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A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate,

with angular deflections of order the characteristic strain amplitude of the gravitational waves. These

fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in

1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the

gravitational wave spectrum �gwðfÞ, at frequencies of order f� 1 yr�1, both for the future space-based

optical interferometry missions GAIA and SIM, and for very long baseline interferometry in radio

wavelengths with the SKA. For GAIA, tracking N � 106 quasars over a time of T � 1 yr with an angular

accuracy of ��� 10� as would yield a sensitivity level of�gw � ð��Þ2=ðNT2H2
0Þ � 10�6, which would

be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates

by computing in detail the statistical properties of the angular deflections caused by a stochastic

background. We compute analytically the two-point correlation function of the deflections on the sphere,

and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at

low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with

the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of

power.
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I. INTRODUCTION AND SUMMARY OF RESULTS

A. The stochastic gravitational wave background

There is great interest in detecting or constraining the
strength of stochastic gravitational waves (GWs) that may
have been produced by a variety of processes in the early
Universe, including inflation. The strength of the waves is
parameterized by their energy density per unit logarithmic
frequency divided by the critical energy density, �gwðfÞ.
Current observational upper limits include (i) the con-
straint �gw & 10�13ðf=10�16 HzÞ�2 for 10�17 Hz & f &

10�16 Hz from large angular scale fluctuations in the
cosmic microwave background temperature [1]; (ii) the
cosmological nucleosynthesis and cosmic microwave
background constraint

R
d lnf�gwðfÞ & 10�5, where the

integral is over frequencies f * 10�15 Hz [2]; (iii) the
pulsar timing limit �gw & 10�8 at 10�9 Hz & f &

10�8 Hz [3]; (iv) the current LIGO/VIRGO upper limit
�gw & 7� 10�6 at f� 100 Hz [4]; and (v) the limitR
d lnf�gw & 10�1 for 10�17 Hz & f & 10�9 Hz from

very long baseline interferometry (VLBI) radio astrometry
of quasars.

Many new techniques also promise future measurements
of these primordial GWs. Firstly, it has been shown that
such a GW background would leave a detectable signature
in the polarization of the cosmic microwave background
(CMB) [5,6], which will be measured by many current
and future observational efforts [7–16]. The planned

space-based interferometer LISAwill also set limits on the
primordial stochastic gravitational wave background
(SGWB) [17]. The planned successor to LISA, the Big
Bang Observer, is a space-based interferometer mission
designed primarily to detect the primordial SGWB [18].
Finally, Seto and Cooray have suggested that measure-
ments of the anisotropy of time variations of redshifts
of distant sources could provide constraints of order
�gw & 10�5 at f� 10�12 Hz [19]. For more details on

GWs, the search for them, and the SGWB, see the review
articles [1,20,21].

B. High precision astrometry

The possibility of using high precision astrometry
to detect GWs has been considered by many authors
[22–35]. There was an early suggestion by Fakir [26] that
GW bursts from localized sources could be detectable by
the angular deflection �� to light rays that they would
produce. Fakir claimed that �� / 1=b, where b is the
impact parameter. This claim was shown later to be false,
and in fact the deflection scales as 1=b3 [25,27]. Therefore
the prospects for using astrometry to detect waves from
localized sources are not promising [34].
However, the situation is different for a SGWB, as first

discussed by Braginsky et al. [24]. For a light ray prop-
agating through a SGWB, one might expect the direction
of the ray to undergo a random walk, with the deflection
angle growing as the square root of distance. However, this
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is not the case; the deflection angle is always of order the
strain amplitude hrms of the GWs, and does not grow with
distance1 [24,29,30]. Specifically, a SGWB will cause
apparent angular deflections which are correlated over
the sky and which vary randomly with time, with a rms
deflection �rmsðfÞ per unit logarithmic frequency interval
of [see Eq. (3) below]

�rmsðfÞ � hrmsðfÞ �H0

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gwðfÞ

q
: (1)

Suppose now that we monitor the position of N sources
in the sky, with an angular accuracy of ��, over a
time T. For a single source, one could detect an angular
velocity (proper motion) of order ���=T, and for N
sources, a correlated angular velocity of order

���=ðT ffiffiffiffi
N

p Þ should be detectable. The rms angular ve-

locity from (1) is!rmsðfÞ � f�rmsðfÞ �H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gwðfÞ

q
, and it

follows that one should obtain an upper limit on �gw of

order [33]

�gwðfÞ & ��2

NT2H2
0

: (2)

This bound will apply at a frequency of order f� 1=T.
It will also apply at lower frequencies [33] since the
angular velocity fluctuations are white (equal contri-
butions from all frequency scales), assuming a flat
GW spectrum �gw ¼ const. The quantity that will be

constrained by observations is roughly this total �gw,R
f&T�1 d lnf�gwðfÞ.
The advent of microarcsecond astrometry has started to

make the prospects for constraining GW backgrounds
more interesting. The future astrometry mission GAIA
(Global Astrometric Interferometer for Astrophysics) is
expected to measure positions, parallaxes, and annual
proper motions to better than 20� as for more than
50� 106 stars brighter than V � 16 mag and 500 000
quasars brighter than V � 20 mag [23]. Similarly the
Space Interferometry Mission (SIM) is expected to
achieve angular accuracies of order 10�as. Estimates
of the sensitivities of these missions to a SGWB, at the
�gw � 10�3–10�6 level, are given in Refs. [23,31,32].

VLBI radio interferometry is another method that can be
used to detect the astrometric effects of a SGWB on distant
sources. This method detects the same pattern as that
discussed in this paper for visible astrometry, and differs
from astrometry using the GAIA satellite in its longer
duration (tens of years versus a few years for GAIA), and
in the smaller number of sources, on the order of hundreds,

that have currently been measured using this method. In the
radio, the planned Square Kilometer Array (SKA) is
also expected to be able to localize sources to within
�10�as [36]. Jaffe has estimated that with 106 quasistellar
object sources, the SKA could achieve a sensitivity of
order �gw � 10�6 [28].

The astrometric signals due to a SGWB expected for a
single object are quite small, on the order of 0:1�as yr�1,
much smaller than the typical intrinsic proper motion of a
star in our Galaxy. We therefore propose to use quasars as
our sources, since their extragalactic distances cause their
expected intrinsic proper motions to be smaller than those
expected from a SGWB [23]. The construction of a
nonrotating reference frame using quasars in astrometric
studies will remove the l ¼ 1 dipole component of the
measured quasar proper motions, but will leave intact
the l ¼ 2 and higher multipoles which are expected to be
excited by GWs.
Using the estimate N � 106 (GAIA), ��� 10�as,

T � 1 yr gives from Eq. (2) the estimate

�gw & 10�6

at f & 10�8 Hz for astrometry. This is an interesting sen-
sitivity level, roughly comparable with that obtainable with
pulsar timing [3].
Astrometry has already been applied to obtain upper

limits on �gw using a number of different observations.

First, Gwinn et al. analyzed limits on quasar proper mo-
tions obtained from VLBI astrometry, and obtained the
upper limit �gw & 10�1 for 10�17 Hz & f & 10�9 Hz

[22]. This limit was recently updated by Titov, Lambert,
and Gontier [37]. Finally, Linder analyzed observed
galaxy correlation functions to obtain the limit
�gw & 10�3 for 10�16 Hz & f & 10�10 Hz [38].

All of these analyses used a relatively simple model of
the effect of gravitational waves on proper motions. In this
paper we give a detailed computation of the spectrum of
angular fluctuations produced by a stochastic background,
including the relative strengths ofE- and B-type multipoles
for each order l. In a subsequent paper we will follow up
with a derivation of the optimal data analysis method and a
computation of the �gw sensitivity level, to confirm the

existing crude estimates of the sensitivity of future astro-
metric missions such as GAIA.

C. Summary of results

For a source in the direction n, the effect of the GW
background is to produce an apparent angular deflection
�nðn; tÞ. We first find a general formula for the angular
deflection of a photon, for an arbitrary GW signal hij,

emitted by a source that can be at a cosmological distance.
This deflection is derived in Secs. II and III below, and is
given by [cf. Eq. (55)]

1It is sometimes claimed in the literature that the deflection
angle depends only on the GWs near the source and observer. In
fact, this is not true, as we discuss in the Appendix. A similar
claim about the frequency shift that is the target of pulsar timing
searches for GWs is also false in general.
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�ni¼1

2

�
njhijð0Þ�ninjnkhjkð0Þ

�!0

�s
ð�ik�ninkÞnj �

�
�2

Z �s

0
d� 0

Z � 0

0
d� 00hjk;0ð� 00Þ

þnl
Z �s

0
d� 0

Z � 0

0
d� 00ðhjk;lð� 00Þþhkl;jð� 00Þ

�hjl;kð� 00ÞÞ
��
:

Here, n is the direction to the source, !0 is the emitted
frequency of the photon, � parametrizes the path of the
photon �ð�Þ ¼ �0 þ!0� , xið�Þ ¼ ��!0n

i, hijð�;xÞ is

treated as a function of � through this parametrization of
the photon path, �s is the value of � at the emission event of
the photon at the source, and the spacetime metric is

ds2 ¼ að�Þ2f�d�2 þ ½�ij þ hijð�;xÞ�dxidxjg:
We then specialize to the limit in which the sources are
many gravitational wavelengths away and to plane waves
propagating in the direction p to obtain a simple formula,
which generalizes a previous result of Pyne et al. [33]. We
find that the deflection, as a function of time � and direction
on the sky n, is given by

�nîð�;nÞ ¼ ni þ pi

2ð1þ p � nÞ hjkð0Þnjnk �
1

2
hijð0Þnj;

where p is the direction of propagation of the GW, and
hijð0Þ is the GW field evaluated at the observer, hijð�; 0Þ.

The main result of this paper is a computation of the
statistical properties of the angular deflection resulting
from a SGWB, which is carried out in Secs. IV and V.
The apparent angular deflection caused by such a GW
background is a stationary, zero-mean, Gaussian random
process. We compute the fluctuations in �n by making
two different approximations: (i) The GW modes which
contribute to the deflection have wavelengths � which are
short compared to the horizon size cH�1

0 today. (ii) The

mode wavelengths � are short compared to the distances to
the sources; this same approximation is made in pulsar
timing searches for GWs [39]. Since our calculations are
only valid for GWs with wavelengths much smaller than
the horizon, the contribution from waves with wavelengths
comparable to the horizon scale will cause a small devia-
tion from our results (on the order of a few percent for a
white GW spectrum).

The total power in angular fluctuations is then

h�nðn; tÞ2i ¼ �2rms ¼ 1

4�2

Z
d lnf

�
H0

f

�
2
�gwðfÞ: (3)

Taking a time derivative gives the spectrum of fluctuations
of angular velocity or proper motion

h� _nðn; tÞ2i ¼
Z

d lnfH2
0�gwðfÞ;

which gives a rms angular velocity !rmsðfÞ of order

!rmsðfÞ �H0

ffiffiffiffiffiffiffiffiffi
�gw

q
� 10�2�asyr�1

�
�gw

10�6

�
1=2

:

This is the signal that we hope to detect.
We now discuss how the angular fluctuations are distrib-

uted on different angular scales, or equivalently how the
power is distributed in the spherical harmonic index l. The
total angular fluctuations can be written as

h�nðn; tÞ2i ¼
Z

d lnf
X1
l¼2

½�Erms;lðfÞ2 þ �Brms;lðfÞ2�: (4)

Here �Erms;lðfÞ2 is the total electric-type power in angular

fluctuations per unit logarithmic frequency in multipole
sector l, and �Brms;lðfÞ2 is the corresponding magnetic-

type power. These quantities can be written as

�Qrms;lðfÞ2 ¼ �2rmsgQ�ðfÞ	QQ
l ; (5)

where Q ¼ E or B. The various factors in this formula are
as follows. The factors gE and gB are the fractions of the
total power carried by E-modes and B-modes, respectively,
and satisfy gE þ gB ¼ 1. Their values are gE ¼ gB ¼ 1=2,
implying that electric- and magnetic-type fluctuations have
equal power. The function �ðfÞ describes how the power is
distributed in frequency, and is the same for all multipoles,
both electric and magnetic. It is normalized so thatR
d lnf�ðfÞ ¼ 1, and is given explicitly by [cf. Eq. (3)

above]

�ðfÞ ¼ f�2�gwðfÞR
d lnf0f0�2�gwðf0Þ

: (6)

Finally, the angular spectra 	EE
l and 	BB

l describe how the

power is distributed in different multipoles, starting with
the quadrupole at l ¼ 2, and are normalized so that

FIG. 1. Here we plot the coefficients 	EE
l as defined in Eq. (87)

vs multipole l.
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X1
l¼2

	QQ
l ¼ 1 (7)

for Q ¼ E and Q ¼ B. We show that 	EE
l ¼ 	BB

l , and

this spectrum is plotted in Fig. 1 and tabulated in Table I.
These coefficients are well fit by the power law 	EE

l ¼
32:34l�4:921. We note that the result for the quadrupole,
	EE
2 ¼ 5=6, has previously been derived using a different

method in Ref. [33].

II. CALCULATION OF ASTROMETRIC
DEFLECTION IN A MINKOWSKI

BACKGROUND SPACETIME

A. Setting the stage—Minkowski calculation

We will first calculate the angular deflection due to a
small GW perturbation on a flat background metric,

ds2 � g�
dx
�dx
 ¼ �dt2 þ ð�ij þ hijÞdxidxj: (8)

We are considering the effect of these GWs on a photon
traveling from a source to an observer, with an unperturbed
worldline x	0 ð�Þ ¼ !0ð�;��nÞ þ ðt0; 0; 0; 0Þ, where�n is

the direction of the photon’s travel, !0 is its unperturbed
frequency, and the photon is observed at the origin at
time t0. The photon’s unperturbed 4-momentum is given
by k	0 ¼ !0ð1;�nÞ.

To calculate the geodesics that the photon, source, and
observer follow, we need the connection coefficients in this
metric. There are three nonzero connection coefficients,

�k
0i ¼

1

2
hki;0;

�0
ij ¼

1

2
hij;0;

�k
ij ¼

1

2
½hki;j þ hkj;i � hij;k�:

(9)

First, using the geodesic equation

d2x	

d�2
¼ ��	

��u
�u�; (10)

it is straightforward to verify that the paths of stationary
observers in these coordinates are geodesics. Therefore we
can assume that both the source and observer are stationary
in these coordinates, with

xiobsðtÞ ¼ 0 xisðtÞ ¼ xis ¼ constant:

The affine parameter of the source is therefore

�s ¼ � jxsj
!0

:

B. Photon geodesic

Next, we solve the geodesic equation (10) for the path of
a photon traveling from the source to the observer in the
perturbed metric. We write this path as the sum of contri-
butions of zeroth and first order in h,

x	ð�Þ ¼ x	0 ð�Þ þ x	1 ð�Þ: (11)

Similarly, the photon 4-momentum is

k	ð�Þ ¼ k	0 ð�Þ þ k	1 ð�Þ: (12)

We note that the connection coefficients are all first order
in h, so keeping only first-order terms, we will use only the
unperturbed photon 4-momentum in the geodesic equation,
yielding

d2x01
d�2

¼ �!2
0

2
ninjhij;0; (13)

d2xk1
d�2

¼ �!2
0

2
½�2nihki;0 þ ninjðhki;j þ hkj;i � hij;kÞ�:

(14)

We now integrate the geodesic equation to obtain the
perturbed photon 4-momentum and trajectory. The right-
hand sides are evaluated along the photon’s unperturbed
path from � ¼ 0 at the present time back to �, since they
are already first order in h. We define

I ijð�Þ ¼
Z �

0
d�0hij;0ð�0Þ;

J ijkð�Þ ¼
Z �

0
d�0hij;kð�0Þ;

Kijð�Þ ¼
Z �

0
d�0 Z �0

0
d�00hij;0ð�00Þ;

Lijkð�Þ ¼
Z �

0
d�0 Z �0

0
d�00hij;kð�00Þ;

(15)

where hijð�Þ means hijðt0 þ!0�;�!0�nÞ. We find

TABLE I. First 10 nonzero multipole coefficients 	EE
l as de-

fined in Eq. (87) and plotted in Fig. 1.

l 	EE
l

2 0.833 333

3 0.116 667

4 0.03

5 0.010 476 2

6 0.004 421 77

7 0.002 125 85

8 0.001 124 34

9 0.000 639 731

10 0.000 385 675

11 0.000 243 696
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k01ð�Þ ¼ �!2
0

2
ninjI ijð�Þ þ I0;

kj1ð�Þ ¼ �!2
0

2
niRij þ Jj0;

x01ð�Þ ¼ �!2
0

2
ninjKijð�Þ þ I0�þ K0;

xj1ð�Þ ¼ �!2
0

2
niSij þ Jj0�þ Lj

0;

(16)

where I0, J
j
0, K0, and Lj

0 are constants of integration, and

we have defined the quantities

Rijð�Þ � ½�2I ijð�Þ þ nkðJ ijkð�Þ þ J jkið�Þ � J ikjð�ÞÞ�;
(17)

Sijð�Þ � ½�2Kijð�Þ þ nkðLijkð�Þ þLjkið�Þ �Likjð�ÞÞ�:
(18)

C. Boundary conditions

We determine the eight integration constants I0, J
j
0, K0,

and Lj
0 using the boundary conditions of the problem,

namely, that the photon path passes through the detection
event x

�
obs ¼ ðt0; 0; 0; 0Þ, that it is null, that the photon is

emitted with the unperturbed frequency !0, and that the
photon path intersects the path of the source at some earlier
time.

(1) Photon path must pass through detection event.
First, the perturbed photon trajectory must pass
through the detection event t ¼ t0, xi ¼ 0.
Therefore,

x�ð0Þ ¼ x
�
0 ð0Þ þ x

�
1 ð0Þ ¼ ðt0; 0; 0; 0Þ;

giving

K0 ¼ !2
0

2
ninjKijð0Þ ¼ 0;

Lj
0 ¼

!2
0

2
niSijð0Þ ¼ 0;

(19)

where we have used the fact that by definition
Kijð0Þ ¼ Sijð0Þ ¼ 0.

(2) Photon geodesic is null.
The geodesic of the photon must be null, which
gives one more constraint, g�
k

�k
 ¼ 0. This is

already true to zeroth order. To first order we get

0 ¼ h�
k
�
0 k



0 þ 2
�
k

�
1 k



0 ;

where k	0 ¼ !0ð1;�nÞ. Inserting the expression

for the perturbed 4-momentum k	1 given by
Eqs. (15)–(17), and simplifying using

d

d�
hij ¼ !0hij;0 �!0nkhij;k (20)

shows that all of the terms involving � cancel out, as
they must, leaving the condition

I0 þ niJ
i
0 ¼

1

2
!0n

injhijð0Þ: (21)

(3) Photon is emitted with frequency !0.
The photon is emitted at the source with the unper-
turbed frequency !0 ¼ �g�
k

�u
s . The 4-velocity

of the source is u�s ¼ ð1; 0; 0; 0Þ as it has constant
spatial coordinate position, so the constraint be-
comes �g�0k

� ¼ !0. The source emits the photon

at � ¼ �s, so from Eq. (16) this yields

I0 ¼ !2
0

2
ninjI ijð�sÞ: (22)

(4) Perturbed photon path must hit source worldline
somewhere.
The constraint that the perturbed photon trajectory
must hit the source worldline somewhere can be
written as

xjð~�sÞ ¼ xjs ¼ xj0ð~�sÞ þ xj1ð~�sÞ (23)

for some ~�s. To zeroth order we have ~�s ¼ �s,
but there will be a first-order correction. Inserting
the expression (16) for the perturbation of the geo-
desic gives

xjs ¼ �!0
~�sn

j �!2
0

2
niSijð~�sÞ þ ~�sJ

j
0: (24)

Projecting this equation perpendicular to n gives a
formula for the perpendicular component of Ji0,

Ji0? ¼ !2
0

2�s

ð�ik � ninkÞnjSjkð�sÞ: (25)

Here on the right-hand side we have replaced ~�s

with �s, which is valid to linear order. Adding to this
our earlier result for the component of Ji0 parallel to
n in Eqs. (21) and (22) gives

Ji0¼
!2

0

2�s

njSjkð�sÞð�ik�ninkÞ

�!2
0

2
ninjnkI jkð�sÞþ1

2
!0n

injnkhjkð0Þ: (26)

D. Perturbation to observed frequency

We calculate the observed photon frequency !obs ¼
�g�
k

�u
obs, where u


obs ¼ ð1; 0; 0; 0Þ, and check our result

against standard formulas for the frequency shift, used in
pulsar timing searches for GWs [40]. The observed fre-
quency is, from Eqs. (16) and (22),
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!obs ¼ k0ð0Þ ¼ !0 þ I0 ¼ !0 þ!2
0

2
ninjI ijð�sÞ: (27)

Using the definition (15), the perturbed redshift is therefore

z � !0 �!obs

!0

¼ �!0

2
ninj

Z �s

0
d�0hij;0ð�0Þ: (28)

For a plane wave traveling in the direction of the unit
vector p, we have

hij ¼ hijðt� p � xÞ ¼ hij½!0�ð1þ p � nÞ�;
giving

hij;0 � @

@t
hij ¼ 1

!0ð1þ �Þ
@

@�
hij;

where � ¼ p � n. This gives for the redshift

z ¼ � 1

2ð1þ �Þ n
inj½hijð�sÞ � hijð0Þ�; (29)

which agrees with [40] up to a sign, which is an error in
their calculation [41].

E. Local proper reference frame of observer

We must also account for the changes induced in the
basis vectors of the observer’s local proper reference frame
due to the presence of the GW. We introduce a set of
orthonormal basis vectors ~e	̂ which are parallel transported
along the observer’s worldline, with ~e0̂ ¼ ~u. The parallel

transport equation for the spatial vectors gives

u	e�
ĵ;	

¼ u	½@	e�ĵ þ ��
	�e

�

ĵ
� ¼ 0: (30)

We separate the basis vectors into two pieces, ei
ĵ
¼ �i

ĵ
þ

�ei
ĵ
, where we assume that the unperturbed basis vectors

are aligned with the coordinate basis directions.
Using ~u ¼ @t, and the connection coefficients (9) of the

metric, Eq. (30) gives us an expression for the perturbation
to the basis tetrad,

�ei
ĵ
ðtÞ ¼ � 1

2
hiĵðt; 0Þ þ!iĵ;

where !i
ĵ
is a matrix of constants. Now, we observe that eĵ

is an orthonormal set of three-vectors, which gives us six
constraints on the constants !i

ĵ
,

ð
mn þ hmnÞð�m
ĵ
þ �em

ĵ
Þð�n

k̂
þ �en

k̂
Þ ¼ �ĵ k̂:

This is identically correct to zeroth order; to first order we
get �ejk̂ þ �ekĵ þ hjk ¼ 0 or, inserting our equation for

�e, and assuming that hij ¼ hji, we find !ij ¼ �!ji, i.e.

that the constants !ij are antisymmetric in their indices.

These constants parametrize an arbitrary infinitesimal
time-independent rotation. Evaluating now at the detection
event gives

�ei
ĵ
¼ � 1

2
hiĵð0Þ þ!iĵ: (31)

For the remainder of this paper we will set to zero the term
!iĵ, since it corresponds to a time-independent, unobserv-

able angular deflection. The deflections caused by GWs
will be observable because of their time dependence.

F. Observed angular deflection

We can express the 4-momentum of the incoming pho-
ton in the above reference frame as

k	ð0Þ ¼ !obsu
	 �!obsn

ĵe	
ĵ
; (32)

where �ĵ k̂n
ĵnk̂ ¼ 1, u	 is the observer’s 4-velocity, and

!obs is given by Eq. (27). Note that we evaluate all quan-
tities at the detection event t ¼ t0, x ¼ 0. Plugging in our
results for the perturbed 4-momentum and the observed
frequency, we obtain an equation for the observed direction

to the source nĵ

kið0Þ ¼ �!0n
i þ !2

0

2�s

njSjkð�sÞð�ik � ninkÞ

�!2
0

2
ninjnkI jkð�sÞ þ 1

2
!0n

injnkhjkð0Þ

¼ �
�
!0 þ!2

0

2
nknlIklð�sÞ

�
nĵ
�
�i
j �

1

2
hijð0Þ

�
: (33)

We decompose the direction to the source into zeroth

and first-order pieces as nĵ ¼ nĵ0 þ �nĵ. The zeroth-order

terms in Eq. (33) give us nĵ0 ¼ nj. Plugging this into the

first-order terms and simplifying, we find the perturbation
to the source direction,

�nî ¼ 1

2

�
njhijð0Þ �!0

�s

njSjkð�sÞð�ik � ninkÞ

� ninjnkhjkð0Þ
�
:

Inserting our definition of Sjk, we obtain the solution to the

source direction perturbation in Minkowski space,

�nî ¼ 1

2

�
njhijð0Þ � ninjnkhjkð0Þ

�!0

�s

ð�ik � ninkÞnj
�
�2

Z �s

0
d�0 Z �0

0
d�00hjk;0ð�00Þ

þ nl
Z �s

0
d�0 Z �0

0
d�00ðhjk;lð�00Þ

þ hkl;jð�00Þ � hjl;kð�00ÞÞ
��
: (34)

As a check of the calculation, we see that �nî is orthogonal

to ni, so that ni þ �nî is a unit vector, as expected.
We now specialize to the case of a plane wave propagat-

ing in the direction of the unit vector p,
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hijðt;xÞ ¼ hijðt� p � xÞ:
Using the identity (20) we can reduce the double integrals
in Eq. (34) to single integrals, obtaining

�nî ¼ ð�ik � ninkÞnj
�
� 1

2
hjkð0Þ þ pknl

2ð1þ p � nÞhjlð0Þ

þ 1

�s

Z �s

0
d�

�
hjkð�Þ � pknl

2ð1þ p � nÞhjlð�Þ
��
: (35)

Evaluating this explicitly for the plane wave

hijðt;xÞ ¼ Re½H ije
�i�ðt�p�xÞ�

gives

�nî ¼ Re

���
1þ ið2þ p � nÞ

!0�s�ð1þ p � nÞ
� ½1� e�i�!0ð1þp�nÞ�s�

�
ni

þ
�
1þ i

!0�s�ð1þ p � nÞ

� ½1� e�i�!0ð1þp�nÞ�s�
�
pi

�
njnkH jke

�i�t0

2ð1þ p � nÞ
�

�
1

2
þ i

!0�s�ð1þ p � nÞ
� ½1� e�i�!0ð1þp�nÞ�s�

�
njH i

je
�i�t0

�
: (36)

If we define the observed angles ð�;�Þ by nî ¼
ðsin� cos�; sin� sin�; cos�Þ, then the observed angular
deflections are

�� ¼ eî
�̂
�nî; �� ¼

eî
�̂
�nî

sin�
; (37)

where eî
�̂
¼ ðcos� cos�; cos� sin�;� sin�Þ and eî

�̂
¼

ð� sin�; cos�; 0Þ.
As another check of our calculation, we now compare

our result with the coordinate (gauge-dependent) angular
deflection computed by Yoo et al. [42]. Starting from our
Eq. (34), we disregard the first term, which arises from the
change from the coordinate basis to the parallel transported
orthonormal basis. The remaining terms in Eq. (34) give
the coordinate angular deflection �ni. Simplifying using

the identity (20) and the identity
R
x
0 dx

0 Rx0
0 dx00fðx00Þ ¼R

x
0 dx

0ðx� x0Þfðx0Þ gives

�ni ¼ � 1

2
ninjnkhjkð0Þ þ ð�ij � ninjÞ

�
Z �s

0
d�

�
hjkð�Þ � hjkð0Þ

�s

nk

þ!0

2

�
�s � �

�s

�
@jðnknlhklÞ

�
: (38)

When combined with Eqs. (37), this agrees with Eqs. (13)
and (14) of [42], specialized to only tensor perturbations,

up to an overall sign. The sign flip is due to the fact
that Ref. [42] uses a convention for the sign of angular
deflection, explained after their Eq. (16), which is opposite
to ours.

G. The distant source limit

We now specialize to the limit where the distance!0j�sj
to the source is large compared to the wavelength �c��1

of the GWs. As discussed in the introduction, astrometry
is potentially sensitive to waves with a broad range of
frequencies, extending from the inverse of the observation
time (a few years) down to the Hubble frequency.
Therefore this assumption is a nontrivial limitation on the
domain of validity of our analysis. However, for sources at
cosmological distances (the most interesting case), this
assumption is not a significant limitation.
In this limit, we can neglect the second term in each of

the three small square brackets in Eq. (36), giving

�nîðt;nÞ ¼ Re

�
ðni þ piÞH jknjnke

�i�t

2ð1þ p � nÞ
� 1

2
H ijnje

�i�t

�
; (39)

where we have written t for t0. This result agrees with and
generalizes a calculation of Pyne et al. [33]. We note that
this same approximation is used in pulsar timing searches
for GWs [40]. In that context the approximation is essen-
tially always valid, since pulsar distances are large com-
pared to a few light years, and the properties of pulsar
frequency noise imply that that pulsar timing is only
sensitive to GWs with periods of order the observation
time, and not much lower frequencies, unlike the case for
astrometry.

III. GENERALIZATION TO
COSMOLOGICAL SPACETIMES

Of course, we do not live in Minkowski space. The
apparent homogeneity and isotropy of the Universe imply
that our Universe has a Friedmann-Robertson-Walker
(FRW) geometry, with line element

ds2 ¼ g	�dx
	dx�

¼ að�Þ2f�d�2 þ ½�ij þ hijð�;xÞ�dxidxjg; (40)

where � is conformal time, and we specialize to the trans-
verse traceless gauge in which �ijhij ¼ �ij@ihjk ¼ 0. To

translate our calculation in Minkowski spacetime to this
new metric, we define an unphysical, conformally related
metric �g	� ¼ að�Þ�2g	� given by

�g 	�dx
	dx� ¼ �d�2 þ ½�ij þ hijð�;xÞ�dxidxj; (41)

which has an associated unphysical derivative operator �r	.
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A. Stationary observers are freely falling

As before, it is straightforward to check that observers
who are stationary in the coordinates (40) are freely falling.
Therefore we assume as before that the observer and source
are stationary:

xiobsðtÞ ¼ 0; xisðtÞ ¼ xis:

B. Null geodesic in the conformal metric

Let us consider a photon traveling from a distant source
to us, which follows a null geodesic in the physical metric
g	�. Its path is also a null geodesic of the conformally

related metric �g	�, though it is not affinely parametrized

in this metric [43]. Specifically, the physical 4-momentum
of the photon k� must satisfy the geodesic equation
k�r�k
 ¼ 0. If we define a conformally related, unphys-

ical 4-momentum �k� ¼ k�, whose contravariant compo-

nents are then related to those of the physical 4-momentum
by

�k � ¼ �g�
 �k
 ¼ að�Þ2g�
 �k
 ¼ að�Þ2g�
k
 ¼ að�Þ2k�;
(42)

then we find that

�k � �r�
�k
 ¼ að�Þ2k� �r�k
: (43)

From [43] we know that for any vector v	, and con-

formally related derivatives r	 and �r	, we have

r	v� ¼ �r	v� � C�
	�v�, where C�

	� ¼ 2��
ð	r�Þ lna�

g	�g
��r� lna. Thus, we find

�k� �r�
�k
 ¼ að�Þ2k�r�k
 þ að�Þ2k�k�ð2��

ð�r
Þ lna

� g�
g
��r� lnaÞ

¼ að�Þ2k�r�k
 þ að�Þ2ðk�k�r
 lna

þ k�k
r� lna� k
k
�r� lnaÞ

¼ að�Þ2k�r�k
; (44)

where to get the last line we have used that the geodesic is
null. Therefore, if k� is a null geodesic of the physical
metric g�
, then �k� is a null geodesic of the conformally

related metric �g�
. If � is an affine parameter of the

geodesic, it will not be an affine parameter of the geodesic
in the unphysical metric. The affine parameter �� in the
unphysical metric is related to � by

d ��

d�
¼ 1

að�ð�ÞÞ2 : (45)

C. Parallel transport of basis vectors
in FRW background spacetime

We next investigate the parallel transport of the observ-
er’s basis tetrad in a FRW background spacetime. From the

form (40) of the metric, we anticipate that the basis vectors
must scale as a�1 to remain normalized. Thus, we will
define the basis vectors and their perturbations as

ei
ĵ
¼ 1

a
ð�i

ĵ
þ �ei

ĵ
Þ: (46)

The relevant connection coefficients are

�i
0k ¼

_a

a
�i
k þ

1

2
�imhmk;0: (47)

The parallel transport equation (30) for the spatial basis
vectors gives us

@0e
i
ĵ
þ �i

0ke
k
ĵ
¼ 0: (48)

Plugging in the connection coefficients (47) and the basis
vector expansion (46), we get

@0�e
i
ĵ
þ 1

2
�imhmĵ ¼ 0; (49)

the same equation as before. The solution, as before,
will be

�ei
ĵ
ðtÞ ¼ � 1

2
hijðtÞ: (50)

D. Generalization of angular deflection computation

We parametrize the photon path in the background
spacetime by

�ð�Þ ¼ �0 þ!0�; xið�Þ ¼ ��!0n
i; (51)

where � is an affine parameter of the unphysical metric
(41) (denoted �� above). From the decomposition (32), the
observed source direction is

nĵ ¼
g	�k

	e�
ĵ

g	�k
	u�

: (52)

We rewrite all the quantities in this expression in terms of
their conformally transformed versions,

�g	� ¼ a�2g	�; �k	 ¼ a2k	;

�u	 ¼ au	; �e	
ĵ
¼ ae	

ĵ
;

(53)

which are the quantities that are used in the Minkowski
spacetime calculation of Sec. II. This gives

nĵ ¼
�g	� �k	 �e�

ĵ

�g	� �k	 �u�
; (54)

the same expression as in Minkowski spacetime.
Therefore, the final result is the same expression (34) as
before, except that it is written in terms of the nonaffine
parameter � ,
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�nî ¼ 1

2

�
njhijð0Þ � ninjnkhjkð0Þ

�!0

�s
ð�ik � ninkÞnj

�
�2

Z �s

0
d� 0

Z � 0

0
d� 00hjk;0ð� 00Þ

þ nl
Z �s

0
d� 0

Z � 0

0
d� 00ðhjk;lð� 00Þ

þ hkl;jð� 00Þ � hjl;kð� 00ÞÞ
��
: (55)

E. The distant source limit

We now specialize again to the limit where the distance
to the source is large compared to the wavelength �c��1

of the GWs. We also assume that the wavelength c��1 is
small compared to the horizon scale, but we allow the
sources to be at cosmological distances.

Starting from Eq. (55) and paralleling the derivation of
Eq. (38) we obtain

�nîð�0;nÞ ¼ 1

2
siknjhjkð0Þ þ

siknj
�s

�
Z �s

0
d�½hjkð�Þ � hjkð0Þ�

þ!0sik
2

Z �s

0
d�

�
�s � �

�s
njnlhjl;kð�Þ

�
; (56)

where sik ¼ �ik � nink. Now the wave equation satisfied
by the metric perturbation is�

@2� þ 2
a;�
a

@� �r2

�
hijð�;xÞ ¼ 0;

and plane-wave solutions are of the form

hijð�;xÞ ¼ RefH ije
i�p�xq�ð�Þg;

where the mode function q� satisfies

q00� þ 2
a0

a
q0� þ�2q� ¼ 0: (57)

We now evaluate the angular deflection (56) for such a
plane wave, in the limit where " � a0=ð�aÞ � 1, i.e. the
limit where the wavelength �a=� of the GW is much
smaller than the horizon scale �a2=a0. In the second term
in (56), the term hjkð�Þ is rapidly oscillating, and so its

integral can be neglected compared to the integral of
hjkð0Þ; corrections will be suppressed by powers of ". In

the third term in (56), the integrand is rapidly oscillating,
and so the integral will be dominated by contributions near
the end points, up to Oð"Þ corrections. However the inte-
grand vanishes at � ¼ �s, and thus the integral is domi-
nated by the region near � ¼ 0. In that region we can use
the leading order Wentzel-Kramers-Brillouin (WKB) ap-
proximation to the mode function solution of (57),

q�ð�Þ ¼ 1

að�Þ e
�i��;

and to a good approximation we can replace að�Þ by að�0Þ.
Thus we see that the same answer is obtained for distant
sources as in our Minkowski spacetime calculation, even
for sources at cosmological distances. From Eq. (39) we
obtain

�nîð�0;nÞ ¼ ni þ pi

2ð1þ p � nÞhjkð0Þnjnk �
1

2
hijð0Þnj (58)

for plane waves in the direction p.

IV. CALCULATION OFANGULAR DEFLECTION
CORRELATION FUNCTION

Now that we have calculated the deflection of the ob-
served direction to a distant source due to an arbitrary
metric perturbation hij, we would like to determine the

properties of the deflection produced by a SGWB, such as
that produced by inflation.

A. Description of SGWB as a random process

In the distant source limit, the angular deflection (58)
depends only on the GW field hij evaluated at the location

of the observer for each direction of propagation p.
Moreover, we have restricted attention to modes with
wavelengths short compared to the Hubble time.
Therefore, it is sufficient to use a flat spacetime mode
expansion to describe the stochastic background. This
expansion is (see, e.g., Ref. [27])

hijðx; tÞ ¼
X

A¼þ;�

Z 1

0
df

Z
d2�phApðfÞe2�ifðp�x�tÞeA;pij

þ c:c:; (59)

where f and p are the frequency and direction of propa-
gation of individual GW modes, hAp are the stochastic

amplitudes of modes with polarization A and direction p,

and the polarization tensors eA;pij are normalized such that

eA;pij eB;p�ij ¼ 2�AB.

We will assume that hijðx; tÞ is a Gaussian random

process, as it is likely to be the sum of a large number of
random processes. We also assume that it is zero-mean and
stationary. It follows that the mode amplitudes hApðfÞ
satisfy

hhApðfÞhBp0 ðf0Þi ¼ 0;

hhApðfÞhBp0 ðf0Þ�i ¼ 3H2
0�gwðfÞ
32�3f3

�ðf� f0Þ�AB�
2ðp;p0Þ

(60)

for f, f0 	 0, where H0 is the Hubble parameter and
�2ðp;p0Þ is the delta function on the unit sphere (see,
e.g., [27]).
Since the angular deflection �nðn; tÞ depends linearly

on the metric perturbation, it will also be a stationary,
zero-mean, Gaussian random process, whose statistical
properties are determined by its two-point correlation
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function h�ni�nji. Specializing our expression (58) for the
angular deflection to the form (59) of the metric perturba-
tion, we find

�niðn;tÞ¼ X
A¼þ;�

Z 1

0
df

Z
d2�phApðfÞe�2�iftRiklðn;pÞeA;pkl

þc:c:; (61)

where

R iklðn;pÞ ¼ 1

2

�½ni þ pi�nknl
1þ p � n � nk�il

�
: (62)

B. Power spectrum of the astrometric
deflections of the SGWB

So, we need only evaluate the two-point correlation
function to gain full knowledge of the statistical properties
of the angular deflection due to the SGWB.Writing out this
quantity explicitly using Eq. (61),

h�niðn; tÞ�njðn0; t0Þi
¼ X

A;B¼þ;�

Z 1

0
dfdf0

Z
d2�pd

2�p0 h½hApðfÞe�2�ift

�Riklðn;pÞeA;pkl þ c:c:� � ½hBp0 ðf0Þ�e2�if0t0

�Rjrsðn0;p0ÞðeB;p0
rs Þ� þ c:c:�i: (63)

The average, which is an average over ensembles, acts only
on the stochastic amplitudes hAp. Using the mode two-

point function (60) in Eq. (63), we get the simplified result

h�niðn; tÞ�njðn0; t0Þi ¼
Z 1

0
df

3H2
0

32�3
f�3�gwðfÞe�2�ifðt�t0Þ

�Hijðn;n0Þ þ c:c:; (64)

where we have defined

Hijðn;n0Þ ¼ X
A¼þ;�

Z
d2�pRiklðn;pÞeA;pkl

�Rjrsðn0;pÞðeA;prs Þ�: (65)

C. Basis tensors and their symmetries

We simplify the expression (65) forHij further using the

identity X
A¼þ;�

eA;pij ðeA;pkl Þ� ¼ 2Pijkl; (66)

where Pijkl is the projection tensor onto the space of trace-

less symmetric tensors orthogonal to p, given by

2Pijkl ¼ �ik�jl þ �il�jk � �ij�kl þ pipjpkpl � �ikpjpl

� �jlpipk � �ilpjpk � �jkpipl þ �ijpkpl

þ �klpipj: (67)

This gives

Hijðn;n0Þ ¼ 2
Z

d2�pRiklðn;pÞPklrsRjrsðn0;pÞ: (68)

Noting that the correlation function (64) is perpendicular to
n on its first index and n0 on its second, we can decompose
it onto a basis of tensors with this property,

Hijðn;n0Þ ¼ 	ðn;n0ÞAiAj þ �ðn;n0ÞAiCj þ �ðn;n0ÞBiAj

þ �ðn;n0ÞBiCj; (69)

for some scalar functions 	, �, �, and �. Here we have
defined

A ¼ n� n0; B ¼ n�A; C ¼ �n0 �A:

(70)

We can deduce from Eq. (68) thatHijðn;n0Þ� ¼ Hjiðn0;nÞ.
Noting that Aiðn0;nÞ ¼ �Aiðn;n0Þ, and Biðn0;nÞ ¼
�Ciðn;n0Þ, this symmetry applied to the expansion (69)
gives

	ðn;n0Þ� ¼ 	ðn0;nÞ;
�ðn;n0Þ� ¼ �ðn0;nÞ;
�ðn;n0Þ� ¼ �ðn0;nÞ:

We see from Eq. (65) that Hij transforms as tensor under

rotations. This implies that the functions 	, �, �, and �
must be invariant under rotations, and can only depend
on the angle � between n and n0. Thus, 	ðn;n0Þ ¼
	ðn0;nÞ ¼ 	ð�Þ and so forth, so 	 and � must be real.
Next, we note that the expression (68) for Hijðn;n0Þ is

invariant under the parity transformation n ! �n and
n0 ! �n0. Looking then at the basis tensors, we see that
A is invariant under this transformation, while B and C
change sign. Thus, in order to insure that Hij is invariant,

it can only have terms multiplying AiAj and BiCj, so

�ð�Þ ¼ 0 ¼ �ð�Þ.
Having taken the symmetries of the problem into con-

sideration, we have found Hij to be of the form

Hijðn;n0Þ ¼ 	ð�ÞAiAj þ �ð�ÞBiCj: (71)

D. Solving the general integral

We can evaluate the coefficients in the expansion (71) of
Hij by contracting it with the basis tensors,

AiAjHij ¼ sin4ð�Þ	ð�Þ; BiCjHij ¼ sin4ð�Þ�ð�Þ:
Rewriting these using Eq. (68), we find

	ð�Þ ¼ 2

sin4ð�Þ
Z

d2�pA
iRiklðn;pÞPklrsA

jRjrsðn0;pÞ�;
(72)

�ð�Þ ¼ 2

sin4ð�Þ
Z

d2�pB
iRiklðn;pÞPklrsC

jRjrsðn0;pÞ�:
(73)

To simplify the calculation, we define the quantities
� ¼ n � p, �0 ¼ n0 � p, � ¼ n � n0, � ¼ A � p, which sat-
isfy �2 þ �2 þ �2 þ �02 ¼ 1þ 2���0. Using these defi-
nitions and the definition (62) of Rikl, we can write
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AiRiklðn;pÞ ¼ 1

2
nk

�
�nl
1þ �

� Al

�
;

AjRjrsðn0;pÞ ¼ 1

2
n0r
�
�n0s
1þ �0 � As

�
;

BiRiklðn;pÞ ¼ 1

2
nk

�
��0 þ �

1þ �
nl þ n0l

�
;

CjRjrsðn0;pÞ ¼ 1

2
n0r
�
� �þ �

1þ �0 n
0
s þ ns

�
:

We can then rewrite our expressions for 	 and �,

	ð�Þ ¼ 1

4sin4ð�Þ
Z

d2�p2Pklrsnk

�
�
�nl
1þ �

� Al

�
n0r
�
�n0s
1þ �0 � As

�
; (74)

�ð�Þ¼ 1

4sin4ð�Þ
Z
d2�p2Pklrsnk

�
�
��0 þ�

1þ�
nlþn0l

�
n0r
�
��þ�

1þ�0n
0
sþns

�
: (75)

Let us define two new variables 
2 ¼ ð1� �2Þ, 
02 ¼
ð1� �02Þ. Applying the definition (67) of the projection
tensor Pklrs, we can calculate the necessary contractions of
Pklrs for 	,

2PklrsnkAln
0
rAs ¼ ð�� ��0Þð1� �2 ��2Þ;

2Pklrsnknln
0
rAs ¼ �ð�0�2 � 2��þ �0Þ;

2PklrsnkAln
0
rn

0
s ¼ �ð��02 � 2��0 þ �Þ;

2Pklrsnknln
0
rn

0
s ¼ 
2
02 � 2�2;

(76)

and for �,

2Pklrsnkn
0
ln

0
rns ¼ 
2
02;

2Pklrsnknln
0
rns ¼ 
2ð�� ��0Þ;

2Pklrsnknln
0
rn

0
s ¼ 
2
02 � 2�2;

2Pklrsnkn
0
ln

0
rn

0
s ¼ 
02ð�� ��0Þ:

(77)

Plugging these back into Eqs. (74) and (75) and simplify-
ing, we find

	ð�Þ ¼ 1

4sin4ð�Þ
Z

d2�p

�
ð�� ��0Þð1� �2Þ

��2ð1þ �Þ þ 2�2ð�þ �Þð�þ �0Þ
ð1þ �Þð1þ �0Þ

�

¼ ��ð�Þ:
Noticing that we can do the integrals

R
d2�p�

2 ¼
4�
3 sin2� and

R
d2�p��

0 ¼ 4�
3 cos�, but that the last

term is more complicated, we find

	ð�Þ ¼ ��ð�Þ

¼ �

3

ðcos�� 1Þ
sin2�

þ 1

2sin4�

Z
d2�p

�2ð�þ �Þð�þ �0Þ
ð1þ �Þð1þ �0Þ : (78)

We can reduce the two-dimensional integral (78) to a
one-dimensional integral by parametrizing p in spherical
polar coordinates �p and �p, choosing n ¼ ð0; sinð�=2Þ;
cosð�=2ÞÞ and n0 ¼ ð0;� sinð�=2Þ; cosð�=2ÞÞ, and inte-
grating over �p. This gives

	ð�Þ ¼ ��ð�Þ

¼ �

3

ðcosð�Þ � 1Þ
sin2ð�Þ þ �

2sin2�

�
Z �

0
d�p sin�pfsin2�p þ 8 cosð�=2Þ

� ½cos�p þ cosð�=2Þ�½gð�p;�Þ � 1�g; (79)

where

gð�p;�Þ ¼ j cos�p þ cosð�=2Þj
½1þ cos�p cosð�=2Þ� : (80)

We perform the integral over �p, and find the final form of

the function 	ð�Þ
	ð�Þ ¼ ��ð�Þ

¼ �

3sin2�
ð7 cos�� 5Þ

� 32�

sin4�
lnðsinð�=2ÞÞsin6ð�=2Þ: (81)

A plot of the function 	ð�Þ is shown in Fig. 2.
To summarize, we have now completed the calculation

of the angular deflection correlation function. The final
answer is given by Eq. (64), with Hijðn;n0Þ given from

Eqs. (71) and (81) as

Hijðn;n0Þ ¼ 	ð�ÞðAiAj � BiCjÞ: (82)

FIG. 2. Here we plot the function 	ð�Þ, the coefficient of
Hijðn;n0Þ as shown in Eq. (82), as a function of the angle �

between n and n0.
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Here the vectors A, B, and C are defined by Eqs. (70), and
	ð�Þ is given by Eq. (81).

E. Special case: Coincidence

As a check of our calculation, we can solve for the two-
point correlation function exactly in the case that n ¼ n0.
Using Eqs. (62), (67), and (68), the integral simplifies to

Hijðn;nÞ ¼ 1

4

Z
d2�p½1� ðp � nÞ2Þ�ð�ij � ninjÞ:

We can solve this integral analytically, getting

Hijðn;nÞ ¼ 2�

3
ð�ij � ninjÞ: (83)

This corresponds to the limit of 	ð�ÞðAiAj � BiCjÞ
as n ! n0, with 	ð�Þ ¼ 2�=ð3�2Þ þOð��1Þ from
Eq. (81). Inserting the coincidence limit (83) into the
correlation function (64) yields the formula (3) for the total
rms angular fluctuations discussed in the introduction.

V. SPECTRUM OFANGULAR
DEFLECTION FLUCTUATIONS

A. Overview

In the previous section we computed the correlation
function h�niðn; tÞ�njðn0; t0Þi as a function of the unit
vectors n and n0. However for many purposes it is more
useful to perform a multipole decomposition of the angular
deflection, and to compute the spectrum of fluctuations on
different angular scales l, as is done with cosmic micro-
wave background anisotropies. We decompose �nðn; tÞ as

�nðn; tÞ ¼ X
lm

�nElmðtÞYE
lmðnÞ þ �nBlmðtÞYB

lmðnÞ; (84)

where YE
lm and YB

lm are the electric- and magnetic-type

transverse vector spherical harmonics defined by

Y E
lmðnÞ ¼ ðlðlþ 1ÞÞ�1=2rYlmðnÞ;

YB
lmðnÞ ¼ ðlðlþ 1ÞÞ�1=2ðn�rÞYlmðnÞ:

(85)

Wewill show in this section that the statistical properties of
the coefficients are given by

h�nQlmðtÞ�nQ0l0m0 ðt0Þ�i
¼ �QQ0�ll0�mm0

Z 1

0
df cos½2�fðt� t0Þ�SQlðfÞ (86)

for Q, Q0 ¼ E or B, for some spectrum SQlðfÞ, a function
of frequency f and of angular scale l. The formula (86)
shows that different multipoles of the angular deflection
are statistically independent, as required by spherical sym-
metry of the stochastic background. Also the electric-
type and magnetic-type fluctuations are uncorrelated, as
required by parity invariance of the stochastic background
(see below).

The spectrum SQlðfÞ is given by

SQlðfÞ ¼ 4�

2lþ 1
�2rms

�ðfÞ
f

gQ	
QQ
l : (87)

Here �2rms is the total rms angular fluctuation squared,
given by Eq. (3) in the introduction. The function �ðfÞ
describes how the power is distributed in frequency. It is
the same for all multipoles, is normalized according toR
dðlnfÞ�ðfÞ ¼ 1, and is given explicitly by Eq. (6) in

the introduction. The quantities gE and gB are the fraction
of the total power in electric-type and magnetic-type fluc-
tuations, and are gE ¼ gB ¼ 1=2. Finally the angular spec-
tra 	EE

l and 	BB
l describe the dependence on angular scale,

which is the same for all frequencies. They are normalized
according to

X1
l¼2

	QQ
l ¼ 1; (88)

and are the same for E- and B-modes, 	EE
l ¼ 	BB

l . This

spectrum is plotted in Fig. 1 and the first 10 values are
listed in Table I. We note that these coefficients are well fit
by the power law 	EE

l ¼ 32:34l�4:921.

Before proceeding with the derivation of the spectrum
(86), we first derive from (86) the expression (4) discussed
in the introduction for the total fluctuation power. Squaring
the expansion (84), taking an expected value, and then
using (86) gives

h�nðn;tÞ2i¼X
Qlm

X
Q0l0m0

YQ
lmðnÞYQ0

l0m0 ðnÞ�h�nQlmðtÞ�nQ0l0m0 ðt0Þ�i

¼X
Ql

Z 1

0

�ðfÞ
f

Xl
m¼�l

jYQ
lmðnÞj2�2rms

� 4�

2lþ1
gQ	

QQ
l : (89)

Using Unsöld’s theorem for vector spherical harmonics,

Xl
m¼�l

jYQ
lmðnÞj2 ¼

2lþ 1

4�
;

gives

h�nðn; tÞ2i ¼ X
Ql

Z 1

0
�2rms

�ðfÞ
f

gQ	
QQ
l ; (90)

which reduces to Eq. (4). Note that using the normalization

conventions for 	QQ
l and �ðfÞ now gives h�nðn; tÞ2i ¼

�2rmsðgE þ gBÞ ¼ �2rms, showing consistency of the
definitions.

B. Derivation

We now turn to a derivation of the spectrum (87). First
we note that the vector spherical harmonics are transverse

in the sense that YQ
lmðnÞ � n ¼ 0 for Q ¼ E, B and are

orthogonal in the sense that
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Z
d2�nY

Q
lmiðnÞYQ0i�

l0m0 ðnÞ ¼ �QQ0�ll0�mm0 :

Using this orthogonality property, we can extract the co-
efficients of the expansion (84)

�nQlmðtÞ ¼
Z

d2�n�niðn; tÞYQi�
lm ðnÞ:

Thus we can write for the correlation function between two
of these coefficients

h�nQlmðtÞ�nQ0l0m0 ðt0Þ�i ¼
Z

d2�nd
2�n0YQ�

lmiðnÞYQ0
l0m0jðn0Þ

� h�niðn; tÞ�njðn0; t0Þi; (91)

or more explicitly, using Eq. (64)

h�nQlmðtÞ�nQ0l0m0 ðt0Þ�i ¼ 3H2
0

16�3

Z 1

0
df cos½2�fðt� t0Þ�

��gwðfÞ
f3

CQlmQ0l0m0 ; (92)

where

CQlmQ0l0m0 ¼
Z

d2�nd
2�n0YQ�

lmiðnÞYQ0
l0m0jðn0ÞHijðn;n0Þ:

(93)

We now argue that the EB cross correlation vanishes. From
Eq. (85), we see that YE

lmðnÞ has the same parity under

n ! �n as YlmðnÞ, while the parity of YB
lmðnÞ is opposite.

From Sec. IVC above, Hijðn;n0Þ is invariant under both

n ! �n and n0 ! �n0. Thus, if Q ¼ E, Q0 ¼ B in
Eq. (92), the integral will be symmetric under n ! �n
but antisymmetric under n0 ! �n0, causing the integral
over d2�n0 to vanish. Therefore, EB cross correlations
vanish, and we need only calculate the EE and BB corre-
lation functions.

1. EE correlation

Inserting the definition (85) of the electric vector spheri-
cal harmonics and the formula (82) for Hij into Eq. (93)

and integrating by parts, we obtain

CElmE0l0m0 ¼ 1

lðlþ 1Þ
Z

d2�nd
2�n0Y�

lmðnÞYl0m0 ðn0Þ�EEð�Þ;
(94)

where the function �EE is given by

�EEð�Þ ¼ rir0
j½Hijðn;n0Þ�

¼ rir0
jf	ð�Þ½AiAj � BiCj�g: (95)

Here ri and r0
j denote normal three-dimensional deriva-

tives with respect to x and x0, where n ¼ x=jxj and
n0 ¼ x0=jx0j. Integration by parts on the unit sphere
of this derivative operator is valid as long as the radial
component of the integrand vanishes, from the identity

riv
i ¼ @rv

r þ 2vr=rþrAv
A, where rA denotes a cova-

riant derivative on the unit sphere. It can be checked that
the radial components do vanish in the above computation.
Next, we expand the function �EE in terms of Legendre

polynomials, and use the spherical harmonic addition theo-
rem, which gives

�EEð�Þ ¼ X
l

�EE
l Plðcos�Þ

¼ X
lm

4�

2lþ 1
�EE

l YlmðnÞYlmðn0Þ�: (96)

Inserting this into Eq. (94) and using the orthogonality of
spherical harmonics gives

CElmE0l0m0 ¼ �ll0�mm0
1

lðlþ 1Þ
4�

2lþ 1
�EE

l : (97)

Inserting this into Eq. (92) now yields the correlation
function given by Eqs. (86) and (87), and using the defini-
tions (3) and (6) of �2rms and �ðfÞ allows us to read off the
electric multipole spectrum

gE	
EE
l ¼ 3

4�lðlþ 1Þ�
EE
l : (98)

We will show below that gE ¼ 1=2.
It remains to explicitly evaluate the function �EEð�Þ

defined in Eq. (95) and evaluate its expansion coefficients.
We have

�EEð�Þ � rir0
j½	ð�ÞTij�

¼ ½rir0
j	ð�Þ�Tij þ ½ri	ð�Þ�ðr0

jT
ijÞ

þ ½r0
j	ð�Þ�ðriT

ijÞ þ 	ð�Þðrir0
jT

ijÞ; (99)

where we have defined Tij ¼ ðAiAjðn;n0Þ � BiCjðn;n0ÞÞ.
Using Ai ¼ �ijknjn

0
k, Bi ¼ ðn � n0Þni � n0i, Ci ¼

ðn � n0Þn0i � ni, we can write the tensor Tij in Cartesian
coordinates as

Tij ¼ �ikl�jrsnkn
0
lnrn

0
s�ððn �n0Þni�n0iÞððn �n0Þn0j�njÞ:

Using rinj ¼ �ij � ninj, r0
in

0
j ¼ �ij � n0in0j, r0

in
j ¼

rin
0j ¼ 0, and rl�

ijk ¼ r0
l�

ijk ¼ 0, we calculate the de-

rivatives

riT
ij ¼ ð1–3ðn � n0ÞÞððn � n0Þn0j � njÞ;

r0
jT

ij ¼ ð1–3ðn � n0ÞÞððn � n0Þni � n0iÞ;
rir0

jT
ij ¼ �9ðn � n0Þ2 þ 2ðn � n0Þ þ 3:

(100)

For the gradients of	, we use the fact that cosð�Þ ¼ n � n0,
so that � sinð�Þri� ¼ n0i � ðn � n0Þni, and similarly for
r0

j. Thus, we find
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ri	ð�Þ ¼ �	0ð�Þn
0
i � ðn � n0Þni

sinð�Þ ;

r0
j	ð�Þ ¼ �	0ð�Þnj � ðn � n0Þn0j

sinð�Þ

rir0
j	ð�Þ ¼ 	0ð�Þ

8<
:
�ij � ninj � n0in0j þ ðn � n0Þnin0j

� sinð�Þ

þ cosð�Þ½n0i � ðn � n0Þni�½nj � ðn � n0Þn0j�
�sin3ð�Þ

9=
;

þ 	00ð�Þ ½n
0
i � ðn � n0Þni�½nj � ðn � n0Þn0j�

sin2ð�Þ :

(101)

Plugging Eqs. (100) and (101) into Eq. (99), we get

�EEð�Þ ¼ ½�9cos2ð�Þ þ 2cosð�Þ þ 3�	ð�Þ
� sin2ð�Þ	00ð�Þ þ ½1� 6cosð�Þ� sinð�Þ	0ð�Þ:

(102)

Next, we insert the expression (81) for 	ð�Þ to obtain

�EEð�Þ ¼ 4�

3
ð4þ ð1� cos�Þf12 ln½sinð�=2Þ� � 1gÞ:

(103)

We numerically compute the coefficients �EE
l of the

Legendre polynomial expansion (96) of �EEð�Þ, and
from them compute 	EE

l using Eq. (98). The result is

plotted in Fig. 1 and tabulated in Table I.

2. BB correlation

We now calculate the BB correlation in a similar manner
to the EE case above. Inserting into Eq. (93) the definition
(85) of magnetic vector spherical harmonics and integrat-
ing by parts, we find

CBlmBl0m0 ¼ 1

lðlþ1Þ
Z
d2�nd

2�n0Y�
lmðnÞYl0m0 ðn0Þ�BBð�Þ;

where

�BBð�Þ ¼ rlr0
p½�ikl�jmpnkn

0
m	ð�ÞTij�: (104)

As before, we can derive from here the form (86) and (87)
of the spectrum, with 	BB

l given by

gB	
BB
l ¼ 3

4�lðlþ 1Þ�
BB
l :

We now show that �BBð�Þ ¼ �EEð�Þ, from which
it follows that gE ¼ gB ¼ 1=2 and that 	EE

l ¼ 	BB
l . To

see this we evaluate the cross products in (104) using
n�A ¼ B, n� B ¼ �A, n0 �C ¼ A. This gives

�ikl�jmpnkn
0
mHij ¼ Hlp;

and using the definitions (95) and (104) of �EE and �BB, it
follows that �BB ¼ �EE.
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APPENDIX: NONLOCAL DEPENDENCE
OF DEFLECTION ANGLE ON
GRAVITATIONALWAVES

It is sometimes claimed in the literature that the deflec-
tion angle, in the distance source limit, depends only on the
GWs in the vicinity of the source and the observer. A
similar claim is often made for the frequency perturbation
caused by GWs which is targeted in pulsar timing searches.
Strictly speaking, these claims are not true: it is possible
to have a nonzero deflection when the GW field vanishes
in a neighborhood of the source and of the observer, even
in the distant source limit. However, this type of circum-
stance requires a considerable fine tuning, so the claims are
colloquially valid.
To see this, it is sufficient to consider the simple model

of a scalar field hðt; xÞ in 1þ 1 dimensions, obeying
ð@2t � @2xÞh ¼ 0. A functional of hðt; xÞ that is qualitatively
similar to the deflection angle formula (64) is

�� ¼ cRhRðt� xobsÞ þ cLhLðtþ xobsÞ; (A1)

where we have decomposed the field into left-moving and
right-moving pieces,

hðt; xÞ ¼ hRðt� xÞ þ hLðtþ xÞ; (A2)

and cR and cL are fixed coefficients with cL � cR. In each
sector (right-moving and left-moving), the quantity (A1)
depends only on the field evaluated at the location of the
observer x ¼ xobs. However, the sum does not. If we spec-

ify the field in terms of its initial data hðt; xÞ and _hðt; xÞ at
time t, t, and specialize to initial data of compact support,
we get

��ðtÞ ¼ 1

2
ðcL þ cRÞhðt; xobsÞ

þ 1

2
ðcL � cRÞ

Z xobs

�1
dx _hðt; xÞ: (A3)

It is clearly possible to choose h and _h to vanish
in a neighborhood of x ¼ xobs and still have �� � 0, for
cL � cR.
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