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We calculate stellar oscillations, including the hadron-quark mixed phase, considering finite-size

effects. We find that it is possible to distinguish whether the density discontinuity exists or not in the

stars, even if one observes the gravitational waves of the fundamental mode. Additionally, the normalized

eigenfrequencies of pressure modes depend strongly on the stellar mass and on the adopted equation of

state. In particular, in spite of the fact that the radius of the neutron star with 1:4M�, which is the standard
mass, is almost independent of the equation of state with quark matter, the frequencies of the pressure

modes depend on the adopted equation of state. Thus, via observing the many kinds of gravitational

waves, it will be possible to make a restriction on the equation of state.
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I. INTRODUCTION

In order to detect gravitational waves, which are oscil-
lations of spacetime itself, several ground-based detectors,
such as LIGO, VIRGO, TAMA300, and GEO600, are in
operation, and there are other projects that will build the
next generation of detectors [1]. In addition to the ground-
based detectors, some are also considering launching de-
tectors in space, like LISA [2] and DECIGO [3]. Since the
permeability of gravitational waves could be extremely
strong, one can expect to see raw information of the
wave sources via gravitational waves. On the other hand,
the most promising sources of gravitational waves might
be supernovae and mergers of binary compact objects; i.e.,
the gravitational waves are related to the compact stars,
around which the gravitational field should be strong. So,
the direct detection of gravitational waves could enable us
not only to collect the astronomical data and to reveal the
true properties of dense matter [4–11], but also to prove the
gravitational theory in the strong-field regime [12,13].

In fact, an attempt to estimate the stellar parameters,
such as mass, radius, and equation of state (EOS), via their
oscillation properties is not a brand-new idea. In astron-
omy, the helioseismology has already been established,
and one can see the interior information of our Sun through
its oscillation properties. Since the late 1990s, it has been
suggested that it is possible to reveal the compact star
properties by observing the oscillation spectra; this is
called gravitational wave asteroseismology [4,5].
Furthermore, the detailed analysis of the emitted gravita-
tional waves might permit us to determine the radius of the
accretion disk around supermassive black holes [14] or to
see the magnetic effect during the stellar collapse [15].

With respect to the neutron stars, the density in the
vicinity of the stellar center could become much more

than the standard nuclear density, which is around �0 �
0:17 fm�3. Since such high density cannot be realized on
the Earth, the detailed matter properties in neutron stars are
still unknown. However, this means, conversely, that the
neutron stars can be good candidates to find out the matter
properties in the extreme high density region, where it is
suggested that the exotic components of matter, such as
hyperons, meson condensates, and quark matter, could
appear [16]. The existence of these exotic components
changes the EOS and neutron star structures dramatically
[17–19]. Namely, as mentioned above, observing the stel-
lar oscillations and/or the corresponding gravitational
waves will tell us information about the matter properties
of neutron stars. In particular, it might be impossible to
probe the true properties of matter deep inside the star by
any other experiments.
The hyperons are considered to appear at around 2�

3�0, if the nuclear matter is in beta equilibrium [20,21]. On
the other hand, there are still many uncertainties with
respect to the hadron-quark phase transition, e.g., the
EOS of quark matter or a deconfinement mechanism.
The presence of quark matter inside the compact objects
might play an important role in the astronomical phe-
nomena, for example, the backbending effect from the
phase transition [22,23], connection to gamma-ray bursts
[24], gravitational wave bursts [25], gravitational radiation
[26–29], energy release during the collapse from neutron
stars to quark stars [30,31], neutrino luminosities [32–34],
and cooling with quark matter [35–39]. Although Maxwell
construction might be the simplest model with quark mat-
ter, the mixed phase could exist around the critical density
that the quark matter appears, where baryon number and
electric charge should be conserved. Generally, the prop-
erties of the mixed phase depend strongly on the electro-
magnetic interaction and the surface tension; these effects
are called ‘‘the finite-size effects.’’ Because of the finite-
size effects, the mixed phase is composed of a nonuniform*hajime.sotani@nao.ac.jp
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pasta structure [18,19]. However, it is not clear how to
distinguish the finite-size effects by observing the astro-
nomical phenomena.

In this article, we study the gravitational waves emitted
from compact stars with the hadron-quark mixed phase,
considering the finite-size effects. Up to now, there exist a
few studies from the gravitational wave asteroseismologi-
cal point of view, which focus on probing the density
discontinuity in the high density region using specific fre-
quencies of gravitational waves (e.g., [7,8]). However, no
one has investigated the effects of the mixed phase between
the hadron and quark matter on the specific frequencies. So,
in this article, preparing the neutron star models with the
mixed phase or with density discontinuity between
the hadron and quark matter phases, we will calculate the
eigenfrequencies associated with the gravitational waves,
where as a first step we adopt the Cowling approximation;
i.e., the metric perturbation will be neglected. Then, by
varying the stellar properties systematically, we will see
the dependence of the existence of quark matter on the
oscillation frequencies, considering finite-size effects.

This article is organized as follows. In the next section,
we describe the equation system to construct the neutron
star models and the EOS adopted in this article, and show
some stellar models concretely. In Sec. III, we derive the
perturbation equations with the Cowling approximation.
With appropriate boundary conditions, the problem to
solve becomes the eigenvalue problem. Then, the obtained
oscillation spectra will be shown in Sec. IV. At last, we
make a conclusion in Sec. V. In this article, we adopt units
of c ¼ G ¼ 1, where c andG denote the speed of light and
the gravitational constant, respectively, and the metric
signature is ð�;þ;þ;þÞ.

II. NEUTRON STAR MODELS

The equilibrium configurations of nonrotating relativis-
tic stars are spherically symmetric solutions of the well-
known Tolman-Oppenheimer-Volkoff (TOV) equations.
The metric can be expressed as

ds2 ¼ �e2�dt2 þ e2�dr2 þ r2d�2 þ r2sin2�d�2; (2.1)

where � and � are metric functions with respect to r. A
mass function mðrÞ is defined as mðrÞ ¼ rð1� e�2�Þ=2,
which satisfies

dm

dr
¼ 4�r2�; (2.2)

where � is the energy density, while the TOV equations
used to determine the distributions of the pressure PðrÞ and
metric function �ðrÞ are described as

dP

dr
¼ �ð�þ PÞd�

dr
; (2.3)

d�

dr
¼ mþ 4�r3P

rðr� 2mÞ : (2.4)

To close the equation system, one needs an additional
equation, i.e., the EOS.
In this article, we adopt an EOS with the hadron-quark

mixed phase with hyperons, considering finite-size effects
according to [18,19]. Our EOS for hadrons is in the frame-
work of the nonrelativistic Brueckner-Hartree-Fock ap-
proach, including hyperons such as �� and � [40]. It is
not clear now whether the ��-N interaction is repulsive or
not [41,42]; here we use a weak but attractive interaction. It
would be interesting to see how our results are changed by
using the other ��-N interactions, and we will discuss this
in a future work. For comparison, we also adopt the EOS
composed of only nucleons. We call them ‘‘hyperon EOS’’
and ‘‘nucleon EOS’’ in this article.
For the quark phase, we adopt the MIT bag model. It

should be noticed that the adopted EOS in this article is not
a simple MIT bag model but a more sophisticated model
suggested in previous articles [43,44]. Assuming massless
u and d quarks and s quarks with the current mass ofms ¼
150 MeV, we set the bag constant B to be 100 MeV fm�3.
For the mixed phase, we assume nonuniform structures,

so-called ‘‘pastas.’’ In practice, structures such as droplet,
rod, slab, tube, and bubble are considered. We use the local
density approximation for particles with the Wigner-Seitz
cell. In order to construct such a pasta phase, we put a sharp
boundary with a constant surface tension parameter be-
tween the hadron and quark phases. Then the Gibbs con-
ditions are imposed, where one needs to solve two
conditions: (1) the chemical equilibrium among particles
in two phases consistent with the Coulomb potential, and
(2) the pressure balance consistent with the surface tension.
Although the knowledge of the value of the surface tension
at the hadron-quark interface is very poor, some theoretical
estimations have been done and they suggest that the value
of the surface tension is around � � 10–100 MeV=fm2

[45,46]. Since one can see that the models with � *
40 MeV=fm2 are almost the same as that with � ¼
40 MeV=fm2, in this article we consider only a range of
10 � � � 40 MeV=fm2. As an extreme case, we also con-
sider the EOS with a Maxwell construction, which has a
sharp discontinuity of the density between 5:93� 1014 and
8:82� 1014 g=cm3. Note that this discontinuity appears at
strong surface tensions, considering finite-size effects, e.g.,
�> 70 MeV=fm2 in our previous study [18]. Moreover,
we take into account another extreme case of an EOS with
the bulk Gibbs condition, which appears at the zero surface
tension limit [18]. Finally, in order to determine which
structure is most favored in the mixed phase, we compare
the energy among the pasta structures. Note that we do not
take into account the antiparticles and muons in this article,
because their effects should not be so important.
Then the above EOSs should be connected to the had-

ronic EOS proposed by Negele and Vautherin [47] when
the density becomes lower than around 1014 g=cm3. In
Table I, the components of each EOS adopted in this article
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are summarized, while Fig. 1 shows the relationship be-
tween the energy density � and the pressure P in the higher
density region for the EOSs adopted in this article. Solving
the TOV equations with such EOSs, we can get the stellar
properties as shown in Fig. 2. It should be noticed that the
maximum masses of the stellar models constructed by
EOSs including quark matter are almost independent of
the values of �, which are around 1:4M�. Here, we should
discuss the maximum mass of neutron stars. Recently, two
pulsar mass measurements appeared, which are well above
1:4M�, i.e., M ¼ 1:97M� for PSR J1614-2230 [48] and
M ¼ 1:667M� for PSR J1903þ 0327 [49]. Since it is
impossible to explain these evidences with the EOS that
includes quark matter, as adopted in this article, we should
derive more realistic EOSs and examine the stellar oscil-
lations in a future work.

III. PERTURBATION EQUATIONS

In order to determine the specific oscillation frequencies
in the neutron stars, in this section we present the perturba-
tion equations for nonradial oscillations of spherically sym-
metric neutron stars. In particular, in this articlewe consider
only stellar oscillations with the Cowling approximation,
where the fluid would oscillate on a fixed background
metric. Namely, the spacetime will be frozen such that the
metric perturbation should be neglected (�g�� ¼ 0). Thus,

with the Cowling approximation, our study is limited to the
modes related to the fluid perturbations, i.e., f, p, and g
modes, while we cannot see the emission of gravitational
waves associated with the so-called w modes which corre-
spond to the spacetime oscillations. It should be emphasized
that, even with this simple approximation, one can see
qualitatively the features for oscillation frequencies of emit-
ted gravitational waves.
The fluid Lagrangian displacement vector is given by

	i ¼ ðe��W;�V@�;�Vsin�2�@�Þr�2Y‘m; (3.1)

whereW and V are functions with respect to t and r, while
Y‘m is the spherical harmonic function. Then the perturba-
tions of the four-velocity, �u�, can be written as

�u� ¼ ð0; e��@tW;�@tV@�;�@tVsin
�2�@�Þr�2e��Y‘m:

(3.2)

With these variables, the perturbation equations describing
the fluid oscillations can be obtained by taking a variation
of the energy-momentum conservation law, i.e.,
�ðr�T

��Þ ¼ 0. This equation reduces to r��T
�� ¼ 0

with the Cowling approximation. The explicit forms with
� ¼ r, � are

�þP

r2
e��2� €W�@r

�

P

r2
fe��W 0 þ‘ð‘þ1ÞVgþe��P0W

r2

�

þP0

r2

�
1þdP

d�

�
½e��W 0 þ‘ð‘þ1ÞV�

��0 þP0

r2
�0e��W¼0; (3.3)

ð�þ PÞe�2� €V þ 
P

r2
½e��W 0 þ ‘ð‘þ 1ÞV�

þ P0

r2
e��W ¼ 0; (3.4)

where primes and dots on the variables denote the partial
derivatives with respect to r and t, respectively. 
 is the
adiabatic constant defined as


 �
�
@ lnP

@ lnn

�
s
¼ n�P

P�n
; (3.5)

where n is the baryon number density and � denotes the
Lagrangian variation. The Lagrangian variation of the
baryon number density, �n, is determined by the relation

TABLE I. Components of each EOS adopted in this article.

EOS Components

Nucleon Nucleon

Hyperon Nucleon, hyperon

Bulk Gibbs Nucleon, hyperon, quark

With pasta phase Nucleon, hyperon, quark

Maxwell Nucleon, hyperon, quark

)

)

))

FIG. 1 (color online). Relationship between the total energy
density including masses (�) and the pressure (P) for the EOSs
adopted in this article.

))

FIG. 2 (color online). Mass-radius relation for neutron stars
with several EOSs.
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�n=n ¼ �rð3Þ
k 	k � �g=g, where rð3Þ

k and g are the cova-

riant derivatives in three dimensions with the metric g��

and the determinant of g��, respectively. Since in this

article we adopt the Cowling approximation, the second
term is neglected. Then the Lagrangian variation of n can
be described as

�n

n
¼ �e�� W 0

r2
� ‘ð‘þ 1Þ

r2
V: (3.6)

Assuming a harmonic dependence on time, the pertur-
bative variables will be written as Wðt; rÞ ¼ WðrÞei!t and
Vðt; rÞ ¼ VðrÞei!t. Additionally, calculating the combina-
tion of the form d½Eq:ð3:4Þ�=dr� ½Eq:ð3:3Þ� and substi-
tuting Eq. (3.4) again, one can get the simple equation

V 0 ¼ 2�0V � e�
W

r2
: (3.7)

Thus, from Eqs. (3.4) and (3.7), one can obtain the follow-
ing simple equation system for the fluid perturbations:

W 0 ¼ d�

dP
½!2r2e��2�V þ�0W� � ‘ð‘þ 1Þe�V; (3.8)

V 0 ¼ 2�0V � e�
W

r2
: (3.9)

In order to solve this equation system, we have to
impose appropriate boundary conditions at the stellar
center (r ¼ 0) and at the stellar surface (r ¼ R). With
these boundary conditions, the problem to solve becomes
an eigenvalue problem for the parameter !. From the
above equation system, one can find the behavior of W
and V in the vicinity of the stellar center as WðrÞ ¼
Cr‘þ1 þOðr‘þ3Þ and VðrÞ ¼ �Cr‘=‘þOðr‘þ2Þ, where
C is an arbitrary constant. On the other hand, the boundary
condition at the stellar surface is the vanishing of the
Lagrangian perturbation of pressure, i.e., �P ¼ 0. Since
�P could be expressed as �P ¼ 
P�n=n from Eq. (3.5),
with the help of Eqs. (3.6) and (3.8), the condition of
�P ¼ 0 becomes

!2r2e��2�V þ�0W ¼ 0: (3.10)

Furthermore, if one considers the stellar models with
density discontinuity, one has to prepare the additional
junction conditions at the surface of discontinuity, which
are the continuous conditions for W and �P [7]. These
junction conditions can be rewritten with the variables W
and V as

Wþ ¼ W�; (3.11)

Vþ ¼ e2�

!2Rg
2

�
�� þ P

�þ þ P
½!2Rg

2e�2�V� þ e���0W��

� e���0Wþ
�
; (3.12)

where Rg denotes the position of the density discontinuity,

and W�, V�, and �� are the values of W, V, and � at r ¼
Rg � 0, whileWþ, Vþ, and �þ are the values ofW, V, and

� at r ¼ Rg þ 0, respectively.

IV. OSCILLATION SPECTRA

In this section we examine the stellar oscillations on the
stellar models shown in Sec. II. In particular, we focus on
the stellar models whose mass is in the range of 0:5M� �
M � Mmax and at 0:1M� intervals, where Mmax is the
maximum mass for each EOS. Namely, the masses of
the stellar models we adopt in this article are 0:5 �
M=M� � 1:3 for the hyperon EOS, 0:5 � M=M� � 1:8
for the nucleon EOS, and 0:5 � M=M� � 1:4 for the
other EOSs. As mentioned above, the stellar models
with Maxwell EOSs have the density discontinuity, if
the central density is larger than 8:816� 1014 g=cm3.
That is, for Maxwell EOSs, the stellar models with 0:7 �
M=M� � 1:4 have the density discontinuity, while those
with M=M� ¼ 0:5 and 0.6 do not have the density dis-
continuity, and such stellar models are the same as those
with hyperon EOSs (see Fig. 2).
When neutron stars oscillate, many kinds of gravita-

tional waves are radiated. If the stars are spherically sym-
metric and without density discontinuity inside the star,
which might be the simplest model, the fundamental (f),
pressure (p), and spacetime (w) modes are excited, where
f and p modes are gravitational waves related to the fluid
oscillations while w modes correspond to the oscillations
of spacetime itself. If the stars are spherically symmetric
and with density discontinuity, the additional oscillation
modes, i.e., the gmodes, are excited as well as f, p, and w
modes. The g modes are also gravitational waves associ-
ated with the fluid oscillations. In this article, we will see
qualitatively the gravitational waves related to the fluid
oscillations because the Cowling approximation is adopted
in our analysis. Thus, as shown in Fig. 3, the stellar models
with the adopted EOSs, except for the Maxwell EOS, have
f and p modes, while those with the Maxwell EOS, whose
masses are more than 0:7M�, have f, p, and g modes.
Before discussing the f and p modes, we pay attention

to the g mode for the stellar models with Maxwell EOSs.
As noted before, the gmode is excited due to the existence
of density discontinuity. Therefore, one could know about
the existence of density discontinuity inside the neutron
stars, if the g mode gravitational waves are observed.
Actually, since the typical frequency of the g mode is in
the range from a few hundred Hz up to kHz, such gravita-
tional waves could be observed by using the ground-based
gravitational wave detectors. From Fig. 3, one can observe
that the frequency of the g mode is almost independent of
the stellar mass, which is around 1.73 Hz. However, we
find that the g mode frequency can be expressed well as a
function of stellar compactness M=R (see Fig. 4), such as
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!M ¼ 0:3130

�
M

R

�
þ 0:0103: (4.1)

Practically, from this empirical formula, we can expect the
g mode frequency with less than 0.6% accuracy. So, via
observing the gmode gravitational waves, one could know
the stellar properties. Or, with the observation of the
redshift parameter, which is connected to the stellar

compactness directly, one could make a restriction on the
stellar mass.
On the other hand, it is well known that the frequency of

the f mode can be connected to the stellar average density

ðM=R3Þ1=2, which could be physically explained by con-
sidering the relation between the sound speed and the
propagation time of the fluid perturbation inside the star.
In fact, Andersson and Kokkotas derived the empirical
formula for the f mode frequency by performing calcula-
tions in the stellar models with several realistic EOSs [5].
Although they did not adopt the EOS including the quark
matter, they found that the f mode frequencies obtained in
their article are subject to their empirical formula almost
independently of the EOS. However, in Fig. 5, we show the
f mode frequencies for the stellar models with EOSs
adopted in this article. At a glance, one can observe that
the behavior of the f mode frequencies for the stellar
models with the Maxwell EOS is quite different from the
others. The f mode frequencies for the Maxwell EOS
could become 36% larger than those for nucleon EOS
and 27% larger than those for the other EOSs. This means
that one could possibly know about the existence of
the density discontinuity even by observing the f mode

)

)

)

)

FIG. 3 (color online). The first few eigenfrequencies for the stellar models with (a) nucleon and (b) Maxwell EOSs are plotted as a
function of the stellar massM=M�, where the frequency f is defined as f � !=2�. As mentioned in the text, for the case of the stellar
models with the other EOSs, the excited eigenfrequencies are the same as in the case of the stellar model with nucleon EOSs; i.e., they
have f and pi modes, where i ¼ 1; 2; 3; � � � . On the other hand, the stellar model with the Maxwell EOS, which has a first order phase
transition in the density, has an additional eigenfrequency, which is the g mode.

FIG. 4 (color online). The normalized eigenvalue ! of the g
mode for the stellar models with Maxwell EOSs are plotted as a
function of the stellar compactness M=R.

)

)

)

)

FIG. 5 (color online). With several EOSs, the frequencies of the f modes are plotted as a function of the stellar average density
ðM=R3Þ1=2, where ff is defined as ff � !f=2�. The left panel corresponds to the results with nucleon, hyperon, bulk Gibbs, and

Maxwell EOSs, while the right panel focuses on the pasta EOSs.
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gravitational waves as well as the g mode ones.
Additionally, Fig. 5 shows that the f modes for the stellar
models with pasta EOSs are similar to those for the stellar
models with the other EOSs without density discontinuity.

Regarding the p modes, we plot the frequencies of the
p1 and p2 modes as functions of the average density in
Fig. 6. From this figure, one can see that the pi mode
frequencies are almost independent of the EOS even if it
includes the density discontinuity. However, one can see
the dependence of the p mode frequency on the EOS if
we prepare the figure with regards to the normalized

eigenvalues with average density, !ðR3=MÞ1=2, as a func-
tion of the stellar mass (see Fig. 7). The most interesting
point in this figure is that the normalized eigenvalues for
the stellar models with 1:4M� depend strongly on the
adopted EOS, in spite of the fact that the stellar shapes
are almost independent of the adopted EOSs including
quark matter, i.e., R ¼ 9:42–9:67 km. Moreover, in this
figure, the dependence of the normalized eigenvalues of
the p1 mode on the EOS is different from that of the p2

modes. Thus, with the help of the observations of stellar
mass, it could be possible to distinguish the EOSs by
observing the several kinds of oscillation modes. At last,
it should also be noticed that the normalized eigenvalues
of the f modes for the stellar model with the Maxwell
EOS are obviously different from the other stellar models
as well as Fig. 5.

V. CONCLUSION

We study how to distinguish the finite effects on the
hadron-quark mixed phase by observing gravitational
waves, for which we derive the perturbation equations of
neutron stars and obtain their eigenfrequencies.
We find that one could know about the existence of

density discontinuity inside the star via observing the
gravitational waves of not only the g mode but also the f
mode. Note that this discontinuity comes from the insta-
bility of the mixed phase due to the strong surface tension.
Additionally, it is possible to see the stellar properties by
observing the g mode frequency, since such a frequency
can be expressed well as a function of the stellar compact-
ness. If the EOSs do not include the density discontinuity, it
might be difficult to distinguish the EOSs by only observ-
ing the f mode frequencies. However, the normalized
eigenfrequencies of the p modes depend strongly on the
EOSs even if the EOSs do not include the density disconti-
nuity, although the raw frequencies of the p mode are
almost independent. Thus, with the help of the observation
of stellar properties, it could be possible to make a restric-
tion on the stellar EOSs.
In this article, for simplicity, we assume the Cowling

approximation, which restricts our examination to only
stellar oscillations. This means that we should do a more
detailed study including the metric perturbations. Via this

)

)

)

)

FIG. 6 (color online). With several EOSs, the frequencies of p1 (left panel) and p2 (right panel) modes are plotted as a function of the
stellar average density ðM=R3Þ1=2, where the marks in the figures correspond to those in Fig. 5.

FIG. 7 (color online). The normalized eigenvalues of f (left panel), p1 (middle panel), and p2 (right panel) modes are plotted as a
function of the stellar mass M=M�, where the marks in the figures correspond to those in Fig. 5.
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type of oscillation, we could obtain additional information,
such as the damping rate of gravitational waves, and com-
bining this with results shown in this article would provide
more accurate constraints on the stellar properties and/or
the stellar EOSs. Furthermore, the stellar magnetic field
might play an important role. For example, quasiperiodic
oscillations have been observed in the giant flare, and these
phenomena are believed to be oscillations of strong mag-
netized neutron stars [50]. Considering the effects of stellar
magnetic fields, it might be possible to obtain further
information.

Additionally, although we focus only on neutron star
matter (T ¼ 0 MeV and Y�e

¼ 0) in this article, in order to

study the protoneutron stars, we should take into account
other effects, e.g., the thermal effects on the stellar

oscillations [51] and the effects of temperature and/or
neutrino trapping on the pasta structures [19,52,53].
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