1)

where c and �c are the fermion fields carrying N flavors
(i; j ¼ 1; . . . ; N; repeated flavor indices are summed), � is
the chemical potential, and the � matrices are in the two-
dimensional space representation, with �5 ¼ �0�1. Notice
that the Lagrangian density possesses OðNÞ flavor symme-
try and discrete chiral symmetry. In the following, unless
explicitly stated, we use natural units ℏ ¼ kB ¼ c ¼ 1.

Choosing a particular representation, we have

�0 ¼ 0 1
1 0

� �
; �1 ¼ 0 �1

1 0

� �
; (2)

where, in this representation, C ¼ ��1. In this case, the
pairing term reads

gDð �c ðiÞ�5c
ðjÞÞð �c ðiÞ�5c

ðjÞÞ ¼ �gD
2
ð"��c yðiÞ

� c yðiÞ
� Þ

� ð"��c ðjÞ
� c ðjÞ

� Þ: (3)

We perform the bosonization by introducing the auxil-
iary fields � and �, associated to the bilinear forms in

the above Lagrangian density as gs �c
ðiÞc ðiÞ � � and

gd"��c
ðiÞ
� c ðiÞ

� � �, respectively. Therefore the modified

Lagrangian density becomes

~L ¼ �c ðiÞði@� ����0Þc ðiÞ � 1

2
�yð"��c ðiÞ

� c ðiÞ
� Þ

þ 1

2
ð"��c yðiÞ

� c yðiÞ
� Þ�� 1

2gS
�2 � 1

2gD
j�j2: (4)

We see from Eq. (4) that the auxiliary field � plays the role
of a dynamical fermion mass, such that when it has a
nonvanishing value, the system is in the chiral broken
phase. The auxiliary field � is associated with the difer-
mion condensate.
Then, integration over c and c y generates the effective

action

�effð�;�Þ ¼
Z

dx

�
� 1

2gS
�2 � 1

2gD
j�j2

�
� i

2
Tr lnD;

(5)

where

D ¼ �h �1�y
��1� hT

� �
; (6)

with

h ¼ i@0 þ i�5@1 ��� ��0;

hT ¼ �i@0 � i�5@1 ��� ��0:
(7)

Notice that the trace over the flavor indices in Eq. (5)
gives a factor N, which allow us to set, in the large-N limit,
gSN ¼ GS and gDN ¼ GD, with GS and GD fixed at
N ! 1. Thus, the effective potential is obtained in the
mean-field approximation (i.e., � and j�j uniform) from
Eq. (5):

Ueffð�;�Þ ¼ �2

2GS

þ j�j2
2GD

þ i

2
tr lnðhThÞ

þ i

2
tr ln½1� j�j2ðhTÞ�1�1ðhÞ�1�1�; (8)

where tr means the trace over spinor indices.
Our aim is to take into account simultaneously finite-

temperature and finite-size effects on the phase structure of
the model; in order to do this, we consider an Euclidean
space, with imaginary time and the spatial coordinate
being compactified. We denote the Euclidian coordinate
vectors by xE ¼ ðx0; xÞ, with x0 2 ½0; �� and x 2 ½0; L�,
where � is the inverse temperature, � ¼ T�1, and L is the
size of the system. This corresponds to the generalized
Matsubara prescription:

Z d2k

ð2�Þ2 fðk0; kÞ !
1

�L

X1
n0;n¼�1

fð!n0 ; !nÞ; (9)

where
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k0 ! !n0 ¼
2�

�

�
n0 þ 1

2

�
; n0 ¼ 0;�1;�2; � � � ;

k ! !n ¼ 2�

L
ðnþ cÞ; n ¼ 0;�1;�2; . . . ;

in the above equation the quantity c is such that c ¼ 0 and
c ¼ 1

2 for, respectively, periodic and antiperiodic spatial

boundary conditions. In this article, we will restrict our-
selves to antiperiodic spatial boundary conditions, which is
a natural choice for fermionic systems. The case of peri-
odic spatial boundary conditions would follow along par-
allel lines. Unless explicitly stated, in all cases studied the
spatial boundary conditions are antiperiodic.

Using Eq. (9) in (8) we get, after some manipulations,
the effective potential carrying finite-temperature and
finite-size effects, omitting terms independent of j�j
and �:

U�;L
eff ð�;�Þ ¼

�2

2GS

þ j�j2
2GD

� 1

2�L

X
�

X1
n0;n¼�1

ln½!2
n0 þ k2��; (10)

where

k2� ¼ j�j2 þ �2 þ�2 þ!2
n � 2½j�j2�2

þ�2ð!2
n þ �2Þ�1=2: (11)

The effective potential in Eq. (10) can be rewritten in
terms of the Epstein zeta functions YðsÞ, that is,

U�;L
eff ð�;�Þ ¼

�2

2GS

þ j�j2
2GD

þ 1

2�L

X
�

d

ds
Y�
�;�ðsÞjs¼0;

(12)

where

Y�
�;�ðsÞ ¼

X1
n0;n¼�1

½!2
n0 þ k2���s: (13)

The analysis of the phase diagram of the temperature-
and boundary-dependent model is performed through the
solutions of the gap equation containing thermal and
boundary corrections. However, for completeness and to
set up the free space parameters, in the next section we start
by treating the zero-temperature model without chemical
potential and in the absence of spatial boundaries.

III. MODEL AT T ¼ 0, � ¼ 0, AND WITHOUT
SPATIAL BOUNDARIES

Let us study the model introduced in the previous sec-
tion, without compactification of the spatial dimension
and at zero temperature. This case has been well studied
in Ref. [3]; here we perform this study to define the zero-
temperature free space parameters in the absence of

chemical potential. The renormalization conditions for
the coupling constants are

1

GSR

¼ @2

@�2
Ueffð�;�Þj�¼�0;�¼�0

(14)

and

1

GDR

¼ @2

@�2
Ueffð�;�Þj�¼�0;�¼�0

; (15)

where GSR and GDR are the renormalized coupling con-
stants and �0 and �0 are scale parameters. Then, by
taking � ¼ T ¼ 0 in Eq. (8) and performing the integra-
tion over p0, the unrenormalized effective potential can be
rewritten as

Ueffð�;�Þ ¼ �2

2GS

þ j�j2
2GD

� 1

2�

Z
dkðkþ þ k�Þ; (16)

where k� is given by Eq. (11), with the replacement
!n ! k. So, we obtain from (14) and (15) the following
relations [2,3,28]:

1

GSR

¼ 1

GS

þ 1

�
� X;

1

GDR

¼ 1

GD

þ 1

4�
� 1

8�

�0

�0

ln

��������
�0 � �0

�0 þ �0

���������
X

2
;

(17)

where the quantity X carries the divergent part:

X ¼ 1

2�

Z
dkf½k2 þ ð�0 þ�0Þ2��1=2

þ ½k2 þ ð�0 ��0Þ2��1=2g
¼ 1

�

�
1

"
þ ln

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�2
0 ��2

0j
q

��
; (18)

for " ! 0.
Hence now we are able to write the renormalized effec-

tive potential

�Ueffð�;�Þ ¼ �1�
2 þ �2j�j2

� 1

2
FP

�X
�

Z d2k

ð2�Þ2 ln½k2n0 þ k2��
�
; (19)

where

�1 ¼ 1

2GSR

� 1

2�
;

�2 ¼ 1

2GDR

� 1

4�
þ 1

8�

�0

�0

ln

��������
�0 � �0

�0 þ �0

��������;
(20)

in the above equation, FPf. . .g means the finite part of the
terms between brackets. When we set �1 ¼ 0, we have the
vacuum values � � 0 and � ¼ 0. Choosing renormaliza-
tion scales as�0 ¼ m (m is a scale parameter) and�0 ¼ 0,
then �2 > 0, with GSR ¼ �. This is the chiral condensate
sector. On the other hand, if we take the vacuum with
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� � 0 and � ¼ 0 and choose �2 ¼ 0, �1 > 0, �0 ¼ m,
and �0 ¼ 0, we have GDR ¼ 2�, corresponding to the
difermion condensate sector.

IV. MODEL AT FINITE T, �, AND WITH
SPATIAL BOUNDARIES

Now we take into account temperature, chemical
potential, and finite-size dependence. Notice that the
T;�; L-dependent contributions do not alter the structure
of ultraviolet divergences discussed in Sec. III; then the
renormalized effective potential is given by

�U�;L
eff ð�;�Þ ¼ �1�

2 þ�2j�j2 þ 1

2�L

X
�
FP

�
d

ds
Y�
�;�ðsÞjs¼0

� Y�
�;�ðsÞ lnm2

�
: (21)

Thus, the T;�; L-dependent phase diagram of the model

can be analyzed from �U�;L
eff and the gap equations.

A. The chiral condensate sector

To analyze the pure chiral condensate sector of the
model, we must take the effective potential in Eq. (21)
with � ¼ 0 and �1 ¼ 0, as pointed out at the end of
Sec. III. In order to do this, we perform an analytical
continuation of the Epstein zeta function Y�

� [18,19,22],
which gives

�U�;L
eff ð�Þ¼

1

4�
�2½ln�2�1�þ 2�

�L

X1
n¼1

cosð2�ncÞ
n

K1ðnL�Þ

� 2

�L

X
�

X1
n¼�1

lnf1þe��½ð!2
nþ�2Þ1=2���g: (22)

Remember that we have fixed m as the scale of the model,
redefining the relevant quantities as �Ueff=m

2 ! �Ueff ,
�=m ! �, Lm ! L, �=m ! �, and �m ! �.
Furthermore, we can see that in the bulk limit L ! 1
Eq. (22) becomes

�U�;L
eff ð�Þ ¼

1

4�
�2½ln�2 � 1�

� 2

�

X
�

Z dk

2�
lnf1þ e��½ðk2þ�2Þ1=2���g; (23)

an expression which agrees with that in Ref. [3].
The ground state is analyzed by means of the minimum

of the effective potential, which corresponds to the gap
equation

@

@�
�U�;L
eff ð�Þ ¼ 0: (24)

The nonvanishing solution of the gap equation yields the
dynamically generated fermion mass, which comes from
the equation

1

�
ln�2 � 2

�L

X1
n¼1

cosð2�ncÞK0ðnL�Þ þ 2

L

X
�

X1
n¼�1

� 1

ð!2
n þ �2Þ1=2

1

e�½ð!2
nþ�2Þ1=2��� þ 1

¼ 0: (25)

B. The difermion condensate sector

On the other hand, the pure chiral condensate sector is
studied by taking in Eq. (21) � ¼ 0 and �2 ¼ 0. After
performing the analytical continuation of the Epstein zeta
function Y�

� , we have the following effective potential:

�U�;L
eff ð�Þ ¼

1

4�
�2½ln�2 � 1�

þ 2�

�L

X1
n¼1

cosð2�ncÞ
n

cosð�LnÞK1ðnL�Þ

� 2

�L

X
�

X1
n¼�1

lnf1þ e��½ð!n��Þ2þ�2�1=2g; (26)

where we have used again m as the scale parameter,
redefining �Ueff=m

2 ! �Ueff , �=m ! �, Lm ! L, �=m !
�, and �m ! �.
To verify the consistency of the model, we take the

situation without spatial boundaries, that is, L ! 1.
In this case, Eq. (26) becomes

�U�;L
eff ð�Þ ¼

1

4�
�2½ln�2 � 1�

� 2

�

X
�

Z dk

2�
lnf1þ e��½k2þ�2�1=2g; (27)

which is independent of the chemical potential, in agree-
ment with Ref. [3].
The gap equation for the difermion sector is given by

@

@�
�U�;L
eff ð�Þ ¼ 0; (28)

from which we get the ð�;�;LÞ-dependent nonvanishing
solution in the form

1

�
ln�2 � 2

�L

X1
n¼1

cosð2�ncÞ cosð�LnÞK0ðnL�Þ

� 2

L

X
�

X1
n¼�1

X1
n¼1

ð�1Þn
�

n�

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!n ��Þ2 þ�2

p
�
1=2

� K1=2ðn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!n ��Þ2 þ�2

q
Þ ¼ 0: (29)

Hence, since � is the order parameter of the difermion
condensation phase transition, the solution of the gap
equation (29) is useful in the characterization of the
ðT;�; LÞ-dependent phase diagram of the difermion sector
of the model.
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V. PHASE STRUCTURE

Now we are able to analyze the L-dependent critical
curves in the phase diagram of the model. First, we analyze
the effective potential for the chiral condensate sector.
Remarking that �0 is the scale of the theory, we can
redefine the relevant quantities as �0=�0 ! �0,
L�0 ! L, �=�0 ! �, and ��0 ! �.

In Figs. 1–3 are plotted the effective potential in
Eq. (22) for different values of �; x ¼ 1=L, and T.
Some detailed information on the influence of spatial
boundaries can be obtained from these figures; from
Fig. 1, we see that a first-order transition occurs for in-
creasing values of �, for the values of L and T given
(in arbitrary units). For a smaller value of L and a
larger value of T (see Fig. 2), the phase transition takes
place in two steps, as � is increased: It is a first-order
transition, but such that the absolute minimum of the
effective potential is displaced to a smaller value of �,
as � is increased (� ¼ 0:63 and � ¼ 0:64 in the
figure); for a high enough value of � (� � 0:65 in the
figure), the transition becomes a second-order one,
when the first nonvanishing extremum disappears [31].
Finally, we see from Fig. 3 that there is a second-order
phase transition as � increases, for large enough values
of L and T.

To obtain the phase diagram more precisely in the case
of a second-order transition, we must determine the values
of L, T, and � at which the dynamical fermion mass

vanishes. These critical lines are determined by taking
the fermion mass equal to zero in the gap equation

@

@�
�U�;L
eff ð�Þj�¼0 ¼ 0; (30)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.000

0.005

0.010

0.015

U
ef

fL

FIG. 1 (color online). Effective potential for the chiral con-
densate sector for x ¼ 1=L ¼ 0:2 and T ¼ 0:1. Solid, dashed,
and dotted lines represent � ¼ 0:632, 0.639, and 0.645, respec-
tively.

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.000

0.001

0.002

0.003

0.004

U
ef

fL

FIG. 2 (color online). Effective potential for the chiral con-
densate sector for x ¼ 1=L ¼ 0:3 and T ¼ 0:2. Solid, dashed,
and dotted lines represent � ¼ 0:63, 0.64, and 0.65, respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

U
ef

fL

FIG. 3 (color online). Effective potential for the chiral con-
densate sector for x ¼ 1=L ¼ 0:4 and T ¼ 0:4. Solid, dashed,
and dotted lines represent � ¼ 0, 0.4, and 0.8, respectively.
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on the other hand, in the case of a first-order transition,
we have studied the nonvanishing solution of the gap
equation (25), together with the behavior of the effective
potential.

Taking into account simultaneously both first- and
second-order transitions, the critical lines in the ðT;�Þ
plane are displayed in Fig. 4 for different values of x ¼
1=L. In this figure, solid lines correspond to second-order
and dotted lines correspond to first-order phase transitions,
respectively. We see that as x ¼ 1=L increases, smaller
values of temperature are necessary to reach the symmetric
chiral phase in the region of lower values of�; in addition,
in the region of greater values of � and small T, the chiral
broken phase spreads out. In what concerns the order of
the phase transition, we see that as x ¼ 1=L is increased,
the region of first-order transition is suppressed, only a
second-order one occurring.

Now let us analyze the fermion-fermion pairing phase
structure. We plot in Figs. 5–7 the effective potential in
Eq. (26) for different values of �; x ¼ 1=L, and T. From
Fig. 5, we see that for small values of x ¼ 1=L this phase
transition is of first-order and is independent of � in these
cases. Figure 6 shows that for a higher value of x and
smaller temperature the system undergoes a first-order
phase transition for increasing values of �. From Fig. 7,
it can be seen that for fixed � and a fixed smaller tempera-
ture a first-order phase transition occurs as � increases.

In these cases the difermion condensate phase is destroyed
by experiencing a first-order phase transition as the size
decreases or the chemical potential increases.
In Fig. 8 is plotted the phase diagram of the system in the

ðT;�Þ plane with different values for x ¼ 1=L. From the

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.01

0.00

0.01

0.02

0.03

U
ef

fL

FIG. 6 (color online). Effective potential in the difermion
condensate sector for x ¼ 1=L ¼ 0:5 and T ¼ 0:2. Solid,
dashed, and dotted lines represent � ¼ 0:700, 0.747, and
0.800, respectively.

x = 0.3

x = 0.4

x = 0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T

FIG. 4 (color online). The phase diagram for the chiral phase
transition in the ð�; TÞ plane. As indicated, the curves are drawn
for x ¼ 1=L ¼ 0:3, 0.4, and 0.5, respectively. The chiral con-
densate region is below each curve. The dotted parts of the
curves correspond to a first-order phase transition, while the
solid ones represent a second-order transition.

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

U
ef

fL

FIG. 5 (color online). Effective potential for the difermion
condensate sector for x ¼ 1=L ¼ 0:1 and T ¼ 0:294. The lines
representing � ¼ 0, 0.5, and 1 coincide.
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figure we see that, as the size of the system decreases,
greater values of the chemical potential are necessary to
reach the difermion condensed phase region. On the other
hand, for larger sizes [for instance, L ¼ ð0:1Þ�1 in the

figure], this region spreads out and can be reached for
practically any value of the chemical potential.

VI. CONCLUDING REMARKS

In this article, we have analyzed finite-size effects for a
version of the NJL model presented originally in Ref. [2]
for finite temperature and density in free space. This has
been done by using the extended Matsubara prescription
and zeta-function regularization methods. Finite chemical
potential effects have also been included. These techniques
allowed us to construct a renormalized effective potential
taking into account simultaneously the dependence on
temperature, the size of the system, and chemical potential.
From this effective potential we have obtained the size-
dependent gap equations at finite temperature and
density. A thorough analysis of the size dependence of
the phase diagram has been performed for both chiral
and difermion sectors.
In what the chiral condensate sector is concerned, a first-

order transition occurs for increasing values of the chemi-
cal potential at fixed values of temperature and of the size
of the system. For smaller values of L and simultaneously
larger temperatures, the system undergoes a phase transi-
tion in two steps, for increasing values of the chemical
potential: a first-order transition but such that the absolute
minimum is displaced to a smaller value of �, as �
increases. For some larger value of �, the transition be-
comes a second-order one. We have taken into account
simultaneously first- and second-order transitions. This has
been done by a study in the T–� plane of the behavior of
the system for different values of x ¼ 1=L. We conclude
that as x increases the region of a first-order transition
disappears, leaving place for a second-order transition.
The fermion-fermion pairing phase structure has also

been investigated, from an analysis of the effective poten-
tial for different values of �, x, and T. We conclude that
for small values of x we have a first-order transition,
independently of the value of �. For fixed � and a smaller
temperature, a first-order transition occurs as x increases.
In general, as the size of the system becomes smaller,
larger values of � are needed to attain the difermion
condensate sector.
It should also be noticed that Fig. 8 indicates that as L

decreases there exists a minimal size of the system for
which the difermion condensate exists at zero chemical
potential. For smaller values of L, the difermion phase
reappears if we increase the chemical potential. The full
phase structure, considering both sectors simultaneously,
could not be obtained analytically.
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FIG. 7 (color online). Effective potential for the difermion
condensate sector in the antiperiodic case. Solid, dashed, and
dotted lines represent x ¼ 1=L ¼ 0:1, 0.49, and 0.6, respectively.
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FIG. 8 (color online). The phase diagram for the difermion
condensation phase transition in the ð�; TÞ plane. The lines
represent x ¼ 1=L ¼ 0:1, 0.35, and 0.5, respectively. The difer-
mion condensate region is below each line, which represents a
first-order phase transition.
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