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(Received 9 November 2010; published 26 January 2011)

We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes),

transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the

background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field.

There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference

of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We

have shown that ‘‘turning on’’ the magnetic field induces a stronger energy-emission rate and leads to

‘‘recharging’’ of the black hole. Thus, a black hole immersed in a magnetic field evaporates much quicker,

achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately

affected by the presence of a magnetic field which is assumed to be relatively small compared to the

gravitational field of the black hole.

DOI: 10.1103/PhysRevD.83.024031 PACS numbers: 04.70.Bw, 04.62.+v

I. INTRODUCTION

Magnetic field is one of the most important constituents
of the cosmic space and one of the main sources of the
dynamics of interacting matter in the Universe. Weak
magnetic fields of about a few �G exist in galaxies and
clusters of galaxies, while very strong magnetic fields of up
to 104–108G are supposed to exit near supermassive black
holes in the active galactic nuclei and even around stellar
mass black holes [1–3]. Magnetic field near a black hole
leads to a number of processes, such as extraction of rota-
tional energy from a black hole, known as the Blandford-
Znajek effect [4], the charging of a black hole due to
accretion of charged matter [5], the formation of an in-
duced electric field on the black hole surface [6], negative
absorption (masers) of electrons [7], and so on. In addition
to stellar mass and galactic black holes, miniature black
holes could be immersed in a strong magnetic field if
created in a laboratory or observed in cosmic showers [8].

Even a relatively weak magnetic field can considerably
affect the behavior of charged particles/fields due to usually
not weak coupling eB between the particle charge e and the
magnetic field B. Therefore, charged massive fields are
interesting models for theoretical study of interaction of a
magnetized black hole with its surroundings. As the sim-
plest case, onemay neglect the spin of the field and consider
the complex massive charged scalar field. Still, the interac-
tion of particles due to the spin can also significantly
affect the particles‘ state and thus deserves a separate

consideration. As a first step in this direction, we shall
consider here a charged rotating black hole, given by the
Kerr-Newman solution, and a charged massive scalar field
propagating on its background and immersed in an asymp-
totically homogeneousmagnetic field. Themagnetic field is
supposed to be weak enough so that the metric does not
deviate from the Kerr-Newman one, i.e. the magnetic field
does not distort the geometry of the space-time but only
interacts with other electromagnetic charges in the system.
Particles and fields in the vicinity of a black hole slightly

change the background space-time of a system. Therefore,
the addition of a field to a black hole space-time can be
considered as a perturbation. At the classical level, the per-
turbation can be described by its damped characteristic
modes, called the quasinormal modes (QNMs) [9,10], and
by the scattering properties, which are encoded in the
S-matrix of the perturbation. Quasinormal modes are proper
oscillations of the perturbationwhich dominate at late time in
the response of a black hole to z perturbation. The complex
frequencies of such oscillations do not depend on themanner
of excitation but only on the parameters of the black hole and
the field under consideration. Therefore, they are usually
called the ‘‘fingerprints’’ of a black hole.
In the same way, as quasinormal modes are an essential

classical characteristic of a black hole, the thermal
Hawking radiation is its essential quantum feature that
carries information about the dynamics of evaporation of
the black hole. For large astrophysical black holes, the
effect of Hawking evaporation is certainly negligible for
the black hole dynamics but not for the behavior of parti-
cles in its vicinity. Emission of Hawking radiation is
significant for primordial black holes and huge for
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miniature black holes which are considered in the higher
dimensional gravity and string theory. According to
brane-world scenarios, our world is assumed to be a
(3þ 1)-dimensional brane which is embedded in a higher
dimensional bulk. Gravity is supposed to be much stronger
at small distance, creating possibilities for the formation of
an event horizon in particle collisions even at energies
achievable at the Large Hadron Collider [8]. Estimates
show that, once such a black hole is created, it will almost
immediately evaporate, so that the lifetime of the miniature
black hole is about 10�25–10�32 sec. Although created in
this way, miniature black holes would be intrinsically
higher dimensional. Nevertheless, our consideration here
of the 4-dimensional black holes can be useful for two
reasons: First, it is known that the higher dimensional black
hole emits particles mainly ‘‘on the brane,’’ i.e. the process
of quantum evaporation of the higher dimensional black
holes is probably qualitatively similar in many aspects to
the one for 4-dimensional black holes. Second and more
important, in the proposed approach, we can realize how a
magnetic field can influence the process of evaporation.
Thus, when talking about QNMs and Hawking radiation of
black holes immersed in a magnetic field, we have in mind
not only astrophysical black holes but also primordial and
miniature black holes.

Thus, we could say that the quasinormal spectrum and
Hawking radiation are, respectively, classical and quantum
‘‘fingerprints’’ of a black hole. Quasinormal modes and
Hawking radiation also have one technical point in com-
mon: analysis of QNMs as well as of the Hawking radia-
tion (in semiclassical approximation) begins from the
linear perturbations of the fields under consideration whose
dynamics should be reduced to a single wavelike equation,
called the master equation.

Up to now there are two kinds of analysis of quasinormal
modes which, in a sense, are complementary to the present
work. Quasinormal modes of the massive and massless
charged scalar field around charged black holes (without
a magnetic field) were studied in [11–13]. Quasinormal
modes of a neutral scalar field around black holes im-
mersed in a strong magnetic field were calculated in
[14,15]. In [14,15], the black hole was described by the
Ernst-Schwarzschild solution which contains a magnetic
field as a parameter because the magnetic field is implied to
be strong enough in order to deform the black hole geome-
try significantly. However, such strong geometry-
deforming magnetic fields have little probability of exist-
ing in nature [3].

Here, we shall consider a more realistic situation and
assume that the magnetic field is not strong enough to
deform the Kerr-Newman black hole metric. The correla-
tion of the quasinormal frequencies, the reflection coeffi-
cients, and the energy emission rates with the parameters
of the black hole (mass M, charge Q, angular momentum
a) and of the scalar field (mass �, charge e) are analyzed

here through a comprehensive numerical study. The
Hawking radiation for charged particles (without a mag-
netic field) around nonrotating and rotating black holes
was considered in [16,17] for 4-dimensional black holes
and in [18,19] for higher dimensional scenarios.
In the system under consideration, the coupling of par-

ticle charge e with the magnetic field B leads to the
Zeeman shift of the energy �2 ! �2 � eBm [20]. The
rotation of the black hole in the magnetic field, in its
turn, leads to the appearance of the induced charge on
the black hole surface and to the difference in values of
the electromagnetic potential at the horizon and at infinity,
that is, the Faraday induction. We shall observe how these
two effects, the Zeeman effect and the Faraday induction,
are reflected in the processes of classical and quantum
radiation. Qualitatively, these two effects were considered
in the vicinity of the Kerr-Newman black hole by Galtsov
and collaborators [6]. Here we shall give an accurate
quantitative analysis for the above case. We shall calculate
characteristic quasinormal modes, reflection/transmission
coefficients, and the emission rates for Hawking radiation
of the charged massive scalar field in the background of the
Kerr-Newman black holes and in the vicinity of the asymp-
totically homogeneous magnetic field.
The paper is organized as follows. Section II is devoted

to the separation of variables for the scalar field in the
Kerr-Newman background under nonzero magnetic field.
In Sec. III, we describe the numerical procedures for
finding eigenvalues of the separated angular equation
and quasinormal frequencies and reflection/transmission
coefficients. Section IV is devoted to calculations of the
quasinormal modes. Section V discusses classical scatter-
ing and calculates the energy and momentum emission
rates for the Hawking radiation. We present our conclu-
sions in Sec. VI.

II. WAVELIKE EQUATION

The Kerr-Newman metric can be written in the follow-
ing form:

ds2 ¼ 4
�
ðdt� asin2�d�Þ2 � sin2�

�
½adt� ðr2 þ a2Þd��2

� �

4dr2 � �d�2; (1)

where

4¼ r2�2Mrþa2þQ2; �¼ r2þa2cos2�: (2)

HereM is the black hole mass, Q is its charge, and a is the
angular momentum per unit mass. The event horizons are
situated at

r ¼ r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2 �Q2

q
: (3)

In the above description, we have not taken into account
the influence of the magnetic field onto the black hole
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background. Under these conditions, the background elec-
tromagnetic field can be written as

A ¼ A�dx
� ¼ Qr

�
ðdt� asin2�d�Þ: (4)

The KNmetric does not depend on the coordinates t and�,
so that there exist the two Killing vectors �ðtÞ ¼ ð1; 0; 0; 0Þ
and �ð�Þ ¼ ð0; 0; 0; 1Þ. One can see that the Killing vectors

for vacuum metrics satisfy the same equations as the
4-potentials A�. This suggests the following form of the

4-potential:

A� ¼ 1

2
B½��

ð�Þ þ 2a�
�
ðtÞ� �

Q

2M
�
�
ðtÞ: (5)

The gauge transformations,

A� ! A� þ @

@x�

��
Q� 2aMB

2M

�
t

�
; (6)

reduce the 4-potential to the Coulomb form A0ðr ¼
1Þ ¼ 0. Thus, the ‘‘full’’ electromagnetic 4-potential of

the system which includes the electric field of the charged
black hole as source and a magnetic field B living ‘‘in the
background’’ of a Kerr-Newman black hole has the form

A�¼
�ðQ�2aMBÞrðr2þa2Þ

4�
;0;0;

B

2
þðQ�2aMBÞra

4�

�
;

A�A
�¼�B2sin2�

4�
½ðr2þa2Þ2�4a2sin2��

�ðQ�2aMBÞaB
�

rsin2�þðQ�2aMBÞ2r2
4�

: (7)

The Klein-Gordon equation for the charged massive scalar
field in the vicinity of a Kerr-Newman black hole and in the
presence of the homogenous magnetic field B has the
following general covariant form [20]:

g��ðr� þ ieA�Þðr� þ ieA�Þ�þ�2� ¼ 0: (8)

Sincer�A
� ¼ 0, the latter can be reduced to the following

form [20]:

@

@r

�
4 @�

@r

�
þ 1

sin�

@

@�

�
sin�

@�

@�

�
�

�ðr2 þ a2Þ2
4 � a2sin2�

�
@2�

@t2
þ 2a

�
1� r2 þ a2

4
�
@2�

@t@�
þ

�
1

sin2�
� a2

4
�
@2�

@2�

� 2ie

�
rðr2 þ a2ÞðQ� 2aMBÞ

4
@�

@t
þ

�ðQ� 2aMBÞra
4 þ B�

2

�
@�

@�

�
þ ðe2A�A

� ��2Þ�� ¼ 0: (9)

As was shown in [20], the separation of radial and
angular variables in the whole space is impossible for
this equation. Nevertheless, if one considers only the re-
gion which begins at the event horizon and ends at some
distance far from the black hole r � rþ, and uses the
following approximations:

eBr2þ � 1; eQ � 1; (10)

then we get

A�A
� ¼ ðQ� 2aMBÞ2r2

4�
:

Under these conditions, the separation of variables is pos-
sible, that is, we can write

� ¼ e�i!tþim�Sð�ÞRðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
: (11)

Here, the function Sð�Þ obeys the equation�
@2

@�2
þ cot�

@

@�
� m2

sin2�
� ða!Þ2sin2�þ 2ma!

þ �� ð�2 � eBmÞa2cos2�
�
Sð�Þ ¼ 0: (12)

This equation can be solved numerically for any value of!
in the same way as the equation for massive scalar field in
the Kerr black hole background [21] with the effective
mass �2

eff ¼ �2 � eBm. We note that, when �eff ¼ 0,
Eq. (12) reduced to the well-known equation for the

spheroidal functions. In this case, the separation constant
�ð!Þ can be found numerically using the continued frac-
tion method [22]. When the effective mass is not zero, the
separation constant can be expressed, in terms of the
separation constant for spheroidal functions, as

�ð!;�effÞ ¼ �ð�Þ þ 2mað��!Þ þ�2
effa

2;

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2

eff

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2 þ eBm

q
:

The sign of � might be chosen here arbitrarily, but we
fix it so that Reð�Þ and Reð!Þ are of the same sign. This
allows one to recover easily the limit of�eff ¼ 0 and, later,
to simplify fixing of the boundary conditions for the radial
part. When a ¼ 0, one can find that � ¼ lðlþ 1Þ, l ¼
0; 1; 2 . . . . For the nonzero values of a, the separation
constant can be enumerated by the integer multipole
number l � jmj.
Using the new tortoise coordinate r�, the radial part can

be written as a wavelike equation,

�
d2

dr2�
� VðrÞ

�
RðrÞ ¼ 0; (13)

where

r� ¼ ðr2 þ a2Þ
4 dr;
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and where the effective potential has the following form:

VðrÞ¼ 4
ðr2þa2Þ2

�
�þð�2�eBmÞr2þ ðr4Þ0

r2þa2
� 34r2

ðr2þa2Þ2
�

�
�
!� ma

r2þa2
�er

Q�2aMB

r2þa2

�
2
: (14)

From this form of the effective potential one can realize the
two effects: the mass of the field gained an effective term
�2 � eBm, and the black hole charge gained an addition as
well, Q ! Q� 2aMB. The first effect is the well-known
Zeeman effect, which is the shift of energy of a charged
particle (with a charge e) in the magnetic field due to
interaction of a magnetic field B with an azimuthal mo-
mentum m. In systems which are more symmetric than
ours, i.e. with degenerated m-states, the Zeeman effect
leads to splitting of the m-degeneration, and is well known
in quantum mechanics. In the case when the effective
potential allows for nondegenerated m-states, the Zeeman
effect simply corresponds to a shift in the particle’s energy.

The second effect is more remarkable. Once a rotating
black hole is immersed into a magnetic field, the electro-
static potential between the horizon and infinity acquires a
difference due to the presence of a magnetic field, which is

�A ¼ Ahor � Ainf ¼ Q� 2aMB

2M
:

In other words, the black hole receives an additional in-
duced electrostatic force Find ¼ 2aMB=r2þ. This is nothing
but the Faraday induction. It should be noted that this effect
can be significant even for neutral black holes Q ¼ 0
and can be applied to large astrophysical black holes which
cannot possess large electric charge.

The asymptotics of the effective potential near the hori-
zon and at infinity are

VðrÞ!��2; r!1; �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2��2þeBm

q
; (15)

VðrÞ ! � ~!2; r ! rþ;

~! ¼ !�maþ erþðQ� 2aMBÞ
a2 þ r2þ

: (16)

During superradiance the black hole can be charged until it
reaches the ‘‘extremal’’ charge Q ¼ 2aMB.

In the following sections we will study the influence of
the above-mentioned Zeeman and Faraday effects on the
classical (quasinormal) and quantum (Hawking) radiation
of black holes. However, before starting the numerical
study of the wavelike Eq. (13), let us mention one more
constraint related to our analysis. If the electric field
2aMB=rþ induced on the horizon is as strong as the
Schwinger field �2=e, then the electrodynamic process
of particle production is initiated and continues until the
maximum value of the charge is reached. This maximum
value of the charge is Q ¼ 2aMB. Indeed, imagine
vacuum as consisting of virtual pairs eþe� where electrons

and positrons, after transforming to the real ones, become
separated by distance of the order of the Compton wave-
length � ¼ 2���1. If the work done by the electric field,
which is eE�, is as large as the rest mass of the two
particles 2�, then the virtual pair turns into a real one:
2���1eE > 2� and consequently E � �2=e, where E is
the induced electric field. We did not take this Schwinger
mechanism into consideration in the present paper.
However, in the conclusion, we shall suggest simple argu-
ments showing that the Schwinger mechanism of pair
production will enhance the process of ‘‘recharging’’ a
black hole and force the black hole to evaporate faster.

III. NUMERICAL METHODS

In this section we shall briefly discuss the two classical
numerical methods (Frobenius and WKB) used for calcu-
lations of the quasinormal modes and the shooting method
used for calculations of the transmission/reflection
coefficients.

A. Quasinormal modes

In order to calculate quasinormal modes, we impose the
quasinormal mode boundary conditions for the wave
Eq. (13), i.e., we require that at the black hole horizon
we have only purely ingoing waves,

Rðr� ! �1Þ / expð�i ~!r�Þ;
while we should have only purely outgoing waves at spatial
infinity, i.e.

Rðr� ! 1Þ / expði�r�Þ:
Thus, no waves are coming from the horizon or infinity,
which implies that ! are proper oscillation modes in the
black hole response to an ‘‘instantaneous’’ perturbation. In
other words, when the perturbation decays, the source of
the initial perturbation is not acting anymore.
Equation (13) has an irregular singularity at spatial

infinity and four regular singularities at r ¼ rþ, r ¼ r� ¼
ðQ2 þ a2Þ=rþ, and r ¼ �ia. The four regular singularities

appear due to the prefactor ðr2 þ a2Þ�1=2 in (11). The
appropriate Frobenius series is determined as

RðrÞ ¼
�
r� rþ
r� r�

��i ~!=4�TH

ei�rðr� r�Þi	yðrÞ;

where

	 ¼
�
�þ�2 � eBðm� 2a!Þ

2�

�
ðrþ þ r�Þ;

and TH is the Hawking temperature

TH ¼ �0ðrþÞ
4�ðr2þ þ a2Þ :

The function yðrÞmust be regular at the horizon and spatial
infinity and
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yðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

r� r�

X1
k¼0

ak

�
r� rþ
r� r�

�
k
:

The coefficients ak satisfy the three-term recurrence
relation:


nanþ1þ�nanþ�nan�1¼0; n�0; �0¼0; (17)

where 
n, �n, �n can be found in an analytic form. We do
not write these coefficients here because they have quite a

cumbersome form. Notice that the factor
ffiffiffiffiffiffiffiffiffiffi
r2þa2

p
r�r�

removes

the singularities r ¼ �ia of yðrÞ. Except for this factor, we
would have had a five-terms recurrence relation due to the
additional singular points.

By comparing the ratio of the series coefficients

anþ1

an
¼ �n


n


n�1

�n�1 � 
n�2�n�1

�n�2�
n�3�n�2=...

� �n


n

;

anþ1

an
¼ � �nþ1

�nþ1 � 
nþ1�nþ2

�nþ2�
nþ2�nþ3=...

;
(18)

we obtain an equation with a convergent infinite continued
fraction on its right side:

�n � 
n�1�n

�n�1 � 
n�2�n�1

�n�2�
n�3�n�2=...

¼ 
n�nþ1

�nþ1 � 
nþ1�nþ2

�nþ2�
nþ2�nþ3=...

;

(19)

which can be solved numerically by minimizing the abso-
lute value of the difference between its left and right sides.
Equation (19) has an infinite number of roots, but the most
stable root depends on n. Generally, the larger number n
corresponds to the larger imaginary part of the root! [23].

Note that the case under consideration allows one to use
the Nollert procedure [24] in order to improve convergence
of the infinite continued fraction, which is useful for
searching roots with a very large imaginary part.

For an additional check of the accurate numerical results
obtained by the convergent Frobenius method, we shall use
also the WKB formula of the 6th order beyond the eikonal
approximation [25,26]. The formula has the following
form:

iV0ffiffiffiffiffiffiffiffiffi
2V 00

0

q �Xi¼6

i¼2

�i ¼ nþ 1

2
; n ¼ 0; 1; 2 . . . ; (20)

and the correction terms �i were obtained in [25,26] and
depend on higher derivatives of V at its maximum with
respect to the tortoise coordinate r?, and n labels the over-
tones. The WKB approach was developed by Schutz and
Will [25] and extended to the 3rd [25] and 6th [26] orders.
It can be effectively used not only for finding low-lying
quasinormal modes (see, for instance, [27,28] and referen-
ces therein), but also for calculations of the transmission/
reflection coefficients in various problems [29,30].

B. Reflection coefficients

For calculations of the emission rates of particles due to
Hawking radiation, one needs first to solve the problem of
classical scattering in order to obtain the gray-body factors.
This implies the posing of classical scattering boundary
conditions. At the event horizon, this again means impos-
ing the boundary condition which corresponds to a purely
ingoing wave, while, at spatial infinity (r ! 1), we have a
different condition from the one used for the quasinormal
modes,

RðrÞ ’ Zin expð�i�r?Þ þ Zout expði�r?Þ;
where Zin and Zout are integration constants which corre-
spond to the ingoing and outgoing waves, respectively.
Thus, we would like to know which portion of particles
will be able to pass through the barrier of the effective
potential.
Introducing the new function

PðrÞ ¼ RðrÞ
�
r� rþ
r� r�

�
i ~!=4�TH

and choosing the integration constant as PðrþÞ ¼ 1, we
expand Eq. (13) near the event horizon and find P0ðrþÞ,
which completely fixes the initial conditions for the nu-
merical integration. Then, we integrate Eq. (13) numeri-
cally from the event horizon rþ to some distant point
rf � rþ and find a fit for the numerical solution far from

the black hole in the following form:

PðrÞ ¼ ZinPinðrÞ þ ZoutPoutðrÞ; (21)

where the asymptotic expansions for the corresponding
functions are found by expanding (13) at large r as

PinðrÞ ¼ e�i�rr�i	ð1þ Pð1Þ
in r

�1 þ Pð2Þ
in r

�2 þ . . .Þ;
PoutðrÞ ¼ ei�rri	ð1þ Pð1Þ

outr
�1 þ Pð2Þ

outr
�2 þ . . .Þ:

The fitting procedure allows us to find the coefficients Zin

and Zout. In order to check the accuracy of the calculated
coefficients, one should increase the internal precision of
the numerical integration procedure, the value of rf, and

the number of terms in the series expansion for PinðrÞ
and PoutðrÞ, making sure that the values of Zin and Zout

do not change within desired precision.
If the coefficients Zin and Zout are calculated, one can

find the absorbtion probability

jAl;mj2 ¼ 1� jZout=Zinj2: (22)

This will be used later for calculations of the emission rates
for energy momentum and charge of the black hole. This
approach was also used for analysis of Hawking radiation
of higher dimensional, simply rotating black holes [31] and
of Gauss-Bonnet black holes [32], and it showed an ex-
cellent agreement with the analytical approach.
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IV. QUASINORMAL MODES

First, let us briefly review previous works on quasinor-
mal modes of Kerr-Newman black holes. Apparently, the
first work on QNMs of Kerr-Newman black holes was by
one of us [33], where gravitational perturbations with a
frozen Maxwell field were considered. More accurate nu-
merical results for gravitational perturbations were pre-
sented in [34]. Quasinormal modes of the Dirac field
were considered in [35]. The case of charged scalar and
Dirac modes was analyzed in the background of Kerr-
Newman black holes allowing for a positive cosmological
constant [13]. All the above papers observed no unstable
modes in the quasinormal spectrum (except the superra-
diant ones), although unstable modes of a charged scalar
field were found for an asymptotically anti-de Sitter
background [36].

Before we examin the dependence of QNMs on various
parameters of the system, we should first discuss the
stability of the system. The effective potential Eq. (14)
contains a term proportional to �2 � eBm which works as
an effective mass term, and, when �2 < eBm, this term is
negative. It is well known that a massive scalar field with
negative �2 is unstable even for tiny negative values of the
square of mass [37]. Thus, the instability is expected when
formally considering exact solutions of the wave Eqs. (13),
but certainly not for a real physical situation. The reason is
that the instability due to the negative square of mass
comes from infinite negative fall-off of the effective po-
tential for scalar field at spatial infinity. In our case, how-
ever, ‘‘infinity’’ is located at r � rþðeBÞ�1, and further
from this distance the wave equation is not valid because of
the approximation (10) which has been used for the sepa-
ration of variables. In Fig. 1, one can see that the effective

potential is positive definite in the region of its validity and
is negative only for values of r which are seemingly larger
than ðeBÞ�1.
There are reasons to expect that the true effective po-

tential for the black hole immersed in an asymptotically
uniform magnetic field will inevitably lead to instability
due to the infinite energy of the magnetic field. Analysis of
particle motion around Ernst-Schwarzschild and Ernst-
Kerr black holes shows that the effective potential for
such particles diverges at infinity. This means that the
magnetic field which fills in all the Universe will create
an effective confining box. Thus, at infinity it will be
appropriate to use Dirichlet boundary conditions. A rotat-
ing black hole in such a confining box will inevitably be
unstable through the mechanism of superradiance. In a real
world the magnetic field is certainly assumed to vanish at
infinity, so that no confining box will appear. When using
approximation (10), we ‘‘cut’’ the effect of the confining
box at infinity in a natural way.
In nature, infinity means a region far from the black hole

r � rþ which can be approximately treated as asymptoti-
cally flat. In practice, one should match the considered
solution with asymptotically homogeneous magnetic field
at ‘‘infinity’’ r � rþðeBÞ�1 with some asymptotically flat
solution. Fortunately, as was shown in [38], the major
scattering properties of fields, including the low-lying
quasinormal modes, depend on the behavior of the effec-
tive potential only in some region near the black hole (if the
black hole is not an anti-de Sitter one), while the form of
the effective potential far from the black hole has no impact
on the results. This can easily be explained because the
process of scattering occurs mainly near the maximum of
the potential barrier.
When computing QNMs with the help of the Frobenius

method, we do not take into account this peculiarity of
infinity and treat infinity as a mathematical one. Thus, in
addition to a number of damped stable modes, we must find
some ‘‘unstable’’ modes by the Frobenius method. Indeed,
we find and tabulate them in Table I, where one can also
find estimations of QNMs derived using the WKB method.
Unlike the Frobenius method, the WKB formula [26]
implies that one has a positive definite decaying potential
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V r 2

FIG. 1 (color online). The effective potentials for the charged
scalar field (l ¼ m ¼ 2) in the Schwarzschild background
(rþ ¼ 1) with the magnetic field eB ¼ 0:04 (top [blue] curve),
eB ¼ 0:1 (middle [green] curve), and eB ¼ 0:25 (bottom [red]
curve). One can see that the potential is negative only deeply in
the region r � 1=

ffiffiffiffiffiffi
eB

p
, which is beyond the region of validity

of the approximation equation (10).

TABLE I. QNMs of the massless scalar field in the back-
ground of a nonrotating uncharged black hole, eB ¼ 0:05. The
Frobenius method gives the unstable mode, which does not
appear when we use the WKB method, supposing an asymptoti-
cally flat background.

Mode Unstable Stable WKB Fundamental

l ¼ m ¼ 1 0:2236i 0:5747� 0:2020i 0:5747� 0:2022i
l ¼ m ¼ 2 0:3162i 0:9516� 0:1988i 0:9515� 0:1989i
l ¼ m ¼ 3 0:3873i 1:3331� 0:1973i 1:3331� 0:1973i
l ¼ m ¼ 4 0:4472i 1:7162� 0:1963i 1:7162� 0:1963i
l ¼ m ¼ 5 0:5000i 2:0999� 0:1956i 2:0999� 0:1956i
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at infinity. Therefore, the WKB formula mainly approxi-
mates the behavior near the maximum of the potential and
does not reproduce those unstable modes. That is physi-
cally adequate as the growing modes appear within
Frobenius approach only due to improper ‘‘extension’’ of
the wave Eq. (13) outside the region of its validity.

Finally, another instability occurs due to the so-called
superradiance: The massive field has a local minimum far
from the black hole which works as an effective potential
wall, so that the wave amplified due to extraction of rota-
tional energy of the black hole (superradiance) can be
reflected back from the distant wall. Repetition of this
process leads to unbounded growth of the perturbation.
Superradiant instability is shown to be always negligibly
small [39], so that the evaporation time of miniature black
holes is much shorter than the characteristic time of the
instability growth. For large, astrophysical black holes,
superradiant instability of massive fields means that the
quantum field will go over to the higher nonsuperradiant
state. In addition, unstable modes are not in the quasinor-
mal sector of the black hole spectrum. Therefore, we do not
need to give a detailed analysis of superradiant modes here.
Moreover, such an analysis would be technically inaccu-
rate within our approach because the effective potential is
known only in some proximity of the black hole and is not
exactly known far from the black hole where the local
minimum is localized.

Quasinormal modes of the Kerr-Newman black hole
immersed in a magnetic field for massive charged scalar
field will be determined by a number of parameters, seven
altogether: the black hole parameters Q, M, and a, the
magnetic field B, the scalar field parameters � and e, and
its quantum numbers m and l. Therefore, complete inves-
tigation of the quasinormal modes’ correlation on these
parameters would include an enormous amount of numeri-
cal data. We shall show here only the most representative
plots for dependence of QNMs on various parameters. We
present all our quantities in units of the black hole horizon.

In Figs. 2–5, one can see for the Q ¼ 0 case that the
m ¼ 0 modes and the modes with nonvanishing azimuthal
number behave quite differently. Actually, modes with
m ¼ 0 (Figs. 2 and 3) have decreasing damping rate as

the angular momentum per unit mass a increases. In the
regime of relatively small values of eB, the damping rate
increases roughly linearly with eB. The real oscillation
frequency Reð!Þ decreases linearly with eB and also de-
creases for growing a. We can also see that eB coupling has
greater influence on Reð!Þ than on Imð!Þ, which remains
almost unchanged within the region of small eB.
For modes with m> 0, both Reð!Þ and Imð!Þ linearly

decrease with eB (Fig. 4), with one peculiarity: for mod-
erate negative values of eB, the Reð!Þ is not monotonically
decreasing with a for all eB anymore. In a large region of
both positive and negative values of eB, the Reð!Þ mono-
tonically decreases with a up to some minimal value and
then increases. This explains the intersection of curves in
Fig. 4. For negativem, we did not observe such a minimum
(Fig. 5), and the behavior is quite similar to them ¼ 0 case.
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FIG. 2 (color online). Real (left panel, graphs from top to
bottom) and imaginary (right panel, graphs from bottom to
top) parts of the fundamental (n ¼ 0) QNM as a function of
eB for l ¼ m ¼ 0, Q ¼ 0, a ¼ 0:2 (blue online), a ¼ 0:4
(green), a ¼ 0:6 (orange), a ¼ 0:8 (red), a ¼ 0:99 (magenta).
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FIG. 3 (color online). Real (left panel, graphs from top to
bottom) and imaginary (right panel, graphs from bottom to
top) parts of the fundamental (n ¼ 0) QNM as a function of
eB for l ¼ 1, m ¼ 0, Q ¼ 0, a ¼ 0:2 (blue online), a ¼ 0:4
(green), a ¼ 0:6 (orange), a ¼ 0:8 (red), a ¼ 0:99 (magenta).
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FIG. 4 (color online). Real (left panel, graphs from top to
bottom) and imaginary (right panel, graphs from bottom to
top) parts of the fundamental (n ¼ 0) QNM as a function of
eB for l ¼ 1, m ¼ 1, Q ¼ 0, a ¼ 0:2 (blue online), a ¼ 0:4
(green), a ¼ 0:6 (orange), a ¼ 0:8 (red), a ¼ 0:99 (magenta).
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FIG. 5 (color online). Real (left panel, graphs from top to
bottom) and imaginary (right panel, graphs from bottom to
top) parts of the fundamental (n ¼ 0) QNM as a function of
eB for l ¼ 1, m ¼ �1, Q ¼ 0, a ¼ 0:2 (blue online), a ¼ 0:4
(green), a ¼ 0:6 (orange), a ¼ 0:8 (red), a ¼ 0:99 (magenta).
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In Fig. 6, one can see that Reð!Þ of the fundamental
mode (l ¼ m ¼ 0) is monotonically decreasing with Q for
eB < 0 and monotonically increasing for eB > 0.
For eB < 0, Imð!Þ monotonically grows with Q, while
for eB > 0, Imð!Þ as a function of charge, Q decreases up
to a minimum at some moderate value ofQ, and then starts
growing. As in the limit m ¼ 0 and Q ¼ 2aMB Eqs. (12)
and (13) do not depend on the field charge e, the upper and
lower curves in Fig. 6 coincide for Q ¼ 2aMB. In Fig. 6,
the quasinormal behavior for l ¼ 1, m ¼ 0 is similar to
Fig. 7, where modes with positive and negative e also
coincide in the limit Q ¼ 2aMB. Modes with l ¼ m ¼ 1
have also monotonically decreasing (increasing) Reð!Þ as
a function of the charge Q for eB < 0 (eB > 0), while
Imð!Þ is monotonically increasing for both positive and
negative eB (see Fig. 7). The same monotonic growth of
Imð!Þ happens for l ¼ 1,m ¼ �1mode, so the Reð!Þ has
an opposite behavior: It grows for eB < 0 and decreases
for eB > 0.

Finally, let us discuss the dependence of quasinormal
modes on the charge of the field e. In Fig. 8, one can see
l ¼ 0; 1, m ¼ 0 modes and l ¼ 1, m ¼ �1 modes with a
charge Q which is equal to the ‘‘extremal’’ value 2aMB.
Modes withm ¼ 0 naturally form an almost horizontal line
because e enters into the wave equation in combination
with m or Q� 2aMB. Thus, exactly in the limit
Q ¼ 2aMB, we have a single mode which is independent
of e. For l ¼ 1, m ¼ 1, Reð!Þ decreases as a function of e,
so this decrease has some small local peaks at larger
negative values e. In a similar way, l ¼ 1, m ¼ �1 modes
have both a real and an imaginary part of ! which almost
monotonically increase up to small peaks for moderate
values of jej. For sufficiently small values of jej, the
dependence of ! on e is strictly monotonic.
Summarizing, we can say that the Zeeman effect and the

Faraday induction influence the quasinormal spectrum in a
rather complicated way, where one cannot easily distin-
guish these two effects. This happens because the magnetic
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FIG. 6 (color online). Real and imaginary parts of the fundamental (n ¼ 0) QNM as a function of Q for Q ¼ 0, 2aMB=3, aMB,
2aMB, B ¼ 0:2, a ¼ 0:6, � ¼ 0, e ¼ þ0:2: l ¼ 0 (right panel bottom [red]), l ¼ 1 (left panel top [magenta]); and e ¼ �0:2: l ¼ 0
(left panel bottom [blue]), l ¼ 1 (right panel top [green]), m ¼ 0.
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FIG. 7 (color online). Real (left panel) and imaginary (right panel) parts of the fundamental (n ¼ 0) QNM as a function of Q for
Q ¼ 0, 2aMB=3, aMB, 2aMB, B ¼ 0:2, a ¼ 0:6, and � ¼ 0, from top to bottom: l ¼ m ¼ 1, e ¼ þ0:2 (red online) and e ¼ �0:2
(blue); l ¼ �m ¼ 1, e ¼ �0:2 (green) and e ¼ þ0:2 (magenta).
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field acts in a different way on modes with different
azimuthal numbers m: m ¼ 0 modes are usually only
slightly affected by the magnetic field, while m � 0 are
strongly influenced due to the extra coupling term Bm.
Also, the quasinormal behavior is different for negative
and positive charge of the field e. One common feature of
quasinormal modes is that the larger the magnetic field B
is, the longer the QNMs live, if m 	 0, while for m> 0,
they live less long. A similar longer life of the quasinormal
modes (yet for all m and not only for m 	 0) has been
observed for the Ernst solution, i.e. for black holes im-
mersed in a strong magnetic field that deforms the geome-
try [14]. However, in [14] a neutral scalar field was
considered, so that the mechanism that influenced the
quasinormal spectrum was the induced deformation of
the space-time geometry due to magnetic field and not to
the Zeeman shift and the Faraday induction. For the Ernst
black hole, a superradiant instability can also be consid-
erably enhanced [15] for huge values of the magnetic field
strength, which seems to be very difficult to achieve.
Quasinormal modes of charged scalar fields for nonrotat-
ing black holes have also been considered in a number of
papers [11–13].

V. SCATTERING AND HAWKING RADIATION

A classical black hole in equilibrium does not emit
anything. Nevertheless, when considering quantized fields
around the black hole, the Hawking radiation appears: A
black hole can create pairs of particles from the vacuum on
the edge of its horizon. Particles with negative energy go
beyond the horizon, while particles with positive energy
partially leave the black hole. When analyzing Hawking
radiation of black holes, we shall assume that the black
hole is in thermal equilibrium with its surroundings in the
following sense: The black hole temperature does not
change between the emission of two consequent particles.
This implies the canonical ensemble as a model for the
system.

Not all positive energy particles can leave the back hole:
Part of them is reflected from the potential barrier sur-
rounding the black hole. Thus, the energy emission rate

depends on the grey-body factors which give the fraction of
particles penetrating the barrier.
The emission rates for the energy, charge and angular

momentum are proportional to the grey-body factors. The
energy emission rate is

�dM

dt
¼X1

l¼0

Xl
m¼�l

Z
jAl;mj2 !

expð ~!=THÞ�1

d!

2�
; (23)

the charge emission rate is

�dQ

dt
¼X1

l¼0

Xl
m¼�l

Z
jAl;mj2 e

expð ~!=THÞ�1

d!

2�
; (24)

and the angular momentum emission rate has the form

�dJ

dt
¼X1

l¼0

Xl
m¼�l

Z
jAl;mj2 m

expð ~!=THÞ�1

d!

2�
: (25)

Here, we perform the summation over all the possible
values of the quantum numbers l and m. The grey-body
factors are shown in Fig. 9 as functions of!. There one can
see that, for negative m, grey-body factors are larger for
negatively charged particles than for positively ones,
while, for m � 0, on the contrary, positively charged par-
ticles have larger grey-body factors than negatively
charged ones. This is indirect influence of the Zeeman
term eBm, whose contribution depends on the sign of m
and e. At first glance, negatively (relatively, the black hole
charge) charged particles which are emitted radially should
have smaller transmission coefficient than positively
charged ones: Electromagnetic attraction of opposite
charges diminishes the transmission of negative particles.
For particles which are radiated in all possible direction,
this is certainly not so strict, and the coupling with the
azimuthal number m becomes important.
Let us first discuss Hawking radiation when the mag-

netic field is absent. In Figs. 10–12, one can see the
emission rates for mass, angular momentum, and charge
per unit frequency per unit time, and, in the boxes, the
results of integration over frequency !, that is, the total
emission rates. When B ¼ 0, the energy, angular momen-
tum and charge emission rates of positively charged parti-
cles are larger than those of negatively charged ones for all
values of !, and, consequently, the total emission rates for
positive particles are larger as well. When increasing the
black hole charge Q, the gap between the positive and
negative particles emission rates increases. Electrostatic
repulsion of positive particles by the black hole (being
proportional to the charge Q) enhances the emission of
more positive particles. The total energy emission rate
decreases as Q is growing, the same being true for the
momentum emission rate. The total emission rates include
summation of both positive and negative particles, so that
the most interesting correlation occurs for the charge emis-
sion rate: When Q grows, the charge emission rate, unlike
the energy and momentum rates, increases. In general in
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FIG. 8 (color online). Real and imaginary parts of the funda-
mental (n ¼ 0) QNM as a function of e for � ¼ 0:1, a ¼ 0:25
Q ¼ 0:9, B ¼ 1440=749 � 1:92, l ¼ m ¼ 0 (blue, bottom hori-
zontal) l ¼ 1, m ¼ 0 (red, top horizontal), l ¼ 1, m ¼ 1 (cyan,
top), l ¼ 1, m ¼ �1 (green).
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FIG. 10 (color online). Energy emission rate of the Kerr-Newman black hole (left panels: a ¼ 0:5, Q ¼ 0:1, right panels: a ¼ 0:5,
Q ¼ 0:5) without the magnetic field (top panels) and with the magnetic field B ¼ 2=3 (bottom panels) due to massless charged
particles (e ¼ 3=20). The top (red) and bottom (blue) lines correspond, respectively, to the same and the opposite signs of the charges
of the black hole and the emitted particles.
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FIG. 9 (color online). Grey-body factor of the Kerr-Newman black hole (left panel: a ¼ 0:5, Q ¼ 0:1; right panel: a ¼ 0:5,
Q ¼ 0:5) in the magnetic field B ¼ 2=3 due to massless charged particles (e ¼ 3=20, l ¼ 1). From left to right: m ¼ �1 negative
charge particles, m ¼ �1 positive charge particles, m ¼ 0 positive charge particles, m ¼ 0 negative charge particles, m ¼ 1 positive
charge particles, m ¼ 1 negative charge particles. For the extremal black hole m ¼ 0, grey-body factors for the particles and
antiparticles are the same (black line).
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geometrical units, the black hole loses its mass more
quickly than its charge, reaching thereby the extremal
Kerr-Newman state.

When one turns on the magnetic field, the picture of
Hawking radiation changes drastically. First, at relatively
small values of Q, the energy and momentum emission
rates of positive particles are no longer larger than those
of negative ones for all !. At some values of !, the
energy and momentum emission rates due to positive
particles are smaller than those of negative ones (see
Figs. 10–12). For large values of charge Q, the gap
between emission rates of positive and negative particles
increases, so that the intensity of emission due to positive
particles becomes dominant again. What is more impor-
tant, the presence of the magnetic field considerably in-
creases the energy and momentum emission rates and, at
the same time, considerably decreases the charge emis-
sion rate, up to changing the sign of the charge emission
rate, which means re-charging of the black hole. This
means that, in the presence of magnetic fields, the black

hole evaporates much quicker and reaches the extremal
state in a much shorter period of time. This is quite
evident if one notices that the Faraday induction produces
an additional (induced) charge �2aMB on the surface of
the black hole. This charge is opposite to the black hole
charge Q and attracts positively charged particles and
repulses negatively charged ones. At sufficiently large
values of the magnetic field, the absorbtion of positive
particles will dominate over the negative ones, which
leads to increasing instead of decreasing the black hole
charge during the evaporation process. This process con-
siderably decreases the time needed by a black hole to
reach its extremal state. This may be a relatively small
effect for astrophysical black holes but is not negligible
for miniature black holes.
Finally, let us recall that, if the induced electric field is as

strong as �2=e, the electrodynamic Schwinger mechanism
of pair creation will occur. Unlike the Hawking radiation
which occurs on the edge of the black hole, the Schwinger
process will be contributing in the particle production
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FIG. 11 (color online). Angular momentum emission rate of the Kerr-Newman black hole (left panels: a ¼ 0:5, Q ¼ 0:1; right
panels: a ¼ 0:5,Q ¼ 0:5) without the magnetic field (top panels) and with the magnetic field B ¼ 2=3 (bottom panels) due to massless
charged particles (e ¼ 3=20). The top (red) and bottom (blue) lines correspond, respectively, to the same and the opposite signs of the
charges of the black hole and the emitted particles.
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outside the black hole horizon. The Schwinger production
will make positive particles move toward the black hole
horizon and make negative particles move outwards.
Although we have not done any estimates for this process,
qualitatively the Schwinger production should probably
enhance the recharging of the black hole and, in this
way, make the evaporation even quicker.

VI. CONCLUSIONS

We have considered the quasinormal modes, classical
scattering (through calculations of reflection/transition
coefficients), and Hawking radiation of Kerr-Newman
black holes immersed in a homogeneous magnetic field.
As the simplest model, the charged massive scalar field is
considered. The equation of motion allows for separation
of variables in quite a large region surrounding the black
hole, but not to spatial asymptotic infinity. We have
shown that quasinormal modes and emission rates are
influenced by two main effects: the Faraday induction

due to rotation in the magnetic field and the Zeeman
effect, which is the energy shift of the particle in the
magnetic field. The most interesting feature of the dy-
namics of black holes is in the considerably increased
rate of intensity of the Hawking evaporation when one
turns on the magnetic field.
This work can be extended in a number of ways. First,

one could consider D-dimensional (preferably simply
rotating) Myers-Perry black holes immersed in a mag-
netic field which is localized on the brane. This could
provide more realistic estimates for emission rates and
quasinormal frequencies for miniature black holes. In
addition, for D> 5 rotating black holes with all different
angular momenta, the rotation parameter a is not limited
anymore. This suggests interesting phenomena for the
regime of high rotation because the Faraday induction
2aBM is also not limited. Then, one could calculate the
contribution of the Schwinger pair creations in the emis-
sion process at very large magnetic field. In addition, a
good approach to a more realistic situation would be to
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FIG. 12 (color online). Charge emission rate of the Kerr-Newman black hole (left panels: a ¼ 0:5, Q ¼ 0:1; right panels: a ¼ 0:5,
Q ¼ 0:5) without the magnetic field (top panels) and with the magnetic field B ¼ 2=3 (bottom panels) due to massless charged
particles (e ¼ 3=20).
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consider the charged massive Dirac field instead of the

scalar one. The interaction of spin of a particle with

the magnetic field should lead to new phenomena for

the Hawking radiation. An analysis of all these questions

is one of our nearest future plans [40].
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