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In recent series of papers, we found an arbitrary dimensional, time-evolving, and spatially inhomogeneous

solution in Einstein-Maxwell-dilaton gravity with particular couplings. Similar to the supersymmetric case,

the solution can be arbitrarily superposed in spite of nontrivial time-dependence, since the metric is specified

by a set of harmonic functions. When each harmonic has a single point source at the center, the solution

describes a spherically symmetric black hole with regular Killing horizons and the spacetime approaches

asymptotically to the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cosmology. We discuss in this

paper that in 5 dimensions, this equilibrium condition traces back to the first-order ‘‘Killing spinor’’

equation in ‘‘fake supergravity’’ coupled to arbitrary Uð1Þ gauge fields and scalars. We present a five-

dimensional, asymptotically FLRW, rotating black-hole solution admitting a nontrivial ‘‘Killing spinor,’’

which is a spinning generalization of our previous solution. We argue that the solution admits nondegenerate

and rotating Killing horizons in contrast with the supersymmetric solutions. It is shown that the present

pseudo-supersymmetric solution admits closed timelike curves around the central singularities. When only

one harmonic is time-dependent, the solution oxidizes to 11 dimensions and realizes the dynamically

intersecting M2/M2/M2-branes in a rotating Kasner universe. The Kaluza-Klein–type black holes are also

discussed.
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I. INTRODUCTION

Supersymmetric solutions in supergravity have played
an important role in the development of string theory and
the anti–de Sitter (AdS)/conformal field theory (CFT)
correspondence. A pioneer work in this direction was the
great success of microscopic deviation of black-hole en-
tropy from the viewpoint of intersecting D-branes. By
virtue of the saturation of the Bogomol’nyi-Prasad-
Sommerfield (BPS) bound, the supersymmetric solutions
can provide an arena for exploring the nonperturbative
limits of string theory. The BPS equality constrains the
supersymmetry variation spinor to satisfy the first-order
differential equation. Such a covariantly constant spinor is
called a Killing spinor, which ensures that the energy is
positively bounded by central charges, guaranteeing the
stability of the theory. The relationship between vacuum
stability and BPS states was suggested byWitten’s positive
energy theorem [1], and later validated firmly by [2,3].

From the standpoint of a pure gravitating object, black-
hole solutions admitting a Killing spinor are sharply dis-
tinguished from non-BPS black-hole solutions. These BPS
configurations are dynamically very simple. First of all,
BPS black-hole solutions necessarily have zero Hawking
temperature (the converse is not true), implying that the
horizon is degenerate. Accordingly, they are free from
thermal excitation. Such a nonbifurcating horizon univer-
sally admits a throat infinity and enhanced isometries of

SOð2; 1Þ [4]. Secondly, most BPS solutions satisfy the
‘‘no-force’’ condition. For example, we are able to super-
pose the extreme Reissner-Nordström solutions at our
disposal due to the delicate compensation between the
gravitational attractive force and the electromagnetic re-
pulsive force. The resulting multicenter metric, originally
found by Majumdar and Papapetrou, maintains static equi-
librium and describes collection of charged black holes [5].
This property can be ascribed to the complete linearization
of field equations. Besides these, all the BPS black holes
are known to be strictly stationary, viz., the ergoregion
does not exist even if the black hole has nonvanishing
angular momentum. Dynamically evolving states are not
compatible with supersymmetry.
To what extent, then, do these known intuitive properties

continue to hold? Motivated by this inquiry, it is important
to explore general properties and classify BPS solutions. A
first progress was made by Tod, who cataloged all the BPS
solutions admitting nontrivial Killing spinors of four-
dimensionalN ¼ 2 supergravity [6], inspired by the early
study of Gibbons and Hull [2]. Recently, Gauntlett et al. [7]
were able to obtain general supersymmetric solutions in
five-dimensional minimal supergravity, exploiting bilin-
ears constructed from a Killing spinor. Since their tech-
nique has no restriction upon the spacetime dimensionality,
[7] has sparked a considerable development in the classi-
fications of supersymmetric solutions in various super-
gravities [8–11]. This formalism is useful for finding
supersymmetric black holes [12,13] and black rings
[14–16], and for proving the uniqueness theorem of certain
black holes [17,18]. It turns out that all the BPS black holes
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fulfill the above-mentioned properties except for the equi-
librium condition which is valid only in the ungauged case.

On the other hand, non-BPS black-hole solutions—
especially the time-dependent black-hole solutions—have
been much less understood. In this paper, we address some
properties of cosmological black-hole solutions which have
an interpretation as arising from the gauged supergravity
with noncompact R-symmetry gauged. The simplest theory
is the four-dimensional minimal de Sitter supergravity con-
sisting of the graviton, the Maxwell fields, and a positive
cosmological constant [19]. A time-dependent solution in
this theory was found by Kastor and Traschen [20,21],
which is the generalization of the Majumdar-Papapetrou
solution in the de Sitter background. The Kastor-Traschen
solution describes coalescing black holes in the contracting
de Sitter universe (or splitting white holes in the expanding
de Sitter universe) and inherits some salient characteristics
from the Majumdar-Papapetrou solution. The reason why
multicenter metric is in mechanical equilibrium irrespective
of the time-dependence is attributed to the first-order ‘‘BPS
equation’’ that extremizes the action, allowing the complete
linearization of field equations. Since these ‘‘BPS’’ states are
not truly supersymmetric in the usual sense, they are
referred to as pseudo-supersymmetric and the corresponding
theory is called a ‘‘fake’’ supergravity. Recently, all
pseudo-supersymmetric solutions in four- and five-
dimensional fake de Sitter fake supergravity were classified
using the spinorial geometry method [22,23] (see [24] for a
non-Abelian generalization).

In this paper, we discuss properties of pseudo-
supersymmetric solutions of five-dimensional fake super-
gravity with an arbitrary number of Uð1Þ gauge fields and
scalar fields. Some time-dependent black-hole solutions in
this theory have been available so far [25,26], but their
properties and causal structures are yet to be explored.
Even for the simplest case in which the harmonic function
is sourced by a single point mass, the spacetime is highly
dynamical except in the de Sitter supergravity. In the present
case, the background spacetime is the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) cosmology. (In the context of
fake supergravity, it is argued that the FLRW cosmologies
are duals of supersymmetric domain walls. See [27] for
details.) A series of recent papers of present authors
[28,29] revealed that the solution of a single point source
found in [30,31] actually describes a charged black hole in
the FLRW cosmology. Though the metric in [30,31]
were shown to be the exact solutions of the Einstein-
Maxwell-dilaton system, we show in this paper that the
five-dimensional solutions of [29,30] in fact satisfy the
first-order BPS equation in fake supergravity. The pseudo-
supersymmetry is indeed consistent with an expanding uni-
verse. This work will establish new insights for black holes
in time-dependent and nonsupersymmetric backgrounds.

The main concern in this paper is to see the effects of
black-hole rotation in 5 dimensions by restricting to the

single point mass case. As it turns out, rotation makes the
properties of spacetime much richer. Our work is organized
as follows. In Sec. II, we describe a fake supergravity
model and derive (in a gauge different from [32]) a
rotating, time-dependent solution preserving the pseudo-
supersymmetry. Section III is devoted to exploring
physical and geometrical properties of the spacetime. We
establish that the black-hole horizon is generated by a
rotating Killing horizon, in sharp contrast with the super-
symmetric black-hole horizon which admits a nonrotating
degenerate Killing horizon without an ergoregion. It is also
demonstrated that the solution generally admits closed
timelike curves in the vicinity of timelike singularities
(with a trivial fundamental group). Combining the analysis
of the near-horizon geometries, we shall elucidate the
causal structures by illustrating Carter-Penrose diagrams.
In Sec. IV, the lift-up and reduction scheme of the five-
dimensional solution is accounted for. It is shown that the
five-dimensional solutions derived in [29,30] and in
Sec. III are elevated to describe the non-BPS dynamically
intersecting M2/M2/M2-branes in eleven-dimensional su-
pergravity. Upon dimensional reduction, the four-
dimensional black hole [30,33] is obtainable. We shall
also present some Kaluza-Klein black holes in the FLRW
universe. Section V gives final remarks.
We will work in mostly plus metric signature and the

standard curvature conventions 2r½�r��V� ¼ R�
���V

�.

Gamma matrix conventions are such that ������ ¼
i������ with �01234 ¼ 1 and �c :¼ ic y�0.

II. FIVE-DIMENSIONAL SOLUTIONS IN
MINIMAL SUPERGRAVITY

The metrics obtained in [28–31] are the exact solutions
of Einstein’s equations sourced by two Uð1Þ fields and a
scalar field coupled to the gauge fields. Since the solution
involves two kinds of harmonic functions, it manifests
mechanical equilibrium regardless of time-evolving space-
time. When each harmonic has a point source at the center,
the solution in [28–31] describes a spherically symmetric
black hole embedded in the FLRW cosmology. In this
section, we consider a five-dimensional supergravity-type
Lagrangian and present more general (pseudo-) BPS solu-
tions, which encompass the five-dimensional solution in
[29,30] as a special limiting case.
Let us start from the minimal five-dimensional gauged

supergravity coupled to N abelian vector multiplets. The

bosonic action involves gravitonUð1Þ gauge fields AðIÞ (I ¼
1; . . . ; N) with real scalars �A (A ¼ 1; . . . ; N � 1) [34],

S ¼ 1

2	2
5

Z �
ð5Rþ 2g2VÞ ?5 1� GABd�

A ^ ?5d�
B

�GIJF
ðIÞ ^ ?5F

ðJÞ � 1

6
CIJKA

ðIÞ ^ FðJÞ ^ FðKÞ
�
;

(2.1)
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whereFðIÞ ¼ dAðIÞ are the field strengths of gauge fields and
g is the coupling constant corresponding to the reciprocal of
the AdS curvature radius. CIJK are constants symmetric in
(IJK) and obey the ‘‘adjoint identity’’

CIJKCJ0ðLMCPQÞK0
JJ0
KK0 ¼ 4

3

IðLCMPQÞ; (2.2)

where the round brackets denote symmetrization of the
suffixes. The potential V can be expressed in terms of a
superpotential W as

V ¼ 6W2 � 9

2
GABð@AWÞð@BWÞ; (2.3)

where @AX
I :¼ dXIð�Þ=d�A. The superpotential takes the

form

W ¼ VIX
I; (2.4)

where VI are constants arising from an Abelian gauging of
the SUð2Þ-R-symmetry with the gauge field A ¼ VIA

I [34].
The N-scalars XI are constrained by

V :¼ 1

6
CIJKX

IXJXK ¼ 1: (2.5)

It is convenient to define

XI ¼ 1

6
CIJKX

JXK; (2.6)

in terms of which Eq. (2.5) is simply XIX
I ¼ 1. The cou-

pling matrix GIJ is the metric of the ‘‘very special geome-
try’’ [35] defined by

GIJ :¼ � 1

2

@2

@XI@XJ lnV jV¼1 ¼
9

2
XIXJ � 1

2
CIJKX

K;

(2.7)

with its inverse

GIJ ¼ 2XIXJ � 6CIJKXK; (2.8)

where CIJK ¼ 
IL
JP
KQCLPQ. The other coupling matrix

GAB is given by

G AB ¼ GIJ@AX
I@BX

J: (2.9)

It follows that

XI ¼ 9

2
CIJKXJXK; (2.10)

and

XI ¼ 2

3
GIJX

J; XI ¼ 3

2
GIJXJ: (2.11)

From these relations, we obtain useful expressions

dXI ¼ � 2

3
GIJdX

J;

dXI ¼ � 3

2
GIJdXJ;

XIdXI ¼ XIdX
I ¼ 0;

GAB@AX
I@BX

J ¼ GIJ � 2

3
XIXJ:

(2.12)

Using these formulae, the potential reads

V ¼ 27CIJKVIVJXK: (2.13)

If this theory is derived via gauging the supergravity derived
from the Calabi-Yau compactification of M-theory,V is the
intersection form, andXI andXI correspond, respectively, to
the size of the two- and four-cycles. The constants CIJK are
the intersection numbers of the Calabi-Yau threefold and N
denotes the Hodge number h1;1 [36].
The governing equations are the Einstein equations

(varying g��),

5R�� � 1

2
ð5Rþ 2g2VÞg��

¼ GIJ

�
ðr�X

IÞðr�X
JÞ � 1

2
ðr�XIÞðr�X

JÞg��

þ F
ðIÞ�
� FðJÞ

�� � 1

4
FðIÞ
��FðJÞ��g��

�
; (2.14)

the electromagnetic field equations (varying AðIÞ),

r�ðGIJF
ðJÞ��Þ � 1

16
CIJK�

�����FðJÞ
��F

ðKÞ
�� ¼ 0; (2.15)

where ������ is the metric-compatible volume element,

and the scalar-field equations (varying �A),�
r�r�XI þ 6g2VLVMCIJKC

KLMXJ

þ
�
CIJLXKX

L � 1

6
CIJK

��
ðr�X

JÞðr�XKÞ

þ 1

2
FðJÞ
��FðKÞ��

��
@AX

I ¼ 0: (2.16)

From the condition XIdX
I ¼ 0, the terms in square brack-

ets in the above equation must be proportional to XI.
Denoting it by LXI, one obtains the expression of L using
the relation XIX

I ¼ 1. The scalar equations are then
rewritten as

r�r�XI þ
�
1

2
CJKLXIX

L � 1

6
CIJK

�
ðr�XJÞðr�X

KÞ
þ 6g2CJLMVLVMð6XIXJ � CIJKX

KÞ
þ 1

2

�
CIJLXKX

L � 1

6
CIJK � 6XIXJXK

þ 1

6
CJKLXIX

L

�
FðJÞ
��FðKÞ�� ¼ 0: (2.17)
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The supersymmetric transformations for the gravitino
c � and gauginos �A are given by


c � ¼
�
D� � 3i

2
gVIA

ðIÞ
� þ i

8
XIð��

�� � 4
�
���ÞFðIÞ

��

þ 1

2
g��X

IVI

�
�; (2.18)


�A ¼
�
3

8
���FðIÞ

��@AXI � i

2
GAB�

�@��
B

þ 3i

2
gVI@AX

I

�
�; (2.19)

where � is a spinor generating an infinitesimal supersym-
metry transformation. Here and throughout the paper, D�

will be used for a gravitationally covariant derivative
defined by

D �� ¼
�
@� þ 1

4
!�

ab�ab

�
�; (2.20)

where !�
ab is a spin connection without torsion. We have

used the Dirac spinor instead of the symplectic Majorana
spinor. The supersymmetric solutions in this theory have
been analyzed [11]. One recovers ungauged supergravity
by g ! 0.

A. Pseudo-supersymmetric solutions in
fake supergravity

If we consider a noncompact gauging of R-symmetry, an
imaginary coupling arises, g ! ikðk 2 RÞ. Since only the
R-symmetry is gauged, the imaginary coupling reflects the
noncompactness of R-symmetry. The Lagrangian (2.1) is
neutral under the R-symmetry, so that the theory is free
from the ghostlike contribution. This theory is called a
fake supergravity. The fake ‘‘Killing spinor’’ equations
reduce to�
D� þ 3k

2
VIA

ðIÞ
� þ i

8
XIð��

�� � 4
�
���ÞFðIÞ

��

þ i

2
k��X

IVI

�
� ¼ 0; (2.21)

�
3

8
���FðIÞ

��@AXI � i

2
GAB�

�@��
B � 3

2
kVI@AX

I

�
� ¼ 0:

(2.22)

Here, the supercovariant derivative operator is no longer
hermitian for k 2 R. This implies that we are unable to use
� to prove the positive energy theorem in the usual manner.
Still, we presume that the above Eqs. (2.21) and (2.22)
continue to be valid for k 2 R.

Inferring from the supersymmetric solutions in [11], we
assume the standard metric ansatz,

ds25 ¼ �f2ðdtþ!Þ2 þ f�1hmndx
mdxn; (2.23)

where the four-metric hmn is orthogonal to V� ¼ ð@=@tÞ�
(iVh�� ¼ 0) and is supposed to be independent of t

(LVh�� ¼ 0). The one-form ! corresponds to the Uð1Þ
fibration of the transverse base space ðB; hmnÞ. In what
follows, indicesm; n; . . . are raised and lowered by hmn and
its inverse hmn. The connection ! is orthogonal to the
timelike vector field V� and assumed to be independent
of t (LV! ¼ 0). We further suppose that the lapse function
is given by

f�3 ¼ 1

6
CIJKHIHJHK; (2.24)

whereHI’s are some functions. We also assume the profiles
of the electromagnetic and the scalar fields as

AðIÞ ¼ fXIðdtþ!Þ; XI ¼ 1

3
fHI: (2.25)

In the ungauged supersymmetric case (when g ¼ 0), the
condition (2.24) is obtained as a special case of the general
supersymmetric solutions, as referred to hereinafter in
Sec. IV. In this section, however, we just assume (2.24).
Taking the orthonormal frame

e0 ¼ fðdtþ!Þ; ei ¼ f�1=2êi; (2.26)

where êi is the orthonormal frame for hmn, one can calcu-
late the time and spatial components of ‘‘Killing spinor’’
Eq. (2.21), which are given by�
@t þ kfVIX

I þ
�
1

2
fkVIX

I þ 1

4
f3@½m!n��̂mn

þ i

2
f1=2ð@mf�!m@tfÞ�̂m

�
ð1� i�0Þ

�
� ¼ 0; (2.27)

�
hDm �!m@t � 1

2f
ð@mf�!m@tfÞi�0

þ f3=2

2

�
1

2
h�mn

pq@½p!q� þ @½m!n�
�
�̂n�0

þ i

2f1=2
�̂m

�
kVIX

I þ i�0@tf

2f2

�

þ
�
� 1

4f
ð@nf�!n@tfÞ�̂m

n � if3=2@½m!n�
�

� ð1� i�0Þ
�
� ¼ 0; (2.28)

where �̂m ¼ êi
m�i. hD and h� are, respectively, the

Lorentz covariant derivative and the volume element with
respect to hmn. From Eqs. (2.24) and (2.25), we have a
useful relation

kVIX
I þ 1

2
f�2@tf ¼ 1

2
f2CIJKHIHJ

�
kVI � 1

6
@tHI

�
:

(2.29)

Thus, if d! satisfies the anti-self-duality condition,
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d!þ ?hd! ¼ 0; (2.30)

where ?h denotes the Hodge dual operator with respect to
the base space metric hmn and if HI ’s satisfy the differen-
tial equations @tHI ¼ 6kVI, the Killing spinor equations
are solved by

i�0� ¼ �; (2.31)

� ¼ f1=2�: (2.32)

Here, � is a covariantly constant Killing spinor with respect
to the four-dimensional metric hmn,

hDm� ¼ 0; (2.33)

satisfying

�̂ 1234� ¼ �: (2.34)

It follows that HI’s take the form

HIðt; xmÞ ¼ 6kVItþ �HIðxmÞ; (2.35)

where HI’s are functions on the base space.
The integrability condition of Eq. (2.33) is

hRmnpq�̂
pq� ¼ 0. From the chirality condition (2.34), one

can find that �̂mn� is anti-self-dual on the base space. This
implies that the Riemann tensor of hmn is self-dual
?hðhRmnpqÞ ¼ hRmnpq. Hence, the base space ðB; hmnÞ
turns out to be the hyper-Kähler manifold, whose complex

structures JðiÞ are anti-self-dual ?hJ
ðiÞ ¼ �JðiÞ. The

chirality condition (2.34) is a direct consequence of
i�0� ¼ �, which is the only projection imposed on the
Killing spinor. It follows that the solution preserves at least
half of pseudo-supersymmetries. If Eqs. (2.35) and (2.31)
are satisfied, one verifies that the dilatino Eq. (2.22) is
satisfied automatically.

Let us next turn to the Maxwell Eq. (2.15). Only the 0th
component is nontrivial, giving

h� �HI ¼ 0; (2.36)

where h� is the Laplacian operator with respect to hmn.
This equation manifests the complete linearization.

All the metric components are obtained by use of the
Killing spinor and Maxwell equations under our ansatz.
We have nowhere solved the scalar and Einstein’s equa-
tions so far. Nevertheless, these equations are automati-

cally satisfied if the Bianchi identities dFðIÞ ¼ 0 and
Maxwell Eqs. (2.15) are satisfied, on account of the
integrability conditions for the pseudo-Killing spinor
equations.

The procedure for generating time-dependent back-
grounds presented here was previously given in [25]. It
is, however, observed that the above metric form is not
fully general. According to the analysis for the de Sitter
supergravity [23], the base space is allowed to have a
torsion. We expect that the general classification in this
theory is also possible following the same fashion as [23].

B. Rotating black hole in STU theory

To be concrete, let us consider the ‘‘STU theory,’’ which
is defined by the conditions such that C123 ¼ Cð123Þ ¼ 1
and the other CIJK’s vanish. In this theory, one has three
Abelian gauge fields and two unconstrained scalars. For
simplicity, let us choose the flat space as a base space
ðB; hmnÞ,

ds2B¼dr2þr2ðd#2þsin2#d�2
1þcos2#d�2

2Þ: (2.37)

Then, the equation for ! (2.30) is easily solved to give

! ¼ J

r2
ðsin2#d�1 þ cos2#d�2Þ; (2.38)

where the volume form of ðB; hmnÞ is taken as dr ^
ðrd#Þ ^ ðr sin#d�1Þ ^ ðr cos#d�2Þ and J is a constant
representing the rotation of the spacetime.
In what follows, we shall specialize to the case where

each harmonic function has a point source at the origin /
QI=r

2. Denoting

tI ¼ ð6kVIÞ�1; (2.39)

we classify the solutions into the following four cases
depending on how many VI’s vanish [37].

(i) V1 ¼ V2 ¼ V3 ¼ 0, for which

H1 ¼ 1þQ1

r2
; H2 ¼ 1þQ2

r2
;

H3 ¼ 1þQ3

r2
:

(2.40)

This is nothing but the solution in the ungauged true
supergravity in which the scalar-field potential
vanishes. The supersymmetric solutions have been
completely classified in [11,15]. This theory can
be uplifted to eleven-dimensional supergravity, as
described later. The eleven-dimensional solution de-
scribes the rotating M2/M2/M2-branes preserving
1=8 supersymmetry. In the following, we do not
elaborate this case unless otherwise stated, since its
physical properties have been widely discussed in
the existing literature [38–40].

(ii) V1 � 0, V2 ¼ V3 ¼ 0, for which

H1 ¼ t

t1
þQ1

r2
; H2 ¼ 1þQ2

r2
;

H3 ¼ 1þQ3

r2
:

(2.41)

This case corresponds also to the zero-potential
V ¼ 27CIJKVIVJXK ¼ 0 due to C11K ¼ 0. It is
notable that the potential height V1 makes a contri-
bution to the pseudo-Killing spinor Eqs. (2.21) and
(2.22). This pseudo-supersymmetric solution can
be oxidized to 11 dimensions, but the resultant
spacetime is not pseudo-supersymmetric since
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eleven-dimensional supergravity has no potential
term. The oxidized solution is interpreted as the
intersecting M2/M2/M2-branes in the background
rotating Kasner universe. The detail is described in
Sec. IVA2.

(iii) V1, V2 � 0, V3 ¼ 0, for which

H1 ¼ t

t1
þQ1

r2
; H2 ¼ t

t2
þQ2

r2
;

H3 ¼ 1þQ3

r2
:

(2.42)

These two cases (ii) and (iii) have not been dis-
cussed in [25], although the authors arrived at the
same equation as (2.35).

(iv) V1; V2; V3 � 0, for which

H1 ¼ t

t1
þQ1

r2
; H2 ¼ t

t2
þQ2

r2
;

H3 ¼ t

t3
þQ3

r2
:

(2.43)

When t1 ¼ t2 ¼ t3 andQ1 ¼ Q2 ¼ Q3, all scalar fields are
trivial. This case corresponds to the fake de Sitter super-
gravity for which the potential is constant g2V ¼ �3=ð2t21Þ.
The complete classification of timelike class for the de Sitter
supergravity was done in [22,23].

Even if tI ’s and QI’s are not all identical, this solution
inherits many properties of that in de Sitter supergravity,
irrespective of nontrivial scalar fields XI. In fact, by a
coordinate transformation

r0 ¼ r

�
t

t0

�
1=2

; ln

�
t

t0

�
¼ t0

t0
þ

Z r0 h2ðr0Þ
h1ðr0Þdr

0;

�1;2 ¼ �0
1;2 þ

Z r0
h2ðr0Þdr0;

(2.44)

where t0 � ðt1t2t3Þ1=3 and

h1ðr0Þ :¼ Jr02t0
H3r06 � J2

; h2ðr0Þ :¼ 2Jr0t0
J2 �H3r06 þ 4r04t20

;

H3 :¼
�
t0
t1
þQ1

r02

��
t0
t2
þQ2

r02

��
t0
t3
þQ3

r02

�
; (2.45)

the metric (2.43) can be brought to the stationary form,

ds2¼ r02H
4t20

dt02�H�2

�
dt0 þ J

r02
ðsin2#d�0

1þcos2#d�0
2Þ
�
2

þH

�
dr02

1�H3r02=ð4t20ÞþJ2=ð4t20r04Þ
þr02ðd#2þsin2#d�02

1 þcos2#d�02
2 Þ
�
: (2.46)

This is asymptotically de Sitter with curvature radius
‘ ¼ 2t0 [32].

When the rotation vanishes (! ¼ 0), these solutions
reduce to the ones considered in our previous papers
[28,29], describing a spherically symmetric black hole in
a five-dimensional FLRW universe. It is then expected that
the present solution describes a rotating black hole in the
expanding universe. To see this more concretely, let us
consider the asymptotic limit r ! 1 of the solutions. Let
n denote the number of time-dependent harmonics, i.e.,
n ¼ 1, 2, and 3 are the cases (ii), (iii), and (iv), respec-
tively. Changing to the new time slice

�t

�t0
¼

�
t

t0

�
1�n=3

; �t0 ¼ 3t0
3� n

; (2.47)

for n ¼ 1, 2 and �t ¼ t0 lnðt=t0Þ for n ¼ 3, one easily finds
that each solution (2.40), (2.41), (2.42), and (2.43) ap-
proaches the five-dimensional flat FLRW universe,

ds25 ¼ �d�t2 þ a2
mndx
mdxn: (2.48)

Here, �t measures the cosmic time at infinity and the scale
factor obeys

a ¼ ð�t=�t0Þn=½2ð3�nÞ�; (2.49)

for n ¼ 1, 2 and

a ¼ e�t=2t0 ; (2.50)

for n ¼ 3, which are, respectively, the same expansion law
as the stiff-matter dominant universe (n ¼ 1), the universe
filled by fluid with equation of state P ¼ ��=2 (n ¼ 2),
and the de Sitter universe with curvature radius 2t0 (n ¼ 3).
In either case, the solution tends to be spatially homoge-
neous and isotropic in the asymptotic region r ! 1.
On the other hand, when one takes the limit in which r

goes to zero with t kept finite, the solution (3.1) approaches
to a deformed AdS2 � S3:

ds2r!0 ¼ �
�
r2

�Q

�
2
�
dtþ J

r2
ðsin2#d�1 þ cos2#d�2Þ

�
2

þ
� �Q

r2

�
2
dr2 þ �Qd�2

3; (2.51)

where �Q � ðQ1Q2Q3Þ1=3 and d�2
3 denotes the unit line

element of S3. This is the same as the near-horizon geome-
try of a Breckenridge-Myers-Peet-Vafa (BMPV) black
hole [17,40], implying that r ¼ 0 is a point at the tip of
an infinite throat. Note that when all harmonics are time-
independent, the solution reduces to the BMPV black hole
with a degenerate horizon at r ¼ 0.
It is noteworthy, however, that this metric (2.51) does not

describe the geometry of a neighborhood of ‘‘would-be
horizon,’’ since we have fixed the time coordinate when
taking the r ! 0 limit. As pointed out in [28,29], the null
surfaces piercing the throat correspond to the infinite red-
shift (t ! þ1) and blueshift (t ! �1) surfaces. The
structures of these null surfaces can be analyzed by taking
the appropriate ‘‘near-horizon’’ limit, as we will discuss
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later. As it turns out, the horizon, if it exists, is not extremal
in general, contrary to the naı̈ve expectations from (2.51).

The reason why we consider rotating black holes in 5
dimensions is that rotation is compatible with supersym-
metry in 5 dimensions. In D dimensions, the gravitational
attractive force and centrifugal force behave, respectively,
as �M=rD�3 and J2=M2r2, so that the balance is main-
tained only in D ¼ 5. The spinning cosmological solution
in the Einstein-Maxwell-axion gravity is obtained via
dimensional reduction of a chiral null model in 5 dimen-
sions [41].

Incidentally, let us mention the issue of the fact that
the action involved several gauge fields. This is a necessary
price in order to obtain the finite-sized horizon area.
With just a single gauge field, the spacetime becomes
nakedly singular unless the scalar-field potential is a
pure cosmological constant. A specific example is given
in Appendix A within the framework of the Einstein-
Maxwell-dilaton gravity.

III. PHYSICAL PROPERTIES OF FIVE-
DIMENSIONAL ROTATING BLACK HOLES

Let us explore the physical properties of the solutions
(2.40), (2.41), (2.42), and (2.43). For further simplicity of
our argument, we shall confine ourselves to the case in
which all charges are identical (Q1 ¼ Q2 ¼ Q3 � Q> 0)
and all the potential heights are the same (t1 ¼ t2 ¼ t3 �
t0 > 0). Then, the metric (2.23) is described in a unified
way as

f ¼ H�n=3
T H�1þn=3

S ; (3.1)

with

HT :¼ t

t0
þ Q

r2
; HS :¼ 1þ Q

r2
; (3.2)

where nð¼ 0; 1; 2; or 3Þ counts the number of time-
dependent harmonics. This section is devoted to exploring
physical properties of the solution (3.1) with (3.2). Here
and hereafter, the subscript ‘‘T’’ and ‘‘S’’ will be used
consistently for the time-dependent and time-independent
quantities. The time-dependent and static scalar fields XI

are given by

XT ¼ 1

3

�
HT

HS

�
1�n=3

; XS ¼ 1

3

�
HT

HS

��n=3
: (3.3)

Similarly, the gauge fields AðIÞ are

AðTÞ ¼ H�1
T

�
dtþ J

2r2
�R

3

�
;

AðSÞ ¼ H�1
S

�
dtþ J

2r2
�R

3

�
:

(3.4)

The solution reduces to the BMPV solution, describing an
asymptotically flat rotating black hole for n ¼ 0 [38,39],

the Klemm-Sabra solution describing a rotating black hole
in the de Sitter universe for n ¼ 3 [32].
Our previous solution describing a spherically symmet-

ric black hole in the FLRW universe is recovered when the
rotation vanishes ! ¼ 0 [29]. To make contact with the
notation of the reference [29], let us define a canonical
scalar field

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3� nÞ

6

s
ln

�
HT

HS

�
; (3.5)

and make the replacements the electromagnetic fields as

ðAðTÞ; AðSÞÞ ! 1ffiffiffiffiffiffiffi
2

p ðAðTÞ; AðSÞÞ: (3.6)

Then, the solution (3.1) with (3.2), (3.5), and (3.6) solves
the field equations derived from the action,

S5 ¼ 1

2	2
5

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�g5
p �

5R� ðr�Þ2 � nðn� 1Þ
2t20

e��T�

� X
A¼T;S

nAe
�A�FðAÞ

��FðAÞ�� þ 2������AðTÞ
� FðSÞ

��F
ðSÞ
��

�
;

(3.7)

where nT ¼ 3� nS ¼ n and

�T ¼ 2

ffiffiffiffiffiffiffiffi
2nS
3nT

s
; �S ¼ �2

ffiffiffiffiffiffiffiffi
2nT
3nS

s
; (3.8)

which is the D ¼ 5 action considered in [29] when the
Chern-Simons term does not contribute, i.e., there is no
rotation.
When the theory is motivated by supergravity, the pa-

rameter n takes an integer value. We should stress that even
if n is not an integer, the aforementioned metric (2.23) with
(3.1) and (3.2) is still an exact solution of the Einstein-
Maxwell scalar system, in which we have two Uð1Þ fields
coupled to the scalar field with a Liouville-type exponen-
tial potential (3.7). The solution with nonintegral values of
0< n< 2 is qualitatively similar to the one with n ¼ 1.
(The case 2< n< 3 has no representative in this paper.)
The geometrical properties with n ¼ 1 discussed in what
follows are also applied to the solution with 0< n< 2.

A. Symmetries

At first sight, one might expect that the metric admits
Uð1Þ �Uð1Þ spatial symmetries generated by @=@�1 and
@=@�2. In order to see that the solution indeed admits
much larger symmetry, let us introduce the Euler angles
ð�;�; c Þ by
� ¼ 2#; � ¼ �2 ��1; c ¼ �2 þ�1; (3.9)

which take ranges in 0 � � � , 0 � � � 2, and 0 �
c � 4. In terms of the above coordinates, the left-
invariant one-forms �R

i (i ¼ 1; 2; 3) on SUð2Þ ’ S3 are
given by
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�R
1 ¼ � sinc d�þ cosc sin�d�; (3.10)

�R
2 ¼ cosc d�þ sinc sin�d�; (3.11)

�R
3 ¼ dc þ cos�d�: (3.12)

These one-forms satisfy

d�2
3 ¼

1

4

X
i

ð�R
i Þ2; d�R

i ¼
1

2

X
k

�ijk�
R
j ^�R

k : (3.13)

The right-invariant vector fields �L
i are the spacetime

Killing fields. They are given by

�L
1 ¼ � cos�

sin�
@c þ sin�@� þ cot� cos�@�; (3.14)

�L
2 ¼ sin�

sin�
@c þ cos�@� � cot� sin�@�; (3.15)

�L
3 ¼ @�; (3.16)

which are the generators of the left transformations of
SUð2Þ. These Killing vectors satisfy

L �L
i
�R

j ¼ 0; ½�L
i ; �

L
j � ¼

X
k

�ijk�
L
k ;

�
@

@�3

�
2 ¼ 4

X
i

�L
i �

L
i :

(3.17)

In addition to these, there exists an additional Uð1Þ Killing
field

�R
3 ¼ @c : (3.18)

The orbits of �R
3 are the fibers of Hopf fibration of S3. It

follows that the metric is invariant under the action of
Uð2Þ ’ SUð2Þ � Uð1Þ, acting on the three-dimensional or-
bits which are spacelike at infinity. Thus, the metric is
expressed as

ds2 ¼ �f2
�
dtþ J

2r2
�R

3

�
2 þ f�1ðdr2 þ r2d�2

3Þ: (3.19)

As discussed in [42], the metric with Uð2Þ symmetry
admits a reducible Killing tensor

rð�K��Þ ¼ 0; K�� ¼ X
i

ð�L
i Þ�ð�L

i Þ�; (3.20)

which enables us to separate angular variables for the
geodesic motion and scalar-field equation. It should be
remarked, however, that the solution does not admit a
timelike Killing field, so that the geodesic motion is not
immediately solved.

B. Singularities

One can immediately find that the scalar fields XI (3.3)
blow up at

t ¼ tsðrÞ :¼ � t0Q

r2
and r2 ¼ �Q: (3.21)

Straightforward calculations reveal that all the curvature
invariants are divergent at these spacetime points, i.e., they
are spacetime curvature singularities. For example, the
Ricci scalar curvature is given by

5R ¼ f4

6r8H2
T

�
2nð3n� 4Þr8

t20f
6

þ J2
�
24H2

T þ
nð2� nÞr2

t20f
3

�
� 4Q2r2Hn

TH
1�n
S f2ðnH2

S þ ð3� nÞH2
TÞ

� ðnHS þ ð3� nÞHTÞ2g
�
; (3.22)

which diverges at the above spacetime points, as expected.
Note that the t ¼ 0 surface and the surface r ¼ 0 with t

kept finite are not the curvature singularities, where the
curvature invariants are bounded. Hence, the big-bang
singularity at t ¼ 0 is completely smoothed out due
to electromagnetic charges. As in the case (i), the surface
r ¼ 0 is a plausible candidate for event horizon.

C. Closed timelike curves

Since the vector field �R
3 ¼ @c generates closed orbits

of the period 4, there appear to be closed timelike curves
if an orbit of �R

3 becomes timelike. Rewrite the metric

(3.19) as

ds2 ¼ � f2

�L

dt2 þ dr2

f
þ r2

4f

�
ð�R

1 Þ2 þ ð�R
2 Þ2

þ�L

�
�R

3 � 2Jf3

r4�L

dt

�
2
�
; (3.23)

where

�L :¼ 1� J2f3

r6
: (3.24)

Inspecting

gð�R
3 ; �

R
3 Þ ¼

f2

4

�
Hn

TH
3�n
S � J2

r6

�
; (3.25)

we can see that the first term on the right-hand side vanishes
at the singularities. It follows that the Hopf fibres become
timelike, i.e., closed timelike curves inevitably emerge in
the vicinity of singularities for all values of Jð� 0Þ. �L ¼ 0
defines the velocity of light surface (VLS), where closed
causal curves appear for �L < 0. For n ¼ 0 (the BMPV
spacetime without time-dependence), the VLS is located at

r2 ¼ J2=3 �Q, which is inside the horizon for the small

rotation J2=3 <Q; otherwise it is outside the horizon.
For n � 0, the VLS has the time-dependent profile

tVLSðrÞ :¼ t0
r2

��
J2

ðr2 þQÞ3�n

�
1=n �Q

�
: (3.26)
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Since S3 is Uð1Þ fibration over S2, one can introduce the
radius of S2 by

R ¼ jrjf�1=2: (3.27)

In terms of R, the VLS is positioned at the constant radius,

RL ¼ J1=3: (3.28)

We shall declare the region R< RL (R> RL) inside (out-
side) the VLS. Inside the VLS, �R

3 is pointing into the

future direction for J > 0 and into the past one for J < 0.
It is obvious that the singularity tsðrÞ exists for r > 0. As
wewill see in the next subsection, a horizon is positioned at
r ¼ 0 (with t ¼ 1), so that these closed timelike curves
yield naked time machines—the causally anomalous re-
gion that is not hidden behind the event horizon—for every
choice of parameters. Since the spacetime is simply con-
nected, these causal pathologies cannot be circumvented
by extending to a universal covering space. Hence, the fake
supersymmetry fails to get rid of causal pathologies, as
occurred for the present BPS rotating solutions.

Figure 1 plots the typical behaviors of VLS. When the

angular momentum J is smaller than the critical valueQ2=3,
tVLSðrÞ< 0 is satisfied and tVLSðrÞ ! �1 as r ! 0. On the

other hand, when the angular momentum is larger thanQ3=2,
tVLSðrÞ ! þ1 as r ! 0 and for n ¼ 3 tVLSðrÞ is always
positive, whereas it is negative at large value of r for
n ¼ 1; 2.

Using the radius R, one finds that the singularities (3.21)
are both central R ¼ 0. Thus, the VLS completely encloses
the spacetime singularities.

In the neighborhood of the VLS, ðt� tVLSðrÞÞ=t0 � 1,
one finds f�3 ’ J2=r6. Hence, the neighborhood of the
VLS in the present spacetime may be approximated by
that in the near-horizon geometry of the BMPV black hole
(2.51) with J2 ¼ Q3. In this case, �R

3 ¼ @=@c becomes a

hypersurface-orthogonal null Killing vector. Moreover, c
corresponds to the affine parameter of the null geodesics
ð�R

3 Þ�r�ð�R
3 Þ� ¼ 0, so that the spacetime describes the

plane-fronted wave [not the plane-fronted wave with par-
allel rays (pp-wave), since �R

3 is not covariantly constant

r�ð�R
3 Þ� � 0] [43]. We can expect that properties of

the VLS in the present spacetime iare captured by that in
the near-horizon geometry of the BMPV black hole with

J ¼ Q3=2.

D. Scaling limit

Since the event horizon of a black hole is a global
concept, it is a difficult task to identify its locus, especially
in a time-dependent spacetime. Following the previous
papers, we shall argue the ‘‘near-horizon geometry’’ of
the present metric and demonstrate that the null surface
of the event-horizon candidate is described by a Killing
horizon. By solving null geodesics numerically, we can

verify that when J < Q2=3, these Killing horizons are in-
deed event horizons in the original spacetimes. (The reason

of the restriction J < Q2=3 will be discussed later.)
For convenience, we define dimensionless parameters

� :¼ t0

Q1=2
; j :¼ J

Q3=2
; (3.29)

and denote dimensionless variables (normalized by Q)

with tilde, e.g., ~x� :¼ Q�1=2x�. Then we can work with
the dimensionless metric,

d~s2 ¼ �f2
�
�d~tþ j

2~r2
�R

3

�
2 þ f�1ðd~r2 þ ~r2d�2

3Þ;
f ¼ ~r2ð~t~r2 þ 1Þ�n=3ð~r2 þ 1Þðn�3Þ=3: (3.30)

The parameter j is the reduced angular momentum, and �
denotes the ratio of energy densities of the scalar fields and
the Maxwell fields evaluated on the horizon, respectively
[28,29]. To simplify the notation, we shall omit the tilde in
the following.
We have seen in Eq. (2.51) that the surface r ! 0 with t

being finite corresponds to the throat infinity. Hence, the
null surfaces ‘‘intersecting’’ at the throat should be a
candidate of future and past horizons. These surfaces are
described by the infinite redshift and blueshift surfaces,
respectively. We shall focus on the geometry of the very
neighborhood of these horizon candidates. The only well-
defined ‘‘near-horizon’’ limit is given by
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FIG. 1 (color online). Plots of velocity of light surface tVLS against r for n ¼ 1; 2 with J2=3 >Q (left), for n ¼ 3 with J2=3 >Q
(middle), and for J2=3 <Q (right).
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t ! t

�2
; r ! �r; � ! 0; (3.31)

under which the metric is free from the scaling parameter
�. The above scaling limit gives rise to the near-horizon
geometry, if a horizon exists, the metric of which is
given by

ds2NH ¼ �r4ðtr2 þ 1Þ�2n=3

�
�dtþ j

2r2
�R

3

�
2

þ r�2ðtr2 þ 1Þn=3ðdr2 þ r2d�2
3Þ: (3.32)

The scalar and gauge fields are also well-defined and given
by

XT ¼1

3
ðtr2þ1Þ1�n=3; XS¼1

3
ðtr2þ1Þ�n=3; (3.33)

and

AðTÞ ¼ r2ðtr2 þ 1Þ�1

�
�dtþ j

2r2
�R

3

�
;

AðSÞ ¼ r2
�
�dtþ j

2r2
�R

3

�
:

(3.34)

This spacetime is pseudo-supersymmetric in its own right,
since it admits a nonvanishing Killing spinor of the form

(2.31) and (2.32) with f ¼ r2ðtr2 þ 1Þ�n=3.
The above near-horizon metric (3.32) is still time-

evolving and spatially inhomogeneous. Nevertheless, as a
consequence of the scaling limit (3.31), the near-horizon
metric (3.32) admits a Killing vector

�� ¼ t

�
@

@t

�
� � r

2

�
@

@r

�
�
: (3.35)

It is then convenient to take �� to be a coordinate vector so
that the metric is independent of that coordinate. A pos-
sible coordinate choice ðT; R; c 0Þ is given by

T ¼ lnjtj þ
Z R 6R6=n�1ðR6 � j2ÞdR

nðR6=n � 1Þ� ;

R ¼ ðtr2 þ 1Þn=6;

c 0 ¼ c þ
Z R 12j�Rn=6�1

n�
dR;

(3.36)

where

� :¼ 4R4FðRÞ þ j2;

FðRÞ :¼ �2R�4ðR6=n � 1Þ2 � 1

4
R2:

(3.37)

In this new coordinate system, the Killing field is simply
given by �� ¼ ð@=@TÞ�, as we desired. After some algebra
the near-horizon metric (3.32) is cast into an apparently
stationary form,

ds2NH ¼ �FðRÞ
�
dT þ j�ðR6=n � 1Þ

2R4FðRÞ �0R
3

�
2 þ j2R2ð�0R

3 Þ2
16FðRÞ

þ 36�2R12=ndR2

n2�
þ R2

4
½ð�R

1 Þ2 þ ð�R
2 Þ2 þ ð�0R

3 Þ2�:
(3.38)

Here, �0R
3 ¼ dc 0 þ cos�d�. Although its asymptotic

structure is highly nontrivial, it is easy to recognize that
this spacetime has Killing horizons (if any) at � ¼ 0. The
Killing horizon is generated by a linear combination of
stationary and angular Killing vectors,

� ¼ @

@T
þ 2�h

@

@c 0 ; (3.39)

where

�h ¼ j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R6 � j2

p ��������horizon
: (3.40)

Here,�h is the angular velocity of the horizon (associated
with 2@=@c 0 ¼ @=@�2 þ @=@�1). The horizon angular
velocity �h is constant anywhere on the horizon, which
is a generic feature of a Killing horizon [44]. Contrary to
(truly) supersymmetric black holes, the angular velocity of
the horizon is nonvanishing, i.e., the horizon is rotating. In
other words, the generator of the event horizon of a super-
symmetric black hole is tangent to the stationary Killing
field at infinity. Equation (3.39) shows that @=@t is not the
generator of the event horizon. This is a distinguished
property not shared by the BPS black holes.
Since � fails to have a double root in general, it follows

that the horizon is not extremal unless parameters ð�; jÞ are
fine-tuned. The reason of the appearance of the ‘‘throat’’
geometry at r ! 0 lies in the fact that ðt; rÞ coordinates
cover the ‘‘white-hole region’’ as well as the outside region
of a black hole (see Fig. 5 in [29]).
Equations (3.33) and (3.36) imply that the values of

scalar fields XI on the horizon are determined by the
horizon radius, which is expressed in terms of the charge
Q, (inverse of) potential height t0, and the angular mo-
mentum j. This situation is closely analogous to the attrac-
tor mechanism [45], according to which the values of
scalar fields on the horizon are expressed by charges and
are independent of the asymptotic values of the scalar
fields at infinity. As it stands, however, it appears hard to
say whether such a mechanism always works in the time-
dependent case.
In the following subsections, we shall clarify various

physical features of the near-horizon metric (3.38).

1. Horizons

The loci of Killing horizons � ¼ 0 can be classified
according to the values of � and j2. We shall say ‘‘under-
rotating’’ when the spacetime (3.32) admits horizons.
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Otherwise, it is said to be ‘‘over-rotating.’’ The quantity
R� will be consistently used when �> 0 for R< R�.

(i) n ¼ 1. When the angular momentum parameter jjj is
less than the critical value jð1Þ, i.e.,

j2 < j2ð1Þ :¼
1þ 16�2

16�2
; (3.41)

the near-horizon spacetime admits two horizons,

R6� ¼ 1þ 8�2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16�2ð1� j2Þp
8�2

: (3.42)

For the over-rotating case j2 > j2ð1Þ, there exist no

horizons. We find the similar results for the case of
noninteger values of n < 2.

(ii) n ¼ 2. This case is further categorized into the
following three cases.

(1) 0< �< 1=2. For any values of j, a single horizon
occurs at

R3� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ ð1� 4�2Þj2p � 4�2

1� 4�2
: (3.43)

(2) � ¼ 1=2. For any values of j, a single horizon
occurs at

R3� ¼ 1þ j2

2
: (3.44)

(3) � > 1=2. When the angular momentum parameter
jjj is less than the critical value jð2Þ, i.e.,

j2 < j2ð2Þ :¼
4�2

4�2 � 1
; (3.45)

two horizons exist at

R3� ¼ 4�2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � ð4�2 � 1Þj2p
4�2 � 1

: (3.46)

For the over-rotating case j2 > j2ð2Þ, no horizons

develop.
(iii) n ¼ 3. In this case, the metric (3.38) is not the

‘‘near-horizon’’ geometry, but is the original metric
itself written in the stationary coordinates. This
metric describes a charged rotating black hole in
de Sitter space derived by Klemm and Sabra [32].
Let us discuss its horizon structure in detail.

There exists at least one horizon corresponding to the

cosmological horizon. For � � ffiffiffiffiffiffiffiffi
3=2

p
, there appears only a

cosmological horizon Rc. For � >
ffiffiffiffiffiffiffiffi
3=2

p
, the number of

horizons depend on the value of j2. Three distinct horizons
(R� < Rþ < Rc) exist for j

2
ð3Þ� < j2 < j2ð3Þþ, where

j2ð3Þ� :¼ 4�2

27
½�8

ffiffiffi
2

p
�ð2�2 � 3Þ3=2 � 32�4 þ 9ð8�2 � 3Þ�:

(3.47)

For j2 ¼ j2ð3Þþ, inner and outer black-hole horizons are

degenerate, while for j2 ¼ j2ð3Þ�, the outer black-hole hori-
zon and the cosmological horizon are degenerate. j2ð3Þ� takes

real positive values for
ffiffiffiffiffiffiffiffi
3=2

p
< �< 3

ffiffiffi
3

p
=4, otherwise the

inner horizon does not exist.
A simple calculation reveals that the spacetime (3.32) is

regular on and outside the Killing horizon (if anywhere).
Only the existing curvature singularity is at R ¼ 0. It is
almost clear to construct the local coordinate systems that
pass through the Killing horizon � ¼ 0.
In hindsight, we can understand why the horizon in the

present spacetime is not extremal as follows. In the case of
the time-independent (truly) BPS solutions such as a
BMPV black hole, the Killing horizon lies at f ¼ 0 since
V� ¼ ð@=@tÞ� is an everywhere causal Killing field con-
structed by a Killing spinor � as V� ¼ i ����� (see [7]). For
the present time-dependent pseudo-supersymmetric black
hole, on the other hand, the vector field V� ¼ ð@=@tÞ� is
not the Killing horizon generator: the horizon is generated
by �� ¼ tð@=@tÞ� � ðr=2Þð@=@rÞ� þ�hð@=@c Þ� given
in Eq. (3.39). The vector field V� does not give rise to
any (asymptotic) symmetry.
Physically speaking, the degeneracy of the horizon is

broken by introducing of the time-dependent scalar fields
(which do not contribute to the total mass when the space-
time is stationary) or the positive cosmological constant.
These ingredients destroy the fine balance between the
mass energy and the charges. When the rotation is also
added, the centrifugal force gives a negative contribution to
the mass energy M ! M� J2—which takes place only in
D ¼ 5 as discussed before—thus, it exceeds the extremal
threshold value if the rotation becomes too large.

2. Ergoregion

An obvious major difference from our previous non-
rotating solutions [28,29] is that the near-horizon
metric possesses the ergosurface at FðRÞ ¼ 0. Since �>
4R4FðRÞ, the ergosurface lies strictly outside the horizon,
contrary to the four-dimensional Kerr black hole for which
the ergosurface touches the horizon at the rotation axis.
When the rotating vanishes (j ¼ 0), the roots of F ¼ 0

correspond to the loci of horizons [28,29]. Since � ¼ 0
reduces to FðRÞ ¼ 0when j ¼ 0, the explicit expression of
the ergosphere is given by setting j ¼ 0 of the horizon
radius. For n ¼ 1; 2, they are given by Eqs. (3.42), (3.43),
(3.44), and (3.46) with j ¼ 0. Note, however, that since the
asymptotic structures are quite peculiar when n ¼ 1; 2,
there may arise an ambiguity concerning the definition of
the energy [46]. It may therefore be uncertain, then,
whether Rerg has a definitive meaning in the n ¼ 1; 2 cases.
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When n ¼ 3 the asymptotic region is described by de
Sitter space, so that we can use the standard time trans-
lation with respect to the observer at the cosmological
horizon to define the energy. Hence, the notion of ergore-
gion is meaningful in this sense. There exist three distinct

roots, Rerg;� < Rerg;þ <Rerg;c, for � > �cr :¼ 3
ffiffiffi
3

p
=4, two

roots for � ¼ �cr and a single root Rerg;� for � < �cr.

The ergoregion does not arise for the supersymmetric
black hole, which inevitably forbids the ergoregion inside
which the stationary Killing field becomes spacelike. The
ergoregion is intrinsic to a rotating black hole and allows
particles to have a negative energy. This means that the
rotation energy of a black hole can be subtracted via the
Penrose process and the superradiant scattering process.
We shall demonstrate in Appendix B that this is indeed the
case for the n ¼ 3 Klemm-Sabra solution.

3. Closed timelike curves

Write the near-horizon metric (3.38) as

ds2NH ¼ � �

4R4�L

dT2 þ 36�2R12=ndR2

n2�
þ R2

4

�
ð�R

1 Þ2

þ ð�R
2 Þ2 þ �L

�
�0R

3 � 2j�ðR6=n � 1Þ
R6�L

dT

�
2
�
;

(3.48)

where we have also used �L as the near-horizon limit of
(3.24):

�L ¼ 1� j2

R6
: (3.49)

Consequently, the Hopf fibres become timelike inside the
VLS (�L < 0), viz. the near-horizon metric (3.38) is also
causally unsound. In terms of �L, � is

� ¼ 4�2ðR6=n � 1Þ2 � R6�L: (3.50)

It follows that the event horizon (� ¼ 0) is outside the
VLS [47]. Hence, the causality-violating region is always
hidden behind the horizon (RL < Rþ) in the near-horizon
geometry (3.38) [48]. On the other hand, it is naked in the
over-rotating case where the horizon does not exist. This
should be contrasted with the BMPV or asymptotically
AdS (g 2 R) Klemm-Sabra black hole. In the former
case, the VLS is outside the event horizon if the angular

momentum is large J > Q2=3. In the latter case, a naked
time machine inevitably appears outside the event horizon.
However, it allows no geodesics to penetrate, so that the
horizon exterior is geodesically complete. In the present
case, the area of the horizon is given by

Area ¼ 22R3
ffiffiffiffiffiffi
�L

p jhorizon ¼ 42�ðR6=n
þ � 1Þ; (3.51)

which always makes sense contrary to the BMPV or the
asymptotically AdS Klemm-Sabra black hole: the latter
two spacetimes have an ‘‘imaginary horizon area’’ in the

over-rotating case. These formal horizons in the over-
rotating case are ‘‘repulsons’’ into which no freely falling
orbits penetrate (see, e.g., [42,49–51]).

4. Geodesic motions

It is illustrative to consider geodesics in the near-
horizon metric (3.38). For n ¼ 3, the following analysis
yields the geodesic motion in the exact Klemm-Sabra
geometry, not restricted in the neighborhood of its
horizons. The particle motion in asymptotically AdS
Klemm-Sabra solution (g 2 R) was previously examined
in [49]. Although the behavior of the particle motion
in the asymptotically de Sitter case is of course consid-
erably different from that case, the technical method is
similar. The analysis in this subsection reveals that the
horizon can be reached within a finite affine time from
outside.
The Hamilton-Jacobi equation in the near-horizon ge-

ometry (3.38) reads

� @S

@�
¼ 1

2
g
��
NH

�
@S

@x�

��
@S

@x�

�
; (3.52)

where the right-hand side of this equation defines a geo-
desic Hamiltonian and � is an affine parameter. Assume
the separable form of Hamilton’s principal function,

S ¼ 1

2
m2�� ET þ LL�þ LRc

0 þ SRðRÞ þ S�ð�Þ;
(3.53)

where E, LR, LL, and m are constants of motion corre-
sponding to energy, right-rotation, left-rotation, and rest
mass of a particle. Since the near-horizon metric keeps the
Uð2Þ symmetry, there exists a reducible Killing tensor of
the form (3.20), which reads in the coordinates (3.38) as

K��dx
�dx� ¼

�
j�

2R4
ðR6=n � 1ÞdT � R2�L

4
ð�0R

3 Þ
�
2

þ R4

16
½ð�R

1 Þ2 þ ð�R
2 Þ2�: (3.54)

Accordingly, in addition to obvious constants of motion
(E, LR, LL, m) generated by Killing vectors, we have an
additional integration constant L2 with dimensions of
angular momentum squared such that

L2 :¼ X
i

ð�R
i SÞ2: (3.55)

This constant of motion enables us to separate the
variables as�

d

d�
S�

�
2 þ 1

sin2�
ðL2

L þ L2
R � 2 cos�LRLLÞ ¼ L2:

(3.56)

The constant L2 represents the left and right Casimir
invariant of the SUð2Þ subgroup of the SOð4Þ rotation
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group. These two Casimirs turn out to be the same for the
scalar representation. It follows that the particle motion
and the scalar-field equation are Liouville-integrable. The
governing equations are obtainable by differentiating the
principal function (3.53) by corresponding constants of
motion. Using the relation for angular variable (3.56), we
obtain a set of useful first-order equations:

dR

d�
¼ � n

ffiffiffiffi
�

p

6�R6=n

�
E

F
�m2 � 4ðL2 � L2

RÞ
R2

� 16R2F

�

�
�
LR þ j�ðR6=n � 1ÞE

2R4F

�
2
�
1=2

; (3.57)

d�

d�
¼ � 4

R2

�
L2 � 1

sin2�
ðL2

L þ L2
R � 2 cos�LRLLÞ

�
1=2

;

(3.58)

dT

d�
¼ 4R4�L

�
E� 8j�ðR6=n � 1ÞLR

�R2
; (3.59)

d�

d�
¼ 4

R2sin2�
ðLL � LR cos�Þ; (3.60)

dc 0

d�
¼ 4ðLR � LL cos�Þ

R2sin2�
� 4

R2�
½j2LR � 2j�ðR6=n � 1ÞE�:

(3.61)

If there are no angular momenta of a particle (L ¼ LR ¼
LL ¼ 0), one sees that there is no motion in directions �
and �, but there is a nonvanishing motion along c 0,
encoding the frame-dragging due to the black-hole
rotation.

By virtue of the high degree of symmetries, the problem
reduces to the one-dimensional radial Eq. (3.57), which is
arranged to give�

dR

d�

�
2 ¼ n2

9�2R4ð3=n�1Þ

�
�LðE� 2�LRÞ2

� j2L2
R�

R12�L

��

�
L2

R6
þ m2

4R4

��
; (3.62)

¼ n2�L

9�2R4ð3=n�1Þ ðE� VþÞðE� V�Þ; (3.63)

where � and V� are the angular velocity of a locally
nonrotating observer and the effective potentials, which
are defined by

� :¼ j�ðR6=n � 1Þ
R6�L

; (3.64)

V� :¼2�LR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�½j2L2

Rþ�LR
6ðL2þm2R2=4Þ�

q
�LR

6
: (3.65)

The allowed region is E> Vþ or E< V� for �L > 0,
whereas it is min½V��<E<max½V�� for �L < 0.
Equation (3.59) becomes

dT

d�
¼ 4R4�L

�
ðE� 2�LRÞ: (3.66)

When�> 0 and �L > 0, E> V0 :¼ 2�LR follows. Thus,
E must be positive for a particle with �LR > 0 moving
forward with respect to the time coordinate T. Inside the
VLS (�L < 0) where �> 0, a particle with E> V0 moves
backward with respect to the coordinate T. One also veri-
fies that the horizon� ¼ 0 is an infinite redshift surface for
the time coordinate T, which is of course a coordinate
artifact.
From (3.55) one findsL2 � L2

R.When the equality holds,
LL ¼ 0 is satisfied. Thus, Eq. (3.56) implies that the particle
motion is confined on the equatorial plane � ¼ =2 and
Eq. (3.60) implies � ¼ constant. The same remark applies
to the original metric (3.1), since this assertion only comes
from the Uð2Þ-symmetries of the solution.
It is clear from Eq. (3.62) that massless particles with

L ¼ LR ¼ 0 cannot cross the VLS. In the over-rotating
case, the geodesics with LR ¼ 0 cannot cross the VLS
either, since the right-hand side of (3.62) becomes negative
before the VLS is reached.
In the case of LR � 0, it is dependent on the parameters

whether the geodesic particle moving forward can cross the
VLS or not. When j < 1, �LR diverges positively (nega-
tively) as R ! RL þ 0 for the particle having the opposite
(same) spin as the black hole. Hence, the particle with
opposite angular momentum (jLR < 0) cannot penetrate
the VLS for j < 1. Similarly, when j > 1, �LR diverges
positively (negatively) as R ! RL þ 0 for the particle
having the same (opposite) spin as the black hole. Thus,
the particle with j > 1 never penetrates the VLS when it
has the same spin as the hole jLR > 0.
Though causal geodesics may cross the VLS, it is shown

that they never encounter the singularity atR ¼ 0 at least for
n ¼ 2; 3. For L > jLRj, the function inside the square root
of V� (3.65) becomes negative around R ¼ 0, so that V�
does not exist aroundR ¼ 0 and has a confluent point inside
the VLS, which prohibits geodesics to enter inside. For
L ¼ jLRj, it can be easily shown that Vþ < V0 < V� holds
around R ¼ 0 and they take the value 2�LR=j at R ¼ 0. It
follows that geodesics with E ¼ 2�LR=j may reach R ¼ 0.
For n ¼ 1, this is indeed the case. By contrast, for n ¼ 2; 3,
dV0=dR < ð>Þ0 holds around R ¼ 0 for jLR > ð<Þ0,
which forbids the geodesics to hit the singularity since
E< V0 and Vþ <E< V� are the allowed region for
the future-pointing particles. Accordingly, the singularity
R ¼ 0 has a repulsive nature. We can expect that geodesics
also rarely reach the singularity in the dynamical settings.
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E. Global structure

We are now ready to discuss the global structures of the
time-dependent and rotating spacetime (3.1). The most
useful visualization of the causal structure of a spacetime
is the conformal diagram. To this end, it is necessary to find
a two-dimensional (totally geodesic) integrable submani-
fold. Now the spacetime is regarded as an R2 bundle over
S3. Unfortunately, the distribution spanned by @=@t and
@=@r is not integrable, forbidding us to have a foliation by
a two-dimensional conformal diagram. The frame-
dragging effect inevitably drives the c -motion.

Nevertheless, the two-dimensional metric

ds22 ¼ � �2f2

�L

dt2 þ dr2

f
(3.67)

still contains some information about the spacetime struc-
ture and gives us useful visualization [52]. The above
metric (3.67) is associated with the null geodesics with
� ¼ =2 and � ¼ constant corresponding to L ¼ LR ¼
LL ¼ 0: hence, they cannot penetrate the VLS, which is
found to be a timelike or null surface. As in the BMPV
case, the two-dimensional metric (3.67) is not Lorentzian
inside the VLS.

From the analysis of the previous subsection, we found
that the original time-independent metric (3.38) admits
Killing horizons at � ¼ 0. In the nonrotating case
(j ¼ 0), the null surfaces r ¼ 0 with t ¼ �1 are also
Killing horizons for the original spacetime [29], since the
Killing vector is parallel to the generators of horizons.

When a rotation is present, we must be careful. Now,
there exists a VLS (3.26), which is bounded below when
j > 1 (see left and middle plots in Fig. 1), so that the past
horizon t ! �1 may not exist (since we are focusing on
the two-dimensional metric (3.67), no causal geodesics
penetrate the VLS: inside the VLS is not the physical
region of spacetime). Even if the near-horizon metric
[29] admits some Killing horizons, we cannot immediately
conclude that they are also Killing horizons in the original
metric.

The analysis of singularities, asymptotic infinity, behav-
iors of VLS (Fig. 1), and the near-horizon geometries have
provided us sufficient information to deduce Carter-
Penrose diagrams. As a striking confirmation, we have
solved the geodesic equations numerically and obtained
the conformal diagrams displayed in Fig. 2, which may be
summarized as follows (we have excluded the special case
of the degenerate horizons).

(i) n ¼ 1. The asymptotic region is approximated by an
FLRW universe, obeying a decelerating expansion

a ¼ ð�t=�t0Þ1=4 caused by a massless scalar field. Then,
the null infinity I� possesses an ingoing null struc-
ture. When j < jð1Þ, two Killing horizons R� arise

(3.42). Since the VLS diverges negatively as r ! 0
when j < 1 (right plots in Fig. 1), the conformal

diagram is (I). Even if two horizons exist in the
near-horizon geometry for 1< j < jð1Þ, the VLS

conceals the past horizon R� (corresponding to
t ! �1), since the VLS diverges positively as
r ! (left plots in Fig. 2). Then, diagram (II) is
obtained. Note that the R� ¼ constant surface
asymptotically approaches null as t ! 1, and RL

is timelike almost everywhere (it happens to be null
precisely at one point). For the over-rotation j > jð1Þ,
no Killing horizons arise. Hence, the conformal
diagram is (V).

(ii) n ¼ 2. The spacetime approaches to the marginally
accelerating universe, expanding linearly with cos-
mic time a ¼ �t=�t0. This is caused by the fluid with
equations of state P ¼ ��=2. For � > 1=2, there
exist two Killing horizons (3.42), so that conformal
diagram is the same as case (i); it is (I) for 0< j < 1,
(II) for 1< j< jð2Þ and (V) for j > jð2Þ. An essential
difference from the n ¼ 1 case arises when � � 1=2,
in which case there exists an internal null infinity Iþ

in

where R ! 1 with r ! 0 and t ! 1. Only ingoing
null particles can get to Iþ

in . The existence of internal

null infinity can be shown by solving the geodesics
asymptotically as in 4 dimensions [29]. It follows that
conformal diagrams for � � 1=2 are (III) when j < 1
and (IV) when j > 1.

(iii) n ¼ 3. The conformal diagrams are similar to the
Kerr–de Sitter spacetime. Infinity Iþ consists of a
spacelike slice due to the acceleration of the uni-
verse. First, consider the case in which the near-
horizon metric (3.38) admits three distinct hori-

zons, R� and Rc. This occurs when
ffiffiffiffiffiffiffiffi
3=2

p
< �<

3
ffiffiffi
3

p
=4 with jð3Þ� < j < jð3Þþ and � > 3

ffiffiffi
3

p
=4 with

ð0 �Þj < jð3Þþ. We must take into account the fact

that for j < 1 the VLS tVLSðrÞ diverges negatively
as r ! 0, which removes past horizons (t ! �1
and r ! 0 with tr2 finite) in the near-horizon ge-

ometry (3.32). Therefore, when � > 3
ffiffiffi
3

p
=4 with

ð0 �Þj < 1 the conformal diagram is (VI), whereas

it is (VI0) when 1< j < jð3Þþ with � > 3
ffiffiffi
3

p
=4, or

ð1<Þjð3Þ� < j < jð3Þþ with
ffiffiffiffiffiffiffiffi
3=2

p
< �< 3

ffiffiffi
3

p
=4.

These two are essentially the same: they constitute
the different coordinate patches depending on the
value of j. In (V0) the slice t ¼ 0 and r ! 1 with
tr2 finite comprises a null boundary. When there

appears only a cosmological horizon Rc (i.e., � <ffiffiffiffiffiffiffiffi
3=2

p
,

ffiffiffiffiffiffiffiffi
3=2

p
< �< 3

ffiffiffi
3

p
=4 with j < jð3Þ�, or j >

jð3Þþ and � > 3
ffiffiffi
3

p
=4 with j > jð3Þþ), the spacetime

diagram is (VII) for j < 1 and (VII0) otherwise.
Again, (VII) and (VII0) are essentially identical.
In (VII0), the slice t ¼ 0 and r ! 1 with tr2 finite
is also a null surface.

To summarize, the cases (I), (II), (VI), and (VI’) corre-
spond to the rotating black-hole geometry.
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IV. DIMENSIONAL OXIDIZATION
AND REDUCTION

In the previous sections, some black-hole solutions in
the STU theory have been elaborated in the framework
of the five-dimensional theory. We shall discuss in this
section the lift-up and compactification procedure to other
numbers of dimensions.

A. Lift-up to M-theory

The time-evolving and spatially inhomogeneous solu-
tions in 4 and 5 dimensions were originally derived from
the dimensional reduction of intersecting M-branes in
eleven-dimensional supergravity. Now, we argue that the
solutions of case (ii)—where two VI’s vanish—can be
embedded in eleven-dimensional supergravity.

The eleven-dimensional supergravity action is given
by

S11 ¼ 1

2	2
11

Z �
11R ?11 1� 1

2
F ^ ?11F

� 1

6
A ^F ^F

�
; (4.1)

where F ¼ dA is the four-form field strength. The equa-
tions of motion are Einstein’s equations,

11RAB � 1

2
11RgAB ¼ 1

2 	 3!
�
F ACDEF B

CDE

� 1

8
gABF CDEFF CDEF

�
; (4.2)

and the equations

d ?11 F þ 1

2
F ^F ¼ 0: (4.3)

(I) (II) )VI()III( (V)

(VII)(VI) (VI )’ (VII )’

FIG. 2. Conformal diagrams of the two-dimensional spacetime (3.67), by which null geodesics with zero angular momentum is
described. Rþ, R�, and Rc are all Killing horizons corresponding, respectively, to the black-hole event horizon, the white-hole horizon,
and the cosmological horizon. The thick dotted curves represent the VLS. Thin black and gray dotted curves are t ¼ constant and
r ¼ constant surfaces, respectively. White and black circles are infinities (including throat) and bifurcation surfaces. Since the two-
dimensional metric (3.67) becomes Riemannian inside the VLS, the diagrams come to an end at RL. We remark that we are formally
writing the two-dimensional figures, but there still remains the angular motion because of the frame-dragging: these figures do not
display all the causal information. Though these diagrams are restricted to the r2 > 0 region, the spacetime can be extended across the
null surfaces R� and Rc, which are nothing but the ordinary chart boundaries. The conformal diagrams are (I) for n ¼ 1 with j < 1,
and for n ¼ 2 with j < 1 and � > 1=2, (II) for n ¼ 1 with 1< j < jð1Þ, and for n ¼ 2 with 1< j < jð2Þ and � > 1=2, (III) for n ¼ 2

with � � 1=2 and j < 1, (IV) for n ¼ 2 with � � 1=2 and j > 1, (V) for n ¼ 1 with j > jð1Þ and for n ¼ 2 with � > 1=2 and j > jð2Þ,
whereas diagrams (VI–VII0) correspond to n ¼ 3: (VI) for � > 3

ffiffiffi
3

p
=4 with j < 1, (VI0) for � > 3

ffiffiffi
3

p
=4 with 1< j < jð3Þþ, and forffiffiffiffiffiffiffiffi

3=2
p

< �< 3
ffiffiffi
3

p
=4 with jð3Þ� < j < jð3Þþ, (VII) for � <

ffiffiffiffiffiffiffiffi
3=2

p
with j < 1 and for

ffiffiffiffiffiffiffiffi
3=2

p
< �< 3

ffiffiffi
3

p
=4 with j < 1, and (VII0’) for

� <
ffiffiffiffiffiffiffiffi
3=2

p
with j > 1, for

ffiffiffiffiffiffiffiffi
3=2

p
< �< 3

ffiffiffi
3

p
=4 with 1< j < jð3Þ� or j > jð3Þþ and for � > 3

ffiffiffi
3

p
=4 with j > jð3Þþ.
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In this section, A;B; . . . denote the eleven-dimensional
indices.

Let us consider the ‘‘intersectingM2/M2/M2metric’’ of
the following form [15],

ds211 ¼ ds25 þ X1ðdy21 þ dy22Þ þ X2ðdy23 þ dy24Þ
þ X3ðdy25 þ dy26Þ; (4.4)

A ¼ Að1Þ ^ dy1 ^ dy2 þ Að2Þ ^ dy3 ^ dy4

þ Að3Þ ^ dy5 ^ dy6; (4.5)

where the metric is independent of the brane coordinates
y1; . . . ; y6. This solution is specified by the five-
dimensional metric,

ds25 ¼ �ðH1H2H3Þ�2=3ðdtþ!Þ2
þ ðH1H2H3Þ1=3hmndx

mdxn; (4.6)

as well as three scalars XIðI ¼ 1; 2; 3Þ and three one-forms

AðIÞ, which are given by

AðIÞ ¼ H�1
I ðdtþ!Þ; XI ¼ H�1

I ðH1H2H3Þ1=3: (4.7)

Here, hmn is the metric on the four-dimensional base space.
! ¼ !mdx

m is viewed as a one-form on the base space,
i.e., !�V

� ¼ 0 where V� ¼ ð@=@tÞ�.
Since the metric ansatz (4.6) is independent of the

coordinates y1; . . . ; y6, the solution can be dimensionally
reduced to 5 dimensions. Noting that the six-torus T6 has
a constant volume X1X2X3 ¼ 1, it turns out that the
five-dimensional metric ds25 is the five-dimensional

Einstein-frame metric. Thus, the metric ansatz (4.4) gives
the five-dimensional action of gravity sector as

Sg ¼ 1

2	2
5

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�g5
p �

5R� 1

2

X
I

ðr� lnXIÞðr� lnXIÞ
�
;

(4.8)

where we have used X1X2X3 ¼ 1. We can proceed with the

form field sector analogously. Letting FðIÞ :¼ dAðIÞ denote
the two-form field strengths, we find

F ABCDF ABCD ¼ 12
X
I

ðXIÞ�2FðIÞ
��FðIÞ��; (4.9)

A^F ^F ¼2ðAð1Þ ^Fð2Þ ^Fð3Þ þAð2Þ ^Fð3Þ ^Fð1Þ

þAð3Þ ^Fð1Þ ^Fð3ÞÞ^VolðT6Þ; (4.10)

then the Lagrangian for the gauge fields reads

SF ¼ 1

2	2
5

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�g5
p �

� 1

4

X
I

ðXIÞ�2FðIÞ
��FðIÞ��

þ 1

12
������ðAð1Þ

� Fð2Þ
��F

ð3Þ
�� þ Að2Þ

� Fð3Þ
��F

ð1Þ
��

þ Að3Þ
� Fð1Þ

��F
ð2Þ
��Þ

�
; (4.11)

where ������ is the volume element compatible with the

five-dimensional metric ds25 and 	2
5
:¼ 	2

11=VolðT6Þ. It

follows that the reduced action S5 ¼ Sg þ SF exactly co-

incides with that of the STU theory; the five-dimensional
minimal ungauged (g ¼ 0) Uð1Þ3 supergravity (2.1) with
the metric of the potential space given by

GIJ ¼ 1

2
diag½ðX1Þ�2; ðX2Þ�2; ðX3Þ�2�; (4.12)

and the constants CIJK are totally symmetric in (IJK), with
C123 ¼ 1 and 0 otherwise.
If we consider three equal harmonics H1 ¼ H2 ¼

H3 :¼ H (i.e., XI ¼ 1, A1 ¼ A2 ¼ A3 ¼: ð2= ffiffiffi
3

p ÞA and
F ¼ dA), all scalar fields are trivial. Then, the action S5 ¼
Sg þ SF reduces to that of the minimal supergravity in 5

dimensions [7], the action of which is given by

S5 ¼ 1

2	2
5

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�g5
p �

5R� F��F
��

þ 2

3
ffiffiffi
3

p ������A�F��F��

�
: (4.13)

1. Supersymmetric solution in ungauged theory

Let us first consider the case where the five-dimensional
spacetime is supersymmetric, i.e., there exists a nontrivial
Killing spinor satisfying (2.18) and (2.19) with g ¼ 0
[11,15]. For the timelike family of solutions for which V ¼
@=@t is a timelike Killing vector, the supersymmetry re-
quires that the base space is hyper-Kähler and the Maxwell
fields are expressed as

FðIÞ ¼ d½fXIðdtþ!Þ� þ�I; (4.14)

where �I are self-dual two-forms on the base space sat-
isfying XI�

I ¼ �fðd!þ ?hd!Þ=3. The Bianchi identity
for FðIÞ requires d�I ¼ 0, and the Maxwell equation leads
to

h�ðf�1XIÞ ¼ 1

12
CIJK�

ðJÞmn�ðKÞ
mn : (4.15)

For �I ¼ 0, the solution reduces precisely to the one
assumed for the pseudo-supersymmetric solutions (2.24).
If we set hmn ¼ 
mn, ! ¼ 0, and HI ¼ 1þQI=r

2, the
metric describes the standard static intersecting
M2/M2/M2-branes with corresponding charges QI. In
this case, the eleven-dimensional solution admits a

Killing spinor " ¼ ðH1H2H3Þ�1=6"1 with

i�0ŷ1ŷ2"1 ¼ "1; i�0ŷ3ŷ4"1 ¼ "1;

i�0ŷ5ŷ6"1 ¼ "1;
(4.16)

satisfying
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�
11DA þ i

288
ð�A

BCDE � 8
A
B�CDEÞF BCDE

�
" ¼ 0;

(4.17)

where � is the eleven-dimensional gamma matrix. It de-
serves to be mentioned that the fact that ds25 in (4.4) is the

five-dimensional Einstein-frame metric means that the
causal pathologies are not cured by lifting up toM-theory.

2. Dynamically intersecting M2/M2/M2-branes

Let us next consider the nonsupersymmetric case where
the metric is time-dependent. The importance of dynami-
cally intersecting branes in supergravity theory lies in their
applications to cosmology and dynamical black holes. The
dynamically intersecting branes without rotation are ana-
lyzed in detail in [30]. We are going to discuss its rotating
version.

The potential V ¼ 27CIJKVIVJXK vanishes identically
for the STU theory with the case (ii) V1 � 0, V2 ¼ V3 ¼ 0.
This lies at the heart of why the pseudo-supersymmetric
solution of the case (ii) derived in Sec. II [see Eq. (2.41)]
can be embedded into eleven-dimensional supergravity.
Note, however, that the eleven-dimensional configuration
is no longer (true nor fake) supersymmetric. Nevertheless,
the five-dimensional pseudo-supersymmetry justifies the
mechanical equilibrium of dynamically intersecting
branes. If �H1, H2, and H3 represent harmonics with
a single point source on the Euclidean 4-space, the
solution describes the dynamically intersecting rotating
M2/M2/M2-branes obeying the harmonic superposition
rule. For the vanishing charges �H1 ¼ 0 and H2 ¼ H3 ¼
1, the background metric is obtained, which is the eleven-
dimensional ‘‘rotating’’ Kasner universe,

ds211 ¼ �
�
d�tþ J

2r2ð�t=�t0Þ1=2
ðsin2#d�1 þ cos2#d�2Þ

�
2

þ ð�t=�t0Þ1=2½dr2 þ r2ðd#2 þ sin2#d�2
1

þ cos2#d�2
2Þ� þ ð�t=�t0Þ�1ðdy21 þ dy22Þ

þ ð�t=�t0Þ1=2ðdy23 þ 	 	 	 þ dy26Þ: (4.18)

Here, �t / t2=3 measures the cosmic time. The eleven-
dimensional universe collapses into the y1-y2 directions
and expands in other directions [53]. It follows that the
three kinds of branes are intersecting in the background of
the Kasner universe. The case of J ¼ 0 recovers the con-
ventional vacuum Kasner solution.

3. The cases (iii) and (iv)

For the cases (iii) and (iv), there exists a nonzero poten-
tial in the fake supergravity theory. It might be reasonable
to expect that the FLRWuniverse may be realized from the
viewpoint of intersecting branes, which are the fundamen-
tal constituents of supergravity. Assuming the brane

intersection rule [30] and making the nonzero vacuum
expectation values of the four-form F , we have tried to
uplift the solutions (3.1) with (3.2) into 11 dimensions, but
failed. Whether the present solutions are obtainable from
the brane picture is an outstanding issue at present.
We leave this possibility to future work.

B. Compactification to 4 dimensions

When discussing the FLRW spacetime, it is much more
reasonable to argue within the four-dimensional effective
theory. In this section we shall demonstrate how to achieve
this.

1. Dimensional reduction via Gibbons-Hawking space
and Kaluza-Klein black hole

One can obtain the four-dimensional solutions in [29,31]
via dimensional reduction of five-dimensional solutions
(2.23) as follows. We employ the Gibbons-Hawking space
[54] as a four-dimensional base space,

ds2B ¼ h�1ðdx5 þ �idx
iÞ2 þ h
ijdx

idxj; (4.19)

where i; j; . . . denote three-dimensional indices (hence, no
distinction is made for upper and lower indices) and

~r� ~� ¼ ~rh: (4.20)

~r is the derivative operator on the flat Euclidean 3-space
and the usual vector convention will henceforth be used for
the quantities on the Euclidean space. The integrability
condition of (4.20) implies that h is a harmonic function

on the Euclidean space ~r2
h ¼ 0. In the Gibbons-Hawking

base space, @=@x5 is a Killing vector preserving the three
complex structures, which are given by [55]

J ðiÞ ¼ ðdx5 þ �Þ ^ dxi � 1

2
h�ijkdx

j ^ dxk: (4.21)

The orientation is chosen in such a way that the complex
structures are anti-self-dual, viz., the volume form is given
by hdx5 ^ dx1 ^ dx2 ^ dx3. Under the change of Killing
coordinates x5 ! x5 þ gðxiÞ, where g is an arbitrary
function of xi, �i transforms as �i ! �i � @ig and h
is unchanged in order to preserve the metric form.
Prime examples of Gibbons-Hawking space are the flat
space (h ¼ 1 or M=j ~xj), the Taub-NUT space (h ¼
1þM=j ~xj), and the Eguchi-Hanson space (h ¼ M=
j ~x� ~x1j þM=j ~x� ~x2j).
Assuming that the vector field @=@x5 is also a Killing

vector for the whole five-dimensional spacetime, it turns
out that functions HI are also harmonics on the Euclidean

3-space ~r2
HI ¼ 0 (and the linear time-dependence re-

mains intact). Let ! decompose as

! ¼ !5ðdx5 þ �idx
iÞ þ!idx

i; (4.22)
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and let us write the metric as

ds25 ¼ �½dx5 þ �idx
i � f2!5�

�1ðdtþ!idx
iÞ�2

� fh�1��1ðdtþ!idx
iÞ2 þ f�1h
ijdx

idxj;

(4.23)

¼: e�4�=
ffiffi
3

p
ðdx5 þ B�dx

�Þ2 þ e2�=
ffiffi
3

p
g��dx

�dx�;

(4.24)

where � ¼ f�1h�1 � f2!2
5, g�� is the four-dimensional

Einstein-frame metric, B�dx
�dx� ¼ �idx

i �
f2!5�

�1ðdtþ!idx
iÞ is the Kaluza-Klein gauge field,

and � ¼ �
ffiffi
3

p
4 ln� is a dilaton field. The anti-self-duality

of Sagnac curvature d!þ ?hd! ¼ 0 [42] reduces to

~r� ~! ¼ h2 ~rðh�1!5Þ: (4.25)

The integrability condition of this equation is ~r2
!5 ¼ 0,

i.e., !5 is another harmonic function. The Einstein-frame
metric g�� is given by

ds24 ¼ ��ðdtþ!idx
iÞ2 þ��1
ijdx

idxj; (4.26)

with

� :¼ fh�1��1=2; (4.27)

where ~! is determined by (4.25) up to a gradient.
When !5 is proportional to h, Eq. (4.25) implies that ~!

is written as a gradient of some scalar function, which can
be made to vanish by redefinition of t and harmonic

functions if we work in a ‘‘Coulomb gauge’’ ~r 	 ~! ¼ 0.
Thus, the four-dimensional rotation vanishes ( ~! ¼ 0) in
this case. If two harmonics are equal (H2 ¼ H3) in the STU
theory and!5 ¼ 0, the four-dimensional solutions given in
[28,29] except the nT ¼ 4 case are recovered. Since the
dimensional reduction does not spoil the fraction of super-
symmetries, it turns out that the four-dimensional solutions
in [28,29] are also pseudo-supersymmetric in the context
of fake supergravity.

The resulting four-dimensional theory involves many
scalar and vector multiplets. To see this, we consider the
general Kaluza-Klein ansatz (4.24). Defining

H��¼2@½�B��; AðIÞ ¼A0ðIÞ
� dx�þ�ðIÞdx5;

F0ðIÞ
��¼2@½�A

0ðIÞ
�� ;

4FðIÞ
��¼F0ðIÞ

���2@½��ðIÞB��; (4.28)

one finds that the five-dimensional theory (2.1) leads to the
following four-dimensional effective Lagrangian,

L4 ¼ 4R� 2k2Ve2�=
ffiffi
3

p
� 2g��@��@��

� 1

4
e�2

ffiffi
3

p
�H��H

�� � GABg
��@��

A@��
B

� 1

2
e�2�=

ffiffi
3

p
GIJ

4FðIÞ
��

4FðJÞ��

� e4�=
ffiffi
3

p
GIJg

��@��
ðIÞ@��ðJÞ

� 1

8
����
CIJK�

ðIÞ
�
4FðJÞ

��
4FðKÞ

�
 � �ðJÞ 	 4FðKÞ
��H�


þ 1

3
�ðJÞ�ðKÞH��H�


�
: (4.29)

Thus, the four-dimensional effective theory derived from

the Lagrangian (2.1) comprises 2N scalars ð�;�A; �ðIÞÞ and
N þ 1 gauge fields ðA0ðIÞ

� ; B�Þ in general. Meanwhile, its

supersymmetric solution is specified by N þ 2 harmonics
ðHI; h;!5Þ.
As an obvious application, let us consider the case where

the four-dimensional base space ðB; hmnÞ is the Taub-NUT
space. The Taub-NUT metric can be written as a Gibbons-
Hawking form (4.19) as

ds2TN ¼
�
"þM

�

��1
M2ð�3

RÞ2

þ
�
"þM

�

�
½d�2 þ �2fð�1

RÞ2 þ ð�2
RÞ2g�; (4.30)

where � :¼ j ~xj and Mð>0Þ corresponds to the NUT pa-
rameter. For later convenience, we have introduced a pa-
rameter ", which is unity for the Taub-NUT space.
A natural five-dimensional background (j ~xj ! 1) in

this case is

ds2GPS ¼ �d�t2 þ að�tÞ2ds2TN: (4.31)

where the scale factor að�tÞ is given by (2.49) and (2.50).
This is the Gross-Perry-Sorkin-type monopole [56] im-
mersed in the FLRW universe. At large distance j ~xj ! 1
it may be rewritten as a Uð1Þ fibration over the FLRW
universe M5 ’ M4 � S1,

ds2GPS ¼ ds2FLRW þMað�tÞ2�ð�3
RÞ2: (4.32)

Thus, the spacetime is effectively four-dimensional at in-
finity. Since the metric (4.31) admits a homothetic Killing
field, one can analyze its causal structures analytically. The
conformal diagrams are the same as the five-dimensional
FLRW universe.
Recalling the fact that the flat Euclidean space is recov-

ered when " ¼ 0 in the metric (4.30) (note that in this
case M is not the NUT charge), the spacetime structure as
� ! 0 (with or without t ! �1) is identical to that for the
solution (3.1). Then, the vicinity of horizons is indeed five-
dimensional. Therefore, this geometry describes a Kaluza-
Klein-type black hole [57].
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2. A caged black hole

As discussed in [58,59] for the supersymmetric case, a
caged black-hole geometry is obtained by superimposing
an infinite number of black holes aligned in one direction
with an equal separation. Since the present time-dependent
solution found in Sec. II is linearized in space, we can
construct similar configurations easily. Decomposing the
Euclidean 4-space coordinates as xm ¼ ðx; y; z; wÞ with
the orientation dx ^ dy ^ dz ^ dw and putting the same
point sources along the w axis with an equal spacing of
2R5, we obtain

HS ¼ 1þQS

X1
k¼�1

1

�2 þ ðwþ 2kR5Þ2

¼ 1þ QS

2R2
5

sinh ��

��ðcosh ��� cos �wÞ ; (4.33)

HT ¼ t

t0
þQT

X1
k¼�1

1

�2 þ ðwþ 2kR5Þ2

¼ t

t0
þ QT

2R2
5

sinh ��

��ðcosh ��� cos �wÞ ; (4.34)

!�1
¼ J

X1
k¼�1

x2 þ y2

½�2 þ ðwþ 2kR5Þ2�2

¼ J

4R2
5

ð �x2 þ �y2Þ
��2

�ðcosh �� cos �w� 1Þ
ðcosh ��� cos �wÞ2

þ sinh ��

��ðcosh ��� cos �wÞ
�
; (4.35)

!�2
¼ J

X1
k¼�1

z2 þ ðwþ 2kR5Þ2
½�2 þ ðwþ 2kR5Þ2�2

¼ J

4R2
5

�
�ð �x2 þ �y2Þ

��2

ðcosh �� cos �w� 1Þ
ðcosh ��� cos �wÞ2

þ ð ��2 þ �z2Þ
��2

sinh ��

��ðcosh ��� cos �wÞ
�
; (4.36)

where �2 � x2 þ y2 þ z2, and we have introduced
dimension-free coordinates �xm ¼ xm=R5 and �� ¼ �=R5.
To derive these expressions we have used a series
expansion:

X1
k¼�1

1

�2 þ ð�þ 2kÞ2 ¼
sinh�

2�ðcosh�� cos�Þ : (4.37)

Since this solution is periodic in the w direction by
identifying w ¼ 0 and 2R5, it can be regarded as a
deformed BMPV ‘‘black hole’’ in a compactified five-
dimensional spacetime (0 � w � 2R5) with pseudo-
supersymmetry.

Introducing the three-dimensional spherical coordinates
ð�;�;�Þ, which are defined by

x ¼ � sin� cos�;

y ¼ � sin� sin�;

z ¼ � cos�;

(4.38)

the four-dimensional Einstein-frame metric in the asymp-
totic region (� 
 R5) reads

d�s24 ¼ �f3=2ðd�tþ �!�d�Þ2
þ f�3=2½d ��2 þ ��2ðd�2 þ sin2�d�2Þ�; (4.39)

where

f ¼
�
1þ 1

2R2
5

QS

��

��n=3
�
t

t0
þ 1

2R2
5

QT

��

��1þn=3
;

�!� ¼ 1

4R3
5

J

��
sin2�: (4.40)

In the asymptotic limit � ! 1, the metric (4.39) describes
an FLRW universe with the power exponent of the scale
factor being p ¼ 1=ð4� nÞ. One might therefore expect
that this solution describes a caged black hole in the
effective four-dimensional FLRW universe. However, we
have to be careful to judge whether it is a black hole or not.
A two-black-hole system in the Kastor-Traschen spacetime
[the case (iv) without rotation] will collide and merge
to form a single black hole in the contracting universe
(t0 < 0). In the expanding universe, the solution describes
the time-reversal one. Namely, it corresponds to the two-
white-hole system, since one object disrupts into two ob-
jects, which is possible for a white hole but not for a black
hole. In the present case we have infinite numbers of point
sources before identification, so that we can expect a
similar result. It therefore appears that the object in the
expanding universe corresponds to a splitting ‘‘white
string’’ into an array of white holes. In order to clarify
this rigorously, we have to analyze (numerically) the hori-
zons of a multi-object system in the expanding universe.
One especially important question to be answered is
whether black holes will collide in a contracting universe
for any value of n.

V. CONCLUDING REMARKS

We have presented pseudo-supersymmetric solutions to
five-dimensional fake supergravity coupled to arbitrary
Uð1Þ gauge fields and scalar fields. The noncompact gaug-
ings of R-symmetry correspond to the Wick rotation of the
gauge coupling constant (g ! ik). Since the bosonic action
is not charged with respect to R-symmetry, no ghosts
appear in this sector, i.e., all kinetic terms possess the
correct sign. The net effect of imaginary coupling produces
a positive potential for the scalar fields. Hence, the back-
ground spacetime is generally dynamical, contrary to the
supersymmetric case.
The metric solves the first-order Killing spinor equation,

which automatically guarantees that the Einstein equations
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and the scalar-field equations are satisfied if the Maxwell
equations are solved. The solution is specified by time-
dependent and time-independent harmonicsHI on a hyper-
Kähler base space. This encodes the balances of forces of
the solution: the gravitational attraction is adjusted to
cancel the electromagnetic repulsive force (the scalar fields
can contribute both sides depending on the potential). We
specialized to the case in which a single point source on the
Euclidean 4-space and explored its physical properties.
The solutions we found are the rotating generalizations
of our previous solutions [29,31] describing a black hole
in the FLRW universe. The present metric has four pa-
rameters: the Maxwell chargeQ, the angular momentum J,
the number of time-dependent harmonics n, and the ratio
of energy densities of the Maxwell field and the scalar field
at the horizon �. The spacetime approaches to the rotating
AdS2 � S3 for small radii, while it asymptotes to the
FLRW cosmology for large radii. Thus, the solution is a
BMPV black hole immersed in the time-dependent back-
ground cosmology. Except the asymptotic de Sitter case,
one cannot introduce a stationary coordinate patch even in
the single-centered case. Though we have made some
simplifications, it turns out that the solution enjoys much
richer physical properties than stationary ones.

The analysis of near-horizon geometry uncovers that the
horizon is described by a Killing horizon. Hence, the
ambient materials fail to accrete onto the black hole irre-
spective of the dynamical background. This property may
be attributed to the pseudo-supersymmetry. The BPS solu-
tion maintains equilibrium, forbidding the horizon to grow.

An important issue to be noted is that the event horizon
is not extremal in general. This is due to the fact that the
event horizon is not generated by the coordinate vector
field in the metric (2.23). Furthermore, the event horizon is
rotating, i.e., the event horizon is generated by a linear
combination of time and angular Killing vectors (3.39).
This is in sharp contrast to the supersymmetric BMPV
black hole with vanishing angular velocity. The nonvanish-
ing angular velocity of the horizon indicates that there
exists an ergoregion lying strictly outside the horizon.
The presence of an ergoregion implies the possibility of a
rotating energy removal process via the Penrose process
and the superradiant scattering [60]. We can find that this is
indeed the case for n ¼ 3, as shown in Appendix B. For
other values of n, the energy of a particle and a wave is not
conserved, so it is not a straightforward issue to conclude
whether such an energy extraction process is actually
realizable under a dynamical setting. This is an interesting
future work to be argued.

We have also revealed that rotating solutions generically
suffer from causal violation in the neighborhood of singu-
larities. The pseudo-supersymmetry cannot elude naked
time machines. The reason is obvious: the (pseudo-)
supersymmetry variations (2.21) and (2.22) are local, so
that they make no direct mention of a global structure of

spacetime such as closed timelike curves. In particular, the
timelike singularity t ¼ tsðrÞ in the r2 > 0 domain is
repulsive.
The original time-dependent equilibrium solution was

derived via compactification of M2/M2/M5/M5-branes
in eleven-dimensional supergravity [30]. We discussed
in section IVA 2 that the present metric with a single
time-dependent harmonic function can be embedded into
11 dimensions, describing a dynamically intersecting
M2/M2/M2-branes in a rotating Kasner universe. It is
shown that the four-dimensional solution [30] was also
derived from compactification of a five-dimensional solu-
tion on the Gibbons-Hawking space. Unfortunately, such a
lift-up procedure fails to act as a chronology protector. It is
of particular interest to see whether it oxidizes to a causally
well-behaved solution in ten-dimensional supergravity, as
in [50]. It appears appealing to examine if the occurrence
of closed timelike curves corresponds to the loss of unitar-
ity in the context of de Sitter/CFT correspondence.
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Note added.—During the completion of this work, we

noticed the work of [64], which classifies all the pseudo-
supersymmetric solutions of the theory (2.1). It is intrigu-
ing to examine if more general classes of solutions admit
black-hole horizons in the expanding universe.

APPENDIX A: DILATONIC ‘‘BLACK HOLE’’
IN THE FLRW UNIVERSE

In the body of text, we considered several gauge fields in
order to make the horizon area nonvanishing. To see this
more concretely, let us consider the four-dimensional
Einstein-Maxwell-dilaton gravity in which a single gauge
field exists,

S ¼ 1

2	2
4

Z
ðR ?4 1� 2d� ^ ?4d�� 2e�2��F ^ ?4FÞ;

(A1)

where� is a coupling constant. The BPS equations are [61]�
D� þ i

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p e����ab��Fab

�
� ¼ 0; (A2)

�
��@��� i�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p e����abFab

�
� ¼ 0: (A3)

[We remark that the second term in the dilatino Eq. (A3)
has a factor 2 discrepancy with the result in [61], which
seems to be a typo.] This theory admits a static and
spherically symmetric black-hole solution [33], whose
BPS limit is given by
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ds2 ¼ �U�2=ð1þ�2Þdt2 þU2=ð1þ�2Þ
ijdx
idxj;

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
U
dt;

� ¼ � �

1þ �2
lnU;

(A4)

where U ¼ 1þQ=j ~xj. This metric admits a Killing spinor

� ¼ U�1=½2ð1þ�2Þ��1, where �1 denotes the constant spinor
(corresponding to the asymptotic value of �) satisfying
i�0�1 ¼ �1. We find that any harmonic function U on
the flat 3-space solves the Maxwell equations, hence this
metric, which is a cousin of a Majumdar-Papapetrou solu-
tion, can describe multiple configurations.

This solution can be immersed in an FLRW background
by setting U ¼ t=t0 þ �UðxÞ where �U is any harmonic
function, and by introducing a Liouville-type exponential
potential

V ¼ V0e
2��; V0 ¼ 2ð3� �2Þ

ð1þ �2Þ2t20
: (A5)

This is a generalization of the solution given in [62] to any
values of �. This spacetime is dynamical and approaches
the flat FLRW universe filling with the fluid of equation of
state P ¼ ½ð2�2 � 3Þ=3��. Unfortunately, the metric fails
to have a regular horizon in either case. These solutions
exhibit timelike singularities at U ¼ 0: the r ! 0 limit
fails to give a throat geometry and the well-defined scaling
limit does not exist either. This illustrates that only a single
gauge field cannot sustain a black hole.

Finally, we briefly comment on the � ¼ ffiffiffi
3

p
case, in

which the theory can be oxidized to the five-dimensional
vacuum Einstein gravity 5R�� ¼ 0 via the Kaluza-Klein

lift (4.24). When U ¼ 1þQ=j ~xj, the five-dimensional
metric admits a covariantly constant null Killing vector
V� ¼ ð@=@tÞ�, hence the spacetime describes a pp-wave.
This means that the BPS solution (A4) belongs to the null
family of solutions (see Eq. (4.42) of [7]), so its time-
dependent generalization U ¼ t=t0 þQ=j ~xj does not give
a black hole.

APPENDIX B: SUPERRADIANCE FROM THE
KLEMM-SABRA SOLUTION

We have found that the black holes preserving pseudo-
supersymmetry (2.40), (2.41), (2.42), and (2.43) are rotat-
ing and possess an ergoregion. Hence, we expect super-
radiance. For a spacetime which is an asymptotically
FLRW universe, however, it is difficult to argue the wave
propagation since the background is dynamical: the parti-
cle energy with an asymptotic observer is not conserved. In
order to discuss the superradiant phenomena without such
an ambiguity, we shall address the wave propagation in the
background of the Klemm-Sabra solution (2.43) [case (iv)],
in which case the particle energy with respect to an ob-
server resting at the cosmological horizon is conserved

since we are able to introduce a stationary coordinate patch
(2.46) [we shall restrict our example to the under-rotating
case and drop the primes in the coordinates (2.46)].
Since the stationary Killing field for an observer rest at

the cosmological horizon becomes spacelike inside the
ergoregion, the energy measured by that observer can be
negative. Hence, if a wave is scattered off by the black
hole, these negative energy modes are excited and fall into
the black hole, allowing the outside observer to have an
amplified wave coming out of the horizon.
For the purpose of simplicity, let us consider a massless

scalar field 	, which evolves according to

r�r�	 ¼ 0: (B1)

Assuming

	 ¼ e�i!tþim1�1þim2�2r�1RðrÞ�ð#Þ; (B2)

the massless scalar-field Eq. (B1) is separable. The angular
equation is the spin-weighted spherical harmonic with spin
weight s ¼ ðm1 �m2Þ=2. The angular function� satisfies

1

sin# cos#

d

d#

�
sin# cos#

d

d#
�

�

þ
�
‘ð‘þ 2Þ � m2

1

sin2#
� m2

2

cos2#

�
� ¼ 0; (B3)

where ‘ ¼ 0; 1; 2 . . . . Incidentally, �eim1�1þim2�2 is pro-
portional to the Wigner D-function, an irreducible repre-
sentation of SUð2Þ [63]. Note that the above angular
equation does not involve !, contrary to the Kerr case.
Define the tortoise coordinate r� by

dr� ¼ 2t0
r�KS

; �KS :¼ 1�Hr2

4t20
þ J2

4t20r
4
; (B4)

so that r� ! 1 as r ! rc and r� ! �1 as r ! rþ, where
rþ and rcð>rþÞ denote, respectively, the loci of event and
cosmological horizons with �KSðrþÞ ¼ �KSðrcÞ ¼ 0. It
follows that the radial equation obeys the Schrödinger-
type equation

d2

dr2�
Rþ

��
!� ðm1 þm2ÞJ

4t20r
2

�
2

� �KS

4t20

�
‘ð‘þ 2Þ þ 4t20!

2 þ d

dr
ðr�KSÞ

��
R ¼ 0:

(B5)

It turns out that the reflected wave is more amplified than
the incident wave if the frequency lies in the superradiant
regime

ðm1 þm2ÞJ
4t20r

2
c

< !<
ðm1 þm2ÞJ

4t20r
2þ

: (B6)

Such a superradiant amplification is characteristic of a
rotating black hole with an ergoregion. This phenomenon
does not occur for the supersymmetric black hole, for
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which the stationary Killing field is always timelike out-
side the horizon. This means that in the pseudo-
supersymmetric case, the energy measured by a local
observer is not necessarily positive, which makes super-
radiance possible. For the black holes in cases (ii) and (iii),

or even for those with an arbitrary value of n, we expect
that a similar superradiant phenomena will occur, although
there exists a technical difficulty to define a particle state
(or the positive frequency states) in a time-dependent
spacetime.
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