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We derive a general formula for the center-of-mass (CM) energy for the near-horizon collision of two

particles of the same rest mass on the equatorial plane around a Kerr black hole. We then apply this

formula to a particle which plunges from the innermost stable circular orbit (ISCO) and collides with

another particle near the horizon. It is found that the maximum value of the CM energy Ecm is given by

Ecm=ð2m0Þ ’ 1:40=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p

for a nearly maximally rotating black hole, where m0 is the rest mass of each

particle and a� is the nondimensional Kerr parameter. This coincides with the known upper bound for a

particle which begins at rest at infinity within a factor of 2. Moreover, we also consider the collision of a

particle orbiting the ISCO with another particle on the ISCO and find that the maximum CM energy is

then given by Ecm=ð2m0Þ ’ 1:77=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

6
p

. In view of the astrophysical significance of the ISCO, this

result implies that particles can collide around a rotating black hole with an arbitrarily high CM energy

without any artificial fine-tuning in an astrophysical context if we can take the maximal limit of the black

hole spin or a� ! 1. On the other hand, even if we take Thorne’s bound on the spin parameter into

account, highly or moderately relativistic collisions are expected to occur quite naturally, for Ecm=ð2m0Þ
takes 6.95 (maximum) and 3.86 (generic) near the horizon and 4.11 (maximum) and 2.43 (generic) on the

ISCO for a� ¼ 0:998. This implies that high-velocity collisions of compact objects are naturally expected

around a rapidly rotating supermassive black hole. Implications to accretion flows onto a rapidly rotating

black hole are also discussed.
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I. INTRODUCTION

Recently, Banados, Silk, andWest [1] showed that if two
particles which begin at rest at infinity collide near the
horizon of a maximally rotating Kerr black hole [2] and if
the angular momentum of either particle is fine-tuned, the
center-of-mass (CM) energy Ecm of the two particles can
be arbitrarily high and hence the maximally rotating black
hole might be regarded as a Planck-energy-scale collider.
We here call this the Banados-Silk-West (BSW) effect.
This scenario was subsequently criticized [3,4] from sev-
eral points, such as astrophysical bounds on the black hole
spin parameter, the effects of gravitational waves, the self-
gravity of the particles, and the long proper time needed for
such a collision. In the near-maximal rotation, the CM
energy of two particles of mass m0 is bounded by

Ecm=ð2m0Þ � 2:41=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p

, where a� is the nondimen-
sional Kerr parameter [3,4]. On the other hand, Grib and
Pavlov [5] proposed a slightly different mechanism that
Ecm can be arbitrarily high even in the nonmaximal rota-
tion if the particle has experienced multiple scattering and
fine-tuned its angular momentum before the relevant col-
lision. The BSW effect is also analyzed in the Kerr-
Newman family of black holes [6], general stationary and
axisymmetric black holes [7], and static charged black
holes [8].

In the BSWeffect, to obtain such an arbitrarily high Ecm,
the angular momentum of either particle must be fine-
tuned. However, there is a natural mechanism in astrophys-
ics to tune the particle’s energy and angular momentum.
This is the innermost stable circular orbit (ISCO). The
ISCO around a Kerr black hole is studied in detail by
Bardeen, Press, and Teukolsky [9].
In the geometrically thin and optically thick accretion

disk model [10,11], which is known as the standard accre-
tion disk model, a rotating fluid or plasma gradually takes a
circular orbit which is closer to the black hole as the fluid
transfers its angular momentum outwards and releases its
energy by electromagnetic radiation in the time scale of
viscosity, which is much longer than the black hole dy-
namical time scale. This electromagnetic emission can be
observed by radio interferometers and x-ray observation
satellites. Once the fluid reaches the inner edge of the
accretion disk, which is given by the ISCO, it begins to
plunge into the black hole in the dynamical time scale [12].
In the plunging phase, its energy and angular momentum
are approximately conserved. It should be noted that due to
the accretion of radiation emitted from the disk, there is
an astrophysical upper bound on the nondimensional
Kerr parameter, what we call Thorne’s bound, ja�j &
0:998 [15].
Another important example where the ISCO plays a

crucial role is inspirals of stellar-mass compact objects
into supermassive black holes, which are called extreme
mass-ratio inspirals. Extreme mass-ratio inspirals are
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interesting sources of gravitational waves for the Laser
Interferometric Space Antenna [16]. If instead the central
mass is an intermediate-mass black hole, these are
interesting sources for the DECi-hertz Interferometer
Gravitational wave Observatory [17,18] and the Big
Bang Observatory [19,20]. Also in this case, an inspiralling
compact object gradually takes a circular orbit which is
closer to the black hole as the object transfers its angular
momentum outwards and releases its energy by gravita-
tional waves in the time scale of gravitational radiation,
which is much longer than the dynamical time scale. Once
the compact object reaches the ISCO, it begins to plunge
into the black hole in the dynamical time scale. In the
plunging phase, its energy and angular momentum are
approximately conserved.

In this paper, we derive a general formula for the CM
energy for the near-horizon collision of two particles on the
equatorial plane around a Kerr black hole, which is valid in
both the maximal and nonmaximal rotation cases. Then,
we apply this formula to the near-horizon collision of two
particles, either of which is plunging from the ISCO. We
find that the BSW effect occurs in the near-maximal rota-
tion and that the maximum value for the CM energy of the
ISCO particles is the same as the upper bound for the
particles initially at rest at infinity within a factor of 2.
This implies that the BSW effect is not an artificial but
physically realistic astrophysical phenomenon. We also
consider the collision of a particle orbiting the ISCO
with another generic particle on the ISCO and find that
the associated CM energy can also be arbitrarily high in
exactly the same sense as BSW’s, although the dependence
on the black hole spin parameter is quite different. We
neglect the effects of gravitational waves and the self-
gravity of the particles.

This paper is organized as follows. In Sec. II, we briefly
review particle orbits and the CM energy for the collision
of two particles in the Kerr spacetime. In Sec. III, we
discuss particle orbits near the horizon and derive a general
formula for the CM energy for the near-horizon particle
collision. In Sec. IV, we apply this formula to a particle
which plunges from the ISCO and obtain the CM energy
for different collisions. In Sec. V, we investigate the colli-
sion of a particle orbiting the ISCOwith another particle on
the ISCO. Section VI is devoted to conclusion and discus-
sion. We use the units in which c ¼ G ¼ 1 and the abstract
index notation of Wald [21].

II. CM ENERGY FOR PARTICLE COLLISION IN
THE KERR SPACETIME

In this section, we briefly review particle orbits and the
CM energy for the two-particle collision on the equatorial
plane of the Kerr spacetime in the general situation, fol-
lowing [1,4,5]. We use a similar notation to that of Grib and
Pavlov [5].

A. Particle orbits in the Kerr spacetime

The line element in the Kerr spacetime in the Boyer-
Lindquist coordinates is given by [2,21,22]

ds2 ¼ �
�
1� 2Mr

�2

�
dt2 � 4Marsin2�

�2
d�dtþ �2

�
dr2

þ �2d�2 þ
�
r2 þ a2 þ 2Mra2sin2�

�2

�
sin2�d�2;

where a andM are, respectively, the spin and mass parame-
ters, �2 ¼ r2 þ a2cos2� and � ¼ r2 � 2Mrþ a2. We as-
sume a � 0 without loss of generality. If a2 � M2, �

vanishes at r ¼ r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
, where r ¼ rþ and

r ¼ r� correspond to an event horizon and a Cauchy hori-
zon, respectively. Here, we denote rþ ¼ rH and r� ¼ rC. In
this coordinate system, the time translational and the axial
Killing vectors are, respectively, given by

�a ¼
�
@

@t

�
a
; c a ¼

�
@

@�

�
a
:

The surface gravity of the Kerr black hole is given by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p

r2H þ a2
:

Thus, the black hole has a vanishing surface gravity and
hence is extremal for the maximal rotation a2 ¼ M2, while
it is subextremal for the nonmaximal rotation a2 <M2. The
angular velocity of the horizon is given by

�H ¼ a

r2H þ a2
¼ a

2MðMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
Þ :

The Killing vector �a ¼ �a þ�Hc
a is a null generator of

the event horizon.
Here we concentrate on particles which move on the

equatorial plane � ¼ �=2. Then, the four velocity ua ¼ _xa

of the particle has a vanishing � component, i.e., u� ¼ 0,
where the dot denotes the differentiation with respect to the
affine parameter of the geodesic. From Eq. (2.1), the line
element on the equatorial plane in the Kerr spacetime is
given by

ds2 ¼ �
�
1� 2M

r

�
dt2 � 4aM

r
dtd�þ r2

�
dr2

þ
�
r2 þ a2 þ 2Ma2

r

�
d�2: (2.1)

Associated with the Killing vectors �a and c a, we have the
following conserved quantities along a geodesic on the
equatorial plane:

e ¼ �gab�
aub ¼ �ut ¼ �ðgttut þ gt�u

�Þ; (2.2)

L ¼ gabc
aub ¼ u� ¼ g�tu

t þ g��u
�; (2.3)
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where e and L correspond the specific energy and angular
momentum, respectively. Solving the above for ut and u�,
we have

_t ¼ 1

�

��
r2 þ a2 þ 2Ma2

r

�
e� 2Ma

r
L

�
; (2.4)

_� ¼ 1

�

��
1� 2M

r

�
Lþ 2Ma

r
e

�
: (2.5)

To have _t � 0, the condition�
r2 þ a2 þ 2Ma2

r

�
e� 2Ma

r
L � 0

must be satisfied outside the event horizon. In the limit to
the horizon r ! rH from outside, this condition reduces to

l � lH ¼ 2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

p Þ
a�

e ¼ e

M�H

;

or

e � �HL;

where we put a� ¼ a=M and l ¼ L=M. In terms of a�,
0 � a� < 1 for the subextremal case, while a� ¼ 1 for the
extremal case.

Substituting Eqs. (2.4) and (2.5) into the normalization
condition uaua ¼ �1 with � ¼ �=2 and u� ¼ 0, or

�
�
1� 2M

r

�
ðutÞ2 � 4aM

r
utu� þ r2

�
ðurÞ2

þ
�
r2 þ a2 þ 2Ma2

r

�
ðu�Þ2 ¼ �1;

we obtain

1
2
_r2 þ VeffðrÞ ¼ 0; (2.6)

where the effective potential VeffðrÞ is given by

VeffðrÞ ¼ �M

r
þ L2 � a2ðe2 � 1Þ

2r2
�MðL� aeÞ2

r3

� e2 � 1

2
: (2.7)

The effective potential can be efficiently analyzed by in-
troducing y ¼ M=r. We put

gðyÞ ¼ �2ðl� a�eÞ2y3 þ ½l2 � a2�ðe2 � 1Þ�
� y2 � 2y� ðe2 � 1Þ (2.8)

and

DðyÞ ¼ a2�y2 � 2yþ 1:

Then, we have Veff ¼ gðyÞ=2 and � ¼ r2DðyÞ. There are
two positive roots of D ¼ 0 for 0< a� � 1, which are
given by

yH ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

p
a2�

; yC ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

p
a2�

;

where yH ¼ M=rH and yC ¼ M=rC correspond to the
event horizon and the Cauchy horizon, respectively.
These two roots coincide with each other at y ¼ 1 in the
extremal case a� ¼ 1. The region outside the horizon is
transformed into 0< y< yH. We should note the follow-
ing useful relation:

�H ¼ a�yH
2M

:

For a particle which is initially at rest at infinity, i.e.,
marginally bound e ¼ 1, to reach the horizon, the potential
gðyÞ must be nonpositive for 0< y < yH. For e ¼ 1, the
potential is given by

gðyÞ ¼ �y½2ðl� a�Þ2y2 � l2yþ 2�:
Thus, the condition reduces to that 2ðl� a�Þ2y2 � l2yþ 2
is nonnegative. After some straightforward calculation, we
can obtain the following condition [5]:

� 2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�

p Þ ¼ lL � l � lR ¼ 2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�

p Þ:
A similar condition also exists for the nonmarginally
bound case. However, we should note that this does not
apply if the particle scatters with other particles and
changes its energy and angular momentum on the way to
the horizon.

B. CM energy of two particles in the Kerr spacetime

We consider the collision of two particles 1 and 2 of the
same rest mass m0. We assume that the two particles are at
the same spacetime point. The four momentum of particle i
(i ¼ 1; 2) is given by

pa
i ¼ m0u

a
i ;

where uai is the four velocity of particle i. The sum of the
two momenta is given by

pa
t ¼ pa

1 þ pa
2 :

The CM energy Ecm of the two particles is then given by

E2
cm ¼ �pa

t pta ¼ 2m2
0ð1� gabu

a
1u

b
2Þ: (2.9)

On the background metric (2.1), using Eqs. (2.4), (2.5),
(2.6), and (2.8), in Eq. (2.9), the CM energy of two particles
1 and 2 in the Kerr spacetime is calculated as

E2
cm

2m2
0

¼ 1� gttu
t
1u

t
2 � gt�ðut1u�2 þ u�1 u

t
2Þ

� grru
r
1u

r
2 � g��u

�
1 u

�
2 ¼ 1� e1e2 þ FðyÞ�GðyÞ

DðyÞ ;

(2.10)

where ei and li are e and l for particle i,
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FðyÞ ¼ 2½a2�y2ð1þ yÞþ ð1� yÞ�e1e2� 2a�y3ðe1l2þ l1e2Þ
� ð1� 2yÞy2l1l2; (2.11)

G ¼ ð� ffiffiffiffiffiffiffiffiffiffi�g1
p Þð� ffiffiffiffiffiffiffiffiffiffi�g2

p Þ; (2.12)

giðyÞ ¼ �2ðli � a�eiÞ2y3 þ ½l2i � a2�ðe2i � 1Þ�
� y2 � 2y� ðe2i � 1Þ; (2.13)

DðyÞ ¼ a2�y2 � 2yþ 1; (2.14)

and the sign in front of
ffiffiffiffiffiffiffiffiffi�gi

p
in the expression of G in

Eq. (2.12) corresponds to the sign of uri . In the following

we assume _r � 0 for both particles and hence GðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�g1Þð�g2Þ
p

.

III. NEAR-HORIZON COLLISION AROUND A
KERR BLACK HOLE

A. Near-horizon collision around a subextremal
Kerr black hole

We will see the near-horizon behavior of particles with
the angular momentum l ¼ lH, which we call critical, and
smaller angular momentum l < lH, which we call subcrit-
ical. We find

gðyHÞ ¼ �y2Hð2e� a�yHlÞ2 ¼ �a2�y4HðlH � lÞ2; (3.1)

noting that lH can be written in terms of a�, yH and e as
lH ¼ 2e=ða�yHÞ. Hence, gðyHÞ � 0. It is interesting to see
whether a particle with l ¼ lH which approaches the hori-
zon is possible. With l ¼ lH, we have gðyHÞ ¼ 0, while

g0ðyHÞ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

p
a2�

½ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

q
Þ2e2 þ a2��; (3.2)

where the prime denotes the differentiation with respect to
the argument. This is negative for the subextremal Kerr
case a2� < 1. This means that for the subextremal case, the
effective potential gðyÞ is positive in the vicinity of the
horizon and hence a particle with the angular momentum
l ¼ lH is prohibited to approach the horizon. On the other
hand, there does exist a particle with slightly smaller
angular momentum l ¼ lH � � which approaches the ho-
rizon in the vicinity of the horizon. The CM energy for the
collision involving this particle can be arbitrarily high in

the limit � ! 0 even in the subextremal Kerr case [5]. For
the subcritical orbit l < lH, Eq. (3.1) implies that r is given
near the horizon in terms of the particle’s proper time 	 as

r� rH ’ �a�y2HðlH � lÞ	þ const: (3.3)

This means that for the fixed initial radius, a subcritical
particle reaches the horizon after a proper time inversely
proportional to ðlH � lÞ.
Then, we will take the limit to the horizon in Eq. (2.10)

to consider the collision near the horizon. Noting

FðyHÞ ¼ a2�y4HðlH1 � l1ÞðlH2 � l2Þ;
where lHi is the critical angular momentum lH for particle i
(i ¼ 1; 2), combined with Eq. (3.1), we can see that the
terms ofOð1Þ in the numerator F�G of the fraction on the
right-hand side of Eq. (2.10) cancel out. The nonvanishing
contribution comes from the next order terms. Using
l’Hospital’s rule, the result is the following:

E2
cm

2m2
0

¼ 1� e1e2 þ lim
y!yH

F0 �G0

D0 :

The derivatives are given by

F0ðyÞ ¼ 2½a2�ð2yþ 3y2Þ � 1�e1e2 � 6a�y2ðe1l2 þ l1e2Þ
� 2yð1� 3yÞl1l2;

g0iðyÞ ¼ �6ðli � a�eiÞ2y2 þ 2½l2i � a2�ðe2i � 1Þ�y� 2;

D0ðyÞ ¼ 2ða2�y� 1Þ;

G0 ¼ G
1

2

�
g01
g1

þ g02
g2

�
:

From this form, we can see that there are two first-order
poles, where giðyHÞ ¼ 0 for i ¼ 1; 2. By implementing the
calculation and taking the limit, we reach the following
formula:

Ecm

2m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4½ðlH1� l1Þ�ðlH2� l2Þ�2þðlH1l2� lH2l1Þ2

16ðlH1� l1ÞðlH2� l2Þ

s
:

(3.4)

This is the formula for the CM energy of two particles
along the general geodesic orbits on the equatorial plane.
We should note that the right-hand side is given only in
terms of the particles’ angular momenta l1 and l2 and their
critical values lH1 and lH2. In terms of the quantities which
have more direct physical meanings, Eq. (3.4) can be
rewritten as follows:

Ecm

2m0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2½ðe1 ��HL1Þ � ðe2 ��HL2Þ�2 þ ðe1L2 � e2L1Þ2

16M2ðe1 ��HL1Þðe2 ��HL2Þ

s
; (3.5)
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where Li is L for particle i. In fact, as we will prove in
Sec. III B, Eq. (3.4) or equivalently Eq. (3.5) is valid even
for the extremal Kerr black hole simply by taking the near-
extremal limit a� ! 1. The necessary condition for obtain-
ing an arbitrarily high Ecm is therefore l ! lH or�HL ! e
for either of the two particles.

If we assume that only particle 1 is near-critical in
Eq. (3.4), we obtain

Ecm

2m0
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2H1

16

lH2 � l2
lH1 � l1

s
: (3.6)

For e1 ¼ e2 ¼ e, we denote lH1 ¼ lH2 ¼ lH and
Eq. (3.4) reduces to

Ecm

2m0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl1 � l2Þ2ð4þ l2HÞ

16ðlH � l1ÞðlH � l2Þ

s
; (3.7)

which reproduces the corresponding formula in [5]. When
we set e1 ¼ e2 ¼ 1, l1 ¼ lR, and l2 ¼ lL in Eq. (3.7), we
obtain

Ecm

2m0
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�a2�
4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�a2�Þþð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þa�
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�a�
p Þ2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2�

p
vuut :

(3.8)

This reproduces the corresponding formula in [5]. This
provides an upper bound for the collision of two margin-
ally bound particles. For a� ¼ 0:998, Ecm=ð2m0Þ ’ 9:49
for this collision. In the limit a� ! 1, we have

Ecm

2m0

	 1þ ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p ’ 2:41ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2�
4
p ; (3.9)

which are given in [3–5].
If e1 ¼ 1 and l1 ¼ lR for particle 1 and particle 2 takes a

subcritical orbit, we obtain

Ecm

2m0
	 1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� ffiffiffi
2

pp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 � l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p (3.10)

in the near-extremal limit. Although the numerical factor
depends on the choice of e2 and l2, the proportionality

to ð1� a2�Þ�1=4 does not change as long as e1 ¼ 1 and
l1 ¼ lR.

B. Near-horizon collision around an extremal
Kerr black hole

For the extremal Kerr black hole a2� ¼ 1, the effective
potential is given by

gðyÞ ¼ �2ðl� eÞ2y3 þ ðl2 � e2 þ 1Þy2 � 2y� ðe2 � 1Þ:
(3.11)

The double root y ¼ yH ¼ 1 of DðyÞ gives an event hori-
zon. We should note that the region outside the horizon,
r >M, is transformed to 0< y< 1.

From Eqs. (3.1) and (3.2), for the critical orbit l ¼
lH ¼ 2e, we find gðyHÞ ¼ g0ðyHÞ ¼ 0 and hence y ¼ yH
is a stationary point of the effective potential. In fact, for
the critical orbit, we have

gðyÞ ¼ �ð3e2 � 1Þð1� yÞ2 þ 2e2ð1� yÞ3: (3.12)

Thus, there exists a critical orbit in the vicinity of the
horizon if and only if 3e2 > 1 and then the effective
potential takes a maximum which is zero at y ¼ yH ¼ 1.
From this fact, one might infer an unstable circular orbit for
a massive particle at y ¼ yH, i.e., on the horizon which is a
null hypersurface. This apparent paradox is resolved in
Sec. III C. On the other hand, the maximal point on the
horizon implies the existence of an orbit for a massive
particle with l ¼ lH which asymptotes the horizon. In fact,
from Eq. (3.12) we have

_r ¼ ur ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e2 � 1

p
ð1� yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2e2

3e2 � 1
ð1� yÞ

s
;

(3.13)

and this can be integrated to give

lnjr�Mj 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e2 � 1

p 	

M
þ const

near the horizon. Thus, the critical particle approaches the
horizon as 	 ! 1, as shown in [4,5]. For the subcritical
orbit l < 2e, since

� gðyÞ ¼ ½ð2e� lÞ � 2ðe� lÞð1� yÞ�2 � ½1� ðe� lÞ
� ð3e� lÞ�ð1� yÞ2 � 2ðe� lÞ2ð1� yÞ3;

we have a different behavior of ur as

_r¼ur

¼�½ð2e� lÞ�2ðe� lÞð1�yÞ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�½1�ðe� lÞð3e� lÞ�þ2ðe� lÞ2ð1�yÞ

½ð2e� lÞ�2ðe� lÞð1�yÞ�2 ð1�yÞ2
s

:

The proper time for the subcritical particle to reach the
horizon is inversely proportional to (2e� l) because
Eq. (3.3) is still valid even in the extremal Kerr case.
If particle 1 takes a critical orbit but particle 2 takes a

subcritical orbit, the CM energy is given by the near-
horizon limit of Eq. (2.10) as

Ecm

2m0
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2e2 � l2Þð2e1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e21 � 1

q
Þ

2ð1� yÞ

vuuut
; (3.14)

where we have used Eq. (3.13). For the special case e1 ¼
e2 ¼ e, Eq. (3.14) reproduces the corresponding formula
in [5].
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If both particles take subcritical orbits, the fraction on
the right-hand side of Eq. (2.10) is bounded because both
the numerator F�G and the denominator D have a
second-order zero at the horizon y ¼ yH ¼ 1. Estimating
the terms of Oðð1� yÞ2Þ in F�G and D by Taylor series
expansion, we obtain

Ecm

2m0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1� e1e2 þ 2e2 � l2

2e1 � l1

1þ e21
2

þ 2e1 � l1
2e2 � l2

1þ e22
2

�s
:

(3.15)

More systematically, we can take the following approach.
For the extremal case, the numerator F�G and the
denominator D both must have a second-order zero at

y ¼ yH. Using l’Hospital’s rule twice, we obtain

E2
cm

2m2
0

¼ 1� e1e2 þ lim
y!yH

F00 �G00

D00 ; (3.16)

where the second-order derivatives are given by

F00ðyÞ ¼ 4½a2�ð1þ 3yÞ�e1e2 � 12a�yðe1l2 þ l1e2Þ
� 2ð1� 6yÞl1l2;

g00i ðyÞ ¼ �12ðli � a�eiÞ2yþ 2½l2i � a2�ðe2i � 1Þ�;
D00ðyÞ ¼ 2a2�;

G00 ¼ G

�
1

2

�
g001
g1

þ g002
g2

�
� 1

4

�
g01
g1

� g02
g2

�
2
�
;

and a� ¼ 1 for the extremal case. It is found that this
approach also yields Eq. (3.15).

In the course of derivation, it is not so obvious whether
the formula for the subextremal Kerr black hole given by
Eq. (3.4) reproduces the formula (3.15) for the extremal
case if we take the near-extremal limit a� ! 1 in
the former. In fact, it is not difficult to see that this is the
case by putting lHi ¼ 2ei in Eq. (3.4). Therefore, the
general formula (3.4) or (3.5), which has been derived for
the subextremal case, is applicable in both the subextremal
and extremal cases.

We can confirm that for the special case e1 ¼ e2 ¼ e,
Eq. (3.15) reduces to

Ecm

2m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ e2

4

ðl1 � l2Þ2
ð2e� l1Þð2e� l2Þ

s
;

which coincides with the corresponding formula in [5].
Moreover, Eq. (3.15) reduces to

Ecm

2m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
2� l1
2� l2

þ 2� l2
2� l1

�s
;

for the special case e1 ¼ e2 ¼ 1, which reproduces the
formula discovered by BSW [1].

C. The circular timelike orbit on the extremal
Kerr black hole horizon is fake

As we have seen in Sec. III B, in the extremal Kerr case,
r ¼ rH is a zero and maximal point of the effective poten-
tial. From this fact, one might infer that an unstable circular
orbit for a massive particle is possible at r ¼ rH. However,
we will show that this is not real.
We should note that the Boyer-Lindquist coordinate

system has a coordinate singularity at r ¼ rH. To avoid
the complication due to the coordinate singularity, we
move to the ingoing Kerr coordinates [22]:

dv ¼ dtþ ðr2 þ a2Þ dr
�

; d’ ¼ d�þ a
dr

�
:

The line element then can be written as

ds2 ¼ �
�
1� 2Mr

�2

�
dv2 þ 2dvdrþ �2d�2

þ ½ðr2 þ a2Þ2 � a2�sin2��sin2�
�2

d’2

� 2asin2�d’dr� 4aMr

�2
sin2�d’dv:

The Killing vectors are given by

�a ¼
�
@

@v

�
a
; c a ¼

�
@

@’

�
a
:

On the equatorial plane � ¼ �=2, the line element in the
extremal Kerr spacetime is given by

ds2¼�
�
1�2M

r

�
dv2þ2dvdr

þ
�
r2þM2þ2M3

r

�
d’2�2Md’dr�4M2

r
d’dv:

The conserved quantities are given by

e ¼ �gab�
aub ¼

�
1� 2M

r

�
_v� _rþ 2M2

r
_’; (3.17)

L ¼ gabc
aub ¼

�
r2 þM2 þ 2M3

r

�
_’�M _r� 2M2

r
_v:

(3.18)

Putting r ¼ rH ¼ M in Eqs. (3.17) and (3.18), we have

e ¼ � _v� _rþ 2M _’; (3.19)

L ¼ �2M _v�M _rþ 4M2 _’: (3.20)

The norm of ua can be written at r ¼ M as

uaua ¼ _v2 þ 2 _r _vþ4M2 _’2 � 2M _’ _r�4M _’ _v : (3.21)
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If we assume that the particle remains on the horizon
r ¼ M, we have _r ¼ 0 and we may conclude L=e ¼ 2M
or e ¼ L ¼ 0 from Eqs. (3.19) and (3.20). On the other
hand, one cannot solve Eqs. (3.19) and (3.20) for _v and _’
separately in terms of e and L because of the degeneracy
and hence cannot obtain Eqs. (2.6) and (2.7). In other
words, Eqs. (2.6) and (2.7) do not make sense in the present
case. Instead, we obtain from Eqs. (3.19) and (3.21)

uaua ¼ e2:

Since uaua � 0 for causal geodesics, this means that a
causal geodesic can remain on the horizon only if it is a
null geodesic with e ¼ L ¼ 0. Thus, the timelike circular
orbit on the horizon, which might be inferred from the
stationary point of the effective potential at r ¼ rH, is fake.
Note also that the angular velocity of this null geodesic
which remains on the horizon is given by

d’

dv
¼ _’

_v
¼ 1

2M
¼ �H;

indicating that this null geodesic is a generator of the event
horizon.

This is of course entirely consistent with the following
general argument. Any timelike curve cannot remain on an
event horizon because the event horizon is normal to the
Killing vector �a, which is null on the horizon, and hence
the tangent space at a point on the horizon is spanned by �a

and two spacelike vectors eað1Þ and eað2Þ which are orthogo-

nal to �a. Any linear combination of the null vector �a and
the spacelike vectors eað1Þ and eð2Þ is either null or spacelike.

IV. NEAR-HORIZON COLLISION OFA PARTICLE
PLUNGING FROM THE ISCO

As is emphasized in [5] and in Sec. II A, the upper bound
(3.9) applies only for the particles which begin at rest at
infinity and reach the horizon all the way from infinity
along the geodesic. If a particle loses or gains its energy or
angular momentum on the way to the horizon, this limit
does not apply. In this respect, particles plunging from the
ISCO are considered very natural as particles plunging into
the horizon in an astrophysical context.

The ISCO in the Kerr spacetime is explicitly given by
Bardeen, Press, and Teukolsky [9]. The circular orbit on
the equatorial plane in the Kerr metric is given by VeffðrÞ ¼
V 0
effðrÞ ¼ 0, where the prime denotes the derivative with

respect to the argument. The condition implies

e ¼ r1=2ðr� 2MÞ þ saM1=2

r3=4ðr3=2 � 3Mr1=2 þ s2aM1=2Þ1=2 ; (4.1)

L ¼ s
M1=2ðr2 þ a2 � s2M1=2ar1=2Þ

r3=4ðr3=2 � 3Mr1=2 þ s2aM1=2Þ1=2 ; (4.2)

where we have assumed 0 � a <M and s ¼ 1 and �1
correspond to the prograde and retrograde orbits, respec-
tively. The ISCO is determined by the condition de=dr ¼
dL=dr ¼ 0. The radius of the ISCO is then given by

rISCO
M

¼ 3þ Z2 � s½ð3� Z1Þð3þ Z1 þ 2Z2Þ�1=2; (4.3)

Z1 ¼ 1þ ð1� a2�Þ1=3½ð1� a�Þ1=3 þ ð1þ a�Þ1=3�;
Z2 ¼ ð3a2� þ Z2

1Þ1=2;
(4.4)

where 0 � a� < 1. The energy and angular momentum of
the particle at the ISCO are calculated by substituting
Eqs. (4.3) and (4.4) for r ¼ rISCO into Eqs. (4.1) and (4.2).
To see the behavior in the near-extremal limit a� ! 1,

we put a� ¼ 1� 
 and expand the above obtained expres-
sion in terms of 
. From Eqs. (4.4), we obtain

Z1 ¼ 1þ 22=3
1=3 þ 21=3
2=3 þOð
Þ;
Z2 ¼ 2þ 1

22
2=3
1=3 þ 7

82
1=3
2=3 þOð
Þ:

Then, using Eqs. (4.1), (4.2), and (4.3), we obtain

rISCO
M

¼ 1þ 22=3
1=3 þ 7

4
21=3
2=3 þOð
Þ; (4.5)

e ¼
ffiffiffi
3

p
3

þ 22=3

3

ffiffiffi
3

p

1=3 � 5

12
21=3

ffiffiffi
3

p

2=3 þOð
Þ; (4.6)

l ¼ 2

3

ffiffiffi
3

p þ 2

3
22=3

ffiffiffi
3

p

1=3 þ 1

6
21=3

ffiffiffi
3

p

2=3 þOð
Þ; (4.7)

and hence

l

e
¼ 2þ 3 
 21=3
2=3 þOð
Þ

for the prograde orbit (s ¼ 1). For the retrograde orbit
(s ¼ �1), we obtain

rISCO
M

¼ 9þOð
Þ;

e ¼ 5

9

ffiffiffi
3

p þOð
Þ;

l ¼ � 22

9

ffiffiffi
3

p þOð
Þ;

and hence

l

e
¼ � 22

5
þOð
Þ:

On the other hand, lH can be written as

lH
e

¼ 2a�
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2�
p ¼ 2þ 2

ffiffiffi
2

p

1=2 þOð
Þ:

Therefore, the prograde ISCO particle has the angular
momentum which coincides with the critical value lH in
the near-extremal limit.
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We should note that for the marginally bound particle

with l ¼ lR we have l=e ¼ lR ¼ 2þ 2
1=2. Therefore,

ðlH � lÞ=e 	 2
ffiffiffi
2

p

1=2 for the prograde ISCO, while

ðlH � lÞ=e 	 2ð ffiffiffi
2

p � 1Þ
1=2 for a marginally bound parti-
cle with l ¼ lR. Since all other factors are nonzero finite, a
particle which plunges from the prograde ISCO collides

with a generic particle with Ecm / 
�1=4, as a marginally
bound particle with l ¼ lR does. It also follows that if a
particle plunging from the prograde ISCO collides with a
marginally bound particle with l ¼ lR, the CM energy is
bounded even in the near-extremal limit a� ! 1.

Using Eq. (3.6) with Eqs. (4.5), (4.6), and (4.7), we can
easily estimate the CM energy near the horizon for the
near-extremal Kerr black hole. If particle 1 is a particle
plunging from the prograde ISCO and particle 2 takes a
subcritical orbit, we obtain

Ecm

2m0
	 1

21=231=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 � l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p : (4.8)

Thus, the CM energy can be unboundedly high in the limit

a� ! 1. Since the dependence ð1� a�Þ�1=4 is common to
the upper bound (3.9) for marginally bound particles, we
can conclude that the BSW effect occurs for a particle
plunging from the prograde ISCO and in this case the
fine-tuning of the energy and the angular momentum is
naturally realized in the standard accretion disks with
electromagnetic radiation or in inspiralling binaries with
gravitational wave radiation. The ratio of Ecm for the ISCO
particle to that for the marginally bound particle with

l ¼ lR is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

2
pp

=31=4 ’ 0:582 in the near-
extremal limit.

In the following, we consider the near-horizon collisions
of a particle plunging from the prograde ISCO with (a) a
marginally bound particle with l ¼ lL, (b) a particle plung-
ing from the retrograde ISCO, and (c) a marginally bound
particle with l ¼ 0. In the near-extremal limit a� ! 1, we
obtain

Ecm

2m0
	 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2�
4
p ;

where the numerical factor � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 � l2

p
=ð21=231=4Þ is

calculated to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ ffiffiffi

2
p Þ= ffiffiffi

3
pq

’ 1:40, 4=3 ’ 1:33, and

1=
ffiffiffi
34

p ’ 0:760 for cases (a), (b), and (c), respectively.
For the general values of a� in 0 � a� < 1, we can

calculate the CM energy using Eq. (3.4) with Eqs. (4.1),
(4.2), (4.3), and (4.4). The result is summarized in Fig. 1,

where Ecm=ð2m0Þ is multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p

for clarity. In
this figure, the solid, dashed, and dotted curves denote cases
(a), (b), and (c), respectively. The CM energy for two
particles, either of which is a particle plunging from the
prograde ISCO, is always below the upper bound (3.8) for
marginally bound particles. We should note that the depen-

dence of ðEcm=ð2m0ÞÞð1� a2�Þ1=4 on a� in 0 � a� < 1 is

very weak for cases (a), (b), and (c) and hence the empirical

formula Ecm=ð2m0Þ � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p

is a very good approxi-
mation within a factor of 2 or so for all values of a� in
0 � a� < 1. Thus, this formula provides the typical value
for the CM energy for the near-horizon collision of a particle
which plunges from the prograde ISCO with a generic
subcritical particle. For the near-maximal rotation, the maxi-
mum value for the CM energy coincides with the upper
bound for a marginally bound particle within a factor of 2.
If we use Thorne’s bound a� ¼ 0:998 for the spin pa-

rameter, Ecm=ð2m0Þ is calculated to be 6.95, 6.61, and 3.86
for cases (a), (b), and (c), respectively. This means that a
highly relativistic collision can naturally occur near the
horizon of a rapidly rotating black hole in an astrophysical
context. Note that with highly relativistic collision we here
mean systems where the CM energy is much larger than the
rest mass.

V. PARTICLE COLLISION OFA PARTICLE
ORBITING THE ISCO

In this section, we deviate somewhat from the original
idea of BSW [1]. We consider the situation where a particle
orbiting the ISCO collides with another particle on the
ISCO instead of a near-horizon collision. In this case, we
cannot take the near-horizon limit beforehand. Although
we do not expect a compact expression for the general
case, we can obtain a simple formula for the near-extremal
limit. Using Eq. (2.10) with Eqs. (2.11), (2.12), (2.13),
(2.14), (4.5), (4.6), and (4.7) and y ¼ M=rISCO, we can
estimate the CM energy for the near-extremal Kerr black

FIG. 1. The CM energy Ecm for the near-horizon collision. The
solid, dashed, and dotted curves denote the collisions of a
particle plunging from the prograde ISCO with (a) a marginally
bound particle with l ¼ lL, (b) a particle plunging from the
retrograde ISCO, and (c) a marginally bound particle with

l ¼ 0, respectively. For clarity, Ecm is multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

4
p

in the vertical axis.
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hole. If particle 1 is a particle orbiting the prograde ISCO
and particle 2 takes a subcritical orbit, we obtain

Ecm

2m0

	 1

21=631=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 � l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

6
p : (5.1)

It is quite intriguing that the dependence ð1� a2�Þ�1=6 on
the spin parameter here is quite different from that for the

near-horizon collision ð1� a2�Þ�1=4. The CM energy can be
arbitrarily high in the near-extremal limit a� ! 1.
However, this needs to be distinguished from the BSW
effect for the near-horizon collision of plunging particles.

As in the near-horizon case, we consider the ‘‘on-ISCO’’
collisions of a particle orbiting the prograde ISCO
with (a) a marginally bound particle with l ¼ lL, (b) a
particle plunging from the retrograde ISCO, and (c) a
marginally bound particle with l ¼ 0. In the near-extremal
limit a� ! 1, we obtain

Ecm

2m0

	 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

6
p ;

where the numerical factor � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 � l2

p
=ð21=631=4Þ

is calculated to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ ffiffiffi

2
p Þ

q
=ð21=631=4Þ ’ 1:77,

4 
 21=3=3 ’ 1:68, and
ffiffiffi
2

p
=ð21=631=4Þ ’ 0:957 for cases

(a), (b), and (c), respectively.
For the general values of a� in 0 � a� < 1, we

can calculate the CM energy using Eq. (2.10) with
Eqs. (2.11), (2.12), (2.13), (2.14), (4.1), (4.2), (4.3), and
(4.4), r ¼ rISCO and y ¼ M=rISCO. The result is summa-

rized in Fig. 2, where Ecm=ð2m0Þ is multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

6
p

for clarity. In this figure, the solid, dashed, and dotted

curves denote cases (a), (b), and (c), respectively. The
CM energy for two particles, either of which is a particle
orbiting the prograde ISCO, is always below the upper
bound (3.8) for marginally bound particles. We should

note that the dependence of ðEcm=ð2m0ÞÞð1� a2�Þ1=4 on
a� in 0 � a� < 1 is very weak and hence the empirical

formula Ecm=ð2m0Þ � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

6
p

is a very good approxi-
mation within a factor of 2 for all values of a� in
0 � a� < 1. Thus, this formula provides the typical value
for the CM energy for the on-ISCO collision of a particle
which orbits the prograde ISCO with a generic subcritical
particle. It should be noted that the CM energy for the on-
ISCO collision is always smaller than that for the near-
horizon collision of a particle plunging from the ISCO in
the near-extremal limit because of the different depen-
dence on a�.
If we use Thorne’s bound a� ¼ 0:998 for the spin pa-

rameter, Ecm=ð2m0Þ is calculated to be 4.11, 3.91, and 2.43
for cases (a), (b), and (c), respectively. This means that a
highly or moderately relativistic collision can naturally
occur on the ISCO around a rapidly rotating black hole
in an astrophysical context.

VI. CONCLUSION AND DISCUSSION

We have investigated particle collisions near the horizon
and on the ISCO around a Kerr black hole. We have
derived a general explicit formula for the CM energy
near the horizon in terms of the energies and the angular
momenta of colliding two particles on the equatorial plane.
We have confirmed that the obtained formula includes
known formulas as its special cases. We have explicitly
shown that although the effective potential around a maxi-
mally rotating Kerr black hole has a zero and maximal
point on the horizon, it does not correspond to a real
circular orbit. Then, we have studied the near-horizon
collision of particles, either of which plunges from the
ISCO. We have shown that the BSW effect occurs for
such a collision in the near-maximal rotation limit and
that the maximum value for the CM energy is the same
within a factor of 2 as the upper bound for the marginally
bound particles for which the angular momentum must be
fine-tuned. We have also investigated the collision of a
particle orbiting the ISCO with another generic particle
on the ISCO and found that it is also the case that one can
obtain an arbitrarily high CM energy in the near-maximal
rotation limit, although this energy is smaller than the value
for the near-horizon collision in this limit. The result
implies that the BSWeffect, which was originally proposed
for the marginally bound particles with the fine-tuned
angular momentum, is astrophysically relevant since the
fine-tuning is naturally realized for ISCO particles in the
standard accretion disks and extreme mass-ratio inspirals.
Although the CM energy is bounded if the spin parameter
of the black hole is bounded in an astrophysical context,
the collision can still be highly or moderately relativistic

FIG. 2. The CM energy Ecm for the on-ISCO collision. The
solid, dashed, and dotted curves denote the collisions of a
particle orbiting the prograde ISCO with (a) a marginally bound
particle with l ¼ lL, (b) a particle plunging from the retrograde
ISCO, and (c) a marginally bound particle with l ¼ 0, respec-

tively. For clarity, Ecm is multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2�

6
p

in the vertical
axis.
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near the horizon and on the ISCO around a rapidly rotating
black hole.

The present result naively suggests the following sce-
nario. A highly or moderately relativistic collision often
occurs near the horizon of a rapidly rotating black hole in
the context of the accretion disks and the extreme mass-
ratio binaries. For the standard accretion disk, gamma rays
with energy of several GeV can be produced inside and
around the inner edge of the disk, if the CM energies of
protons and ions collisions are eventually converted to
photons. These photons can have much higher energy
than usual thermal photons.

What is more intriguing is the high-velocity collision of
compact objects around a supermassive or intermediate-
mass black hole. Here, the compact objects will collide
near the horizon or on the ISCO with a high ‘‘relativistic
gamma factor’’ Ecm=ð2m0Þ. The result will strongly depend
on the kinds of the compact objects and the value of the
relativistic gamma factor. For example, if two neutron stars
collide with a sufficiently high gamma, it will result in the
gravitational collapse to a black hole (e.g. [23]). If two
white dwarfs collide with a sufficiently high gamma, they
might be smashed, destroyed, and scattered away because
of the CM energy much greater than the binding energy of
the white dwarfs. Thus, the collision of the compact objects
around a rapidly rotating supermassive or intermediate-
mass black hole provides a unique laboratory for the
relativistic collision of black holes, neutron stars, and white
dwarfs. The interaction of the compact object with the fluid
or plasma near the horizon or on the ISCO might also be a
striking phenomenon. The details of all these processes
would not be so simple and should be investigated not only
by analytical arguments but also by numerical simulations,

including numerical relativity and general relativistic
hydrodynamics.
Finally, we speculate that peculiar signals originating

from the highly or moderately relativistic collision of
particles, fluids, and compact objects around a rapidly
rotating black hole might be detected by the direct obser-
vation of black holes by means of electromagnetic and/or
gravitational waves and/or neutrinos. For example, if two
black holes collide with a sufficiently high gamma, a
considerable fraction (as large as 14� 3% for head-on
collision [24] and 35� 5% for zoom-whirl collision
[25,26]) of the CM energy can be radiated away through
gravitational radiation. Of course, because of the strong
redshift, we cannot immediately expect that the energetic
radiation can directly reach us. However, the emission
peculiar to such relativistic collisions will be redshifted
and might still be observed in electromagnetic and/or
gravitational waves and/or neutrinos. In this respect, the
on-ISCO collision might be more advantageous to obser-
vation than the near-horizon collision. To investigate what
signals would be observed from a highly or moderately
relativistic collision, numerical simulations will be very
powerful.
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