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We construct all the bulk and boundary unitary cubic curvature parity invariant gravity theories in three

dimensions in (anti)-de Sitter spaces. For bulk unitarity, our construction is based on the principle that the

free theory of the cubic curvature theory reduces to one of the three known unitary theories which are the

cosmological Einstein-Hilbert theory, the quadratic theory of the scalar curvature, or the new massive

gravity (NMG). Bulk and boundary unitarity in NMG is in conflict; therefore, cubic theories that are

unitary both in the bulk and on the boundary have free theories that reduce to the other two alternatives.

We also study the unitarity of the Born-Infeld extensions of NMG to all orders in curvature.
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I. INTRODUCTION

In three dimensions, there are three parity invariant pure
gravity theories that are known to be unitary in the sense of
tachyon and ghost freedom at the tree level. These are the
(cosmological) Einstein-Hilbert theory with no local de-
grees of freedom, the quadratic theory built from the
curvature scalar with the Lagrangian density R� 2�0 þ
aR2 which has a single massive scalar degree of freedom
[1], and the new massive gravity (NMG) defined by the
action [2,3]
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that provides a nonlinear extension of the Pauli-Fierz
massive spin-2 theory with 2 degrees of freedom. Here,
� ¼ �1 or it could be set to zero to obtain a purely
quadratic theory. The important point is that, with some
constraints on the parameters, these three theories exhaust
the list of unitary pure gravity theories in (anti)-de Sitter
[(A)dS] and flat spaces in three dimensions. Therefore, if
one searches for a unitary theory built from arbitrary
powers of the Ricci scalar and the tensor, then the propa-
gator of that theory should reduce to one of these unitary
theories, with possibly redefined parameters (such as mass,
cosmological constant, etc.). In flat backgrounds, the prob-
lem is trivial: Any higher derivative (cubic and more)
deformation of the above theories is allowed since the
propagators are intact in this background. But, in constant
curvature backgrounds, which we shall deal with in this
paper, generically, all the higher derivative terms contrib-
ute to the propagators and therefore the unitarity analysis is
actually quite involved. However, as we shall show in

detail, tree-level unitary theories can be constructed sys-
tematically by studying their propagators with the recently
developed tools in [4] and with the earlier tools of [5] for
analyzing the unitarity of a higher derivative theory around
(A)dS backgrounds. In general, there are several motiva-
tions for introducing higher powers of curvature tensors in
a gravity theory. First, string theory requires higher curva-
ture corrections; for example, cubic curvature corrections
are given in [6]. Second, in four dimensions, asymptotic
safety approach to quantum gravity (see [7] for a review)
involves contributions of the every possible term con-
structed by curvature tensors that is consistent with general
covariance. Hence, in the effective field theory perspective,
Einstein’s gravity which is nonrenormalizable should be
augmented with higher curvature terms obeying the sym-
metry of the theory. An efficient way of analyzing the
effects of these higher curvature terms on the propagator
structure, and consequently on the unitarity of the theory is
considered in this paper. In fact, as an example, we will
construct all the unitary theories in three dimensions that
are built from at most the cubic powers of the Ricci tensor.
Several extensions of NMG have already appeared re-

cently: In [8], cubic and quartic extensions of NMG was
found using the requirement that a simple (essentially
integrable) holographic c-function exists. In [9,10], a
Born-Infeld (BI) type action was defined which extends
NMG up to any desired order in the curvature (and, in
particular, reproduces the same cubic and quartic exten-
sions of [8] with fixed parameters at each order of the
curvature) and which has a holographic c-function. In
[11], order by order extension of NMG was introduced
again using the notion of a holographic c-function. This
order by order extension also matches the curvature ex-
pansion of the Born-Infeld extended NMG [10].
It is worth to stress again, in constructing a generic

unitary theory at any powers of curvature, our main prin-
ciple is the following: The propagator of the theory should
reduce to the propagator of the known three unitary parity
invariant theories after possible redefinitions of the
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parameters.Note that this principle is merely a restatement
of the unitary extension of a theory and does not assume
any strong conditions such as the existence of a simple
holographic c-function or the condition that the resulting
theory can be obtained from a BI-type action.

Up to now, we have discussed bulk unitarity only. For
AdS spaces, unitarity on the boundary is also an important
issue because of the AdS/CFT correspondence. Out of the
three bulk unitary theories, NMG always gives a nonuni-
tary theory on the boundary [3]. The other two theories
have rather wide ranges of the parameters which allow both
bulk and boundary unitarity. Therefore, in AdS, if a cubic
theory is unitary in the bulk and on the boundary, then its
free theory reduces to either cosmological Einstein-Hilbert
or the R� 2�0 þ aR2 theory.

The cubic theory found before [8,9] is a single member
of the continuous family of bulk unitary theories that we
shall present. Moreover, we will more directly show the
region where this cubic theory is unitary. In principle, our
analysis can be extended to any powers of curvature ten-
sors and to any dimensions. We will also give two ex-
amples of arbitrary power theories: the so called Born-
Infeld extension of new massive gravity and its close
cousin [9]; specifically, we will show that their propagators
reduce to that of NMG. Namely, like the cubic theory
found in [8], BINMG is unitary in the bulk only.

Since NMG (1) plays an important role in the construc-
tion of cubic or higher order theories, let us recapitulate its
properties. For proper ranges (which we shall discuss) of
the dimensionless parameters �, �0 and the dimensionful
parameter m2, NMG is a tree-level (bulk) unitary theory
generically describing a massive spin-2 excitation with
mass M2 ¼ ð��þ �

2Þm2 at the linearized level around

both flat and (A)dS backgrounds [2,3,12–16]. Here, the
effective cosmological constant is � ¼ �m2 with � ¼
�2ð�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �0

p Þ. In what follows, we will work with
the mostly plus signature, assume �2 > 0, and our con-
vention for the sign of the Riemann tensor follows from
½r�;r��V� � R��

�
�V

�. In flat backgrounds, unitarity

analysis of this model is quite straightforward and has
been carried out in several places, but in (A)dS back-
grounds the analysis is somewhat more complicated: In
[3], the theory was shown to be formally equivalent to the
Pauli-Fierz massive gravity in (A)dS, and in [15] direct
gauge-invariant canonical analysis was carried out by de-
composing the spin-2 field in its irreducible parts under the
rotation group.

The layout of the paper is as follows: In Sec. II, we start
with the most general cubic action based on the Ricci
tensor and the scalar, and find the equivalent quadratic
action which has the same Oðh2Þ expansion, that is the
expansion in metric perturbation, as the original cubic
action. In Sec. III, we discussed the unitarity of Born-
Infeld extensions of NMG. In the Appendix, we explicitly
calculate the Oðh2Þ expansion of BINMG.

II. UNITARY CUBIC THEORIES

The most general cubic curvature theory built from the
Ricci tensor and the scalar is

I ¼ 1
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�� þ 
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�
;

(2)

where �, �0, !, �, �, 	, and 
 are dimensionless parame-
ters whose signs and numerical values are arbitrary at this
stage except, we normalize �2 ¼ 1, and!2 ¼ 1 or! ¼ 0.
On the other hand,m2 is of ½Mass�2 dimension and without
loss of generality, we choose m2 > 0 and �2 > 0. In flat
backgrounds, which necessarily requires �0 ¼ 0, we know
that for any � the theory is unitary only if !� ¼ 0. For
! ¼ 0, the theory should have the ‘‘right’’ sign Einstein-
Hilbert term with � ¼ þ1. Furthermore, if � is also set to
zero in this case, then there is no propagating degree of
freedom; while for � � 0 there is a spin-0 excitation with

mass m2
s � m2

� > 0 in order to have a nontachyonic behav-

ior [14,15]. For � ¼ 0 and ! � 0, NMG is recovered for
� ¼ �1 with two spin-2 degrees of freedom having mass

m2
g ¼ m2

! with !> 0 [2]. We will not consider the case

when � ¼ 0. Therefore, in flat space, the already known
picture at the quadratic level does not change at the cubic
or higher levels. Thus, the main question is to find possible
ranges of these parameters for which this theory is unitary
around its constant curvature vacua. To answer this ques-
tion, one has to find theOðh2��Þ action where h�� � g�� �
�g�� and �g�� is the (A)dS vacuum (or vacua) for which
�R�� ¼ 2�m2 �g��. One can directly compute the Oðh2��Þ
action of (2), but this is highly tedious and such a direct
approach would be practically impossible for some arbi-
trary Rn theories. Therefore, we will instead employ a
technique developed in [5] which boils down to finding
an equivalent quadratic action which has the same propa-
gator and the same vacua. The procedure is quite effective
and at no point one needs the complicated equations of
motion. For more details and uses of this technique, see [4].
Let us now first find the maximally symmetric vacuum or
vacua of (2). This can be done with the help of the equiva-
lent quadratic action, as we just said, but in a simpler way
the vacuum can also be found from an equivalent linear
theory. This follows fromZ
d3xLðR;R��Þ¼

Z
d3xLð �R; �R��Þþ

Z
d3x

�
�L
�g��

�
�g��

�g��

þ1

2

Z
d3x�g�	

�
�L

�g�	�g��

�
�g��

�g��

þ . . . ; (3)

whereL � ffiffiffiffiffiffiffi�g
p

fðR;R��Þ, and by equivalent linear action
we mean an action which has the same Oðh0Þ and OðhÞ
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expansions as (3), and equivalent quadratic action has the
sameOðh0Þ,OðhÞ andOðh2Þ expansions as given in (3). To
find the equivalent linear or quadratic actions, fðR; R��Þ
should be expanded to linear (or quadratic) order in the
curvature around ð �R; �R��Þ. The important point is that from

the linear (or quadratic) expansion in curvature one gets all
the OðhÞ [or Oðh2Þ] terms of fðR; R��Þ. Therefore, the
expansion in small curvature is not an approximation as
far as the vacuum and the propagator of the full theory is
considered. [In these expansions one has to keep in mind
thatOðhnÞ terms come from the

P
n
i¼0ðR� �RÞi expansions.]

We can now start our computation and find the vacua
of (2). One further simplification is to consider the
Lagrangian density as a function of R�

� , in order not to
introduce the metric or its inverse during the expansion.
Therefore, we have

fðR�
� Þ � ���

�R
�
� � 2�0m

2 þ !

m2
ðR�

� R�
� � 3

8
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8m2
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�
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6m4
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�
�R�

�

þ 	ð�

�R

�

ÞðR�

� R�
�Þ þ 
ð��

�R
�
� Þ3�: (4)

Then, expanding fðR�
� Þ to the first order around the yet to

be found background ð �R�
� ¼ 2�m2�

�
� Þ with the assump-

tion of small fluctuations [that is ðR�
	 � �R�

	Þ being small] as

fðR�
� Þ ¼ fð �R�

� Þ þ
�
@f

@R�
	

�
ð �R�

� Þ
ðR�

	 � �R�
	Þ þO½ðR�

	 � �R�
	Þ2�;

(5)

one obtains the equivalent linear Lagrangian density
glin-equalðR�

� Þ after dropping the quadratic order as

glin-equalðR�
� Þ

¼
�
�2�0 þ 3�2

2
ð!� 3�Þ � 8��3ð1þ 3	þ 9
Þ

�
m2

þ
�
�� �

2
ð!� 3�Þ þ 2��2ð1þ 3	þ 9
Þ

�
R: (6)

Therefore, the equivalent linear action becomes

Ilin-equal ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

�� �

2
ð!� 3�Þ þ 2��2ð1þ 3	þ 9
Þ

�

�
�
R� ½4�0 � 3ð!� 3�Þ�2 þ 16��3ð1þ 3	þ 9
Þ�

½2�� �ð!� 3�Þ þ 4��2ð1þ 3	þ 9
Þ� m2

�
: (7)

Let us stress again that (7) and (2) have the sameOðh0Þ and
OðhÞ expansions. Since OðhÞ expansion of (7) evaluated at
�g�� just gives the equations of motion, that is the Einstein
tensor evaluated in the vacuum in this case, we can easily
read the vacuum, by comparing it to

ffiffiffiffiffiffiffi�g
p ðR� 2�m2Þ and

find

2� ¼ 4�0 � 3ð!� 3�Þ�2 þ 16��3ð1þ 3	þ 9
Þ
2�� �ð!� 3�Þ þ 4��2ð1þ 3	þ 9
Þ

) 4��þ �2ð!� 3�Þ � 8��3ð1þ 3	þ 9
Þ ¼ 4�0;

(8)

which has always at least one real root for generic values of
the parameters: Therefore, unlike the NMG case which
requires �0 � �1 for (A)dS to be the vacuum, for any �0,

(2) has a maximally symmetric vacuum. At this stage, no
restriction exists on the ranges of the parameters, but as we
will see now, unitarity of the theory will constrain some of
these parameters.
Let us now find the equivalent quadratic action by ex-

panding fðR�
� Þ up to second order in the curvature:

gquad-equalðR�
� Þ � fð �R�

� Þ þ
�
@f

@R�
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�
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þ 1

2
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�
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�
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	ÞðR�
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�Þ;

(9)

where

fð �R�
� Þ ¼

�
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2
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Þ

�
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(10)
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Then, collecting all these we get the equivalent quadratic
Lagrangian density

gquad-equalðR�
� Þ ¼ ½�2�0 þ 4��3ð1þ 3	þ 9
Þ�m2

þ ½�� 2��2ð1þ 3	þ 9
Þ�R
þ 1

m2
½!þ ��ð1þ 	Þ�R2

��

� 3

8m2

�
!� 1

3
�� 8��

9
ð2	þ 9
Þ

�
R2;

(11)

whose Oðh2Þ, OðhÞ, and Oðh0Þ expansions match the same
expansions of (2). At this stage, it is clear that there are
three different ways for the general cubic theory (2) to be
unitary: Its equivalent quadratic action (11) can be, with
redefined parameters, equal to the cosmological Einstein-
Hilbert theory or Rþ aR2 theory or NMG. [Again, we
exclude the case for which Einstein-Hilbert term drops
out.] First, it pays to rewrite the equivalent quadratic
action as

Iquad-equal ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

~�R� 2~�0m
2

þ ~!

m2

�
R2
�� � 3

8
R2

�
þ ~�

8m2
R2

�
; (12)

where

~� � �� 2��2ð1þ 3	þ 9
Þ;
~�0 � �0 � 2��3ð1þ 3	þ 9
Þ;
~! � !þ ��ð1þ 	Þ;
~� � �þ ��

3
ð9þ 25	þ 72
Þ:

(13)

Here, it is worth restating that � appearing in the redefined
parameters is the vacuum of (2) satisfying (8) which can
also be directly obtained by computing the vacuum of (12)
which reads from the somewhat simpler looking expres-
sion

~��þ 1
4ð ~!� 3~�Þ�2 ¼ ~�0: (14)

Canonical analysis of (12) have shown that there are
generically three, not necessarily unitary, degrees of free-
dom with the masses [15]:

m2
s ¼

�
~�

~�
� 3

2
�

�
1� ~!

3~�

��
m2 helicity-0mode; (15)

m2
g ¼

�
� ~�

~!
þ 1

2
�� 3

2
�
~�

~!

�
m2 helicity-� 2modes:

(16)

For (12) to be unitary, the necessary but not sufficient
condition is ~! ~� ¼ 0 which again exhausts all three uni-
tary theories. Among these theories, NMG, for which

~� ¼ 0, seems to be the most interesting one with spin-2
excitations (scalar mode decouples), therefore we start
with it. But, NMG in (A)dS is not unitary by default:
There are constraints on the parameters which we discuss
below. Since the parameters appear in certain combina-
tions, let us define ��2�ð1þ3	þ9
Þ and ��ð1þ	Þ,
then the effective parameters (13) become

~� � �� �2�; ~�0 � �0 � �3�;

~! � !þ �; ~� � �þ �

3
ðþ 4�Þ:

(17)

A. Reducing the cubic theory to NMG in (A)dS

Setting ~� ¼ 0, the equivalent quadratic action (12)

reduces to NMG with m2
g ¼ ð� ~�

~! þ 1
2�Þm2, where � ¼

� 2
~! ð~��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 þ ~!~�0

q
Þ which requires ~�2 þ ~!~�0 � 0.

The theory is unitary if m
2

~! ð�m2 � 2 ~�m2

~! Þ> 0which comes

from the ghost freedom requirement of [3] and reduces to
~!�� 2~�> 0 in our notation. This requirement can be
seen by rewriting NMG in the form of a massive Pauli-
Fierz theory at the linearized level. In the de Sitter case
(� > 0), there is also the Higuchi bound [17] m2

g � �m2

which becomes 2~�
~! þ � � 0, and in the anti-de Sitter case

(� < 0), there is the Breitenlohner-Freedman (BF) bound
[18]m2

g � �m2 which is exactly like the Higuchi bound for

this three-dimensional case. (Strictly speaking, the BF
bound was derived for massive scalar field in AdS, but it
works for massive spin-2 field as well [19].) In this setting,
unitarity analysis of (12) for ~� ¼ 0 is the same as NMG
with an essential difference: ~� and ~! are not in general�1.
However, as implied by the unitarity constraints, unitary
regions can be classified according to the signs of ~� and ~!
just like in the case of NMG. Since the unitarity regions of
NMG in (A)dS were studied in detail in [3], we will not
repeat the analysis here, but simply give an example in AdS
(� < 0). Choose ~�< 0 and ~!> 0: the BF bound is auto-
matically satisfied, so the unique constraint on the vacuum

of the theory is � > 2~�
~! with � ¼ � 2

~! ð~�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 þ ~!~�0

q
Þ

which can be achieved if the parameters of the theory
satisfy the inequality

0< ~�0 <
3 ~�2

~!
: (18)

This is a rather weak condition on the parameters, therefore
there is a continuum of unitary theories.
(i) Choose � ¼ �1 and ! ¼ 1: For the sake of sim-

plicity, let us further assume � ¼ 0 which fixes

� ¼ � 
4 that yields 
 ¼ � 25	þ9

72 in terms of the

original parameters of the theory (we discuss
� � 0 cases below). Then, for �0 < 0 there is no
unitary theory, but for �0 > 0 the theory is unitary if
the following conditions are met:
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�
 � 1

4
; and 0< �0 <

�1þ ð1� 4Þ3=2 þ 6

22

�

or

�
>

1

4
; and 0< �0 <

1



�
: (19)

For example, consider the  ¼ 0 case, it is unitary
for 0< �0 < 3 with the same vacuum as NMG, � ¼
2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �0

p Þ. In fact, NMG with � ¼ 0 is a
member of this family, since  ¼ �ð1þ 	Þ. But,
	 ¼ �1 gives a cubic order extension which is
probably the simplest unitary one parameter exten-
sion of NMG with the action

I¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

�R� 2�0m
2þ 1

m2

�
R2
��� 3

8
R2

�

þ �

6m4

�
R��R�

�R���RR2
��þ 2

9
R3

��
; (20)

with an arbitrary �. The other one parameter exten-
sion of NMG introduced in [8] is also a member
of ~� ¼ 0 and � ¼ 0 family of unitary theories, for
this case one chooses 	 ¼ �9=8 which then fixes

 ¼ 17=64 yielding an action

I¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

�R�2�0m
2þ 1

m2

�
R2
���3

8
R2

�

� 4

3m4

�
R��R�

�R���9

8
RR2

��þ17

64
R3

��
; (21)

whose unitarity region is given in (19). (In fact,
original sign choice for � is þ1 in [8].) Note that
for  ¼ �1=2, (21) reduces to the cubic order ex-

pansion of BINMG which is unitary for 0< �0 <

�8þ 6
ffiffiffi
3

p
. Let us also give an example for � � 0.

For simplicity, choose � ¼ 0 which yields � ¼
� �

3 , then choosing �0 ¼ 1 yields the unitarity re-

gion �3<< 1 for the theory

I ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

�R� 2m2 þ 1

m2

�
R2
�� � 3

8
R2

�

� �

24m2
R2;þ 

6ð1þ 	Þm4

�
R��R�

�R��

þ 	RR2
�� � 1þ 3	

9
R3

��
; (22)

where 	 is arbitrary, and � is the vacuum of the
theory. Let us stress that the propagator of this theory
is exactly like NMG with redefined parameters.

(ii) Choose � ¼ �1 and ! ¼ �1: Then, � ¼ 0 theory
is unitary if �0 > 0 (�0 < 0 is ruled out) and

< 0 and � 1


< �0 <

1þ ð1� 4Þ3=2 � 6

22
:

(23)

For � � 0 and with the choice � ¼ 0, the unitary

region is �0 > 0 and � 3ð�0þ3Þ
2�2

0

<<� 1
�0
.

(iii) Choose � ¼ 1 and ! ¼ 1: Then, � ¼ 0 theory has
no unitary region. For � � 0, certain � theories
such as � ¼ 1 have unitary regions.

(iv) Choose � ¼ 1 and! ¼ �1: Then, � ¼ 0 theory is
unitary if

� 1

4
<< 0 and

1


< �0 <

1þ 6þ ð1þ 4Þ3=2
22

:

(24)

For � � 0 and with choice � ¼ 1, the unitary region is
�2<< 0 for �0 ¼ 1.
The above discussion reveals just a sample unitary cubic

theories. The other branches for various sign choices of ~�,
~!, �, ! and existence or nonexistence of � can be studied
both in AdS and de Sitter (dS).
Although classifying all the unitary theories of the form

of (2) for all parameter choices is a tedious job, it is
relatively easy to find the unitary regions if some parame-
ters are fixed as in the cubic extension of NMG given in [8]
and as in the case of BINMG [9,10]. In [8], existence of a
holographic c-function in a specific form is the main
theme, so in this AdS/CFT based context �0 is set to be
negative �0 � � 1

‘2
and c-function in the considered form

can only exist, if 	 ¼ �9=8 and 
 ¼ 17=64 with an
arbitrary �. Also, � ¼ þ1 is preferred, while! is allowed
to be both �1. Then, the equivalent quadratic action be-
comes

Iquad-equal ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p ��

1���2

32

�
R�

�
2�0 ���3

16

�
m2

þ 1

m2

�
!���

8

��
R2
�� � 3

8
R2

��
; (25)

where the vacua of the theory satisfies 4�þ �2!� �
8 �

3 ¼
4�0. The unitarity condition and the Higuchi/BF bounds in
terms of the original parameters of the theory become

�!� 2� ��2

16 > 0 and �þ 32���2

2ð8!���Þ � 0, respectively.

With this setting, the theory is unitary in AdS if ! ¼ þ1

and �< 8
�2
0

ð3�0 � 8� ð4� �0Þ3=2Þ; or if ! ¼ �1, there

are some constraints on � which are not particularly illu-
minating to write. For cubic order of BINMG, � is further
set to be 4, but there is no unitary region for � ¼ þ1. On
the other hand, for � ¼ �1 and ! ¼ 1, cubic order of
BINMG is unitary in dS if �2< �0 < 0 and unitary in

AdS if 0< �0 < ð�8þ 6
ffiffiffi
3

p Þ.
The above analysis shows that for nontrivial  (or �, 	

in terms of original parameters), there is generically a
continuous family of unitary theories, and the cubic theory
of [8–10] is just an example of this family. Just like in the
NMG case, there are some special points which need
further attention. For example, at m2

g ¼ �m2 a new scalar

gauge invariance of the form ��h�� ¼ �m2 �g��� arises,
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and one has a partially massless theory with a single degree
of freedom [20–22]. [Note that for the Pauli-Fierz spin-2
theory in (A)dS which is not a diffeomorphism invariant
theory, at the partially massless point the new gauge in-
variance is of the form ��h�� ¼ r�r�� þ �m2 �g��� , but

the higher derivative theories that we are dealing here are
diffeomorphism invariant, and therefore, r�r�� part is

simply part of the diffeomorphism invariance, and should
not be counted as a new gauge symmetry.] The theory
defined by (2) has unitary partially massless regions (in
contrast to a point in NMG) for �< 1

12 and !�0 >� 4
3

(we have assumed � ¼ 0) with

�� ¼ 2

!
ð�2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 3!�0

p Þ: (26)

Another special point is �� 2 ~�
~! ¼ 0 where m2

g ¼ 0 for

which the linearized theory reduces to the Proca theory for
massive spin-1 field which can be seen by first writing the
equivalent quadratic action in the form of Pauli-Fierz
action by use of an auxiliary field say f��, and then by

integrating out the metric perturbation h�� which then

yields a massive spin-1 field with mass ð�8 ~�
~!m

2Þ. The
details of this procedure has been given in [3]. An overall
~!
m2 appears in the Lagrangian; therefore, for ghost freedom

~!> 0, and hence ~�< 0 is required for nontachyonic mass
in the region � � � 1

4 and !�0 � 4 (we have assumed

� ¼ 0) with �þ ¼ 4�þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �0

p
for ! ¼ 1 and �� ¼

�4�þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �0

p
for! ¼ �1 in both dS and AdS. [NMG

is unitary only in AdS for this spin-1 limit.]
In the above analysis, we required that the Oðh2Þ theory

of (2) reduce to Oðh2Þ of NMG with redefined parameters.
Next, we discuss the remaining two possibilities.

B. Reducing the cubic theory to Einstein’s
theory in (A)dS

Pure Einstein’s theory in three dimensions is locally
trivial. Namely, there is no propagating degree of freedom;
but in any case it is a unitary theory, and therefore the cubic
theory should be allowed to have the same Oðh2Þ form as
Einstein’s theory around (A)dS. This follows from (12) by
setting the coefficients of R2 and R2

�� to zero. One then

obtains

I ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p ð~�R� 2~�0m

2Þ; (27)

where

~� � �þ �

4
ð3��!Þ; ~�0 � �0 þ �2

4
ð3��!Þ;

(28)

with the vacuum � ¼ ~�0

~� which reduces to � ¼ ��0

(assume �0 � 0). Then, 	 and 
 can be determined in
terms of other parameters in (2) as

	 ¼ �
�
1þ !

���0

�
; 
 ¼ 2

9
� 3�� 25!

72���0

: (29)

For unitarity, we should impose the right sign Einstein-

Hilbert theory that is �½1þ �0

4 ð3��!Þ�> 0. Therefore,

any cubic theory satisfying this constraint will be unitary,
yet with no local degrees of freedom at the linearized level.
As a simple example, consider ! ¼ 0, � ¼ 0, then one
should have 	 ¼ �1 and 
 ¼ 2=9, and � ¼ þ1 is re-
quired to have a unitary theory with the action

I ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

R� 2�0m
2

þ �

6m4

�
R��R�

�R�� � RR2
�� þ 2

9
R3

��
: (30)

As in Sec. II A, the cubic theory with arbitrary � and with
choices 	 ¼ �1 and 
 ¼ 2=9 turned out to be special.
Actually, ðR��R�

�R�� � RR2
�� þ 2

9R
3Þ is the unique cu-

bic curvature combination that does not effect the free
theory in both flat and (A)dS backgrounds. Let us give
another interesting example in the case for ! � 0 for
which the cubic theory

I ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

�R� 2�0m
2 þ !

m2

�
R2
�� � 3

8
R2

�

þ �

6m4

�
R��R�

�R�� �
�
1þ !

���0

�
RR2

��

þ
�
2

9
þ 25!

72���0

�
R3

��
(31)

has the same Oðh0Þ, OðhÞ, and Oðh2Þ expansions as (27).
Although this theory involves two massive excitations in
flat space; in (A)dS, there is no propagating degree of
freedom. Unitary regions of (31) is given in Table I.
In the � � 0 case, 	 and 
 are determined as 	 ¼ �1,

 ¼ 2

9 � �
24�� . To have a unitary theory in AdS, �<� 4

3�0

constraint should be satisfied; while in dS one has
�>� 4

3�0
.

C. Reducing the cubic theory to R� 2�0 þ aR2

theory in (A)dS

The third and the final option of how (2) can be unitary is
that it has the same propagator as the R� 2�0 þ aR2

theory. For this to happen, the coefficient of R2
�� in the

equivalent quadratic Lagrangian density (12) should be set
to zero. Therefore, this determines 	 to be 	 ¼ �1� !

�� .

Then, after using the vacuum equation 4��þ �2ð25!�
3�Þ þ 8��3ð2� 9
Þ ¼ 4�0, or in a slightly more efficient
form 4��þ �2ð!� 3�Þ � 4��3 ¼ 4�0, the equivalent
quadratic action can be reduced to
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I ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

1

2
½4��þ �2ð!� 3�Þ � 8�0�m2

þ 4�0 � �2ð!� 3�Þ
4�

Rþ ��� �0

6�2m2
R2

�
: (32)

This theory is not unitary for generic values of the parame-
ters. One-particle amplitude [14] and the canonical analy-
ses [15] of the action

I ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p �
1

�
ðR� 2�0Þ þ aR2

�
; (33)

show that it describes a single massive excitation with mass

m2
s ¼ 1

8�a � 3�
2 where � is determined by ���0 �

6a��2 ¼ 0. For unitarity, a > 0 is required for both AdS
and dS, and for dS m2

s > 0 and for AdS, we have the BF
boundm2

s � �. Therefore, the mass of the scalar excitation
described by (32) is

m2
s ¼ 3�½12�0 � 8��� �2ð!� 3�Þ�

16ð��� �0Þ m2: (34)

The analysis of the unitary regions follows similar to
Sec. II A above. We will not repeat the analysis in its full
detail, but just give some examples of the regions where the
cubic theory

I ¼ 1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

�R� 2�0m
2 þ !

m2

�
R2
�� � 3

8
R2

�

þ �

8m2
R2 þ �

6m4

�
R��R�

�R�� �
�
1þ !

���0

�

� RR2
�� þ 
R3

��
(35)

that reduces to (32) is unitary or nonunitary. For concrete-
ness, consider � ¼ 0 and ! ¼ þ1, then for � ¼ �1, the
theory is not unitary in dS. For � ¼ þ1, the theory is

unitary if � > 1
16 and 1

4� < �0 <
1þ72�þð1þ48�Þ3=2

864�2 . In AdS,

for � ¼ þ1, the unitary region is � < 0 and �0 <
1
4� . For

� ¼ �1, for any value of �0 there is a unitary region for
� < 0. The analysis for � � 0 can also be done in the same
lines.

D. Central charge and boundary unitarity

In all the above analysis, we have considered bulk
unitarity only. For the applications of AdS/CFT, boundary
unitarity is also relevant. From the detailed work of [3], we
know that for NMG bulk and boundary unitarity are in
conflict. This conflict is not resolved in the cubic order
extension [8], or the infinite order extension of NMG [9–
11,23]. The bulk and boundary unitarity conflict follows
from the requirement that a positive central charge is not
allowed for NMG in the region where NMG is bulk unitary.
Therefore, it would be quite interesting to find both bulk
and boundary unitary higher derivative theories. As wewill
see in this section, there are many such theories. First,
recall that the central charge of a generic three-dimensional
higher curvature gravity theory can be found by using
[24–27]

c ¼ 8�ffiffiffiffiffiffij�jp
m

�
g��

@L
@R��

�
�R��

; (36)

where the coefficient in front was put to conform to the
normalization of Brown-Henneaux [28]. It is easy to see
that the central charge of a generic higher derivative theory
can be computed directly from the equivalent quadratic

action, since ½ @L
@R��

� �R��
is the first order term in the Taylor

series expansion of the full Lagrangian around its constant
curvature vacuum. This simple observation leads to a
remarkable conclusion in the light of the discussion above:
Any higher curvature theory that reduces to NMG cannot
be unitary both in the bulk and on the boundary. This
explains why an extension of NMG, be it cubic or any
power, that has a free theory like NMG will not have
unitarity on the boundary and in the bulk, and hence
perhaps will not be relevant to AdS/CFT. But, any higher
curvature theory that has the same free theory as the
cosmological Einstein theory will be unitary both in the
bulk and on the boundary. The theories constructed in
Sec. II B have the central charge to be

c ¼ 24�~�ffiffiffiffiffiffij�jp
�2m

: (37)

Both bulk and boundary unitarity requires ~�> 0. But,
these are not the only theories that are unitary everywhere:
Let us now consider the higher curvature theories that have

TABLE I. Unitary regions for ! � 0 and � ¼ 0.

�0 �ð1� !�0

4 Þ> 0 ! Unitary region

AdS ��0 < 0 � ¼ �1 �0 > 0 !�0 > 4 þ1 �0 > 4
� ¼ þ1 �0 < 0 !�0 < 4 �1 �4< �0 < 0

þ1 �0 < 0

dS ��0 < 0 � ¼ �1 �0 < 0 !�0 > 4 �1 �0 <�4
� ¼ þ1 �0 > 0 !�0 < 4 �1 �0 > 0

þ1 0< �0 < 4
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the same free theory as the �R� 2�0 þ aR2 that we
discussed in Sec. II C. The central charge of (12) with
~! ¼ 0 can be computed as

c ¼ 24�ffiffiffiffiffiffij�jp
�2m

�
~�þ 3~��

2

�
: (38)

For unitarity ~�> 0, and in AdS since � < 0 we should

have ~�>� 3~��
2 to have c > 0. We should check if this

constraint is consistent with the other constraint (the BF
bound) m2

s � �m2 with m2
s ¼ ð~�~� � 3�

2 Þm2 and the exis-

tence of a negative � satisfying the vacuum equation

~��� 3~�
4 �2 ¼ ~�0. One can find families of theories satis-

fying these bounds, let us give a simple example for which
we take � ¼ 0 and ! ¼ 1, then the action (35) is bulk and
boundary unitary for

� ¼ þ1 and � < 0 and

24�� ð1� 16�Þ3=2 � 1

32�2
< �0 <

1

4�
;

� ¼ �1 and � 1

16
< �< 0 and

� 24�þ ð1þ 16�Þ3=2 þ 1

32�2
< �0 <� 1

4�
;

(39)

where � was defined just before Sec. II A.
To summarize, if a higher curvature theory is required to

be unitary both in the bulk and on the boundary, then it
should have the same free theory as either the cosmological
Einstein-Hilbert theory, or the R� 2�0 þ aR2 theory with
the constraints satisfying the bounds discussed above.

III. UNITARITY OF BINMG

Up to now, we have constructed all the unitary cubic
curvature theories in (A)dS. The procedure can be carried
on to quartic or more powers of curvature, but here let us
give two examples of Born-Infeld gravities which in prin-
ciple include infinite powers of curvature. Our first ex-
ample is the Born-Infeld extension of NMG was
introduced in [9] with the action

IBINMG ¼ � 4m2

�2

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
gþ �

m2
G

�s

�
�
1� �0

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �

; (40)

where G�� � R�� � 1
2 g��R and � ¼ �1. This particular

form of the action was chosen to reproduce the cosmologi-
cal Einstein-Hilbert action at the first order in the curvature
expansion and the NMG in the second order expansion.
These two conditions are actually met by another BI-type
action that we shall discuss below which constitute our
second example. On the other hand, the cubic and fourth
order extensions of NMG given in [8] which was con-
structed with the help of a holographic c-function matches

the same orders of (40). Certain aspects of BINMG such as
its central charge [10,23], c-functions [10], classical solu-
tions [23,29–31] have been studied. We will study the
unitarity of BINMG with two different methods: First,
with the help of an equivalent quadratic action that we
have employed above, and second, we will explicitly cal-
culate the second order expansion in metric perturbation
h�� with the methods developed in [4]. These two methods

obviously will give the same answer, but it is worth check-
ing that the equivalent quadratic action method works with
the help of the second more direct method for this infinite
order theories. This more direct method is highly involved
in terms of computation; therefore, we put it in the
Appendix.
Let us analyze the BINMG action by finding its equiva-

lent quadratic action: To do that we have to expand the
determinant in terms of traces which was done in [32]

IBINMG ¼ � 4m2

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �

2m2

�
Rþ �

m2
K � 1

12m4
S

�s

�
�
1� �0

2

��
; (41)

where K and S are defined as

K � R2
�� � 1

2
R2; S � 8R��R��R

�
� � 6RR2

�� þ R3:

(42)

The unique vacuum of (41) by directly studying the equa-
tions of motion was found in [10,23] as

� ¼ ��0

�
1� �0

4

�
; �0 < 2: (43)

In the spirit of the current work, let us verify this result by
finding the equivalent linear action which circumvents the
use of equations of motion. Let us define

fðR�
� Þ �

�
1� �

2m2

�
��
�R

�
� þ �

m2

�
R�
� R�

� � 1

2
ð��

�R
�
� Þ2

�

� 1

12m4
½8R�

�R
�
�R�

� � 6R
�
� R�

�ð�

�R

�

Þ

þ ð��
�R

�
� Þ3�

��
1=2 �

�
1� �0

2

�
; (44)

which assumes, as above, that R�
� is the independent

variable. Expanding fðR�
� Þ around its constant curvature

background ð �R�
� ¼2�m2�

�
� Þ to the first order in ðR	

� � �R	
�Þ

as (5) one can find the equivalent linear Lagrangian den-
sity. For this, one needs

fð �R�
� Þ ¼ ð1� ��Þ3=2 �

�
1� �0

2

�
; (45)

which requires �� � 1,
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�
@f

@R�
	

�
�R
�
�

¼ � �

4m2ð1� ��Þ3=2
�
�	
� þ �

m2
ð2 �R	

� � �R�	
�Þ

� 1

12m4
ð24 �R	

�
�R�
� � 12 �R	

� �R� 6 �R

�
�R�

�

	
� þ 3 �R2�	

�Þ
�
(46)

which requires �� � 1, then�
@f

@R�
	

�
�R
�
�

¼ ���	
�

4m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p
: (47)

With these results, the equivalent linear action for BINMG
becomes

Ilin-equal ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1���

p
�2

Z
d3x

ffiffiffiffiffiffiffi�g
p

�
�
R� 4�m2

�
1þ�

2
�þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1���

p ð�0 � 2Þ
��
;

(48)

where one can read the effective cosmological constant as

� ¼ 2�

�
1þ �

2
�þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p ð�0 � 2Þ
�
) 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p

¼ 2� �0; (49)

which requires �0 < 2, and after taking the square of the
equation, one obtains (43).

Expansion of fðR�
� Þ around the constant curvature back-

ground by using (9) with the assumption of small fluctua-
tions about the background requires the quantity�

@2f

@R
�
�@R�

	

�
�R
�
�

¼ � 1

2m4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p ð�	
���

� � 3

8
�	
���

� Þ:

(50)

Using this and (45) and (47), one obtains the equivalent
quadratic action as

IOðR2Þ ¼
1

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p �

~�R� 2m2 ~�0 þ ~!

m2

�
R2
�� � 3

8
R2

��
;

(51)

where, for ��< 1,

~� ¼ ð�� �
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ��
p ;

~�0 ¼ �0 � 2þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p
�
2� ��� �2

4

�
;

~! ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p :

(52)

Remarkably, the equivalent quadratic action turned out to
be NMG with redefined parameters. Namely, the effect of
all the terms beyond OðR2Þ simply change the parameters
of the OðR2Þ expansion of the action which was NMG by
construction. Let us stress again that this equivalent qua-
dratic action has the same free theory (that is the propa-
gator), same vacuum and same central charge as BINMG.
Vacuum of BINMG in terms of the redefined parameters is

~!�2 þ 4 ~��� 4~�0 ¼ 0: (53)

From the discussion in Sec. II A, we know that NMG is
unitary under two conditions ~!�� 2~�> 0 and 2~�

~! þ��0.

Now, the question is whether these conditions are satisfied
together with the BINMG condition �0 < 2 or not.
A simple analysis shows that BINMG is unitary only for
� ¼ �1 in AdS for 0< �0 < 2, and in dS for �0 < 0.
Therefore, this analysis answers the question raised in
[10] about the unitarity of the � ¼ þ1 theory in the
negative. This is true for bulk unitarity, for boundary
unitarity recall the central charge from [10,23], or just
compute it from the equivalent action (51) as

c ¼ 3‘

2G3

�
~�� ~!�

2

�
¼ 3�‘

4G3

ð2� �0Þ: (54)

Since in AdS 0< �0 < 2, and � ¼ �1, the theory is not
unitary on the boundary just like NMG, or the cubic
extension of NMG. The � ¼ þ1 theory is unitary on the
boundary, but as we have just seen it is not unitary in the
bulk. This is an expected result, because the free theory of
BINMG is the same as the free theory of NMG with
redefined parameters, and there is the obvious conflict
between the bulk unitarity condition ~!�� 2 ~�> 0 and
the boundary unitarity condition 2 ~�� ~!�> 0.
We mentioned that there was a second BI-type action

that reproduces NMG in the curvature expansion. The
action of this theory reads [9]

I ¼ � 4m2

�2

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
g�� þ �

m2

�
R�� � 1

6
g��R

��s

�
�
1� �0

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �

; (55)

which, by use of

detA ¼ 1

6
½ðTrAÞ3 � 3TrATrðA2Þ þ 2TrðA3Þ� (56)

becomes

I ¼ � 4m2

�2

Z
d3x

ffiffiffiffiffiffiffi�g
p

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2m2

�
R� 1

m2

�
R2
�� � 1

2
R2

�
þ 2

3m4

�
R��R�

�R�� � 5

4
RR2

�� þ 23

72
R3

��s
�

�
1� �0

2

�9=
;:

(57)
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Quite interestingly, this action reduces to NMG at Oðh2Þ
with the same redefined parameters as the BINMG.
Therefore, at the free level, these two theories cannot be
distinguished.

IV. CONCLUSION

We have found all the unitary cubic curvature theories in
three dimensions around constant curvature backgrounds.
Without any further constraint, we have shown that unitar-
ity in the bulk and on the boundary allows a large family of
solutions as opposed to the cubic curvature theories that
have appeared in the literature before, which allowed only
bulk or boundary unitarity. The theories we have found
should be studied in the context of AdS/CFT. We have also
studied the unitarity of two Born-Infeld extensions of
NMG which turned out to be unitary in the bulk only.
Besides the parity violating extension with the addition
of a Chern-Simons term and/or carrying out the unitarity
analysis to OðR4Þ, a quite physically relevant extension of
our work is to find the unitary cubic curvature theories in
four dimensions, which is currently under construction.
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APPENDIX: Oðh2Þ ACTION OF BINMG

In this Appendix, we calculate explicitlyOðhÞ andOðh2Þ
expansions of the BINMG action. First of all, let us find the
constant curvature vacuum of (40) by explicitly calculating
the first order action in the metric perturbation. In [4], it
was shown that OðhÞ of the generic BI-type action

I ¼ 2

��

Z
dDx½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ A��Þ

q
� ð��0 þ 1Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �; (A1)

where A�� is in the form A�� ¼ �ðR�� þ 	 ~R��Þ þOðR2Þ
with the definition ~R�� � R�� � 1

D g��R is

IOðhÞ ¼ ð1þ aÞðD�4Þ=2

��

Z
dDx

ffiffiffiffiffiffiffi� �g
p ½ð1þ aÞð �g��Að1Þ

�� þ hÞ
� ð1þ aÞð4�DÞ=2ð��0 þ 1Þh�; (A2)

where Að1Þ
�� is the first order term in the metric perturbation

expansion of A��. Here, a is defined as �A�� � a �g�� and

for BINMG it becomes

�

m2

�
�R�� � 1

2
�g��

�R

�
¼ ��� �g�� ) a ¼ ���; (A3)

which, when inserted to the action, yields the constraint
a >�1 ) ��< 1. For BINMG, A�� is A�� ¼ �

m2 ðR�� �
1
2g��RÞ, then Að1Þ

�� and �g��Að1Þ
�� becomes

Að1Þ
�� ¼ �

m2

�
RL
�� � 1

2
�g��RL � 3�m2h��

�
;

�g��Að1Þ
�� ¼ � �

2m2
ðRL þ 2�m2hÞ;

(A4)

where RL
�� and RL are the linearized Ricci tensor and the

linearized curvature scalar with the definitions

RL
�� � 1

2
ð �r�

�r�h
�
� þ �r�

�r�h
�
� �hh�� � �r�

�r�hÞ;
RL � ðg��R��ÞL: (A5)

Then, for BINMG with � ¼ � 1
2m2 and � ! �2, the OðhÞ

action becomes

IOðhÞ ¼ � 2m2

�2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
Z

d3x
ffiffiffiffiffiffiffi� �g

p
�

�
ð1þ aÞ

�
� �

2m2
ðRL þ 2�m2hÞ

�
þ ð1þ aÞh

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p �
1� �0

2

�
h

�

¼ � 2m2

�2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
Z

d3x
ffiffiffiffiffiffiffi� �g

p
�

�
ð1þ aÞh� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p �

1� �

2

�
h

�
; (A6)

then the constant curvature background equation of motion
can be found as in (43) from the coefficient of h��.
Now, let us turn to the explicit calculation of Oðh2Þ

action for BINMG. In [4], the second order action in metric
perturbation for (A1) in three dimensions was calculated as

IOðh2Þ ¼ � 1

��
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
Z

d3x
ffiffiffiffiffiffiffi� �g

p
�

�
1

2
Að1Þ
��A

��
ð1Þ �

1

4
ð �g��Að1Þ

��Þ2 � ð1þ aÞ �g��Að2Þ
��

þ h��

�
Að1Þ
�� � 1

2
�g�� �g

��Að1Þ
��

�

� 1

4
½1� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p ð��0 þ 1Þ�ðh2 � 2h2��Þ

�
: (A7)

With the explicit form of A�� for BINMG, let us calculate

each term separately. First, the second line of the above
equation takes the following form by use of the definition
of the linearized Einstein tensor GL

�� � RL
�� � 1

2
�g��RL �

2�h�� in three dimensions and by use of the equation of

motion;
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Z
d3x

ffiffiffiffiffiffiffi� �g
p �

h��

�
Að1Þ
�� � 1

2
�g��A

�ð1Þ
�

�

� 1

4

�
1� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p �

1� �0

2

��
h��ð �g��h� 2h��Þ

�

¼ �

m2

Z
d3x

ffiffiffiffiffiffiffi� �g
p

h��

�
GL

�� þ 1

4
�g��RL

þ �m2

4
ð �g��h� 2h��Þ

�
: (A8)

Second, let us calculate the terms quadratic in A��. There

are two such terms Að1Þ
��A

��
ð1Þ and ð �g��Að1Þ

��Þ2, and the first

one becomes

Z
d3x

ffiffiffiffiffiffiffi� �g
p 1

2
Að1Þ
��A

��
ð1Þ

¼ 1

2m4

Z
d3x

ffiffiffiffiffiffiffi� �g
p

h��

�
� 1

4
ð �g��h� �r�

�r�

þ 2�m2 �g��ÞRL � 1

2
ðhGL

�� � �m2 �g��RLÞ

� �m2GL
�� þ �2m4h��

�
; (A9)

by using
R
d3x

ffiffiffiffiffiffiffi� �g
p

R2
L and

R
d3x

ffiffiffiffiffiffiffi� �g
p

R
��
L RL

�� which can

be found asZ
d3x

ffiffiffiffiffiffiffi� �g
p

R2
L¼

Z
d3x

ffiffiffiffiffiffiffi� �g
p

�
�
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(A10)

Z
d3x

ffiffiffiffiffiffiffi� �g
p

R��
L RL

��

¼ � 1

2

Z
d3x

ffiffiffiffiffiffiffi� �g
p

h��

�
ð �g��h� �r�

�r�

þ 2�m2 �g��ÞRL þ ðhGL
�� � �m2 �g��RLÞ

� 10�m2RL
�� þ �m2 �g��RL þ 12�2m4h��

�
; (A11)

where the background Bianchi identity and integration by
parts have been used. The other term reads

Z
d3x

ffiffiffiffiffiffiffi� �g
p �

� 1

4
ðA�ð1Þ

� Þ2
�

¼ 1

16m4

Z
d3x

ffiffiffiffiffiffiffi� �g
p

h��½ð �g��
�h� �r�

�r�

þ 2�m2 �g��ÞRL � 4�m2 �g��RL � 4�2m4 �g��h�:
(A12)

Let us consider �g��Að2Þ
��, which is

�g��Að2Þ
�� ¼ �

m2
ð �g��Rð2Þ

�� � 3

2
Rð2Þ � 1

2
hRLÞ; (A13)

and using

Z
d3x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ ¼
Z

d3x
ffiffiffiffiffiffiffi� �g

p
h��

�
� 1

2
GL

�� � 1

2
�g��RL

þ �m2h�� � �m2

2
�g��h

�
; (A14)

and

Z
d3x

ffiffiffiffiffiffiffi� �g
p

�g��Rð2Þ
�� ¼ h��

�
1

2
GL

��þ�m2h����m2

2
�g��h

�
;

(A15)

one gets

Z
d3x

ffiffiffiffiffiffiffi� �g
p

�g��Að2Þ
�� ¼

Z
d3x

ffiffiffiffiffiffiffi� �g
p

h��

�
�

4m2
ð5GL

�� þ �g��RL

þ �m2 �g��h� 2�m2h��Þ
�
: (A16)

This computation is somewhat lengthy, and one needs

�g ��h
�
	ðR	

���ÞL ¼ h��ð�RL
�� þ 3�m2h�� � �m2 �g��hÞ;

(A17)

and the two expressions involving linearized Christoffel

connection whose definition is ð��
��ÞL � 1

2
�g��ð �r�h�� þ

�r�h�� � �r�h��Þ,
Z

d3x
ffiffiffiffiffiffiffi� �g

p
�g�� �g�� �g	
ð�


��ÞLð�	
��ÞL

¼
Z

d3x
ffiffiffiffiffiffiffi� �g

p �
� 1

2
h��ð �r� �r�h�� þ �r� �r�h��

� 3

2
�r�

�r�hÞ þ h��

�
3�m2h�� � �m2

2
�g��h

�

þ 1

4
h�� �g��RL

�
; (A18)

Z
d3x

ffiffiffiffiffiffiffi� �g
p

�g�� �g�� �g	
ð�

��ÞLð�	

��ÞL

¼
Z

d3x
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p �
� 3

4
h��hh��

þ 1

4
h��ð �r� �r�h�� þ �r� �r�h��Þ

�
: (A19)

Collecting all the terms and making use of the equations of
motion, one obtains

IOðh2Þ ¼ � 1

2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

p
Z

d3x
ffiffiffiffiffiffiffi� �g

p
h��

�
ð�� 3�ÞGL

��

þ 1

m2

�
1

4
ð �g��h� �r�

�r� þ 2�m2 �g��ÞRL

þ ðhGL
�� � �m2 �g��RLÞ

��
; (A20)

which can be compared to (25) of [33]. Then, one can
observe that this is the Oðh2Þ of NMG with the redefined
parameters given in (52).
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