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We analyze the generic structure of Einstein tensor projected onto a 2D spacelike surface S defined by a

unit timelike and spacelike vectors u and n, respectively, which describe an accelerated observer (see

text). Assuming that flow along u defines an approximate Killing vector �, we then show that near the

corresponding Rindler horizon, the flux ja ¼ Ga
b�

b along the ingoing null geodesics k, i.e., j � k, has a
natural thermodynamic interpretation. Moreover, change in the cross-sectional area of the k congruence

yields the required change in area of S under virtual displacements normal to it. The main aim of this

paper is to clearly demonstrate how, and why, the content of Einstein equations under such horizon

deformations, originally pointed out by Padmanabhan, is essentially different from the result of Jacobson,

who employed the so-called Clausius relation in an attempt to derive Einstein equations from such a

Clausius relation. More specifically, we show how a very specific geometric term (reminiscent of

Hawking’s quasilocal expression for energy of spheres) corresponding to change in gravitational energy

arises inevitably in the first law: dEG=d� / R
H d2x

ffiffiffiffi
�

p ð2ÞR (see text)—the contribution of this purely

geometric term would be missed in attempts to obtain area (and hence entropy) change by integrating the

Raychaudhuri equation.
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I. INTRODUCTION

The study of thermodynamic aspects of black holes over
the past decades has given several insights into the nature
of gravity as described by Einstein’s general relativity, and
is expected to be a crucial link in constructing a quantum
theory of gravity (see [1] for a recent review and referen-
ces). In a paper more than a decade back [2], Jacobson
speculated that it might be possible to invert the logic of the
‘‘physical process’’ version of the laws of black hole
mechanics, developed by Wald, and by applying it to local
Rindler horizons, one can derive Einstein field equations
from Clausius relation, TdS ¼ dEM, where EM is related to
matter flux (and vanishes when Tab ¼ 0). The essential
new idea introduced by Jacobson was that of local Rindler
horizons in a small patch of spacetime which can be
approximated as flat once one has set the acceleration
length scale appropriately. (See Appendix A 1 for an
elaboration on this construction.) Einstein equations would
then emerge as consistency conditions on the background.

In a later paper [3], Padmanabhan pointed out that, if one
actually looks at the structure of Einstein tensor near a
spherically symmetric horizon, it has the form TdS ¼
dEG þ PdV, where EG is associated with horizon energy
(and unlike EM, EG � 0 when Tab ¼ 0) and P with matter
flux (these are defined below). In fact, the above relation
has been shown to hold for a wide class of horizons,
including arbitrary static horizons in Lanczos-Lovelock
theory as well. This result looks different from what
Jacobson had started with to deduce the null-null part of
Einstein equations—specifically, the energy term EG has

nothing to dowith EM, which is more like the PdV term but
with different interpretation in terms of matter flux. So,
while the Clausius relation seems to yield a null-null
component of Einstein equations, the Einstein tensor itself
has a very different structure. It is important to relate these
results and understand where the difference comes from,
which we intend to do in this paper.
Before proceeding, wewould like to clarify an important

point so as to put the analysis presented here in proper
perspective. To begin with, we must mention that our main
emphasis here is not to analyze pros and cons of one
method over the other, but rather to clarify why they differ
and to characterize the difference(s) from a physical point
of view. It is indeed true that a priori there is a difference
between the approaches of Jacobson and Padmanabhan;
while Jacobson’s analysis concerns deriving Einstein equa-
tions from Clausius relation, Padmanabhan’s result dem-
onstrates that Einstein equations on horizon are the same as
the first law of thermodynamics. However, once the physi-
cal content of Einstein equations has been claimed to be
equivalent to a particular thermodynamic relation, one
would have expected a mapping between the two results,
unless there are subtle differences at a fundamental level.
Indeed, the TdS term in the thermodynamic relation is
fairly unambiguous, so that the remaining terms in the
equations must correspond in some manner. If they do
not, then it implies that there is a difference at a conceptual
level, which is what we shall show in this paper. We shall
show that the difference arises in the particular manner in
which matter fluxes across the horizon are treated.
Specifically, Padmanabhan’s result arises due to deforma-
tions of the future horizon normal to itself, generated by
ingoing null geodesic congruences, and this yields the*dawood@iucaa.ernet.in
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force term PdV in the final result. We discuss in some
detail the resulting difference in physical interpretations.
Furthermore, we show that the additional term dEG is
essentially the change in quasilocal energy associated
with the horizon 2-surface, and is related to horizon topol-

ogy; more precisely, we show that dEG=d� /R
d2x

ffiffiffiffi
�

p ð2ÞR. To summarize, we shall do the following in

this paper:
(1) Clarify the role of horizon deformations to be con-

sidered in a Rindler patch when matter crosses the
future Rindler horizon of the observer.

(2) Clarify the differences between the ‘‘heat flux’’ term
of Jacobson, and the ‘‘PdV’’ term of Padmanabhan,
and highlight the physical implications.

(3) Indicate clearly that the change in area of a horizon
cross section is determined by the expansion (and
not its first derivative) of the ingoing null congru-
ence normalized to have unit Killing energy.

(4) Give an explicit expression for the expansion � for
the congruence mentioned in the previous point, in
terms of combination of curvature tensor compo-
nents [see Eq. (5) below], and compare with the
corresponding combination occurring in the
Raychaudhuri equation. In particular, the area
change involves not just the Ricci tensor, but also
the Riemann tensor—a point which is of relevance in
the context of deriving field equations from
thermodynamics.

(5) Exhibit explicitly the ‘‘thermodynamic’’ structure of
Einstein tensor and show that there is a term corre-
sponding to quasilocal energy of the horizon, which
must be separately accounted for when considering
energy flow across the horizon.

(6) Show that, when using the Raychaudhuri equation
with our prescribed null congruence, the Oð�Þ term
does not vindicate or necessitate setting the expan-
sion to zero.

We shall address all the above points in the following
sections. To avoid distraction from the main points, we
have relegated most of the mathematical details to appen-
dices. Before proceeding, let us also clarify the restrictions
on the local frame of the accelerated observer that we shall
impose. The most important restriction is that of staticity;
that is, we shall assume that, in the local coordinates near
the observer worldline, one can define an approximate
timelike Killing vector field. Consequently, the near-
horizon geometry is assumed to be static. For static space-
times, we shall use, for the near-horizon metric, the form
ds2 ¼ �N2dt2 þ dz2 þ �ABdy

AdyB, with the Taylor ex-
pansions for N and �AB derived by Medved et al. [4]. As
our discussion will make clear, the above form of metric is
just a good, convenient parametrization—the final results
are of course stated in a manifestly tensorial form. The only
crucial input is staticity, which requires a satisfactory
notion of a timelike Killing vector which is hypersurface

orthogonal, and a spacelike surface whose unit normal
points in the direction of acceleration.

II. THE NULL BASIS NEAR A HORIZON

Let us concentrate on the future horizon H of the right
Rindler wedge, which is generated by outgoing null rays.
The most natural transverse null vector for H is therefore
defined by affinely parametrized [5] ingoing null geode-
sics, k, and can be chosen to be k ¼ N�1ðu� nÞ. Here,
N ¼ ffiffiffiffiffiffiffiffiffiffi��2

p
, u ¼ �=N, and existence of a local timelike

Killing field � (which generates local Lorentz boosts) is
assumed. Also, n is the unit normal in the direction of
acceleration of u. The existence of � is also assumed in the
work of Jacobson [2], and without this no further progress
can be made.
The choice of normalization is such that k � � ¼ �1,

implying that k has unit Killing energy. It must be also
noted that the corresponding outgoing null rays are given
by l ¼ N�1ðuþ nÞ; we note that N2l ! � on H . More
precisely, N2l become tangent to horizon generators (the
vector l itself does not, since l � � ¼ �1 by construction).
The standard Rindler transformations in the local inertial
frame has an additional parameter � which characterizes
orbits of Lorentz boosts and generates constant accelera-
tion trajectories. In inertial coordinates ðT; X; Y; ZÞ, we
have k ¼ ��1ðX þ TÞ�1ð@T � @XÞ ! ð2�XÞ�1ð@T � @XÞ
on H , i.e., T ¼ X. In fact, we could as well have used l
below for discussion without any change in the final result,
but this would be a weird thing to do since these geodesics
behave badly near the future horizon. Specifically, l ¼
��1ðX � TÞ�1ð@T þ @XÞ, so the components in the locally
inertial coordinates blow up at X ¼ T.
We shall now demonstrate that the expansion of k (or l)

governs the changes in cross-sectional area of the horizon.
To exhibit the result for both k and l simultaneously, we
write k� ¼ N�1ðu� �nÞ, where � ¼ þ1 corresponds to k
and � ¼ �1 to l. First, note that, in terms of the covariant

derivative ð3ÞD compatible with the t ¼ constant hypersur-
face, we have

ð3ÞD � n ¼ ðgab þ uaubÞranb ¼ r � n� n � a: (1)

Now evaluate

r � k� ¼ ��N�1r � nþ Nk� � rN�1

¼ ��
1

N
ð3ÞD � n� �

a � n
N

� k� � rN

N

¼ ��
1

N
ð3ÞD � n; (2)

where we have noted that a ¼ rN=N, so that the last two
terms in the second equality cancel. Now, since the t ¼
constant metric is dz2 þ �ABdy

AdyB, the n ¼ @z congru-
ence is an affinely parametrized geodesic congruence, and

therefore we can use the standard interpretation of ð3ÞD � n
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in terms of fractional rate of change in ‘‘volume’’ of z ¼
constant surfaces, which corresponds to the 2D manifold
described by the metric �AB. Hence, we finally get

r � k� ¼ ��
1

N
@z ln

ffiffiffiffi
�

p ¼ ��
d

d�
ln

ffiffiffiffi
�

p
(3)

which is the desired result. (We have used Ndz ¼ d� in
arriving at the second equality, see Appendix A 2 for
details.) This straightforward evaluation should leave no
doubt as to how the change in cross-sectional area of the
horizon is actually described by considering ingoing (or
outgoing) null geodesic congruences, constructed in the
manner we have described. In fact, the choice of ingoing
congruence k is also strengthened by some old results due
to Dray and ’t Hooft [6], which clearly shows that a
massless particle falling into a Schwarzschild black hole
corresponds to a shift in the ingoing Kruskal coordinate,
the shift being proportional to the particle energy.

III. THE THERMODYNAMIC STRUCTURE
OF EINSTEIN TENSOR

We shall now analyze the near-horizon form of Einstein
tensor, and reveal how its thermodynamic structure
emerges. Before proceeding, however, we wish to clarify
an important point concerning the variations we shall be
considering. We shall base our discussion on the ingoing
null geodesics k of the previous section, satisfying k �
� ¼ �1. As should be evident from comments in the
previous section, the entire analysis can be repeated in
a straightforward manner using outgoing null geodesics l
satisfying l � � ¼ �1; the only difference is the change in
sign in n at various intermediate steps, while the final
result remains unchanged. The reason for using ingoing
null geodesics k, as mentioned above, is that these have
components which are well behaved at the future horizon
in the locally inertial coordinates; the only crucial thing is
the normalization based on unit Killing energy.

We begin with the following (exact) identity (see
Appendix B for a proof):

Gabg
?ab ¼ 2ðRab�

akb � Rabcdu
anbucndÞ � ð2ÞR

� N2Rabk
akb þ�½K; k�; (4)

where g?ab ¼ �uaub þ nanb is the metric on the surface

orthogonal to the horizon, and �½K; k� ¼ fðkÞ � fðKÞ �
�ðKÞ, with fðKÞ ¼ K2 � K2

�	 [similarly for fðkÞ], and
�ðKÞ ¼ n�n
ðK	

�K	
 � KK�
Þ. Here, K�	 and kAB are

extrinsic curvatures of level surfaces of u embedded in 4D
spacetime, and of n embedded in the resultant 3D space,
respectively. Note that the above expression is true for an
arbitrary spacetime without any geometric constraints im-
posed so far.1

We shall now impose the condition of staticity, that is,
we shall require that the near-horizon geometry, to a suffi-
cient approximation, has a local timelike Killing vector
field. In that case, we can show that (see Appendix C), on
the horizon z ! 0,

Rab�
akb � Rabcdu

anbucnd ¼ �
d

d�
ln

ffiffiffiffi
�

p
: (5)

The above equation gives the derivative of area (rather
than its second derivative) in terms of curvature compo-
nents, and deserves several comments, which we list
below:
(i) It clearly shows that the change in cross-sectional

area (obtained by integrating
ffiffiffiffi
�

p
over transverse

coordinates) of the k (or the l) congruence (normal-
ized so as to have unit Killing energy), on a cross
section of H , depends on a very different combina-
tion of Riemann tensor components than the one
occurring in the Raychaudhuri equation (which
only involves Ricci tensor, Rabk

akb).
(ii) The Raychaudhuri equation gives the second deriva-

tive of area and our analysis above shows that
‘‘integrating’’ it naively to obtain the first derivative
will, in general, be tricky. Indeed, the null-null
component does not appear in the above equation
at all. In Sec. IV, we shall present an analysis à la
Jacobson using the Raychaudhuri equation, which
should clarify further what is going on here.
(This and the previous comment are important par-
ticularly when we consider Jacobson’s argument
and compare it with our result, see Sec. IV.)

(iii) The appearance of Rabcdu
anbucnd also must be

highlighted; one could have simply ignored this
term by demanding it to be small, and calling this
demand a further restriction on the definition of a
local Rindler horizon. This, however, would be ad
hoc, since for the Schwarzschild horizon, it in-
volves @2rð1� 2M=rÞ. Indeed, as is evident from
above, there is actually no need to throw away this
term, since it occurs in just the right combination in
the Einstein tensor so as to give the change in area
correctly.

(iv) Even if we did throw away the Rabcdu
anbucnd term,

we are left with Rab�
akb which has nothing to do

with the null-null component of Ricci (recall that
k � � ¼ �1).

Proceeding to the main analysis, note that if Rabk
akb

(and hence Gabk
akb) is finite on the horizon, then the

corresponding term on the right-hand side of Eq. (4) is
Oðz2Þ. Also, �½K; k� is ignorable because it is Oðz2Þ. This
comes about as follows: K�	 is zero due to staticity. On the

other hand, kAB / @z�AB is OðzÞ since, from the Taylor
expansion of area, �AB ¼ ðz-independent partÞ þOðz2Þ
(see Ref. [4]). Since �½K; k� is quadratic in kAB, it is
Oðz2Þ. So we finally obtain

1In particular, for a flat 3D space in a flat 4D spacetime, one
obtains ð2ÞR ¼ fðkÞ, which is essentially the content of Gauss’s
Theorema Egregium.
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P
ffiffiffiffi
�

p ¼ �

2�

d

d�

�
1

4

ffiffiffiffi
�

p �
� 1

16�
ð2ÞR

ffiffiffiffi
�

p
; (6)

where we have defined P ¼ ð1=2ÞTabg
?ab. The differential

version of the above equation (multiplying it by d�) yields
Padmanabhan’s result:

PdV ¼ TdS� dEG: (7)

Having established the above relation, we can ask how
general it is. It might seem that the result is very specific to
Einstein gravity since in arriving at it, we used Eq. (5) for
change of area, and in Einstein gravity horizon entropy is
proportional to area. We could therefore relate entropy
change to area change and derive the result. However,
when one goes beyond Einstein theory, entropy is no
longer proportional to area but is instead given by Wald
entropy. It is therefore quite a nontrivial fact that exactly
the same result can be proved for a much larger class
of Lagrangians—the so-called Lanczos-Lovelock (LL)
Lagrangians—for which the horizon entropy is given by
a nontrivial function of area. Once again, we find that the
near-horizon structure of field equations for LL actions can
be cast in the form:

PdV ¼ TdSLL � dEðGÞLL (8)

and the resulting expressions for SLL and EðGÞLL turn out to
be [7]

SLL /
Z ffiffiffiffi

�
p

LðD�2Þ
m�1 (9)

ðdEG=d�ÞLL /
Z ffiffiffiffi

�
p

LðD�2Þ
m : (10)

We see that S is precisely the Wald entropy, whereas EG

gives the correct expression for quasilocal energy when
applied to known black hole solutions.2

Before turning to the Raychaudhuri equation, let us
make another relevant comment: It is easy to see,
from our definitions, that Gabg

?ab ¼ �2Gab�
akb þ

N2Gabk
akb. Therefore, provided Gabk

akb is finite on the
horizon, one obtains, in the limit N ! 0, Gab�

akb !
�ð1=2ÞGabg

?ab [which, incidentally, is the so-called
work function, W, defined by Hayward in the context of
spherically symmetric, dynamical horizons [8]; note that
we have not assumed spherical symmetry to obtain Eq. (6)].
On the horizon, we therefore have a natural interpretation
for this term as the force acting on the horizon in the
direction defined by k. Let us also mention its form for
an ideal fluid, described by Tab ¼ 
0vavb þ p0ðgab þ
vavbÞ, where va is the fluid 4-velocity, and we assume
for simplicity that it lies only in the u-n plane. Then, a

trivial calculation shows that Tabu
aub ¼ �2

relð
0 þ p0v
2
relÞ

and Tabn
anb ¼ �2

relðp0 þ 
0v
2
relÞ, where �rel ¼ �u � v.

We then immediately obtain P ¼ ð1=2ÞTabg
?ab ¼ ðp0 �


0Þ=2.
It is also instructive to compare this analysis with the one

given by Jacobson, in which case the most natural starting
point would be the Raychaudhuri equation. We do this in
Sec. IV. We shall show that, for our k (or l) congruence, the
starting assumption of equating TdSwith matter flux gives,
atOð�0Þ, a relation which is inconsistent with the algebraic
identity obtained in this section. However, if one makes
further approximations and ignores certain terms, then we
do recover the null-null part of Einstein equations at Oð�Þ,
although in a manner completely different from
Jacobson’s, since our analysis is not based on the null
generators. Most importantly, we do not require the van-
ishing of expansion of the null congruence at all. Before
proceeding, we must emphasize that, in the next section,
we shall be trying to follow Jacobson’s reasoning in our
setup; the final results and implications must, of course, be
interpreted keeping this in mind. Needless to say, our main
emphasis is towards trying to understand why there are
differences between the work and energy terms in the two
approaches; the answer, as we hope this paper would make
evident, lies in different ways of treating fluxes across the
horizon.

IV. ANALYSIS BASED ON
RAYCHAUDHURI EQUATION

In this section, we turn to the Raychaudhuri equation, in
an attempt to understand better the difference between the
above result and Jacobson’s derivation of the null-null
component of the field equations. To do so, we repeat
Jacobson’s analysis using the k congruence; this should
indicate where the difference lies. Once again, it is worth
emphasizing that we will obtain the same results upon
using the outgoing l congruence of the unit Killing energy.
As we have shown above, the Einstein tensor on the whole
has a much richer structure due to the presence of the
ð2ÞR term, which we would want to explore further.
Unfortunately, the Raychaudhuri equation, as we will
see, has nothing much to say about this term, but our
analysis will shed some light on the role of certain assump-
tions in Jacobson’s derivation, and also the differences
between the work term as well as horizon energy.
Start with the equation defining variation of area in

terms of expansion � of a congruence of ingoing null
geodesics with respect to (w.r.t.) the affine parameter �
along k (see Appendix A 2 for more details). Assuming
that entropy is proportional to area, this gives

THdS ¼ �1
Z

�d�d�; (11)

where  ¼ ð8�cL2
P=ℏÞ=�, and the integration is over the

null 3-surface generated by the cross section of a bundle of

2A general definition for quasilocal energy, such as Hawking’s
definition for Einstein theory, is not available for the LL actions;
in fact, ours can be taken as a natural generalization of
Hawking’s quasilocal energy for LL actions.
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ingoing null geodesics k across an affine distance �. The
horizon is at � ¼ 0. Now expand �:

�ð�Þ ¼ �ð0Þ þ _�ð0Þ�þ 1
2
€�ð0Þ�2 þOð�3Þ (12)

in obvious notation. Now we can use the Raychaudhuri
equation to substitute for the first derivative of � evaluated
at � ¼ 0. That is,

_�ð0Þ ¼ �1
2�

2ð0Þ � ½Rabk
akb��¼0; (13)

where we have ignored shear and rotation for the time
being (which is also an assumption in Jacobson’s work).

Now consider the heat flux through d�d�:

dQ ¼
Z

Tab�
akbd�d� (14)

for which a similar expansion gives

Tab�
akb ¼ ½Tab�

akb��¼0 þ �

�
d

d�
Tab�

akb
�
�¼0

þOð�2Þ:
(15)

Following Jacobson, we now impose the Clausius relation,
TdS ¼ dQ, and equate equal powers of � on both sides.
That is,

�1
Z �

�ð0Þþ _�ð0Þ�þ1

2
€�ð0Þ�2þOð�3Þ

�
d�d�

¼
Z �

½Tab�
akb��¼0þ�

�
d

d�
Tab�

akb
�
�¼0

þOð�2Þ
�
d�d�:

(16)

This gives

Oð�0Þ: �ð0Þ ¼ ½Tab�
akb��¼0 (17)

Oð�1Þ: � 1

2
�2ð0Þ � ½Rabk

akb��¼0 ¼ 

�
d

d�
Tab�

akb
�
�¼0

:

(18)

Using Eq. (17) to replace �2ð0Þ, this becomes

Oð�1Þ: � 1

2
½Tab�

akb�2�¼0 � ½Rabk
akb��¼0

¼ 

�
d

d�
Tab�

akb
�
�¼0

:

The relevant points to note here are
(i) On the horizon, ��ka goes to �a, that is

½��ka��¼0 ¼ �a (see Appendix A 2), which is ob-
viously a Oð�0Þ expression and NOT Oð�Þ. This is a
key difference from Jacobson’s argument, arising
because Jacobson considers fluxes along generators
�ka of the horizon. [In that case, � �� �ka ¼ �a is valid
all across the Killing horizon ( �� being the affine
parameter along the generators �ka). This then neces-
sitates that expansion of the generators vanish at
the bifurcation surface �� ¼ 0 (corresponding to

T ¼ 0 ¼ X), since the matter flux term becomes
Oð ��Þ.] In our opinion, since one would expect to
associate entropy with cross sections of arbitrary null
vectors in an arbitrary curved spacetime, such an
assumption on the expansion is restrictive.

(ii) In our setup, it would actually be incorrect to deduce
that ½Tab�

akb��¼0 is Oð�Þ; as seen from above, this
term is in fact related to �ð0Þ, which in general does
not vanish. In fact, one would expect arbitrary null
congruences to block information of a certain region
of spacetime from a class of observers; for such
congruences, there is actually no need to constrain
the expansion to vanish.

So, whether Einstein equations come out at Oð�Þ de-
pends on ½d�ðTab�

akbÞ��¼0 ¼ ½karaðTab�
akbÞ��¼0. In

general, it is not at all obvious what this will lead to, but
let us consider this term in more detail:

kcrc½Tab�
akb� ¼ �akbkcrcTab|fflffl{zfflffl}

ignore

þ Tab�
akcrck

b|fflfflffl{zfflfflffl}
¼0

þ Tabk
bkcrc�

a; (19)

where we have ignored the derivatives of Tab, which is
justified in the approximation in which we are working
here. For consistency, one must then also ignore the T2

ab

term on the left-hand side of Eq. (18). Now concentrate on
the term involving kcrc�

a, which is to be evaluated at
� ¼ 0 after computing the derivative. This term at � ¼ 0
can be shown to give ��ka. Therefore we obtain

kcrc½Tab�
akb� � ��Tabk

akb: (20)

The last term in ½dðTab�
akbÞ=d���¼0 therefore reproduces

precisely the contribution which would come from calling
(in our case incorrectly) ½Tab�

akb��¼0 as a Oð�Þ term.
Therefore the Oð�1Þ becomes [note that  ¼
ð8�cL2

P=ℏÞ=�]
Oð�1Þ: � ½Rabk

akb��¼0 ¼ �ð8�cL2
P=ℏÞ½Tabk

akb��¼0

thereby giving the null-null component of Einstein equa-
tions yet again, as Jacobson had obtained, but in a com-
pletely different manner. Also, note that the above relation
is applicable all along the future horizon, and not just near
the bifurcation point, insofar as the notion of local, static
Rindler horizon remains well defined.
The discussion above clearly implies that:
(1) In our setup, Einstein equations do NOT necessarily

follow from TdS ¼ dEmatter; this is so since one
could also have included an additional term, involv-
ing curvature tensor, which will only modify the
Oð�0Þ term, which is anyway ignored while evalu-
ating the Oð�1Þ contribution. In fact, as we demon-
strated in the previous section, such a term is present
in Einstein equations, and corresponds to a change
in ‘‘gravitational energy.’’
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(2) The above claims can be explicitly demonstrated by
evaluating Einstein equations near a static horizon,
in which case a very natural energy term is picked
out; the resultant equation, in fact, can be thought of
as TdS� dEhorizon ¼ PdV ¼ �dEmatter. Note that
the Oð�0Þ piece above can be rewritten as
ð�=2�Þdð�A=4Þ ¼ �Tab�

akb�A, which is, of

course, Padmanabhan’s result without the ð2ÞR
term. Of course, since the latter result is algebrai-
cally correct (as we showed in the previous section),
this actually makes the Oð�0Þ contribution (and by
implication, the starting relation) incorrect at a

purely algebraic level—one needs the ð2ÞR contri-
bution for consistency (the minus sign above is due
to k being an ingoing congruence; as an interesting
aside, let us also mention that this fact is one of the
‘‘boundary conditions’’ for dynamical/isolated
horizons imposed by Ashtekar et al.).

In fact, we feel that the ‘‘ð2ÞR’’ term reinforces the
well-known quasilocal character of gravitational
energy; an ultralocal description of energy balance
might therefore be a bit tricky.

(3) Let us also highlight the role of the ingoing con-
gruence k. The other null congruence N2l gener-
ates the horizon, and since we have taken great
pains to construct a local Killing horizon, the ex-
pansion along the generators would vanish every-
where on the horizon so long as our local
constructs make sense; when they do not, we can-
not even talk about local Rindler observers and
local Killing horizons. Instead, the congruence k
captures information infinitesimally away from the
horizon in the direction normal to it [that it is a
natural ‘‘normal’’ is easily seen in inertial coordi-
nates, where the future horizon is T � X ¼ 0
whose normal is clearly along k], and provides a
natural flow to define variations of various quanti-
ties. We hope to have shown that it is this congru-
ence which gives, in a sensible manner, the change
in a cross section of the horizon, as well as the
matter flux across it. Of course, the result can also
be justified by applying to event horizons of a black
hole solution of Einstein field equations. For a sta-
tionary black hole horizon, the only sensible
change in area when matter crosses the horizon is
given by expansion of k, since the expansion of
horizon generators vanish for a Killing horizon.
Moreover, as we have already mentioned before,
it has been shown rigorously by Dray and ’t Hooft
that a massless particle falling into a Schwarzschild
black hole corresponds to a shift in the ingoing
Kruskal coordinate, the shift being proportional to
the particle energy. This further strenghthens our
motivation for using the ingoing congruence for
horizon deformations.

(4) One of our main conclusions, as far as comparison
with Jacobson’s analysis is concerned, is the follow-
ing: The difference between Einstein equations
being identical to the first law of thermodynamics,
as was pointed out by Padmanabhan, differs from
the Clausius relation of Jacobson due to difference
in the manner matter fluxes across the horizon are
defined.Our analysis seems to be closer to the one in
Refs. [8,9].

(5) There are also other significant issues which go
beyond the algebraic ones we have mostly concen-
trated on until now. In using the Clausius relation,
one is trying to derive field equations from a starting
thermodynamic relation. In such a case, one has to
change the starting relation depending on what type
of congruence one chooses. These additional terms
are then interpreted as dissipation terms and are
accounted for by adding suitable entropy production
terms in the Clausius relation. However, our analysis
above shows that, for a suitably defined horizon
(with static near-horizon geometry), the field equa-
tions take the form of the first law of thermodynam-
ics without involving any additional terms, under
prescribed horizon deformations. The only sensible
quantity to concentrate on, while comparing these
two approaches, is the TdS term (which can have no
ambiguity once the entropy density is suitably de-
fined, and which can be verified by applying it to
known cases of black hole horizons); in our case,
this term is derived using the expansion � alone,
rather than its derivative, as is required while using
the Clausius relation. However, as has already been
emphasized several times before, it must be remem-
bered that the difference originates in using different
definitions for matter fluxes (and not due to any
incorrectness in any of the two approaches); the
physical motivations for the choice used here are
mentioned in point (3) above.

Before moving on, we would like to point out that there
have been some recent attempts to derive field equations
for higher derivative gravity theories [10] along the lines of
Jacobson. In these works (except Padmanabhan’s, see be-
low), the starting point is the Clausius relation along with
Wald’s definition of entropy in terms of Noether charge of
diffeomorphism invariance. However, while the definition
of matter flux is similar to Jacobson’s, the Raychaudhuri
equation is never invoked, thereby avoiding any need for
assumptions such as vanishing expansion, etc. present in
original Jacobson work. It would be worth investigating
further how the comments in this note are to be considered
in the context of these recent attempts. (For one thing, the
difference in the definition of matter flux remains.) We
must, however, point out that the situation is far from clear
since these works do not all agree with each other. For
example, Parikh and Sarkar have pointed out issues with
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the Brustein and Hadad paper, whereas Padmanabhan has
highlighted certain conceptual issues regarding interpreta-
tion of both these papers. Specifically, Padmanabhan has
stressed the subtleties in interpreting these results as a
derivation of field equations from thermodynamics; the
result, he argues, is better viewed as an interpretation of
field equations as a thermodynamic relation. More impor-
tantly, Brustein and Hadad derive their result using a differ-
ent form for Noether potential (used to define entropy) than
the other two papers; this calls for a more detailed and
critical look at the analysis therein. Moreover, the fact that
they still derive the same result implies nonuniqueness of
the analysis (which a quick look at these papers will
confirm), whereas in Jacobson’s case, once the assump-
tions are stated, the analysis is unique. Hence, the status of
these results in the light of the original Jacobson calcula-
tion remains unclear; the derivations are not only very
different from Jacobson’s, they are not even similar to
each other. Perhaps the most important point indicating
why these analyses are conceptually different from
Jacobson’s is fðRÞ theory: whereas the above papers derive
the field equations from a Clausius relation, Jacobson and
collaborators needed to add extra terms to the Clausius
relation in their earlier paper [11], to proceed with the
analysis. We hope further work will clarify these issues.

V. IMPLICATIONS

In this brief paragraph, we would like to emphasize the
need for the analysis done in this note. Whether Einstein
equations are just equations of thermodynamics in disguise
is a well-motivated question, and we do agree that the
answer to this might be yes. The important point realized
by Jacobson in [2] while addressing this question, was to
introduce local Rindler frames in an arbitrary curved
spacetime, and use the thermal aspects of corresponding
horizons as probes of the background curvature. However,
one needs to impose certain restrictions to proceed from
there, and to put the result in a physically relevant context.
The necessity of highlighting such restrictions goes hand in
hand with identifying specific geometric quantities with
(variation of) the thermodynamic variables.

In this sense, as we have shown, the expression for
change in entropy of a cross section of a static horizon is
related to very specific components of the Riemann tensor
(and is readily verified for known black hole solutions).
Once we agree on these algebraic identifications, Einstein
equations take the nice form of the first law of thermody-
namics, provided one attributes to a 2-surface an energy
proportional to its intrinsic curvature. Therefore, Einstein
equations resemble the first law of thermodynamics in this
very specific form. Of course, we have also shown that
using the Raychaudhuri equation also yields, at a higher
order (and after justifying ignoring certain terms), the null-
null component of Einstein equations; the crucial point,
however, is that the null-null component of Ricci itself has

no clear meaning in terms of change of entropy. Looked at
in this way, the null-null part of Einstein equations seem to
be a secondary consequence of the first law itself. Of
course, one can reinterpret Einstein equations as represent-
ing some sort of a Clausius relation; if one insists upon
doing so, one must redefine the matter flux suitably. It is
easy to see that such a definition of flux will involve the
trace of the matter stress tensor, and will not be equivalent
to the heat flux defined by Jacobson; see, for example,
Ref. [8] which gives one such definition for dynamical
horizons, but assuming spherically symmetry. In fact, this
can be easily demonstrated using our Eq. (5):�

�

2�

�
d

d�

�
1

4

ffiffiffiffi
�

p �
¼ 1

8�

ffiffiffiffi
�

p �
Rabk

a�b þ 1

2
R?

�

� ffiffiffiffi
�

p �
Tab � 1

2
Tgab

�
ka�b; (21)

where R? is defined in Appendix C. We have used the field
equations in the second equality, and the approximation is
obtained after ignoring the R? term. Moreover, inverting
the logic and deriving field equations in this latter case is
again not straightforward. We hope to have clarified all the
above issues in the present note.
At a more conceptual level, one of the possible impli-

cations of this note is that it might be necessary to adopt a
new starting point if one wants to establish Einstein theory
in terms of thermodynamics, in which case the thermody-
namic structure of the Einstein tensor would serve as the
most important supporting evidence. This point of view, of
course, also applies to the wider class of Lanczos-Lovelock
Lagrangians for which similar results hold. A survey of
some of the attempts that have been made along these lines
can be found in [1,12].
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APPENDIX A: SOME MATHEMATICAL DETAILS

1. Approximate local Killing vector
generating Lorentz boosts

The existence of an approximate boost generating
Killing field in a locally flat patch of spacetime is a crucial
assumption which goes into applying notions of thermo-
dynamics to local acceleration horizons, and it is therefore
important to make precise the details of such a construc-
tion, which we do below. Around an arbitrary event P in
the spacetime, one can construct Riemann normal coordi-
nates yk [with ykðP Þ ¼ 0] in terms of which the metric
takes the form gab ¼ �ab � ð1=3ÞRacbdy

cyd þOðy3@RÞ.
One now wishes to find an approximate Killing vector field
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in this patch of spacetime, which would generate approxi-
mate Killing boosts along some direction, say y1. That is,
we want an analog of Minkowski vector field �M ¼
�½y1; y0; 0; 0�, where � is acceleration of the chosen
Rindler observer. This can be done by writing �k as a series
in yk (starting, of course, at linear order) and then checking
how much freedom one has in the choice of coefficients so
as to satisfy Killing equations, Sab ¼ ra�b þrb�a ¼ 0.
The analysis shows that �k can be made Killing only up to
cubic order, that is, Sab ¼ Oðy2Þ. Incidentally, this also
implies, upon using the identity (valid for arbitrary vector
field) rcra�b¼Rbacn�

n�ð1=2ÞðraSbcþrcSab�rbScaÞ,
that rbra�c � Rcabn�

n is OðyÞ. We also have h�b ¼
�Rbn�

n �raSa
b, where S

a
b ¼ Sab � ð1=2ÞSiigab.

2. Parametrization of null geodesics

[The discussion below mostly follows Wald’s book [13],
Sec. 6.4: The Kruskal Extension.]

Consider the simpler form of the Rindler metric: ds2 ¼
�x2dt2 þ dx2. The null geodesics satisfy the equation _t ¼
�ðlogxÞ�, where dot denotes derivativew.r.t. affine parame-
ter. Therefore, t ¼ � logxþ const for the null geodesics.
Further, due to staticity, �k0 ¼ x2 _t is constant along a
geodesic, so that d� ¼ Cx2dt ¼ �Cxdx. Hence, � ¼
�Cðx2=2Þ þD is the affine parameter. This is the choice
we havemade. It is further easy to see that the null geodesics
are given by ki ¼ C�1½1=x2;�1=x�. Further, note that C�1

is the Killing energy associated with the null geodesic;
imposing k � � ¼ �1 fixes C ¼ 1—that is, the multiplica-
tive factor in the choice of affine parameter is fixed by
requiring the null geodesics to have unit Killing energy.

Note that the above parametrization is meaningful only
for ingoing geodesics near the future horizon (or out-
going geodesics near the past horizon). An alternate
parametrization is, of course, in terms of the Killing
time t. It is easy to see that this leads to � / expð�2tÞ þ
const, which is perhaps a more familiar parametrization.
Finally, it is easy to deduce the following limits for the
contravariant and covariant components of the vector k:
(a) ½x2ki�x¼0 ¼ ½1; 0� � �i, (b) ½xki�x¼0 ¼ ½0;�1� � ni.
These limits clearly confirm that x ¼ 0 is a null surface,
and also illustrates the subtlety associated with taking
such limits in a coordinate system which is singular
(that is, when the metric or its inverse blows up in some
region, here x ¼ 0).

APPENDIX B: GAUSS-CODAZZI
DECOMPOSITION RELATIONS

[For greater clarity and notational convenience, we use
boldface subscripts for contraction on corresponding vec-
tors in this and the following appendices; for e.g., R�k �
Rab�

akb.]
Begin with the Gauss-Codazzi expression for the 4D

Ricci scalar R with respect to a foliation defined by a
timelike unit vector u:

R ¼ 2�uRabu
aub þ ð3ÞRþ �uðK�	K�	 � K2Þ:

(See, for e.g., [14], Sec. 3.5.3, page 78.) Similarly, we next
decompose the 3D space into a foliation defined by a
spacelike vector n. This gives

ð3ÞR ¼ 2�n
ð3ÞR�	n

�n	 þ ð2ÞRþ �nðkABkAB � k2Þ:
Above, �u ¼ �1, �n ¼ þ1. Similarly, one can use a stan-
dard expression to write (with qab ¼ gab þ uaub)

ð3ÞR�
 ¼ ð3ÞR�	
�q
	�

¼ Rabcde
a
ð�Þe

c
ð
Þðgbd þ ubudÞ þ K	

�K	
 � KK�


¼ Race
a
ð�Þe

c
ð
Þ þ Raucue

a
ð�Þe

c
ð
Þ þ K	

�K	
 � KK�
:

Using this, we obtain

ð3ÞR�	n
�n	 ¼ n�n	K



�K
	 � KK�	n

�n	 þ Rnn þ Rnunu:

Putting it all together, we get

ð2ÞR ¼ Rþ 2ðRuu � RnnÞ � 2Rnunu

þ fðkÞ � fðKÞ ��ðKÞ; (B1)

where fðKÞ ¼ K2 � K2
�	, similarly for fðkÞ, and �ðKÞ ¼

n�n
ðK	
�K	
 � KK�
Þ. Here, K�	 and kAB are extrinsic

curvatures of level surfaces of u embedded in 4D space-
time, and of n embedded in the resultant 3D space, re-
spectively. This can be rewritten in a better way by defining
g?ab ¼ �uaub þ nanb, and separating out the part depend-
ing on extrinsic curvatures in �½K; k� ¼ fðkÞ � fðKÞ �
�ðKÞ. This yields

R ¼ ð2ÞRþ 2Rabg?ab þ 2Runun ��½K; k�: (B2)

Note that gabg?ab ¼ 2, g?abg
?bc ¼ g?c

a , and �ab�cd ¼
2g?a½dg

?
c�b, where �ab ¼ 2u½anb� is the binormal to the

surface.
A slight rearrangement of terms gives

Gabg
?ab ¼ �Rabg?ab þ Racbdg?abg

?
cd �ð2Þ Rþ�½K; k�:

(B3)

We stress that the above expression is an identity for any
spacelike 2D surface embedded in a 4D spacetime, and no
assumptions such as spherical symmetry or staticity have
yet been made. It can be further rewritten as

Gabg
?ab ¼ ðRuAuB � RnAnBÞ�AB � ð2ÞRþ�½K; k�;

(B4)

where RuAuB ¼ Rabcdu
aucEb

ðAÞE
d
ðBÞ, where E

a
ðAÞ are the dy-

ads for the surface. Finally, upon using �ABEa
ðAÞE

b
ðBÞ ¼

�ab ¼ gab þ uaub � nanb, we arrive at the equation
quoted in the text.
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APPENDIX C: DERIVATION OF EQ. (5)

Begin with the identity R�k ¼ �kah�a ¼ rcðkara�
cÞ

for r½akb� ¼ 0. Now consider the relation kcrc�
a ¼

�ð@zNÞka which is easy to establish for static spacetimes.
We can then prove the following:

raðkcrc�
aÞ ¼ �ð@zNÞr � k� karað@zNÞ

¼ ��r � kþOðz2Þ þ @2zN

N

¼ ��r � kþOðz2Þ � 1

2
R?; (C1)

where R? is the Ricci scalar of the t� z part of the metric:
�N2dt2 þ dz2, and is algebraically equal to �2ð@2zNÞ=N.
On the other hand, we also have, from Eq. (3): r � k ¼
� d

d� ln
ffiffiffiffi
�

p
.

Putting it all together, we have

R�k ¼ �
d

d�
ln

ffiffiffiffi
�

p � 1

2
R?: (C2)

We now note that, for the 2D t� n metric, Runun ¼
�ð1=2ÞR? (note that u and n form an orthonormal basis),
which finally yields the desired expression,

R�k � Runun ¼ �
d

d�
ln

ffiffiffiffi
�

p
: (C3)

Some aspects of this expression have been discussed in the
main text. We must also mention that the peculiar combi-
nation of curvature tensor components above also arises in
the analysis in [15] (see Appendices A and B), in which
area variation of an ‘‘acceleration surface’’ is considered
along the observer trajectory (and not along null geodesics
as in our case).
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