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We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational

collapse of a massive matter cloud, and examine its stability under the introduction of small tangential

stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an

introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from

a black hole final state to a naked singularity. This shows instability of black hole formation in collapse

and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The

key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing

cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are

discussed.
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The continual gravitational collapse of a massive matter
cloud within the framework of general relativity was in-
vestigated for the first time by the classic works of
Oppenheimer and Snyder, and Datt (OSD) [1]. Such a
treatment of dynamical collapse would be essential to
determine the final fate of a massive collapsing star which
shrinks catastrophically under the force of its own gravity
when its internal nuclear fuel is exhausted.

The outcome in the above case is seen to be a black hole
developing in the spacetime. As the gravitational collapse
progresses, an event horizon forms within the collapsing
cloud and from the region within the horizon no material
particles or light rays can escape, thus forming a black
hole. The continually collapsing star enters the horizon and
finally ends up forming a spacetime singularity, which is
hidden inside the black hole and which is unseen to all the
outside observers in the Universe. The matter and energy
densities, spacetime curvatures, and all physical quantities
blow up and take extreme values in the limit of approach to
such a spacetime singularity.

This classic picture became the foundation of an exten-
sive theory and astrophysical applications of modern day
black hole physics, further to the suggestion that all real-
istic massive stars undergoing a continual gravitational
collapse would have the same qualitative behavior. This
means that, while the general theory of relativity neces-
sarily implies the formation of a spacetime singularity as
the end state for a massive collapsing star, such a singu-
larity will always be necessarily hidden within a black
hole. Such an assumption is known as the cosmic censor-
ship hypothesis [2], and taking it to be valid, the theory and
applications of black hole physics have developed exten-
sively in past many decades.

The cosmic censorship has, however, remained an un-
proved conjecture as yet in gravitation theory, despite

numerous attempts to establish the same. Therefore, in
past many years, much effort has also been devoted to-
wards understanding and analyzing the final fate of a
physically realistic dynamical gravitational collapse sce-
nario. The current status is, despite much work in studying
the censorship and its implications, the issue of final fate of
a complete gravitational collapse of a massive star remains
far from being fully resolved. In particular, we need to
formulate in a precise manner the conditions in gravita-
tional collapse that would lead to the formation of black
holes necessarily. We now know that under a wide variety
of physically realistic situations, the collapse ends in a
black hole or a naked singularity, depending on the initial
conditions from which the collapse develops and the dy-
namical evolutions as allowed by the Einstein equations
(see e.g. [3,4] and references therein). It is now clear that
naked singularities are to be considered as a general feature
of general relativistic physics and that they may develop as
the end state of collapse in a broad variety of physical
collapse situations.
It follows that a careful and extensive study of gravita-

tional collapse phenomena in general relativity is the key to
put the theory of black holes and their astrophysical im-
plications on a firm footing.
From such a perspective, we investigated here the effect

of introducing small stress perturbations in the collapse
dynamics of the classic Oppenheimer-Snyder-Datt gravi-
tational collapse, an idealized model assuming zero pres-
sure, which terminates in a black hole final fate. Our key
purpose here is to study the stability of the OSD black hole
under introduction of small tangential pressures. Clearly,
stresses within a massive collapsing star are very important
physical forces to be taken into account while considering
its dynamical evolution and the final fate of collapse (see
for example [5]).
We show here explicitly the existence of classes of stress

perturbations such that the introduction of a smallest tan-
gential pressure within the collapsing OSD cloud changes
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the end state of collapse to formation of a naked singular-
ity, rather than a black hole. It follows that the OSD black
hole is not stable under small stress perturbations within
the collapsing cloud. As we point out below, this can also
be viewed as perturbing the spacetime metric of the cloud
in a small way. Our work thus clarifies the role played by
tangential stresses in a well-known gravitational collapse
scenario. The class of stress perturbations considered here,
although specific, is physically reasonable and generic
enough so as to provide a good insight into the stability
of the OSD black hole. Clearly, such a result provides an
important insight into the structure of the censorship prin-
ciple which as yet remains to be properly understood. This
has also implications towards the physical consequences of
final outcomes of a continual collapse, some of which are
indicated in the concluding remarks.

The general spherically symmetric line element describ-
ing the collapsing matter cloud can be written as

ds2 ¼ �e2�ðt;rÞdt2 þ e2c ðt;rÞdr2 þ Rðt; rÞ2d�2; (1)

with the stress-energy tensor for a generic matter source

given by Tt
t ¼ ��, Tr

r ¼ pr, T
�
� ¼ T�

� ¼ p�. The above is

a general scenario, in that it involves no assumptions on the
form of the matter or the equation of state.

In order to decide on the stability or otherwise of the
OSD model under the injection of small stress perturba-
tions, we need to consider the dynamical development of
the collapsing cloud, as governed by the Einstein equa-
tions. The visibility or otherwise of the final singularity is
determined by the behavior of apparent horizon in the
spacetime, which is the boundary of the trapped surface
region that develops as the collapse progresses. First, we
define a scaling function vðr; tÞ by the relation R ¼ rv [6].
The Einstein equations for the above spacetime geometry
can then be written as

pr ¼ � _F

R2 _R
; � ¼ F0

R2R0 ; (2)

�0 ¼ 2
p� � pr

�þ pr

R0

R
� p0

r

�þ pr

; (3)

2 _R0 ¼ R0 _G

G
þ _R

H0

H
; (4)

F ¼ Rð1�GþHÞ; (5)

where the functions H and G are defined as H ¼
e�2�ðr;vÞ _R2, G ¼ e�2c ðr;vÞR02. The above are five equations
in seven unknowns, namely, �, pr, p�, R, F, G, H. Here �
is the mass-energy density, pr and p� are the radial and
tangential stresses, respectively, R is the physical radius for
the matter cloud, and F is the Misner-Sharp mass function.

With the above definitions of v, H and G, we can
substitute the unknowns R, H with v, �. Without loss of
generality, the scaling function v can be set vðti; rÞ ¼ 1 at

the initial time ti ¼ 0 when the collapse commences. It
then goes to zero at the spacetime singularity ts, which
corresponds to R ¼ 0, i.e. we have vðts; rÞ ¼ 0. The above
amounts to the scaling R ¼ r at the initial epoch, which is
an allowed freedom. The collapse condition here is _R< 0
throughout the evolution, which is equivalent to _v < 0.
We can integrate (4) by defining a suitably regular func-

tion Aðr; vÞ by �0 � A;vðr; vÞR0 (the function A is defined in

full generality here, while often the restriction to the class
� ¼ �ðRÞ, implying AðRÞ ¼ �ðRÞ, is made, see e.g. [7]).

This gives Gðr; tÞ ¼ bðrÞe2rAðr;vÞ. The arbitrary function of
integration bðrÞ can be interpreted following the analogy
with dust collapse models, where pressures vanish. It turns
out to be related to the velocity of the collapsing shells, and
once we write it as bðrÞ ¼ 1þ r2b0ðrÞ, we can see that
values b0 ¼ const in the dust limit correspond to the open
(b0 < 0), closed (b0 > 0) or flat (b0 ¼ 0) Friedmann-
Robertson-Walker models. The radial stress pr and the
energy density � are obtained from Eqs. (2), once a specific
choice for the mass function Fðr; tÞ is made. The function �
can be taken as the second free function for the system so
that once a particular form of � is specified, Eq. (3) provides
the tangential stress profile p�. Finally, from the equation of
motion (5), we can integrate to obtain vðr; tÞ, thus solving
the system of Einstein equations.
We can also invert the function vðr; tÞ, which is mono-

tonically decreasing in t, to obtain the time needed by the
matter shell at any radial value r to reach the event with a
particular value v. We write the function tðr; vÞ from
Eq. (5) as

tðr; vÞ ¼
Z 1

v

e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F
r3 ~v

þ be2rA�1
r2

q d~v: (6)

The time taken by the shell at r to reach the spacetime
singularity at v ¼ 0 is then tsðrÞ ¼ tðr; 0Þ.
Since tðr; vÞ is in general at least C2 everywhere in the

spacetime (because of the regularity of the functions in-
volved), and is continuous at the center, we can write it as

tðr; vÞ ¼ tð0; vÞ þ r�ðvÞ þOðr2Þ: (7)

When tðr; vÞ is differentiable, we can make a Taylor ex-
pansion near the center r ¼ 0. Here, tð0; vÞ is the above
integral evaluated at r ¼ 0 and �ðvÞ ¼ dt

dr jr¼0. As we point

out below, the quantity �ð0Þ plays an important role to-
wards determining the nature of the final singularity of
collapse. We consider collapse from a regular initial data,
and so the Einstein Eq. (5) implies that the Misner-Sharp
mass Fðr; vÞ must go as r3 near the center r ¼ 0 in order
for the density to be regular at the center, and also to have
tð0; vÞ well defined. Therefore, in general, F must have the
form, Fðr; vÞ ¼ r3Mðr; vÞ, where M is a suitably regular
function. Then, by continuity, the time for the shell located
at any r close to the center to reach the singularity is given
as tsðrÞ ¼ tsð0Þ þ r�ð0Þ þOðr2Þ. Basically, this means
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that the singularity curve should have a well-defined tan-
gent at the center. Regularity at the center also implies that
the metric function � cannot have constant or linear terms
in r in a close neighborhood of r ¼ 0, and it must go as
�� r2 near the center. Therefore the most general choice
of the free function � is

�ðr; vÞ ¼ r2gðr; vÞ: (8)

Since gðr; vÞ is a regular function (at least C2), it can be
written near r ¼ 0 as

gðr; vÞ ¼ g0ðvÞ þ g1ðvÞrþ g2ðvÞr2 þ . . . : (9)

We would now like to investigate how the OSD gravi-
tational collapse scenario, which is a homogeneous pres-
sureless dust cloud collapsing to give rise to a black hole,
gets altered when small stress perturbations are introduced
in the dynamical evolution of collapse.

To that end, we first note that the dust scenario is
obtained if pr ¼ p� ¼ 0 in the above. In that case, from
Eq. (3) it follows that �0 ¼ 0, and that together with the
condition �ð0Þ ¼ 0, gives � ¼ 0 identically. These models
have been widely studied in the literature, and it is seen that
for generic dust collapse the final outcome can be either a
black hole or a naked singularity, depending on the nature
of the initial density and velocity profiles of the collapsing
matter shells [8]. In the OSD collapse to a black hole, the
trapped surfaces or the apparent horizon in the spacetime
develop much earlier before the formation of the final
singularity of collapse. On the other hand, when inhomo-
geneities are allowed in the initial density profile, such as a
higher density at the center of the star, then the trapped
surface formation is delayed in a natural manner within the
collapsing cloud and the final singularity becomes visible
to faraway observers in the Universe [9].

The OSD case is obtained from above when we further
assume that the collapsing dust is necessarily homogene-
ous at all epochs of collapse. This is of course an idealized
scenario because realistic stars would have typically higher
densities at the center, which slowly falls off with increas-
ing radius, and they also would have nonzero internal
stresses. Specifically, the conditions that must be imposed
to obtain the OSD case from the above are given by

(a) M ¼ M0,
(b) v ¼ vðtÞ,
(c) b0ðrÞ ¼ k.

Then we have F0 ¼ 3M0r
2, R0 ¼ v, and the energy density

is homogeneous throughout the collapse with � ¼ �ðtÞ ¼
3M0=v

3. The spacetime geometry then becomes the
Oppenheimer-Snyder metric,

ds2 ¼ �dt2 þ v2

1þ kr2
dr2 þ r2v2d�2; (10)

where the function vðtÞ is solution of the equation of

motion, dv
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM0=vÞ þ k
p

, obtained from Einstein

Eq. (5). In this case we get �ð0Þ ¼ 0 identically. All the
matter shells then collapse into a simultaneous singularity
(due to condition (b)), which is necessarily covered by the
event horizon that developed in the spacetime at an earlier
time, thus giving rise to a black hole.
To examine the effect of introducing stress perturbations

in the above scenario and to study the models thus obtained
which are close to the Oppenheimer-Snyder in this sense,
we need to relax and perturb one or more of the above
conditions (a), (b) or (c).
If the collapse outcome were not to be a black hole, the

final singularity of collapse cannot be simultaneous.
We are thus led to relax condition (b) above, allowing
v ¼ vðt; rÞ, rather than v ¼ vðtÞ only. At the same time,
in order not to depart too much from the OSD model, we
keep (a) and (c) unchanged. This also brings out more
clearly the role played by the stress perturbations in the
model.
In terms of the spacetime metric (1), while the metric

function �ðt; rÞ must be identically vanishing for the dust
case, the above amounts to allowing for small perturbations
in �, and allowing it to be nonzero now. This is equivalent
to introducing small stress perturbations in the model, and
we show below how that affects the apparent horizon
developing in the collapsing cloud.
We note immediately that taking M ¼ M0 leads to F ¼

r3M0. We have R0 ¼ vþ rv0 ! v for r ! 0 and therefore
we get A;v ¼ �0=v. With the expansion near r ¼ 0 for both
A and g we get the relation between the coefficients of the
expansion of g and those for the expansion of A.

Integrating (4) in the small r limit we thus obtain Gðr; tÞ ¼
bðrÞe2�ðr;vÞ. The radial stress pr vanishes in this case as
_F ¼ 0, while the tangential pressure, obtained from
Eq. (3), has the form p� ¼ p1r

2 þ p2r
3 þ . . . , where p1,

p2 are naturally evaluated in terms of the coefficients ofM,
g, and R and its derivatives:

p� ¼ 3
M0g0
vR02 r2 þ 9

2

M0g1
vR02 r3 þ . . . : (11)

Here the choice of sign of the functions g0 and g1 is enough
to ensure positivity or negativity of p�.
We note that scenarios with vanishing radial stresses but

nonvanishing tangential stresses have been considered in
past, with the most physically significant model (though
not the only relevant one) being the so called ‘‘Einstein
cluster’’ (see [10]), which describes a cloud of collapsing
counter rotating particles. Naked singularities and black
holes are found to arise as the end state of such models,
depending on the initial density, velocity and stress con-
figurations [11].
The first order coefficient � in equation of the time curve

of the singularity tsðrÞ is now obtained as

�ð0Þ ¼ �
Z 1

0

v3=2g1ðvÞ
ðM0 þ vkþ 2vg0ðvÞÞ3=2

dv: (12)
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As mentioned above, it is �ð0Þ that governs the nature of
the singularity curve, and whether it is increasing or de-
creasing away from the center. Clearly, it is the matter
initial data in terms of density and stress profiles, the
velocity of the collapsing shells, and the allowed dynami-
cal evolutions that govern and fix the value of �ð0Þ.

The quantity �ð0Þ also governs the behavior of apparent
horizon and trapped surface formation, as we show below,
which in turn governs the nakedness or otherwise of the
singularity. The equation for the apparent horizon is given
by F=R ¼ 1. It is analogous to that of the dust case since
F=R ¼ rM=v in both cases [9]. So the apparent horizon
curve rahðtÞ is given by r2ah ¼ vah

M0
, with vah ¼ vðrahðtÞ; tÞ,

which can also be inverted as a time curve tahðrÞ. The
visibility of the singularity at the center of the collapsing
cloud to faraway observers is determined by the nature of
this apparent horizon curve which is given by

tahðrÞ ¼ tsðrÞ �
Z vah

0

e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0

v þ be2��1
r2

q dv (13)

where tsðrÞ is the singularity time curve, whose initial point
is t0 ¼ tsð0Þ. Near r ¼ 0 the Eq. (13) becomes

tahðrÞ ¼ t0 þ �ð0Þrþ oðr2Þ: (14)

From the above, it is now easy to see how the stress
perturbation affects the time of formation of the apparent
horizon, and therefore the formation of a black hole or
naked singularity. A naked singularity typically occurs as a
collapse end state when a comoving observer at fixed r
does not encounter any trapped surfaces till the time of
singularity formation. For a black hole to form, trapped
surfaces develop before the singularity, so it is needed that

tahðrÞ � t0 for r > 0; near r ¼ 0: (15)

It is clear that for all functions g1ðvÞ for which �ð0Þ is
positive, this condition is violated and the apparent horizon
is forced to appear after the formation of the central
singularity. The apparent horizon curve then initiates at
the central singularity r ¼ 0 at t ¼ t0 and increases with
increasing r, moving to the future, i.e. tah > t0 for r > 0
near the center. The behavior of outgoing families of null
geodesics has been analyzed in detail in such a case when
�ð0Þ> 0 and we know that geodesics terminate at the
singularity in the past. Thus timelike and null geodesics
come out from the singularity, making it visible to external
observers [12].

It follows that g1 is the term in the stresses p� which
decides the black hole or naked singularity final fate.
We can choose it to be arbitrarily small, and we now see
how introducing a generic tangential stress perturbation in
the model would change drastically the final outcome of
collapse. For all nonvanishing tangential stresses with
g0 ¼ 0 and g1 < 0, even the slightest perturbation of the
Oppenheimer-Snyder-Datt scenario, injecting a small

tangential stress would result in a naked singularity.
The space of all functions g1 that make �ð0Þ positive,
which includes all the strictly negative functions g1, causes
the collapse to end in a naked singularity. We note that
while this is an explicit example, by no means this is the
only class.
The remarkable feature of this class is that it corresponds

to a collapse model for a simple and straightforward per-
turbation of the Oppenheimer-Snyder-Datt spacetime met-
ric, where the geometry near the center can be written as

ds2 ¼�ð1� 2g1r
3Þdt2 þ ðvþ rv0Þ2

1þ kr2 � 2g1r
3
dr2 þ r2v2d�2:

(16)

The metric above satisfies Einstein equations in the
neighborhood of the center of the cloud when the function
g1ðvÞ is small and bounded. We could take, for example,
0< jg1ðvÞj< �, so that the smaller we take the parameter
� the bigger will be the radius where the approximation
is valid. The function vðr; tÞ above is governed by the
equation of motion (5) which in the small r limit becomes

dv=dt¼ ð1�g1ðvÞr3ÞðM0

v þ k� 2g1ðvÞrÞ1=2. Finally, �ð0Þ
in this case is given by Eq. (12) with g0 ¼ 0, and in certain
cases can also be integrated.
We note that any realistic matter model must satisfy

some energy conditions ensuring the positivity of mass
and energy density. In general, the weak energy condition
implies restrictions on the density and pressure profiles.
The energy density as given by the second of Eqs. (2) must
be positive. Since R is positive, to ensure positivity of �we
require F > 0 and R0 > 0. The choice of positive MðrÞ
(which obviously holds for M0 > 0 and is physically
reasonable) ensures positivity of the mass function. Then
R0 > 0 is a sufficient condition for the avoidance of shell
crossing singularities. The tangential stress can be written
from (3) where pr ¼ 0, and is given by p� ¼ 1

2
R
R0 ��0. So

the sign of the function �0 determines the sign of p�.
Positivity of �þ p� is then ensured for small values of r
throughout collapse for any form of p�. In fact, regardless
of the values taken by M and g, there will always be a
neighborhood of r ¼ 0 for which jp�j< � and therefore
�þ p� � 0.
The black hole and naked singularity outcomes of gravi-

tational collapse are very different from each other physi-
cally, and would have quite different observational
signatures. In the naked singularity case we have the
possibility to observe the physical effects happening in
the vicinity of the ultra dense regions that form in the
very final stages of collapse. However, in a black hole
scenario, such regions are necessarily hidden within the
event horizon. The fact that a slightest stress perturbation
of the OSD collapse could change the outcome drastically,
taking it from a black hole to naked singularity formation,
means that the naked singularity final state for a collapsing
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star must be studied carefully to deduce its physical con-
sequences which are not well understood so far.

The existence of subspaces of collapse solutions as we
have shown here, that go to a naked singularity final state
rather than a black hole, in the arbitrary vicinity of the OSD
black hole, presents an intriguing scenario. It gives an idea
of the richness of the structure present in gravitation theory
and the complex solution space of Einstein equations
which are a complicated set of highly nonlinear partial
differential equations. What we see here is there are classes
of stress perturbations such that an arbitrarily small change
from the OSD model is a solution going to naked singu-
larity. In this sense, this manifests an instability in the black
hole formation process in gravitational collapse. This also
provides an intriguing insight into the nature of cosmic

censorship, namely, that the collapse must be properly fine-
tuned necessarily if it is to produce a black hole only as the
final end state.
Traditionally it was believed that the presence of stresses

or pressures in the collapsing matter cloud would increase
the chance of black hole formation, thereby ruling out dust
models that were found to lead to a naked singularity as
collapse end state. That is no longer the case. The model
described here not only provides a new class of collapses
ending in a naked singularity, but more importantly, shows
how the bifurcation line that separates the phase space of
‘‘black hole formation’’ from that of the ‘‘naked singularity
formation’’ runs directly over the simplest and most
studied of black hole scenarios such as the OSD model,
thus making it unstable under perturbations.
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