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We investigate the motion of neutral test particles in the gravitational field of a mass M with charge Q

described by the Reissner-Nordström (RN) spacetime. We focus on the study of circular stable and

unstable orbits around configurations describing either black holes or naked singularities. We show that at

the classical radius, defined as Q2=M, there exist orbits with zero angular momentum due to the presence

of repulsive gravity. The analysis of the stability of circular orbits indicates that black holes are

characterized by a continuous region of stability. In the case of naked singularities, the region of stability

can split into two nonconnected regions inside which test particles move along stable circular orbits.
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I. INTRODUCTION

In general relativity, the gravitational field of a static,
spherically symmetric, charged body with mass M and
charge Q is described by the Reissner-Nordström (RN)
metric which in standard spherical coordinates can be
expressed as

ds2 ¼ ��

r2
dt2 þ r2

�
dr2 þ r2ðd�2 þ sin2�d�2Þ; (1)

where � ¼ r2 � 2MrþQ2, and the associated electro-
magnetic potential and field are

A ¼ Q

r
dt; F ¼ dA ¼ �Q

r2
dt ^ dr; (2)

respectively [1,2]. The horizons are situated at r� ¼ M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
.

The study of the motion of test particles in this gravita-
tional field is simplified by the fact that any plane through
the center of the spherically symmetric gravitational source
is a geodesic plane. Indeed, it can easily be seen that, if the
initial position and the tangent vector of a geodesic lie on a
plane that contains the center of the body, then the entire
geodesic must lie on this plane. Without loss of generality
we may therefore restrict ourselves to the study of equa-
torial geodesics with � ¼ �=2.

The tangent vector ua to a curve x�ð�Þ is u� ¼
dx�=d� ¼ _x�, where � is an affine parameter along the
curve. The momentum p� ¼ � _x� of a particle with
mass � can be normalized so that g�� _x� _x� ¼ �k, where

k ¼ 0; 1;�1 for null, timelike, and spacelike curves,
respectively. For the RN metric we obtain

� �

r2
_t2 þ r2

�
_r2 þ r2 _�2 ¼ �k (3)

on the equatorial plane. The last equation reduces to a first-
order differential equation

� E2r2

�2�
þ r2

�
_r2 þ L2

�2r2
¼ �k; (4)

where we have used the expressions for the energy,

E � �g���
�
t p

� ¼ � �
r2
_t, and angular momentum,

L � g���
�
�p

� ¼ �r2 _� of the test particle which are con-

stants of motion associated with the Killing vector fields
�t ¼ @t and �� ¼ @�, respectively. Equation (4) can be

rewritten as

_r2 þ V2 ¼ E2

�2
; with

V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kþ L2

�2r2

��
1� 2M

r
þQ2

r2

�s
:

(5)

The investigation of the motion of test particles in the
gravitational field of the RN metric is thus reduced to
the study of motion in the effective potential V. In this
work, we will focus on the study of circular orbits
for which _r ¼ 0 and V ¼ E=�, with the condition
@V=@r ¼ 0. A straightforward calculation shows that this
condition leads to [1–3]

L2

�2
¼ k

r2ðMr�Q2Þ
r2 � 3Mrþ 2Q2

; (6)

an expression which we substitute in Eq. (5) to obtain (an
alternative analysis using an orthonormal frame is pre-
sented in the Appendix)

E2

�2
¼ k

ðr2 � 2MrþQ2Þ2
r2ðr2 � 3Mrþ 2Q2Þ : (7)

Moreover, from the physical viewpoint it is important to
find the minimum radius for stable circular orbits which is
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determined by the inflection points of the effective poten-
tial function, i.e., by the condition @2V=@2r ¼ 0. It is easy
to show that for the potential (5), the last condition is
equivalent to [4–7]

Mr3 � 6M2r2 þ 9MQ2r� 4Q4 ¼ 0: (8)

In this work, we present a detailed analysis of the
circular motion of test particles governed by the above
equations. We will see that the behavior of test particles
strongly depends on the ratio Q=M and, therefore, we
consider separately the case of black holes, extreme black
holes, and naked singularities.

II. BLACK HOLES

From the expressions for the energy and angular
momentum of a timelike particle ðk ¼ 1Þ, we see that
motion is possible only for r > Q2=M ¼ r� and for r2 �
3Mrþ 2Q2 > 0, i.e., r < r	� and r > r	þ , with r	� �
½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2. In fact, from Eqs. (6) and (7)
it follows that the motion inside the regions r < r� and r 2
ðr	� ; r	þÞ is possible only along spacelike geodesics. At

r ¼ r	þ , one finds instead that the velocity of test particles,

as defined in the Appendix, is 
gþ ¼ 1, i.e., the circle

r ¼ r	þ represents a null hypersurface. On the other

hand, for a nonvanishing charge in the black hole region,
one can show that

r� < r	� < r� < rþ < r	þ ; with

rþ ¼ r� ¼ r	� ¼ r� for Q ¼ M
(9)

and r� ¼ r	� ¼ r� for Q ¼ 0: (10)

The location of these radii for different values of the mass-
to-charge ratio is depicted in Fig. 1. In the black hole
region we limit ourselves to the study of circular timelike
orbits, i.e., orbits with r > r	þ .

The effective potential (5) for a test particle with a fixed
value ofQ=M is plotted in Fig. 2, for different values of the
angular momentum L=ðM�Þ. At infinity, the effective
potential tends to a constant which is independent of
the value of the parameters of the test particle and of the
gravitational source. In our case, this constant is normal-
ized by choosing the value of the total energy of the
particle as E=�. Moreover, as the outer horizon is ap-
proached from outside, the effective potential reaches its
global minimum value which is zero. This behavior is
illustrated in Fig. 3 where the effective potential is depicted
for a specific value of Q=M and different values of
L=ðM�Þ. The radius of a circular orbit, rCO, is determined
by the real positive root of the equation

Mr3 �
�
Q2 þ L2

�2

�
r2 þ 3ML2

�2
r� 2Q2L2

�2
¼ 0: (11)

In general, in the region r > r	þ circular orbits do not

always exist. For instance, for Q ¼ 0 circular orbits

exist only for values of jL=ð�MÞj> ffiffiffiffiffiffi
12

p � 3:45, whereas
for Q ¼ M and Q ¼ 0:5M the existence condition implies

that jL=ð�MÞj> ffiffiffi
8

p � 2:83 and jL=ð�MÞj> 3:33,
respectively.
In this context, it is interesting to explore the stability

properties of the circular motion at r ¼ rCO. To find the
explicit value of the last stable radius, we solve the condi-
tion (8) in the black hole region and find
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FIG. 1. In this graphic the radii r	þ � ½3Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 and r� ¼ Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
, and r� ¼ Q2=M

are plotted. Timelike circular orbits exist only for r > r	þ ,

whereas r ¼ r	þ represents a null hypersurface. Circular motion

inside the regions r < r� and r 2 ðr	� ; r	þÞ is possible only

along spacelike geodesics.
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FIG. 2. The effective potential V for a neutral particle of mass
� in a RN black hole of charge-to-mass ratio Q=M ¼ 0:5 is
plotted as a function of r=M in the range [1.87, 8], and the
angular momentum L=� in [0, 10]. In this case the outer horizon
rþ ¼ 1:87M, and r	þ ¼ 2:823M (see text). Circular orbits exist

for r > 2:823M. The solid line represents the location of circular
orbits (stable and unstable). The last circular orbit is represented
by a point. The number close to the plotted point represents the
radius r=M ¼ 5:6, the angular momentum L=� ¼ 3:34, and the
energy E=M ¼ 0:939 of the last stable circular orbit.
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rlsco
M

¼ 2þ

4� 3Q2

M2 þ

2
66648þ 2Q4

M4 þ
Q2

�
�9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�9Q2

M2þ4Q4

M4

q �

M2

3
7775

2=3

2
66648þ 2Q4

M4 þ
Q2

�
�9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�9Q2

M2þ4Q4

M4

q �

M2

3
7775

1=3
:

(12)

As expected, in the limiting case Q ! 0, we obtain the
Schwarzschild value rmax

lsco ¼ 6M. The value of rlsco de-

creases as Q=M increases, until it reaches its minimum
value rmin

lsco ¼ 4M at Q=M ¼ 1. The general behavior of

rlsco in terms of the ratio Q=M is illustrated in Fig. 4.
Orbits with r > rlsco are stable. Circular motion in the

region r	þ < r < rlsco is completely unstable. Since the

velocity of a test particle at r ¼ r	þ must equal the velocity

of light, one can expect that a particle in the unstable region
will reach very rapidly the orbit at r ¼ rlsco. For a static
observer inside the unstable region, the hypersurface
r ¼ r	þ might appear as a source of ‘‘repulsive gravity.’’

This intuitive result can be corroborated by analyzing the
behavior of energy and angular momentum of test particles.
Indeed, Fig. 5 shows E=� and L=ðM�Þ as functions of
r=M, for different values of the charge-to-mass ratio of the
black hole. Both quantities diverge as the limiting radius
r ¼ r	þ is approached, indicating that an infinite amount of

energy and angular momentum is necessary to reach r ¼
r	þ . As the ratio Q=M increases, the values of the energy

and angular momentum at the last stable orbit decrease. For
large values of the radius, the energy of circular orbits
approaches the limit E ¼ �, and the angular momentum
L=ðM�Þ increases monotonically. A more detailed illus-
tration of this behavior in the case of the energy of the test
particle is represented in Fig. 6 which shows E=� in terms
of the ratio Q=M and the radial distance r=M.
The analytical expressions for the energy and angular

momentum at the last stable orbit can be obtained
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FIG. 3. The effective potential V for a neutral particle of mass
� in a RN black hole of charge Q and mass M is plotted in
terms of the radius r=M for different values of the angular
momentum L� � L=ðM�Þ and Q ¼ 0:5M. The outer horizon
is located at rþ � 1:87M. The effective potential has a mini-
mum, Vmin � 0:93, at rmin � 5:60M, for L� � 3:34. The plotted
points represent local extrema.
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FIG. 4. The radius of the last stable orbit rlsco=M is plotted as a
function of the ratio Q=M. Numbers close to the points represent
the value of the energy E=� and of the angular momentum
L=ð�MÞ (underlined numbers) of the corresponding orbit.
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FIG. 5. The pictures show (a) the energy E=� and (b) the angular momentum Lþ=ðM�Þ � L� of a circular orbit as a function of
r=M. Notice that for Q ¼ 0, the relevant radii are rþ ¼ 2M and r	þ ¼ 3M, and the minima are Emin=� � 0:943 and L�

min � 3:46,

with rmin ¼ 6M. Furthermore, for Q ¼ 0:5M, we obtain rþ � 1:87M and r	þ � 2:83M, so that the minima are Emin=� � 0:939 and

L�
min � 3:34, with rmin ffi 5:61M. The energy and angular momentum diverge as the limiting radius r	þ is approached.
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by introducing expression (12) into Eqs. (6) and (7).
A numerical analysis of the resulting expressions shows
the behavior depicted in Fig. 7.

As a general result, we obtain that the values for the
radius of the last stable orbit as well as of the correspond-
ing energy and angular momentum diminish due to the
presence of the electric charge. Physically, this means that
the additional gravitational field generated by the electric
charge acts on neutral particles as an additional attractive
force which reduces the radius of the last stable orbit [4–7].

Extreme black hole

In the case of an extreme black hole (Q ¼ M), the outer
and inner horizons coincide at r� ¼ M. The effective
potential vanishes at the horizon and tends to 1 as spatial
infinity is approached. In this open interval no divergencies
are observed. This behavior is illustrated in Fig. 8 where
the effective potential

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

�2r2

s �
1�M

r

�
(13)

is plotted for different values of the angular momentum
L=ðM�Þ. For Q ¼ M the radius of circular orbits is

rCO
M

¼ L2 � L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�8�2M2 þ L2

p
2�2M2

: (14)

The energy and angular momentum of test particles
moving along circular orbits are given by

E2

�2
¼ ðr�MÞ3

r2ðr� 2MÞ ;
L2

�2
¼ Mr2

r� 2M
: (15)

Consequently, timelike circular orbits are restricted by the
condition r > rgþ ¼ 2M. Figure 9 shows the behavior of

these quantities in terms of the radial distance. As r ! 2M,
the energy and angular momentum diverge, indicating that
the circular motion at r	þ is possible only along null geo-

desics. As expected, the local minimum of these graphics
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FIG. 6. The energy E=� of a test particle on a circular orbit as
a function of r=M and charge-to-mass ratio Q=M 2 ½0; 1�. The
radius of the last stable circular orbit is also plotted (thick line).
Numbers close to the points correspond to the energy and the
angular momentum (underlined numbers) of the last stable
circular orbit.
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FIG. 7. Plots of the energy Elsco=M (a), and the angular momentum Llsco=ð�MÞ (b) of the last stable circular orbit in terms of the
ratio Q=M of the black hole.

1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

r M

V

L 0

L 2 2

L 5

L 10

FIG. 8. The effective potential V for a neutral particle of mass
� in the field of an extreme RN black hole is plotted as a
function of the radius r=M for different values of the angular
momentum L� � L=ðM�Þ. The outer horizon is located at
rþ ¼ M. For L� � 2:83 the effective potential has a minimum
Vmin � 0:91 at rmin ¼ 4M. There is a maximum Vmax � 1:35
at r � 2:19M for L� ¼ 5, and for L� ¼ 10 the maximum
Vmax � 2:55 is located at r � 2:04M.
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determines the radius of the last stable orbit. At r ¼ rlsco ¼
4M, the energy is E � 0:918� and the angular momentum

L ¼ 2
ffiffiffi
2

p
�M.

III. NAKED SINGULARITY

In the naked singularity case Q>M and the energy and
angular momentum of the test particle can be written as

E

�
¼ r2�2MrþQ2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�3Mrþ2Q2

p ;
Lþ
�

¼þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr�Q2

r2�3Mrþ2Q2

s
:

(16)

In Fig. 10 a three-dimensional plot shows the energy as a
function of both the circular orbits radius and the charge-
to-mass ratio of the black hole.

From the expressions for energy and angular momen-
tum, we see that it is necessary to consider four different

cases: the value r ¼ r� ¼ Q2=M, the region inside the
interval 1<Q2=M2 < 9=8, the value Q2=M2 ¼ 9=8, and
finally the region defined byQ2=M2 > 9=8. In Figs. 11 and
12 the behavior of the effective potential is exemplified
for different values of the ratio Q=M.
Notice that for a RN naked singularity (Q=M > 1) the

following inequality holds:

r� � r	� � r	þ ; (17)

where r	� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 are the radii at

which the value of the angular momentum and the energy
of the test particle diverge [8–13].

A. Static test particles

Consider the orbit at r ¼ r�. In the naked singularity
case the timelike condition for the velocity 
g is satisfied
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FIG. 9. Plots of (a) the energy E=� and (b) the angular momentum Lþ=ðM�Þ � L� of a neutral test particle in circular motion
around an extreme RN black hole. The outer horizon is rþ ¼ M and r	þ ¼ 2M. At r ¼ 4M the minimum values of the energy

Emin=� � 0:91 and angular momentum L�
min � 2:83 are reached.
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FIG. 10. Plot of the energy E=� of a neutral particle in circular motion around a RN naked singularity as a function of r=M andQ=M
in the interval [1, 1.6] (a) and in the interval [1.1, 2] (b). The line r� ¼ Q2=M is also plotted. Numbers close to the points represent the
energy and the angular momentum (underlined numbers) of the last stable circular orbits.
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only for r 	 r� [see Eq. (A4)]. In the limiting case r ¼ r�,
a timelike orbit with

Lðr�Þ ¼ 0;
E

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

Q2

s
(18)

is allowed [8]. It is interesting to note that r� ¼ Q2=M
coincides with the value of the classical radius of an
electric charge which is usually obtained by using a com-
pletely different approach. This value appears here as the
radius at which a particle can remain ‘‘static’’ with respect
to an observer at infinity. This is an interesting situation
which can be explained intuitively only by assuming the
existence of a ‘‘repulsive’’ force. The above expression for
the energy of the particle indicates that only in the case of a

naked singularity a real value for the energy can be ob-
tained. In fact, in the case of a black hole, the radius r� is
situated inside the outer horizon so that r� cannot be
reached by classical test particles. We conclude that the
repulsive force can be the dominant gravitational force
only in the case of a naked singularity.

B. The interval 1 < Q2=M2 < 9=8

In the first region, for 1<Q2=M2 < 9=8 [see Fig. 12(b)],
timelike circular orbits can exist in the regions r� < r < r	�
and r > r	þ . The boundaries r ¼ r	� correspond to null

geodesics, as can be seen from the expression for the
velocity along circular orbits as defined in the Appendix
(
g� ¼ 1). This implies that there are two regions defined

by r < r� and r 2 ½r	� ; r	þ� where no timelike particles

can be found. This behavior is schematically illustrated in
Fig. 13. In the limiting caseQ2=M2 ! 1, the classical radius
coincides with r	� and therefore the only particle that can

remain static on the classical radius must be a photon.

C. The case Q2=M2 ¼ 9=8

For Q2=M2 ¼ 9=8, the exterior and interior photon or-
bits situated at r	þ and r	� coincide. The effective poten-

tial behaves as illustrated in Fig. 14. Local minima can be
found in different regions, depending on the value of the
angular momentum of the test particle. Timelike circular
orbits exist for all r > r�, except at r ¼ r	� ¼ 3M=2,

which corresponds to a photon orbit. The energy and
angular momentum of circular orbits are given by

E

�
¼ r2 � 2Mrþ 9

8M
2

rðr� 3
2MÞ ;

Lþ
�

¼þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr� 9

8MÞ
q

r� 3
2M

; (19)

and are plotted in Fig. 15. As the photon orbits are ap-
proached, the particle velocity tends to 
g ¼ 1 and the

energy and angular momentum diverge.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

r M

V

L 0

L 3.34
L 10

L 20

FIG. 11. The effective potential V for a neutral particle of mass
� in a RN naked singularity with Q=M ¼ 1:1 is plotted as a
function of the radius r=M for different values of the angular
momentum L� � L=ðM�Þ. The classical radius r� � Q2=M ¼
1:21M is represented by a dashed line. For L� ¼ 0 the effective
potential presents a minimum Vmin � 0:42 at rmin ¼ r�. For
L� � 3:37 the minimum Vmin=� � 0:95 is situated at rmin �
8:97M.
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FIG. 12. The effective potential V for a neutral particle of mass � in a RN naked singularity. Plot (a) is for Q=M ¼ 1:5 so that
r� ¼ Q2=M ¼ 2:25M. For the lowest value L� ¼ 0 at r ¼ r�, there is global minimum with Vmin � 0:74. The value of Vmin increases

as L� increases. Plot (b) corresponds to Q=M ¼ 1:06, and shows the characteristic radii r� ¼ 1:12M, r	þ � ½3Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 � 5:55M and r	� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 � 1:44M. For L� ¼ 0 the global minimum is at r ¼ r� with

Vmin � 0:33. As L� increases, the value of Vmin increases, and at L� � 2:7 a second local minimum appears. The first one with
Vmin � 0:81 is at rmin � 1:29M and the second one with Vmin � 0:91 is located at rmin � 3:5M.
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D. The region Q2=M2 > 9=8

For Q2=M2 > 9=8, the effective potential behaves as
illustrated in Figs. 11 and 12(a). Timelike circular orbits
can exist for all r > r�. The timelike velocity condition
(
g < 1) is always satisfied so that no limiting photon

orbits can exist in this case. The energy and the angular
momentum are plotted in Figs. 16 and 17. The angular
momentum increases as the radius of the orbit r=M in-
creases. In the limit of large values of r, the energy tends to
E ¼ �.

E. The last stable circular orbit

To analyze the stability of circular orbits around a RN
naked singularity, we solve Eq. (8) under the assumption
thatQ>M. It turns out that real solutions exist only in the

interval 1<Q=M <
ffiffiffi
5

p
=2. They can be represented as

r�lsco ¼ 2Mþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � 3Q2

q


 cos

�
1

3
arccos

�
8M4 � 9M2Q2 þ 2Q4

Mð4M2 � 3Q2Þ3=2
��

; (20)

rþlsco ¼ 2M� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � 3Q2

q


 sin

�
1

3
arcsin

�
8M4 � 9M2Q2 þ 2Q4

Mð4M2 � 3Q2Þ3=2
��

; (21)

and
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FIG. 14. The effective potential V for a neutral particle of mass

� in a RN naked singularity with Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
is plotted as a

function of the radius r=M for different values of the angular
momentum L� � L=ðM�Þ. In this case, r� ¼ Q2=M ¼ 1:12M

and r	� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 ¼ 1:5M.
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FIG. 15. Behavior of (a) the energy E=� and (b) the angular momentum Lþ=ðM�Þ � L� of a neutral particle moving along a

circular orbit around a RN naked singularity with Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
. Shaded regions are forbidden for timelike particles.
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FIG. 13. The pictures show (a) the energy E=� and (b) the angular momentum Lþ=ðM�Þ � L� of a neutral particle moving on a

circular orbit around a RN naked singularity with Q=M ¼ 1:06<
ffiffiffiffiffiffiffiffi
9=8

p
. The shaded regions are forbidden, i.e., circular orbits can

exist only in the regions defined by r� < r < r	� and r > r	þ , where r� ¼ Q2=M � 1:12M, r	� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 �
1:44M, and r	þ � ½3Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2 � 1:55M (see text). A minimum for the energy and the angular momentum is located at

rmin � 3:55M, where L�
min � 2:69 and Emin=� � 0:91. Moreover, L�ðr�Þ ¼ 0 and ðEmin=�Þðr�Þ � 0:33.
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FIG. 17. The pictures show (a) the energy E=� and (b) the angular momentum Lþ=ðM�Þ of a test particle of mass� in the field of a
RN naked singularity as a function of r=M and for different values of the ratioQ=M, satisfying the condition ðQ=MÞ2 > 9=8 (see text).
Circular orbits can exist only for r > r� � Q2=M.
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FIG. 16. The pictures show (a) the energy E=� and (b) the angular momentum Lþ=ðM�Þ � L� of a neutral particle moving along a
circular orbit in a RN naked singularity with Q=M ¼ 1:1 as a function of r=M. The shaded regions are forbidden. Circular orbits can
exist only for r > r� � 1:21M. A minimum of the energy and the angular momentum is located at rmin � 3:08M, where L�

min � 2:57
and Emin=� � 0:90. Moreover, L�ðr�Þ ¼ 0 and ðEmin=�Þðr�Þ � 0:33.
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FIG. 18 (color online). The radius of the last stable circular orbit (solid line) of a neutral particle moving in the field of a RN naked
singularity. The ratio Q=M varies in the interval [1, 2.2] in plot (a), and in the interval [1, 1.15] in plot (b). The dashed curve represents

the classical radius r� ¼ Q2=M. The dotted curve corresponds to photon orbits with radius r	� ¼ ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2, whereas
the dot-dashed curve denotes the photon orbits with radius r	þ ¼ ½3Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2. Shaded regions are forbidden. In the

interval 1<Q=M < 1:061 circular orbits can exist only for r� < r < r	� (all stable) and r > r	þ (unstable for r	þ < r < rþlsco and

stable for r > rþlsco). ForQ=M > 1:061 and r > r� the region of stability divides into two separated regions: r� < r < r�lsco and r > rþlsco.
The numbers close to the plotted points denote the energy E=� and the angular momentum L=ð�MÞ (underlined numbers) of the last
stable circular orbits.
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rc ¼ 2M� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 � 3Q2

q


 sin

�
�

6
þ 1

3
arccos

�
8M4 � 9M2Q2 þ 2Q4

Mð4M2 � 3Q2Þ3=2
��

: (22)

However, it can be shown that in this interval it holds
that rc < Q2=M ¼ r�, i.e., this solution is located inside
the classical radius where no timelike circular geodesics
are allowed. Moreover, r�lsco < rþlsco in the entire interval,

except at Q=M ¼ ffiffiffi
5

p
=2, where r�lsco ¼ rþlsco. For Q=M >ffiffiffi

5
p

=2 no solutions of Eq. (8) exist in the region defined by
r > Q2=M so that for ðQ=MÞ2 > 9=8 the last stable
‘‘circular’’ orbit is located precisely at r ¼ r� ¼ Q2=M.
This situation is sketched in Fig. 18, where it can be seen
that the energy of a particle located at r ¼ r� increases
as the charge-to-mass ratio increases. In the interval

1<Q=M <
ffiffiffi
5

p
=2, the energy and angular momentum of

circular orbits situated on r ¼ rþlsco increase as the ratio

Q=M increases. On the contrary, in the interval
ffiffiffiffiffiffiffiffi
9=8

p
<

Q=M <
ffiffiffi
5

p
=2, the energy and angular momentum of cir-

cular orbits with radius r ¼ r�lsco increase as the ratio Q=M

decreases. This is due to the fact that at Q=M ¼ ffiffiffiffiffiffiffiffi
9=8

p
, the

radius r�lsco coincides with the radii r	þ and r	� which

correspond to photonlike orbits. ForQ=M >
ffiffiffi
5

p
=2, the last

stable circular orbit is situated at the classical radius r� ¼
Q2=M and the entire region r > r� is a region of stability.

For
ffiffiffiffiffiffiffiffi
9=8

p
<Q=M <

ffiffiffi
5

p
=2, there are two regions of stable

orbits, namely, r� < r < r�lsco and r > rþlsco, separated by a

zone of instability defined by r�lsco < r < rþlsco. For 1<

Q=M <
ffiffiffiffiffiffiffiffi
9=8

p
, two regions of stable orbits appear at r� <

r < r	� and at r > rþlsco; these regions are separated by the

FIG. 19. The effective potential V for a neutral particle of mass� in a RN naked singularity is plotted as a function of the radius r=M
and of the angular momentum L� � L=ðM�Þ. Solid lines represent the radii of circular orbits. The last stable circular orbit radius is
denoted by a point. Plot (a) is for Q ¼ 1:1M so that r	� ¼ 1:04M, r	þ ¼ 1:95M. The classical radius is r� � Q2=M ¼ 1:21M, where

L� ¼ 0 and Vmin � 0:42. Unstable circular orbits are in r < 3:94M and at r ¼ 3:94M, the values are L� � 2:81 and V=� � 0:91. Plot
(b) is for Q ¼ 1:08M so that r	� do not exist and r� � Q2=M ¼ 1:16M with Vminðr�Þ � 0:37. Stable orbits are in the interval r� <
r < 1:68M and at the boundary, r ¼ 1:68M, the values are L� ¼ 3:55 and V=� ¼ 1:10. The interval 1:68M< r< 3:35M corresponds
to unstable orbits with the boundary values L� ¼ 2:64 and V=� ¼ 0:90 at r ¼ 3:35M. Stable orbits are located at r > 3:35M. Plot
(c) is for Q ¼ 2M and r� ¼ 4M. Stable circular orbits exist for r > 4M and at the boundary Vð4MÞ ¼ 0:86�.
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forbidden region, r	� < r < r	þ , in which no circular

timelike orbits exist, and by the instability region located
at r	þ < r < rþlsco.

The curves representing the radii of stable circular orbits
are also shown in Fig. 19, where the effective potential is
plotted for selected values of the Q=M as a function of the
angular momentum and the radius.

IV. BLACK HOLE VERSUS NAKED SINGULARITY

The main results obtained from the study of RN black
holes and naked singularities are here summarized and
compared in the plots of Figs. 20–22.

In the three-dimensional plots of Fig. 20 the energy and
the angular momentum (7) are shown as functions of the
circular orbits radius and the charge-to-mass ratio Q=M,
for both black hole and naked singularity cases.

Figure 21 shows the circular orbits radius as a function
of the angular momentum for different black holes and
naked singularities. The cases of a Schwarzschild space-
time and the Newtonian limit are also plotted for compari-
son. Clearly, for large values of r=M all the curves
converge to the Newtonian limit. Finally, the study of the
circular orbits stability for neutral test particles in the RN
spacetime is summarized in Fig. 22 where the radius of the
last stable circular orbits is plotted as a function of Q=M.

The location and structure of the stability regions
for neutral particles around a black hole differ in a very
strong way from the case of a naked singularity. Black
hole sources are characterized by the existence of only
one stability region which can extend from a minimum

radius rlsco 2 ½4M; 6M� up to infinity. In the case of a
naked singularity there are two possible scenarios. If the

mass-to-charge ratio satisfies the condition Q=M 	 ffiffiffi
5

p
=2,

there exists only one stability region which extends
from the classical radius r� ¼ Q2=M up to infinity. The
second scenario appears in naked singularities with
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FIG. 20. The pictures show the energy E=� (a) and the angular momentum Lþ=ð�MÞ (b) of a test particle moving along a circular
orbit around a RN source as a function of r=M and the charge-to-mass ratioQ=M in the range [0, 2]. The curve r ¼ r� � Q2=M is also
plotted. The numbers close to the points denote the energy and the angular momentum (underlined numbers) of the last stable circular
orbits.
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FIG. 21. The radius r=M of circular orbits for a neutral particle
of mass � in a RN geometry of charge Q and mass M is plotted
as a function of the angular momentum L=ð�MÞ for different
values of the charge-to-mass ratioQ=M in the interval [0, 2]. The
radius of circular orbits for the Newtonian limit (dashed curve)
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plotted. The plotted points represent the last stable circular
orbits. Black curves correspond to stable circular orbits, and
gray curves denote unstable circular orbits. The dotted line
represents the classical radius r ¼ r� � Q2=M.
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charge-to-mass ratio within the range 1<Q=M <
ffiffiffi
5

p
=2.

In this case, we have two stability regions separated by
either a region of instability or a forbidden region, where
no timelike circular orbits are allowed, and a region of
instability.

V. CONCLUSIONS

In this work we discussed the motion of neutral test
particles along circular orbits in the RN spacetime. We
studied separately the case of black holes and naked sin-
gularities, emphasizing their differences. Our analysis is
based on the study of the behavior of an effective potential
that determines the position and stability properties of
circular orbits. We also investigated in detail the behavior
of the energy and angular momentum of the test particle in
all possible configurations of black holes and naked
singularities.

We found that at the classical radius r ¼ r� ¼ Q2=M
circular orbits exist with ‘‘zero’’ angular momentum. This
means that a static observer situated at infinity would
interpret this situation as a test particle that remains mo-
tionless (r ¼ Q2=M ¼ const, � ¼ const) as time passes.
This phenomena can take place only in the case of a naked
singularity and is interpreted as a consequence of the
repulsive force generated by the charge distribution.

Black holes turn out to be characterized by a single zone
of stability which extends from a minimum radius rlsco up
to infinity. The radius of the last stable circular orbit has its
maximum value of rlsco ¼ 6M in the Schwarzschild limit-
ing case, and reaches its minimum value of rlsco ¼ 4M in

the case of an extreme black hole. The situation is com-
pletely different in the case of naked singularities. If the

mass-to-charge ratio satisfies the condition Q=M 	 ffiffiffi
5

p
=2,

there exists only one stability region which extends from
the classical radius r� ¼ Q2=M up to infinity. In this case,
the classical radius determines also the radius of the last
stable orbit that could be, in principle, as large as allowed
by the amount of charge Q that can be associated to a
given mass M. If the charge-to-mass ratio is within the

range 1<Q=M <
ffiffiffi
5

p
=2, we found two stability regions

that are separated either by a region of instability, in the

interval
ffiffiffiffiffiffiffiffi
9=8

p
<Q=M <

ffiffiffi
5

p
=2, or a region of instability

and a region forbidden for timelike orbits, in the interval

1<Q=M <
ffiffiffiffiffiffiffiffi
9=8

p
. This result implies that around a naked

singularity with 1<Q=M <
ffiffiffi
5

p
=2 the region of stability

splits into two nonconnected regions in which test particles
can remain orbiting forever.
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APPENDIX

Let us introduce an orthonormal frame adapted to the
static observers:

et̂ ¼ r��1=2@t; er̂ ¼ �1=2

r
@r;

e�̂ ¼
1

r
@�; e�̂ ¼ 1

r sin�
@�

(A1)

with dual

!t̂ ¼ �1=2

r
dt; !r̂ ¼ r��1=2dr;

!�̂ ¼ rd�; !�̂ ¼ r sin�d�:
(A2)

Consider the tangent to a (timelike) spatially circular orbit
ua as

u ¼ �ð@t þ �@�Þ ¼ 	½et̂ þ 
e�̂�;
where � and 	 are two normalization factors:

�2 ¼ ð�gtt � �2g��Þ�1 and 	2 ¼ ð1� 
2Þ�1

which assures that uau
a ¼ �1, where � is the angular

velocity with respect to infinity and 
 is the ‘‘local proper
linear velocity’’ as measured in the frame (A1). The angu-
lar velocity � is related to the local proper linear velocity
by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gtt

g��

s

;
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FIG. 22 (color online). The radius r=M of the last stable
circular orbit of a neutral particle of mass � in a RN geometry
of chargeQ and massM is plotted as a function of the ratioQ=M

in the interval [0, 1.5]. Here r	� � ½3M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9M2 � 8Q2Þp �=2
and r� � M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �Q2
p

(see text). In the Schwarzschild case,
Q ¼ 0, we find rlsco ¼ 6M, rþ ¼ 2M, and r	þ ¼ 3M. For an

extreme black hole, Q ¼ M, we find rlsco ¼ 4M with rþ ¼ M
and r	þ ¼ 2M. The numbers close to the plotted points denote

the energy E=� and the angular momentum L=ð�MÞ (under-
lined numbers) of the last stable circular orbit.

CIRCULAR MOTION OF NEUTRAL TEST PARTICLES IN . . . PHYSICAL REVIEW D 83, 024021 (2011)

024021-11



so that � ¼ 	=
ffiffiffiffiffiffiffiffiffiffi�gtt

p
. Here � and therefore also 
 are

assumed to be constant along the u orbit. As usual, we
limit our analysis to the equatorial plane; as a convention,
the physical (orthonormal) component along�@�, perpen-
dicular to the equatorial plane, will be referred to as along
the positive z axis and will be indicated by ẑ and so
eẑ ¼ �e�̂. Here we focus attention to the timelike circular

geodetic u� such that ru�u� ¼ 0, corotating (�þ) and

counterrotating (��) with respect to the assumed positive
(counterclockwise) variation of the � angle, respectively.
It results:

�� � ��g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMr�Q2Þp

r2
; (A3)

so that


g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr�Q2

�

s
; 	g ¼

�
�

r2 � 3Mrþ 2Q2

�
1=2

(A4)

u� ¼ 	gffiffiffiffiffiffiffiffiffiffi�gtt
p ð@t � �g@�Þ ¼ 	g½et̂ � 
ge�̂�; (A5)

with timelike condition 
g < 1 satisfied.

The particle’s four-momentum is given by pa ¼ �ua,
where ua is given by (A5). The conserved quantities asso-
ciated with temporal and azimuthal Killing vectors �t and
�� are, respectively,

p��
�
t ¼ ��

ffiffiffiffiffiffiffiffiffiffi�gtt
p

	g ¼ �E;

p��
�
� ¼ ��

	g�gr
2

ffiffiffiffiffiffiffiffiffiffi�gtt
p ¼ L�;

where E and L are the particle’s energy and angular
momentum, respectively. Substituting (A4), we infer

E

�
¼ �

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 3Mrþ 2Q2

p ;

L�
M�

¼ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� Q2

M

q
ffiffiffiffiffi
M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 3Mrþ 2Q2

p :

(A6)

These results are in agreement with the results obtained by
the study of the effective potential.
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