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In Einstein-aether theory and Horava gravity, a timelike unit vector is coupled to the spacetime metric. It

has previously been shown that in an exponentially expanding homogeneous, isotropic background, small

perturbations of the vector relax back to the isotropic frame. Here we investigate large deviations from

isotropy, maintaining homogeneity. We find that, for generic values of the coupling constants, the aether

and metric relax to the isotropic configuration if the initial aether hyperbolic boost angle and its time

derivative in units of the cosmological constant are less than something of order unity. For larger angles or

angle derivatives, the behavior is strongly dependent on the values of the coupling constants. Generally,

there is runaway behavior, in which the anisotropy increases with time, and/or singularities occur.
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I. INTRODUCTION

When the phenomenology of theories with a preferred
frame is studied, it is generally assumed that this frame
coincides, at least roughly, with the cosmological rest
frame defined by the Hubble expansion of the universe.
Observations place strong bounds on frame dependent
effects which would presumably grow with the relative
velocity of the preferred frame and the velocity of the earth
(which moves at the ‘‘low’’ speed of 10�3c relative to the
Hubble frame). In a particular theory with preferred frame
effects, the dynamical alignment of the frame (or frames)
can be studied to determine stability of cosmic alignment,
as well as to characterize the range of initial conditions that
could be expected to naturally align.

In this paper we examine this question in the case of
Einstein-aether theory [1] and in the IR limit of (extended)
Horava gravity [2,3]. Einstein-aether theory just consists of
general relativity coupled, at second derivative order, to a
dynamical timelike unit vector field ua, the aether. In
Horava gravity, the aether vector is assumed to be hyper-
surface orthogonal, i.e. it is the unit normal to level sets of a
scalar time function. Various forms of ‘‘Horava gravity’’
have been discussed in the literature. Here we refer ex-
clusively to the one related to Einstein-aether theory as just
explained. (This corresponds to the so-called ‘‘nonproject-
able’’ version, where the lapse function N is an arbitrary
function of spacetime, and includes in the Lagrangian a
term proportional to the square of the gradient of lnN.)
Every hypersurface-orthogonal Einstein-aether solution is
a Horava solution. All the solutions to be considered in this
paper are of this type.

The alignment of the aether has been studied before in
the context of linearized perturbations. The question was
first addressed, indirectly, by Lim [4], who found that all
perturbations of the aether decay exponentially in a
de Sitter background. In particular, this result applies to
the homogeneous modes. Subsequent work [5,6] con-
firmed this result, but in Ref. [6] it was found that under

some circumstances, after inflation, velocity perturbations
might grow to be ‘‘mildly relativistic’’ and could still
possibly be compatible with observations. In all these
analyses, it is assumed that the aether is aligned in a
background solution, and the behavior of perturbations is
studied.
Kanno and Soda (KS) approached the question from a

different point of view. In the Appendix of Ref. [7] they
examined homogeneous but anisotropic solutions in the
presence of a positive cosmological constant, with three
orthogonal principal directions of expansion, and with the
aether tilted in one of the principal directions. [This cor-
responds to Bianchi type I (Kasner-like) symmetry.] They
showed that, to linear order in the anisotropy, the system
relaxes exponentially to the isotropic, de Sitter solution.
Since their analysis was carried out just to linear order in
the anisotropy, it is in fact just a special case of the above-
mentioned perturbative treatments.
In this paper we adopt precisely the setting of the KS

analysis but we include the full nonlinear dynamics. We
characterize the range of initial data that relax to an iso-
tropic solution. Generically, the aether aligns provided the
initial boost angle and its time derivative in units of the
cosmological constant are less than something of order
unity. The precise stability bounds depend on the values
of the coupling parameters in the Lagrangian defining the
theory.

II. BIANCHI TYPE I EINSTEIN-AETHER
COSMOLOGY

Einstein-aether theory is general relativity (GR) coupled
to a dynamical timelike unit vector field. In terms of the
metric gab of signature ðþ ���Þ and the unit vector field
ua it is defined by the action

S ¼ �1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþ 2�þ Kab

mnrau
mrbu

nÞ;
(1)
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where R is the Ricci scalar, � is a cosmological constant,
and the tensor Kab

mn is given by

Kab
mn ¼ c1g

abgmn þ c2�
a
m�

b
n þ c3�

a
n�

b
m þ c4u

aubgmn;

(2)

and c1; . . . ; c4 are dimensionless coupling parameters that
define the theory. Since um is constrained to be a unit
vector, the action need only be stationary under variations
orthogonal to the aether, um�u

m ¼ 0. In this paper for
simplicity we omit any matter couplings, since the cosmo-
logical constant suffices to source the overall expanding
solution and it models the conditions that would have
pertained in an inflationary early universe. It would be
straightforward to add radiation or matter or some form
of quintessence to the model.

A. Bianchi type I symmetry

Following KS, we specialize to Bianchi type I space-
times, i.e. to metrics that are homogeneous and spatially
flat, with three commuting translation symmetries,

ds2 ¼ N2ðtÞdt2 � e2�ðtÞ½e�4�þðtÞdx2

þ e2�þðtÞðe2
ffiffi
3

p
��ðtÞdy2 þ e�2

ffiffi
3

p
��ðtÞdz2Þ�: (3)

We also assume that the aether vector is tilted only in the
x direction,

u ¼ 1

NðtÞ cosh�ðtÞ@t þ e��ðtÞþ2�þðtÞ sinh�ðtÞ@x: (4)

The hyperbolic angle � measures the boost of the aether
relative to the rest frame of the homogeneous, flat spatial
sections, i.e. the ‘‘homogeneous frame.’’ The metric is
determined by four functions. The lapse NðtÞ specifies
the flow rate of proper time with respect to t in the homo-
geneous frame. Comoving lengths L in the x, y, and
z directions all have different expansion rates, _L=L. The
sum of these is 3 _�, which is also the fractional rate of

change of comoving volume, _V=V. The quantity 2
ffiffiffi
3

p
_�� is

the difference between the expansion rates in the two
transverse directions y and z, while 3 _�þ is the difference
between the average of these and the rate in the x direction.

The vector field (4) is in effect just two dimensional;
hence, like all such vector fields, it is hypersurface or-
thogonal. According to the analysis of Ref. [8], this means
that the solutions to the field equations discussed here are
also solutions to the field equations of Horava gravity.
Hence, our results apply to the cosmology of that theory
as well. The hypersurface orthogonality also means [9] that
the action is unchanged under c1 ! c1 þ �, c3 ! c3 � �,
and c4 ! c4 � �, so the system depends on these three
coupling parameters only through the two invariant com-
binations c1 þ c4 and c1 þ c3. For notational compactness
we shall make use of these quantities, and also drop the
subscript 2 on c2:

a ¼ c1 þ c4; b ¼ c1 þ c3; c ¼ c2: (5)

[These parameters correspond, respectively, to the parame-
ters �, �, �0 of the action for Horava gravity, Eq. (5.72) in
Ref. [10].]
When the fields have this symmetry structure, the action

takes the form (up to a total derivative)

S ¼ 1

16�G

Z
dte3�

�
1

2N
Hijð�Þ _qi _qj � 2N�

�
; (6)

where qi $ ð�;�; �þ; ��Þ. Here and below, the time de-
pendence of the dynamical variables is implicit, the dot
denotes derivative with respect to t, and indices i; j; . . .
label the four dynamical variables. The nonzero compo-
nents of the symmetric array Hij are given by

H�� ¼ 2ðbþ cþ ða� b� cÞcosh2�Þ
H�� ¼ 2ða� b� 3cÞ cosh� sinh�
H�þ ¼ 4ð�aþ bÞ cosh� sinh�
H�� ¼ 2ð�6� aþ ða� 3b� 9cÞcosh2�Þ
H�þ ¼ �4asinh2�

Hþþ ¼ 4ð3� 2aþ ð2a� 3bÞcosh2�Þ
H�� ¼ 12ð1� bcosh2�Þ:

(7)

The � dependence of Hijð�Þ will also be suppressed. The

dynamics is symmetric under the inversion ð�; _�Þ !
ð��;� _�Þ.
A key to the general behavior of solutions is the invert-

ibility ofHij, whose determinant can be written in the form

detH¼�1728að1�bÞ2ð2þbþ3cÞðv2
0þð1�v2

0Þcosh2�Þ
�ðv2

2þð1�v2
2Þcosh2�Þ (8)

with

v2
2 ¼

1

1� b
; v2

0 ¼
ðbþ cÞð2� aÞ

að1� bÞð2þ bþ 3cÞ : (9)

The constants v0 and v2 are, in fact, the speeds of the
spin-0 and spin-2 modes linearized around flat space (de-
fined with respect to the background aether frame), in both
Einstein-aether theory [1] and Horava gravity. Note that the
v0 factor is proportional to H��.
It may initially be surprising that the spin-0 and spin-2

perturbations play any role in a homogeneous cosmology.
But while the metric (3) is homogeneous on constant
t surfaces, it has x dependence on surfaces orthogonal to
the aether. In fact, the form of (8) can be understood from
simple kinematic considerations as follows.
The linearized, diagonalized, action for a mode c with

speed v is proportional to gabðvÞ@ac @bc , where gabðvÞ /
uaub þ v2ðgab � uaubÞ is the effective metric for that
mode. Since we consider only homogeneous fields, which
depend on t alone, the only component that enters is
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gttðvÞ / ðv2gttþð1�v2ÞututÞ / ðv2þð1�v2Þcosh2�Þ. The

symmetry and hypersurface orthogonality of the aether
permit only one spin-2 mode and the spin-0 mode. The
spin-2 mode is governed by the shear ��, which describes
the gravitational wave mode transverse to the tilt and with
polarization aligned with the y and z symmetry axes. This
explains the form of the determinant (8).

If the coupling constants ða; b; cÞ are such that one of the
mode speeds exceeds unity, then there is a value of � for
which the determinant of Hij vanishes, corresponding to

the condition gttðvÞ ¼ 0. When the aether reaches this hyper-

bolic tilt angle, the propagation cone of that mode becomes
tangent to the constant t surface, so that becomes a valid
constant phase surface for the mode. In other words, the
mode propagates instantaneously on the constant t surface.
Beyond this aether tilt the kinetic energy of the mode
becomes negative, so the system is unstable. In Sec. IV
we shall discuss the implications of this phenomenon for
the cosmological dynamics.

B. Equations of motion for � ¼ 0

Although our main interest is in the case of exponential
expansion driven by a positive cosmological constant, we
begin by looking first at the simpler case of vanishing �.
Then variation with respect to the lapse N yields the initial
value constraint

Hij _q
i _qj ¼ 0: (10)

As usual in general relativity, if this constraint is satisfied at
one time, then the rest of the equations of motion imply
that it remains satisfied for all time. We can choose the
nontrivial lapse

N ¼ e3� (11)

to eliminate the � dependence in the action. Then the
dynamics becomes that of affinely parametrized null
geodesics on the configuration space ð�; �; �þ; ��Þ with
respect to the metric Hij that depends only on �.

It is convenient to define momenta by

pi ¼ Hij _q
j; (12)

which can be solved for the velocities,

_q i ¼ Hijpj; (13)

when the inverse Hij of Hij exists. In terms of the mo-

menta, the constraint (10) reads

Hijpipj ¼ 0: (14)

Since Hij depends only on �, the momenta p� and p� are

conserved. Moreover, the constraint (14) is a quadratic
equation in p� that can be solved for p�ð�;p�; p�Þ (there
are generically two roots or none). Having solved three of
the four evolution equations, as well as the constraint
equation, the fourth evolution equation, for p�, is now

redundant. The dynamics for � is thus reduced to a first
order differential equation,

_� ¼ H�kpk ¼: Fð�;p�; p�Þ: (15)

Once the evolution of � is known, the remaining variables
� and �� are determined by integration of the first order
equation (13). The character of the evolution of � can be
seen by inspection of a plot of the graph of the function
F defined in (15).

C. Equations of motion for � � 0

For nonvanishing �, the variation with respect to the
lapse N yields the initial value constraint,

Hij _q
i _qj þ 4� ¼ 0: (16)

Because of the � term in the action, the lapse (11) is no
longer the most convenient, and it is simpler to just use

N ¼ 1: (17)

The Euler-Lagrange equations with this gauge choice are

d

dt
ðe3�Hij _q

jÞ � @i

�
e3�

�
1

2
Hkl _q

k _ql � 2�

��
¼ 0: (18)

The individual components i ¼ �, �, � read

d

dt
ðe3�H�j _q

jÞ ¼ 1

2
e3�Hij;� _q

i _qj (19)

d

dt
ðe3�H�j _q

jÞ ¼ �12�e3� (20)

d

dt
ðe3�H�j _q

jÞ ¼ 0; (21)

where in (20) the constraint (16) was used.
Again, it is sometimes convenient to express the field

equations in terms of the ‘‘momenta’’ (12). (These are
not precisely the conjugate momenta anymore since the
factor e3� is not included, but we will nevertheless refer
to them as momenta.) Then the constraint (16) takes the
form

Hijpipj þ 4� ¼ 0; (22)

and the equations of motion become

_p � ¼ �3 _�p� � 1
2H

ij
;�pipj (23)

_p � ¼ �3 _�p� � 12� (24)

_p� ¼ �3 _�p�: (25)

Using (13) we can express _� in terms of � and the
momenta,

_� ¼ H�kpk: (26)
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Moreover, we can solve the quadratic constraint equation
(22) for p�, so that � and p� can be eliminated com-
pletely from the dynamical system.

III. LIMITING CASES

In this section we discuss various special cases and
limits of the theory.

A. General relativity

If we reduce to the pure GR case, � is not present, and
a ¼ b ¼ c ¼ 0. Then Hij is diagonal and constant, with

Hþþ ¼ H�� ¼ �H�� ¼ 12. The constraint (22) then
becomes

� p2
� þ p2þ þ p2� ¼ �48�: (27)

The only isotropic (p� ¼ 0) solutions are Minkowski

spacetime (with� ¼ 0) and de Sitter spacetime (with _� ¼ffiffiffiffiffiffiffiffiffi
�=3

p
, �> 0). In the anisotropic case, � ¼ 0 yields the

Kasner solutions, and � � 0 yields a generalization of
those.

B. � ¼ 0 solutions

Next we characterize the solutions in which � ¼ 0 for all
times, i.e. in which the aether remains orthogonal to the
constant t homogeneity surfaces. Then, although the aether
has no dynamics, its couplings in the action (1) still con-
tribute to the field equations and we therefore have some-
thing different from GR.

There are no terms linear in � or _� alone in the action (6),
and terms of quadratic or higher order in these quantities
will obviously not contribute to the equations of motion if
� ¼ _� ¼ 0. If this condition holds initially it is therefore
preserved for all time, and for characterizing these solu-
tions it is consistent to simply set � ¼ 0 in the action. Then
Hij is diagonal and constant, the relevant components

being

H�� ¼ �6ð2þ bþ 3cÞ
Hþþ ¼ 12ð1� bÞ
H�� ¼ 12ð1� bÞ:

(28)

In the isotropic case �� ¼ 0, the system is then equivalent
to GR with a rescaled cosmological value of Newton’s
constant [11,12], Gcosmo ¼ G=ð1þ ðbþ 3cÞ=2Þ, and with
� replaced by �0 ¼ �=ð1þ ðbþ 3cÞ=2Þ. This isotropic
solution is the spatially flat slicing of de Sitter spacetime

with Hubble constant H ¼ ffiffiffiffiffiffiffiffiffiffiffi
�0=3

p
. The aether becomes

singular because of infinite stretching on the past horizon.
In the anisotropic case, interestingly, there is no equally
simple relation to GR: the presence of the isotropic aether
induces different rescalings of the kinetic energy associ-
ated with expansion and shear.

C. Linearized anisotropy

If one drops all terms in the action (6) of higher than
quadratic order in the anisotropic coordinates � and ��,
the Hij array reduces to the nonzero elements

H�� ¼ 2a

H�� ¼ 2ða� b� 3cÞ�
H�� ¼ �6ð2þ bþ 3cÞ þ 2ða� 3b� 9cÞ�2
Hþþ ¼ 12ð1� bÞ
H�� ¼ 12ð1� bÞ:

(29)

Keeping only linear order terms in the anisotropy, the
equation of motion for � reduces to

€�þ 3 _� _�þ2 _�2� ¼ 0: (30)

To zeroth order in the anisotropy the solution to the
constraint (16) is

_� 2 ¼ �

3½1þ ðbþ 3cÞ=2� (31)

and _� in (30) can be replaced by this value. Then (30) is the
equation found by KS [7]. They pointed out that the
coefficient of � is positive provided the effective gravita-
tional coupling is positive, in which case this is the equa-
tion of a damped harmonic oscillator. In fact, the oscillator
is overdamped, with eigenmode decay rates _� and 2 _�. This
implies that � relaxes to zero as the universe expands.

D. p� ¼ 0 solutions

The equation of motion (25) is solved for p� by

p�ðtÞ ¼ e�3�ðtÞp�;0; (32)

where p�;0 is an integration constant. Using this, the

remaining equations of motion (23) and (24) involve only
the variables ð�; p�; �; _�; p�Þ. Moreover, as mentioned at
the end of Sec. II C, Eq. (26) can be used to eliminate _�,
and the constraint can be solved for p�. However, this
requires that the function �ðtÞ be determined by the
previous values of ð�; p�; �Þ via

R
t dt0 _�ðt0Þ, which does

not yield an evolution equation that is local in time.
If the comoving volume is expanding then, according

to (32), p�ðtÞ is driven to zero. It is therefore a useful
limiting case to set p� ¼ 0 from the beginning. Then there
is no remaining �ðtÞ dependence, and the system can be
reduced to the � degree of freedom alone. We now explain
in detail how this is achieved.
We assume now that p� ¼ 0. Since H�k ¼ 0 except for

k ¼ �, it follows from (13) that _�� ¼ 0. Thus, the two
transverse dimensions must have the same expansion rates.
In contrast, it does not follow that _�þ ¼ 0, since we have
in this case

_�þ ¼ Hþ�p� þHþ�p�: (33)
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As might be expected, it is inconsistent for the metric to be
isotropic (�� ¼ 0) when the aether is tilted (� � 0).
(However, note that _�þ is of second order in the �
anisotropy.) The expansion rate in the tilt direction must
generally differ from that in the transverse direction.
Eliminating _�þ via (33), the system reduces to the varia-
bles (�, p�, �, p�).

One can write this system in terms of the velocities, i.e.
in terms of the variables ð�; _�; �; _�Þ, by using the constraint
(16) to solve for _�þ in terms of ð�; _�; _�Þ, and substituting
that into the Euler-Lagrange equation (18). But for the
purpose of making a ð�; _�Þ phase portrait of the evolution,
it appears more neat to organize the equations as follows.

The idea is to solve for the momenta ðp�; p�Þ in terms of
the velocities ð _�; _�Þ, and then to use the equations that were
expressed in terms of momenta. To this end, we introduce
capital indices A; B; . . . to refer to the two coordinates �
and �, we define the contravariant tensor hAB to be the
restriction of Hij,

hAB � HAB; (34)

and we denote by hAB the inverse of hAB. Then from (13)
we have

_q A ¼ hABpB; (35)

which can be inverted to yield

pA ¼ hAB _qB: (36)

Using (36) the constraint (22) becomes

hAB _qA _qB þ 4� ¼ 0; (37)

which can be solved as a quadratic equation for _�ð�; _�Þ,
thus eliminating _�. Explicitly, we have

_� ¼ �h�� _��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�� _�Þ2 � h��ðh�� _�2 þ 4�

q
Þ

h��
: (38)

There are generically two solutions or no solutions. If
h��ðh�� _�2 þ 4�Þ< 0 there are two solutions, one in
which the volume is expanding ( _�> 0) and the other in
which it is contracting ( _�< 0). Note that for _� ¼ 0 the

solutions are simply _� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4�=h��
p

. As h�� ! 0�
this diverges, and no solution exists when h�� > 0.

The remaining task is to find an equation for €�. For this
purpose we can use (13) to write _� ¼ h�BpB; hence,

€� ¼ h�B;�
_�pB þ h�B _pB: (39)

Then using (36) and the equations of motion (23) and (24)
we find, after some manipulation,

€� ¼ �3 _� _��12�h�� � h�AhAB;� _q
B _� (40)

þ 1
2h

��hAB;� _q
A _qB: (41)

Together with (38) this yields a dynamics reduced to just
the � degree of freedom, which can be visualized in a phase
portrait.

IV. GENERIC BEHAVIOR

We have seen that, in a small enough neighborhood of
� ¼ 0, the dynamics relaxes to the � ¼ 0 case, provided
the values of a, b, and c are such that the effective gravi-
tational coupling constant is positive. On the other hand,
once � is sufficiently large, the character of the dynamical
system can obviously change dramatically because of the
growth of the hyperbolic trigonometric functions in the
components of Hij (7).

A general feature mentioned earlier is that detH (8)
vanishes if either the spin-0 or spin-2 propagation cone is
tangent to the constant t surface. The conditions determin-
ing these angles can be expressed as

coth�0 ¼ v0; coth�2 ¼ v2; (42)

where v0;2 are the mode speeds (9). At either of these

angles Hij is not invertible, so the equation of motion

(18) cannot be solved for €qi. As such a value of � is
approached, at least one second derivative component
would generally diverge. Hence, generically there can be
no smooth evolution across the degenerate values of �. The
dynamics may run into a singularity there, or it may
‘‘bounce’’ before reaching such a value of �.
There is a solution �� to each of the equations in (42) as

long as the corresponding mode speed v is greater than
unity. The larger of the mode speeds defines the smaller of
the critical angles. The critical angles are of order unity
unless v is either very large or very close to 1. In these
limits we have

�� �
8<
:
1=v for v � 1

� 1
2 lnðv� 1Þ for v� 1 	 1:

(43)

In particular, the degenerate value �2 is real only if 0<
b 
 1, and is of order unity unless b is very close to either
0 or 1. For instance, for b ¼ 0:01, 0.9, or 0.99, we have
�2 ’ 3, 0.3, or 0.1, respectively. The degenerate value �0 is
of order unity for generic values of a, b, c with no large
hierarchy amongst them. [If a, b, c are all much smaller
than 1, then v0 � ðbþ cÞ=a, so �0 � coth�1ððbþ cÞ=aÞ.]
We infer that exotic behavior, including singularities or
runaway solutions, may typically occur for aether boost
angles of order unity.

A. Restriction to physically viable couplings

There are three independent coupling constants that af-
fect the solutions we are studying in either Einstein-aether
theory or Horava gravity, but stability and observational
constraints restrict the range of physically viable values.
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1. Einstein-aether couplings

As summarized in Ref. [1], c2 and c4 should be deter-
mined by c1 and c3 such that the preferred frame parame-
trized post-Newtonian (PPN) parameters �1;2 vanish (or

are very small compared to unity). Moreover, when �1;2

vanish, stability and positive energy of linearized modes
and the absence of vacuum Cherenkov radiation by ultra-
high energy cosmic rays require 0< cþ < 1 and 0<
c� < cþ=ð3ð1� cþÞÞ, where

c� ¼ c1 � c3: (44)

(In terms ofa, b, c these conditions correspond to0< b< 1,
0< a< 2b=ð4� 3bÞ, and c ¼ �ðaþ bÞ=3, or, equiva-
lently, 0< b< 1, bðb� 2Þ=ð4� 3bÞ< c<�b=3, and
a ¼ �b� 3c.) We shall label the examples by their
c� values. In particular, the vacuum Cherenkov constraint
requires that all the mode speeds be greater than or equal to
unity, so except in the casewhere they are exactly unity, there
are values of the tilt angle where the dynamics is degenerate.
The degeneracy at �2 is relevant to the dynamics only if
_�� � 0.
The remaining observational constraint one might apply

is that the radiation damping rate for a binary pulsar system
agrees with the rate in GR, which agrees with observations
within the present relative uncertainty of about 0.002. The
results of Ref. [13] establish that this constraint is satisfied
for generic small values ci & 0:001, and if ci & 0:01–0:1 it
is satisfied if c� � 0:18cþ. For these values the spin-0
mode speed is v0 � 1:36 and the critical boost angle is
�0 � 0:94.

2. Horava gravity couplings

The constraints on the couplings in Horava gravity are
the same as in Einstein-aether theory except for the PPN
constraints �1;2 ¼ 0, which now are equivalent to a ¼ 2b
[10]. The other constraints are 0< b< 1 and ðbþ cÞ=
ðbð2þ bþ 3cÞÞ> 1. Given the first of these, the second
is satisfied in two regions: (I) c > ðbþ b2Þ=ð1� 3bÞ, b <
1=3, and (II) c <�2=3� b=3, c > ðbþ b2Þ=ð1� 3bÞ
when b > 1=3. The radiation damping rate has not yet
been calculated in the Horava case.

B. Phase portraits

As discussed in Sec. III D, in the case when p� ¼ 0 one
can reduce the dynamics to the � degree of freedom. Then
the dynamics can be displayed as a phase portrait in the
ð�; _�Þ plane, exhibiting the flow of the vector field ð _�; €�Þ.
This serves to illustrate the general features of the dyna-
mics discussed above.

Two examples are shown in Figs. 1 and 2. In both of
these the parameters c2 and c4 are chosen so as to satisfy
the PPN constraints of Einstein-aether theory, and c�
satisfy the remaining constraints other than that of gravi-
tational radiation damping. Figure 1 is qualitatively similar

to the phase portrait for the case cþ ¼ 1=10, c� ¼ 0:18cþ,
which is at least close to satisfying the radiation damping
constraint. It is also similar to the case ða; b; cÞ ¼
ð2=10; 1=10; 3=10Þ which satisfies the Horava constraints
other than the (unknown) radiation damping one.
In the case illustrated by Fig. 1, runaway behavior

occurs if � or _� is sufficiently large. Numerical evolution
of this example suggests that some of the flow lines end at
curvature singularities. The simplest spacetime scalar in
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FIG. 1 (color online). Stream plot of the vector field ð _�; €�Þ on
the ð�; _�Þ plane, with cþ ¼ 1=10 and c� ¼ 1=40, and p� ¼ 0.
In this case the determinant of Hij vanishes at �0 ’ 1:16.
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3

2

1

0

1

2

3

FIG. 2 (color online). Stream plot with cþ ¼ 1=2 and
c� ¼ 1=4, and p� ¼ 0. In this case �0 ’ 1:3, but already for
� * 1:1 and _� ¼ 0 there is no solution to the constraint equation
for _�.
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this setting is the expansion of the aether, rau
a ¼

3 _� cosh�þ _� sinh�. For example, with initial data � ¼ 0
and _� ¼ 4, the evolution runs away to large _�. For another
example, with initial data � ¼ 1:5 and _� ’ 1:8, the evolu-
tion runs away to large _�.

The singular behavior seen in these solutions might be
related to what is seen in some homogeneous anisotropic
cosmologies with tilted perfect fluid matter (and vanishing
cosmological constant) [14]. It may appear inconsistent
with the cosmological ‘‘no-hair’’ theorem proved by
Wald [15], which showed that in the presence of a positive
cosmological constant �, all expanding Bianchi-type cos-
mologies (except type IX) evolve toward the de Sitter

solution with time scale
ffiffiffiffiffiffiffiffiffi
3=�

p
. But that result assumed

that the dominant and strong energy conditions hold for the
matter stress tensor. These conditions do not generally hold
for the stress tensor associated with the aether part of the
action (1).

V. CONCLUSION

The question driving this investigation was whether it is
natural for the aether to be aligned with the isotropic frame
of a homogeneous, isotropic cosmology in Einstein-aether
theory or Horava gravity? We addressed this question by
studying the dynamics of a tilted aether in a homogeneous
anisotropic Bianchi type I cosmology with a cosmological

constant. We found that generically the aether does align
provided its tilt angle and the time derivative of its tilt angle
in units of the cosmological constant are smaller than
something of order unity. This extends the linearized
stability result of KS [7] to a finite basin of attraction
whose precise shape depends on the coupling parameters
of the theory, and in some cases the basin appears to be
much broader than order unity. Outside of this basin,
the solutions exhibit runaway or singular behavior of one
or more of the variables. Some of this behavior occurs
when the propagation cone of either the spin-0 or spin-2
mode is tilted enough to meet the homogeneous constant t
surface. We do not know whether similar behavior would
persist if the homogeneous symmetry condition were
dropped.
Our findings show that the fate of a universe with

Bianchi I symmetry depends heavily on the initial tilt of
the aether. Perhaps the question of the initial tilt could be
addressed from the standpoint of quantum cosmology, for
example, via the ‘‘wave function of the universe’’ or via the
distribution of initial conditions for chaotic inflation.
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