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We propose a cosmological model in the framework of the Poincaré gauge theory of gravity (PG). The

gravitational Lagrangian is quadratic in both curvature and torsion. In our specific model, the Lagrangian

contains (i) the curvature scalar R and the curvature pseudoscalar X linearly and quadratically (including an

RX term) and (ii) pieces quadratic in the torsion vectorV and the torsion axial vectorA (including aVA
term). We show generally that in quadratic PG models we have nearly the same number of parity conserving

terms (‘‘world’’) and of parity violating terms (‘‘shadow world’’). This offers new perspectives in cosmology

for the coupling of gravity to matter and antimatter. Our specific model generalizes the fairly realistic

‘‘torsion cosmologies’’ of Shie-Nester-Yo (2008) and Chen et al. (2009). With a Friedman type ansatz for an

orthonormal coframe and a Lorentz connection, we derive the two field equations of PG in an explicit form

and discuss their general structure in detail. In particular, the second field equation can be reduced to first

order ordinary differential equations for the curvature piecesRðtÞ andXðtÞ. Including these along with certain
relations obtained from the first field equation and curvature definitions, we present a first order system of

equations suitable for numerical evaluation. This is deferred to the second, numerical part of this paper.
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I. INTRODUCTION

In order to accommodate the local Poincaré group in
spacetime, Sciama [1] and Kibble [2] had to extend the
Riemannian spacetime of general relativity (GR) to a
Riemann-Cartan spacetime with nonvanishing torsion T�

(for the notation see the end of the Introduction). Thereby
the orthonormal coframe #� and the Lorentz connection
��� ¼ ���� became independent gauge potentials of
weak and strong gravity, respectively. The corresponding
gauge field strengths are torsion T� ¼ D#� and curvature
R�� �D���, as spelled out in Sec. II. There we also
display the irreducible decompositions of T� and R��.

If one allows in a Yang-Mills manner for a gravitational
Lagrangian V that is quadratic in torsion and curvature,
we speak of a Poincaré gauge theory of gravity (PG)
[3–10]. In Sec. III A, we introduce the gravitational exci-
tations H� ¼ �@V=@T� and H�� ¼ �@V=@R�� and re-

capitulate the general form (21) and (22) of the two field
equations of gravity.

Then, in Sec. III B, we turn to the conventional parity
conserving quadratic Lagrangian Vþ, which includes the

somewhat degenerate Einstein-Cartan Lagrangian VEC.
Because of the existence of the Euler 4-form of the curva-
ture, we can show that one curvature square piece is trivial.
In Secs. III C and III D, we review parity violating admix-
tures to the EC Lagrangian that have been formulated in
the past by different groups, stressing in Sec. III E the
importance of the corresponding cosmological models of
Shie-Nester-Yo [11] and Chen et al. [12].
Having in this way the PG at our disposal, we open

for it in Sec. IV a new ‘‘window’’ to a ‘‘shadow world’’. In
Sec. IVA, we show in a systematic way that, besides the
parity conserving Lagrangian Vþ, there exists an equally
important Lagrangian V� the pieces of which are all parity
violating. Accordingly, for PGwe propose the gravitational
Lagrangian V� ¼ Vþ þ V�. An equivalent Lagrangian
has already been discussed earlier by Obukhov et al. [13].
Because of the complexity of this general Lagrangian,

we select for further study in Sec. IVB in Eq. (64) the
simpler 9-parameter Lagrangian VBHN, which should carry
the characteristic features of parity conserving and parity
violating effects. In Sec. IVC, a novel method is proposed
for diagonalizing the quadratic pieces in VBHN. No lineari-
zation is involved and the output consists of exact analytic
results. Besides the Einstein mode 2þ, we find for the
torsion modes spin and parity 0�, 1� and for the curvature
modes 0�.
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We calculate the gravitational excitations of VBHN

(Sec. IVD) and display in Sec. IVE the corresponding
field equations explicitly. They turn out to be first order
partial differential equations in torsion and curvature,
respectively.

We continue by looking closer into the structure of
VBHN and its field equations. In Sec. IV F the Nieh-Yan
identity is used to show that the coupling constants of VBHN

occur only in certain linear combinations in the field
equations.

Eventually, in Sec. V, we turn to a cosmological model.
In Sec. VA the coframe and the torsion are assumed
to be homogeneous and isotropic in accordance with
a Friedman-Lemaı̂tre-Robertson-Walker (FLRW) type
model and in Sec. VB the corresponding irreducible pieces
of the curvature are calculated. We define a spinless perfect
fluid in Sec. VC and find then, in Sec. VD, the field
equations of gravity for this cosmological model. The first
field equation yields equations for the density �ðtÞ and for
the pressure pðtÞ of the perfect fluid. These equations are
subsequently manipulated in order to bring them into a
more transparent form. The second field equation has also
two independent components, namely, first order ordinary
differential equations for RðtÞ and XðtÞ. We uncouple them
and bring them in the very compact form (176) and (177)
by introducing certain ‘‘frequencies’’ !0, !1, !2, !3.

Now we are able to evaluate our exact results by
numerical methods. This will be done in follow up work.

Notation

Our notation is as follows (see [14,15]): We use the
formalism of exterior differential forms. We denote the
frame by e�, with the anholonomic or frame indices
�;�; . . . ¼ 0; 1; 2; 3. Decomposed with respect to a natural
frame @i, we have e� ¼ ei�@i, where i; j; . . . ¼ 0; 1; 2; 3
are holonomic or coordinate indices. The frame e� is the
vector basis of the tangent space at each point of the 4D
spacetime manifold. The symbol 5 denotes the interior and
^ the exterior product. The coframe #� ¼ ej

�dxj is dual

to the frame, i.e., e� 5 #� ¼ ��
�. The ? denotes the Hodge

star operator that acts on the quantities on its right, as, for
instance, in ?ð�a ^ #�Þ. If #�� :¼ #� ^ #�, etc., then we
can introduce the eta-basis by � :¼ ?1, �� :¼ e� 5 � ¼
?#�, ��� :¼ e� 5 �� ¼ ?#��, etc. Parentheses surround-
ing indices ð��Þ :¼ ð��þ ��Þ=2 denote symmetrization
and brackets ½��� :¼ ð��� ��Þ=2 antisymmetrization.

The coframe #� and the �-system are related by

#� ^�� ¼ ��
��;

#� ^��� ¼ ��
��� ���

���;

#� ^���� ¼ ��
���� þ��

���� þ��
����;

#������ ¼ ��
����� ���

�����þ��
��������

�����:

(1)

Differentiating the �’s, we find in a metric-affine space
(for a definition see Sec. II B) the relations

D�� ¼ �2Q ^ �� þ T� ^ ���;

D��� ¼ �2Q ^ ��� þ T� ^ ����;

D���� ¼ �2Q ^ ���� þ T� ^ �����;

D����� ¼ �2Q ^ �����;

(2)

where Q is the Weyl covector and T� the torsion.
We use the abbreviations: GR ¼ general relativity the-

ory (Riemann spacetime), EC ¼ Einstein-Cartan theory of
gravity (Riemann-Cartan spacetime with torsion and cur-
vature, gauge Lagrangian linear in curvature), PG ¼
Poincar�e gauge theory of gravity (Riemann-Cartan space-
time, gauge Lagrangian arbitrary function of torsion
and curvature; often a quadratic function), MAG ¼
metric-affine theory of gravity (metric-affine spacetime,
gauge Lagrangian arbitrary function of in torsion, nonme-
tricity, and curvature; often a quadratic function).

II. SPACETIME OF GAUGE THEORYOF GRAVITY

A. The coframe #� and weak gravity

One of the fundamental structures in a gauge theory of
gravity is the coframe field #�—and all quantities are
referred to it. It is represented by four linearly independent
1-forms #�, with � ¼ 0, 1, 2, 3. They can be decomposed
with respect to a natural coframe dxi according to #� ¼
ei

�dxi. Here the ei
� are the coordinate components of #�,

also called tetrad components.
Since a Riemannian metric g with Lorentz signature is

assumed to exist, the coframe can always be chosen to be
orthonormal according to

g ¼ gijdx
i � dxj ¼ g��#

� � #�; (3)

with g�� ¼ diagð�1; 1; 1; 1Þ. In this way the metric is

absorbed by the coframe and has no longer independent
physical degrees of freedom.
This choice is convenient and will be kept throughout

this article. However, sometimes one may want to choose
arbitrary coframes: then the metric emerges explicitly
again. Also for that reason, the metric and the coframe,
besides the linear connection (see Sec. II B), are treated in
the variational principle as independent gauge field varia-
bles. However, it eventually turns out that the field equa-
tions resulting from the variation of the metric and of the
coframe are equivalent. In other words, the orthonormal
‘‘gauge’’ of the coframe, which we use in this article, does
not restrict the generality of our considerations.
We call #� the potential of weak gravity of the Newton-

Einstein type. It couples to matter via the Einstein gravi-
tational constant �, which has the dimension of a recip-
rocal force. Basically, #� represents four gauge boson
fields—each of helicity 1—that conspire, at least in linear
approximation, to build up the massless spin 2 graviton

PETER BAEKLER, FRIEDRICH W. HEHL, AND JAMES M. NESTER PHYSICAL REVIEW D 83, 024001 (2011)

024001-2



modes of general relativity (GR), provided the appropriate
Hilbert Lagrangian is chosen.

B. The linear connection ��
� and the hypothesis of

strong gravity

In classical gauge theories of gravity the linear connec-
tion of spacetime ��

�, besides the coframe #�, is assumed
to exist as an independent field variable. This is a physical
hypothesis that has eventually to be checked by experi-
ment. We call ��

� the potential of strong gravity of Yang-
Mills type. It is represented by 4� 4 ¼ 16 bosonic 1-form
fields that can be decomposed according to ��

� ¼
�i�

�dxi. They couple to matter in a Yang-Mills like fash-
ion via a hypothetical coupling constant % of the dimension
ðactionÞ�1.

A differential manifold equipped with a metric g and a
linear connection ��

� is called a metric-affine space. If the
linear connection is unconstrained, then ��

� has values in
the Lie algebra of the general linear group GLð4; RÞ. The
gauge theory with independent metric and independent
connection is calledmetric-affine (gauge theory of) gravity
(MAG). Since in MAG the connection components �i�

�

carry three indices, the strong gravity potential can provide
additional strong gravity modes of up to spin 3 (see [16]).

C. Beyond general relativity: relaxing the torsion

Let us start from GR and assume the connection to be

Riemannian, namely ~��
�; we will always indicate the

Riemannian nature of a quantity by a tilde. Then ~��
�

does not provide a mode that is independent of the co-
frame. With a suitable Lagrangian, this corresponds to GR.

If the connection is metric-compatible but non-
Riemannian, it carries an independent piece that has values
in the Lie algebra of the Lorentz group SOð1; 3Þ. In ortho-
normal frames, we have for the Lorentz (or spin) connec-
tion the relation ��� ¼ ����. It represents 6 bosonic1-
form fields for strong gravity. Its maximum spin is 2. The
independent fields, coframe #� and Lorentz connection
���, represent the gauge potentials of the Poincaré group.
The corresponding gauge field theory is called the Poincaré
gauge theory of gravity (Poincaré gravity or PG).

In PG, the contortion

K�� :¼ ~��� � ��� ¼ �K�� (4)

measures the difference between the Riemann and the
Riemann-Cartan (RC) geometry and, as a difference
between two connections, it constitutes a tensor.
Alternatively, the deviation from the Riemannian geometry
of GR can be described by the torsion

T� :¼ D
�
#� ¼ d#� þ ��

� ^ #� ¼ 1

2
Tij

�dxi ^ dxj: (5)

HereD
�
is the exterior covariant derivativewith respect to the

connection ��
�. The newly emerging Lorentz-connection

modes reflect themselves also in those of the torsion, since
the second term in the torsion, ��

� ^ #�, depends on ��
�.

It can be shown (see [14]) that torsion and contortion are
related by

T� ¼ #� ^ K�
�;

K�� ¼ e½� 5 T�� � 1

2
ðe� 5 e� 5 T�Þ#�:

(6)

On the level of the gauge potentials, we have then in PG
the frame #� and the Lorentz connection ��� ¼ ����.
On the level of the newly introduced torsion, the translation
gauge field strength, we can execute an irreducible decom-
position in order to learn more about its structure. It can be
decomposed according to 24 ¼ 16 � 4 � 4 into three

pieces: into a second rank tensor piece (tentor), ð1ÞT�,
into a vector piece, namely, in components, the trace of
the torsion (trator),

ð2ÞT� :¼ � 1

3
V ^ #� with V :¼ e� 5 T�; (7)

and into an axial-vector piece (axitor), which corresponds
in components to the totally antisymmetric piece of the
torsion (the star denotes the Hodge operator):

ð3ÞT� ¼ 1

3
? ðA ^ #�Þ with A :¼ ?ð#� ^ T�Þ: (8)

We have then the irreducible decomposition

T� ¼ ð1ÞT�|{z}
tentor

þ ð2ÞT�|{z}
trator

þ ð3ÞT�|{z}
axitor

: (9)

The tensor piece can carry at most spin 2 modes, whereas
the vector and the axial-vector pieces are good for at most
spin 1 modes.

D. Keeping the nonmetricity to zero

In MAG, besides the torsion T�, we have a nonvanishing
nonmetricity

Q�� :¼ �D
�
g�� ¼ Q�� ¼ �dg�� þ 2�ð��Þ: (10)

Therefore, the nonmetricity Q�� of the metric-affine ge-

ometry is a measure for the difference between the linear
connection ��

� and the Lorentz connection. In an ortho-
normal coframe #� the metric referred to the coframe g��
is a constant and the modes of the symmetric1 �ð��Þ ¼
�ið��Þdxi are passed through, according to (10), to the

nonmetricity Q�� ¼ Qi��dx
i, with the components

Qi�� ¼ Qi��. There emerge, besides the 6 of the Lorentz

connection, 10 more bosonic 1-form fields Q�� clearly

encompassing strong gravity contributions of spin 0,1,2,
and 3.

1Not to be confused with the symmetric part of the connection
�ð��Þ� ¼ eð� 5 ��Þ�.
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In MAG, we have the gravitational potentials #� and
��

�. The gauge field strength attached to the coframe#� is
the torsion (5), that attached to the linear connection ��

�

the curvature 2-form

R�
� :¼ d��

� � ��
� ^ ��

�: (11)

We can raise the index � and can decompose the curvature
into the antisymmetric ‘‘rotational’’ piece and the symmet-
ric ‘‘strain’’ piece according to

R�� ¼ W�� þ Z�� with

W�� :¼ R½���; Z�� :¼ Rð��Þ:
(12)

Even though we succeeded in relating a quadratic
MAG-Lagrangian to a consistent classical field theory of
massless spin 3 fields via the trace-free part of the non-
metricity [16], we will restrict ourselves in this article to
vanishing nonmetricity, Q�� ¼ 0; consequently the strain

curvature vanishes, too: Z�� ¼ 0. From a phenomenologi-
cal point of view the overwhelming importance of the
(rigid) Poincaré group in special relativity directs our
attention primarily to the gauge theory of the local
Poincaré group, namely, PG. Accordingly, from now on
Z�� ¼ 0 and R�� ¼ W��.

E. Irreducible decomposition of the
rotational curvature

For the physical interpretation it is significant to under-
stand the different pieces of the curvature. The rotational
curvature decomposes irreducibly into six pieces, see
[14,17–20], according to

R�� ¼ ð1ÞR��|fflffl{zfflffl}
weyl 10

þ ð2ÞR��|fflffl{zfflffl}
paircom 9

þ ð3ÞR��|fflffl{zfflffl}
pscalar 1

þ ð4ÞR��|fflffl{zfflffl}
ricsymf 9

þ ð5ÞR��|fflffl{zfflffl}
ricanti 6

þ ð6ÞR��|fflffl{zfflffl}
scalar 1

: (13)

The number of independent components is specified sub-
sequent to the (computer) name of the corresponding irre-
ducible piece. Pseudoscalar and scalar qualify as linear
Lagrangians. We take from the literature (remember that
#�� ¼ #� ^ #� and ��� ¼ ?#��)

ð3ÞR�� ¼ � 1

12
X���;

X :¼ e� 5 X�; X� :¼ ?ðR�� ^ #�Þ; (14)

ð6ÞR�� ¼ � 1

12
R#��;

R :¼ e� 5 R�; R� :¼ e� 5 R��: (15)

We recognize that the scalar R and the pseudoscalar X play
a preferred role. Note that X is purely post-Riemannian,
that is, ~X � 0. In components we have

X ¼ �����R
½�����=4! and R ¼ R��

��; (16)

with the decomposition R�� ¼ R��
��#��=2.

III. POINCARÉ GAUGE THEORY
OF GRAVITY (PG)

A. Lagrangian and field equations

In PG, we have the gravitational potentials #� and
��� ¼ ����. The corresponding gauge field strengths
are the torsion T� and the rotational (‘‘Lorentz’’) curvature

R�� :¼ d��� � ��
� ^ ��� ¼ �R��: (17)

We assume a first order Lagrangian consisting of a gauge
and a minimally coupled matter part,

L ¼ Vðg��; #�; T�; R��Þ þ Lmatðg��; #�;�; D
�
�Þ; (18)

with the matter field(s) �. Then we can define the trans-
lation and the Lorentz excitations, respectively,

H� :¼ � @V

@T� ; H�� :¼ � @V

@R��
¼ �H��; (19)

and the canonical matter currents of energy-momentum and
spin (angular momentum) according to

�� :¼ �Lmat

�#� ; 	�� :¼ �Lmat

����
¼ �	��; (20)

in the case of a minimally coupled matter Lagrangian, as in
(18), the variational derivatives degenerate to partial
derivatives.
The action principle yields the field equations [3]

DH� � E� ¼ �� ðfirstÞ; (21)

DH�� � E�� ¼ 	�� ðsecondÞ; (22)

with the gauge currents of energy-momentum and spin

E� :¼ e� 5 Vþðe� 5 T�Þ ^H� þðe� 5 R��Þ ^H��; (23)

E�� :¼ �#½� ^H��: (24)

If the gauge Lagrangian V is prescribed explicitly, we
can compute first the excitations H�, H�� by partial dif-

ferentiation of V and subsequently the gauge currents E�,
E�� by substitution; these quantities are then inserted into

the two field equations (21) and (22). As noted already
above, the field equation resulting from a variation of the
metric g�� is equivalent to (21), provided (22) is fulfilled.

The matter currents on the right-hand-side of the field
equations (21) and (22) can be understood as those of a
spin fluid (see [21–23]). An approximate representation of
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such a spin fluid can be specified as follows: If the fluid
moves with the velocity u ¼ u�e�, that is, with the flow
3-form U :¼ u 5 � ¼ u���, and transports an energy-
momentum density p� and a spin density s�� ¼ �s��,

then a convective Weyssenhoff ansatz for the matter cur-
rents reads

�� ¼ p�U and 	�� ¼ s��U: (25)

B. Quadratic Yang-Mills type Lagrangian with
even parity terms

A quadratic PG Lagrangian of the Yang-Mills type has
the general structure (
0 is the cosmological constant)

V � 1

�
ðcurvþ torsion2 þ 
0Þ þ 1

%
curv2: (26)

Since the coframe #� and the Lorentz connection ��� are
independent variables, such a first order Lagrangian yields
second order field equations; higher derivatives do not
emerge.

The simplest nontrivial Lagrangian corresponds to the
first term on the right-hand-side of (26). It is of the Hilbert
type, i.e., linear in the curvature, namely, the so-called
Einstein-Cartan Lagrangian, see (15),

VEC ¼ 1

2�
��� ^ R�� ¼ 1

2�
��� ^ ð6ÞR�� ¼ 1

2�
?R: (27)

The corresponding two field excitations, H� ¼ 0 and
H�� ¼ ����=ð2�Þ, if substituted into (21) and (22), yield
the field equations [1,2,24]:

1

2
���� ^ R�� ¼ ���; (28)

1

2
���� ^ T� ¼ �	��: (29)

The viable Einstein-Cartan(-Sciama-Kibble) theory (EC),
as compared to GR, supplies an additional spin-contact
interaction of weak gravitational origin, since only
Einstein’s gravitational constant enters (28) and (29). The
Lorentz connection ��� cannot propagate and thus EC
represents2 a degenerate PG. In order to enable ��� to
propagate, we have to use additionally at least the qua-
dratic curvature piece in (26); for discussions on the physi-
cal relevance of torsion one should also compare Shapiro
[27] and Ni [28].

Esser [29], see also [30], constructed the most general
quadratic Lagrangian with even (þ ) parity pieces (for this
notion see Sec. III C). For a RC-spacetime it reads:

Vþ ¼ 1

2�

�
�a0R

�� ^ ��� � 2
0�þ T� ^X3
I¼1

aI
?ðIÞT�

�

� 1

2%
R�� ^X6

I¼1

wI
?ðIÞR��; (30)

without restricting the generality of our considerations, we
can choose % > 0. In a RC-space, Esser found the addi-
tional term

� 1

2%
R�� ^ ?½w7#� ^ ðe� 5

ð5ÞR�
�Þ�: (31)

However, this term can be transformed successively into a
pure w5 term. Let us first consider invariants of the

form R�� ^ ?½#� ^ ðe� 5
ðAÞR�

�Þ� with A 2 f1 	 	 	 6g. For
A ¼ 5 we find

R�� ^ ?½#� ^ ðe� 5
ð5ÞR�

�Þ�
¼ ð5ÞR�� ^ ?½#� ^ ðe� 5

ð5ÞR�
�Þ�

¼ ð5ÞR�� ^ ?ð5ÞR��: (32)

Thus we can absorb the w7 term into the w5 term.
Consequently, without restricting the generality of our
considerations, we can put w7 ¼ 0.
In our Lagrangian Vþ in (30) not all the constants are

independent. In a Riemannian as well as in a RC space-
time, the integrand of the topological Euler 4-form

BRRð
Þ ¼ �1

2
R�

� ^Rð
Þ�
� ¼ 1

4
�����R

�� ^R�� ¼ dCRRð
Þ

(33)

is exact, with

CRRð
Þ ¼ 1

4
��

�
�
�ðR�

� ^��
�þ 1

3
��

� ^��
" ^�"

�Þ: (34)

The dual is here taken with respect to the frame indices �,
� of the curvature 2-form R�

�, it has to be carefully
distinguished from the Hodge dual. Then, together with
the Bach-Lanczos identity [14], Eq. (A.3.7),

Rð�j� ^ Rð
Þj�Þ
� � 1

4
g��R�� ^ Rð
Þ

�� ¼ 0; (35)

one can show that only five of the six wI’s are linearly
independent.
The excitations can now be calculated by differentiation:

H� ¼ � 1

�

X3
I¼1

aI
?ðIÞT�; (36)

H�� ¼ a0
2�

��� þ 1

%

X6
I¼1

wI
?ðIÞR��: (37)

Because of (15), the last equation can be slightly rewritten
as

2Recently, an EC model with fermionic matter and its appli-
cation to the early universe have been discussed by Ribas and
Kremer [25] and by Dolan [26].
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H�� ¼
�
a0
2�

� w6

12%
R

�
��� þ 1

%

X5
I¼1

wI
?ðIÞR��: (38)

There have been numerous investigations into the proper-
ties of the Lagrangian (30). In linear approximation, on a
flat Minkowskian background, Eq. (30) encompasses, be-
sides the weak gravity modes of the coframe, propagating
strong gravity modes of the Lorentz connection with spin
2�, 1�, and 0�, as shown by Hayashi and Shirafuji [4], by
Sezgin and van Nieuwenhuizen [31], and by Kuhfuss and
Nitsch [32]. For a model with quadratic curvature
Lagrangian in which only the Lorentz connection is
dynamic, compare Cho et al. [33].

A good dynamic mode transports positive energy at
speed � c. At most three modes can be simultaneously
dynamic; all the cases were tabulated; many combinations
are satisfactory to linear order. The Hamiltonian analysis,
as shown by Blagojević and Nikolić [34,35], revealed the
related constraints. In more detailed investigations [36–39]
it was concluded that effects due to nonlinearities could be
expected to render all of these cases physically unaccept-
able, with the exception of two ‘‘scalar’’ connection modes
with spin 0þ and spin 0�.

Before we come back to the mode analysis in Sec. IVC,
we want to extend the gravitational Lagrangian such that
also odd parity pieces are included.

C. Even parity and odd parity Lagrangians, twisted and
untwisted forms

Let us study the spatial reflection or parity transforma-
tion; the sign of the time axis will be kept fixed. A (pure)
scalar field �ðxÞ remains invariant under the parity trans-
formation or if we transform a right-handed coordinate

system xi into a left-handed one xi
0
: �ðx0Þ ¼ �ðxÞ. In

contrast, a twisted scalar field �̂ðxÞ (also called a pseudo-
scalar field) changes its sign under those circumstances,

that is, the sign of the determinant J :¼ detjj@xi=@xi0 jj of
the Jacobian transformation matrix enters its transforma-

tion law: �̂ðxi0 Þ ¼ ðsignJÞ�̂ðxÞ. The analogous behavior
characterizes the relation between twisted and untwisted
forms; for a mathematical discussion compare Frankel [40].

A Lagrangian 4-form L has to be a twisted 4-form in
order to make its action W :¼ R

�4
L a pure scalar. These

Lagrangians are also called even parity Lagrangians.
However, in physics we know since the discovery of parity
violation in the weak interaction in 1956, see Sozzi [41] for
a review, that also odd parity would-be Lagrangians can
occur; they have to be multiplied by pseudoscalar coupling
constants in order to transform them to decent (twisted)
Lagrangians, which can be added to the other even parity
Lagrangian pieces.

In PG, the field strengths T� and R�� are untwisted
2-forms, similarly the potentials #� and ��� are untwisted
1-forms. One may compare the case of electrodynamics
with the untwisted potential A and the untwisted field

strength F ¼ dA (the differential d is untwisted).
Consequently, a twisted Lagrangian, according to (19),
leads to the excitations H� and H�� being twisted 2-forms

and the material currents �� and 	��, see (20), being

twisted 3-forms.
The Einstein-Cartan Lagrangian

VEC ¼ 1

2�
R�� ^ ?ð#� ^ #�Þ ¼ 1

2�
?R (39)

is twisted, since the Hodge star in our formalism (see [15],
Sec. C.2.8) is twisted, that is, it maps twisted into untwisted
forms and vice versa. The Maxwell Lagrangian

VMax ¼ �Y0

2
F ^ ?F (40)

is also twisted, hence of even parity, where Y0 is the
(scalar) vacuum admittance. We recognize that an odd
number of stars occurring in a Lagrangian, which is ex-
pressed in terms of field strength and potentials, guarantees
its standard twisted nature. In contrast, the topological
Chern type Lagrangian

VMax0 ¼ �Y1

2
F ^ F (41)

is only twisted (even parity), if we declare Y1 to be a
pseudoscalar; the analogous is true in gravity for

VEC0 ¼ 1

2�0 R
�� ^ ð#� ^ #�Þ ¼ 1

2�0
?X; (42)

with the pseudoscalar constant �0; note that this
Lagrangian vanishes identically in a Riemannian space,

since ~R½����� ¼ 0.

D. Parity violating admixtures to
the Einstein-Cartan Lagrangian

Already in 1964, Leitner and Okubo [42] wondered
about possible odd parity terms in the gravitational
Lagrangian. Related questions were addressed by
Hayashi [43] and Hari Dass [44]. The effect of adding
the non-Riemannian odd parity pseudoscalar curvature to
the Hilbert-Einstein-Cartan scalar curvature was first
studied by Hojman, Mukku, and Sayed [45] (for Mukku’s
recent view see [46]):

VHMS ¼ 1

2�
ða0?Rþ b0

?XÞ

¼ � 1

2�
ða0��� þ b0#��Þ ^ R��: (43)

Note that on the right-hand-side of this equation the star
only enters in ��� ¼ ?ð#� ^ #�Þ, that is, the second term

#�� ¼ #� ^ #� is of odd parity and thus b0 is a pseudo-

scalar. The excitations turn out to be

H� ¼ 0; H�� ¼ 1

2�
ða0��� þ b0#��Þ: (44)
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If we introduce the left-hand-side of (28) as the Einstein
3-form G� :¼ 1

2���� ^ R��, the field equations (21) and

(22) read

a0G� � b0
?X� ¼ ���; (45)

a0
2
T� ^ ���� þ b0T½� ^ #�� ¼ �	��: (46)

The situation with respect to the second field equation
(46) is similar to the EC theory. For vanishing material
spin, 	�� ¼ 0, the torsion vanishes, too, T� ¼ 0. This can

be shown by substituting the irreducible decomposition of
torsion (9) into (46) and using the geometrical identities

ð1ÞT� ^ ���� ¼ 2?ð1ÞT½� ^ #��;
ð2ÞT� ^ ���� ¼ �4?ð2ÞT½� ^ #��;
ð3ÞT� ^ ���� ¼ �?ð3ÞT½� ^ #��:

(47)

To supply nonvanishing torsion we either need material
spin or at least (for the vacuum case) field Lagrangians
quadratic in the field strengths. In this sense, the
Lagrangian (43) is as degenerate as the one of EC and it
is natural to turn to quadratic odd parity Lagrangians.

Subsequently questions related to the VHMS-Lagrangian,
in the realm of classical Riemann-Cartan spacetime, were
investigated by Nelson [47], Nieh and Yan [48] (see also
Nieh’s recent article [49]), and McCrea et al. [50,51], see
also Refs. [52,53].

In the general context of the Ashtekar formalism or,
more generally, of loop quantum gravity, compare Kiefer
[54] and Rovelli [55], the VHMS-Lagrangian was taken up
again by Holst [56], Freidel et al. [57,58], Khriplovich
et al. [59], and Bojowald et al. [60]; similar parity violating
pieces were studied by Mukhopadhyaya et al. [61,62], see
also the related papers by Mielke [63,64].

In the framework of a quantum field theoretical context,
Poplawski [65], Randono [66], and Bjorken [67] developed
cosmological models with torsion and parity violating
pieces that are induced by the vacuum structure.

Jackiw and Pi [68] proposed a specific model with
violation of parity and Lorentz invariance in the context
of GR. They introduced, in addition to the Hilbert-Einstein
Lagrangian, an external scalar field �, not to be varied in
the action principle, multiplied by the Chern-Simons (CS)
term attached to the curvature:

VGRCS ¼ 1

2�
? ~Rþ �

2%
~R�

� ^ ~R�
�: (48)

This model was extended to the EC theory by Cantcheff
[69],

VECCS ¼ 1

2�
?Rþ �

2%
R�

� ^ R�
�; (49)

see also Ertem [70]. Of course, both theories differ in their
physical content, as does GR from the EC theory. We turn
our attention to the EC version in (49).

We know from geometry that a CS term is an exact form.
We have for a RC space, see [14], Eqs. (3.9.3) and (3.9.8),

� 1

2
R�

� ^ R�
� ¼ dCRR (50)

with

CRR :¼ � 1

2
ð��

� ^ R�
� þ 1

3
��

� ^ ��
� ^ ��

�Þ: (51)

Thus,

VECCS ¼ 1

2�
?R� �

%
dCRR: (52)

This Lagrangian contains an odd parity piece quadratic in
curvature, see (50). However, it is of a fairly degenerate
character. Still, since � is a prescribed field, the field
equations are affected by the CS term. We will come
back to an explicit evaluation of the curvature square piece
below.
Explicit odd parity curvature square pieces were present

in some cosmological models with spin 0þ and spin
0� modes. These models motivated us for a further search
in this direction.

E. Interlude: the impact of the cosmological model of
Shie-Nester-Yo on PG

Shie, Nester, and Yo (SNY) [11,71], in the framework
of PG and in accordance with [38,39], formulated a new
cosmological model. It contains, besides the graviton mode
2þ of GR, one propagating connection and accordingly
one propagating torsion mode of spin 0þ; the þ refers to
the positive parity. The corresponding Lagrangian reads
effectively3

VSNY ¼ 1

2�

�
a0

?Rþ 1

3
a2V ^ ?V

�
� 1

24%
w6R

2�: (53)

This model has fairly realistic features and encouraged
further developments. Li et al. [72,73], following
Ref. [11], investigated the cosmological evolution of the
SNY model with advanced numerical techniques.
In order to embrace additionally connection modes with

spin 0�, that is with odd parity, in a next step, Chen et al.
[12] generalized the SNY Lagrangian to

VSNY0 ¼ 1

2�
ða0?R� 2
0�Þ þ 1

6�
ða2V ^ ?V

� a3A ^ ?AÞ � 1

24%
ðw6R

2 � w3X
2Þ�: (54)

3Their actual Lagrangian [11], Eq. (18) also contains squared
pieces of the axial torsion ð3ÞT� and the tensor torsion ð1ÞT�.
However, they find from the second field equation (for vanishing
spin) that ð1ÞT� ¼ ð3ÞT� ¼ 0. Accordingly, in the SNY model
only the vector piece ð2ÞT� of the torsion is active explicitly. An
analogous remark applies to (54).
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It contains, as odd parity terms, the axial-vector torsion
A and the pseudoscalar curvature X, see (8) and (14),
respectively. However, these odd parity terms are con-
cealed in an even parity Lagrangian since each of the terms
A ^ ?A and X2� ¼ X ?X contain one explicit star, re-
spectively. Accordingly, this model with propagating
modes 2þ and 0� is of even parity, but contains concealed
the odd parity terms A and X.

It is then tempting to provide further add-ons, namely,
the parity violating mixed terms A ^ ?V and X ?R ¼
R ?X. This provides a further extension of the SNY model
with respective metric and connection propagating modes
of 2þ and 0�.

IV. THE SHADOW WORLD OF QUADRATIC
PG-LAGRANGIANS WITH ODD PARITY TERMS

A. Constructing systematically quadratic
odd parity Lagrangians

As discussed by Sozzi [41], from the validity of the CPT
symmetry in nature and from the fact that the C and CP
symmetries are only broken in weak interaction, but are
valid otherwise, one would expect roughly an equal
amount of matter and antimatter in the Universe. It appears
however, as shown by Steigman [74], that only what we
call matter is around in the Universe. Accordingly, we have
to face the matter/antimatter asymmetry in nature and may
want to approach this question from a gravitational point of
view. Can we, in PG, construct odd parity Lagrangians in a
natural way so that we can estimate the possible influence
of those terms for the evolution of the Universe?4

We proved identities of the type (32) under heavy use of
the computer algebra system REDUCE, including the pack-
age EXCALC for handling directly exterior differential
forms, see [75–78]. In this way, we can construct a qua-
dratic odd parity Lagrangian V� that in its general structure
reflects the even parity Lagrangian Vþ in (30). It is the
‘‘shadow’’ of Vþ:

V� ¼ � b0
2�

ð3ÞR�� ^ #�� þ 1

�
ð�1

ð1ÞT� ^ ð1ÞT�

þ �2
ð2ÞT� ^ ð3ÞT�Þ � 1

2%
ð�1

ð1ÞR�� ^ ð1ÞR��

þ�2
ð2ÞR�� ^ ð4ÞR�� þ�3

ð3ÞR�� ^ ð6ÞR��

þ�4
ð5ÞR�� ^ ð5ÞR��Þ: (55)

All its constants are pseudoscalars. In a Riemannian
spacetime such an extended shadow does not exist, since
only the �1 term survives, because of T� ¼ 0 and

ð2ÞR�� ¼ ð3ÞR�� ¼ ð5ÞR�� ¼ 0. Therefore, in PG we can
free ourselves from the constraint to use even parity
Lagrangians with only one odd term; in fact, PG brings
the existence of numerous odd parity Lagrangians to light.
The special cases of Jackiw and Pi [68] and Cantcheff

[69] can now be straightforwardly evaluated. If we define
in four dimensions the (pseudo-)scalar product hA; Bi for
any two tensor-valued 2-forms A�1...�r

and B�1...�r
by

hA; Bi :¼ ?ðA�1...�r
^ B�1...�rÞ; (56)

we can write the curvature square piece of our odd
Lagrangian (55) as

V�
curv2 ¼ 1

2%
?ð�1hð1ÞR; ð1ÞRi þ�2hð2ÞR; ð4ÞRi

þ�3hð3ÞR; ð6ÞRi þ�4hð5ÞR; ð5ÞRiÞ: (57)

On the other hand, the Einstein-Cartan-Chern-Simons
Lagrangian (49) reads

VECCS ¼ 1

2�
?Rþ �

2%
?hR; Ri: (58)

If we substitute the irreducible pieces of the curvature into
the scalar product, we find [see [14], Eq. (B.4.37)]

hR;Ri ¼ hð1ÞR; ð1ÞRi þ 2hð2ÞR; ð4ÞRi þ 2hð3ÞR; ð6ÞRi
þ hð5ÞR; ð5ÞRi: (59)

In a Riemannian space of the theory of Jackiw and Pi only
the conformally invariant Weyl square piece, the first term
on the right-hand-side of (59), is left over, whereas the RC
space complicates the structures by additional post-
Riemannian pieces. Comparing (57) with (59), we find

V�
curv2ð�1 ¼ 1;�2 ¼ 2;�3 ¼ 2;�4 ¼ 1Þ ¼� 1

%
dCRR: (60)

In other words, our odd parity curvature square
Lagrangians, for the coupling constants specified, becomes
an exact form. Consequently only three of the four�’s can
be chosen independently.
The mixed quadratic Lagrangian with even and odd

parity is then

V� ¼ Vþ þ V�; (61)

see also [13].

B. Cosmological model with parity violating terms

If we compare V� with VSNY0 , the next step of
‘‘minimally’’ generalizing (54) and hopefully keeping the
nice properties of the model is to allow for unconcealed
odd parity pieces, but only those odd parity pieces that
already occur in (54), namely X andA. Thus, starting with
(61) and putting the following constants to zero,

4At the Large Hadron Collider (LHC) in Geneva the detector
LHCb (the ‘‘b’’ = beauty refers to the ‘‘bottom’’ quark) was
constructed particularly for investigations of matter-antimatter
interactions, namely, for the CP violation in the interaction of b-
hadrons. It is hoped that these experiments will provide new
insight into the interrelationship between matter and antimatter.
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a1 ¼ 0; �1 ¼ 0;

w1 ¼ w2 ¼ w4 ¼ w5 ¼ 0;

�1 ¼ �2 ¼ �4 ¼ 0;

(62)

we arrive at the new Lagrangian

VBHN ¼ 1

2�
ð�a0

ð6ÞR�� ^��� �b0
ð3ÞR�� ^#��

� 2
0�þa2
ð2ÞT� ^ ?ð2ÞT� þa3

ð3ÞT� ^ ?ð3ÞT�

þ 2�2
ð2ÞT� ^ ð3ÞT�Þ� 1

2%
ðw3

ð3ÞR�� ^ ?ð3ÞR��

þw6
ð6ÞR�� ^ ?ð6ÞR�� þ�3

ð3ÞR�� ^ ð6ÞR��Þ: (63)

Substituting the irreducible pieces of the torsion (7) and (8)
and of the curvature (14) and (15) into (63), we find the
more compact form of our new gravitational Lagrangian

VBHN ¼ 1

2�
ða0?Rþ b0

?X � 2
0�Þ þ 1

6�
ða2V ^ ?V

� a3A ^ ?A� 2�2V ^ ?AÞ
� 1

24%
ðw6R

?R� w3X
?Xþ�3R

?XÞ: (64)

The constants b0, �2, �3 are pseudoscalar, the remaining
ones are scalar.5

We can read off from the Lagrangian a symmetry be-
tween R andX, betweenw6 andw3, and between a0 and b0.
There is also a symmetry between V and A on the one
side and R and X on the other side; this implies that a2, a3,
�2 are mirrored in w6, w3, �3. These symmetries are also
reflected in the field equations.Wewill come back to this in
Sec. IVE.

The decomposition of the linear terms in R and X into
Riemannian and post-Riemannian pieces, modulo surface
terms, yields

VBHN¼ 1

2�
½a0? ~R�2
0�þð1ÞT�^ðb0þa0

?Þð1ÞT�

�2

3
mþV ^?V þ1

6
m�A^?A�2

3
m�V ^?A�

� 1

24%
ðw6R

?R�w3X
?Xþ�3R

?XÞ; (65)

with

mþ :¼ a0 �a2
2
; m� :¼ a0 � 2a3; m� :¼ b0 þ�2:

(66)

We shall see that them’s play a role in the discussion of the
second field equation. Note that mþ and m� are of even
parity, whereasm� is odd. A corresponding decomposition

of the quadratic curvature terms in (65) does not seem to
provide new insight.

C. Diagonalization of the BHN-Lagrangian

1. Eigenvalues of the kinetic matrix of the translational
gauge potential #�

In the Lagrangian (65) the term V ^ ?A ¼
A ^ ?V ¼ A�V�� represents an interaction term of

two four-vectors of the type vector � axial-vector. To get
some more insight into the dynamics of the fields governed
by the Lagrangian (65), we decompose these four-vectors
into ð1 � 3Þ with

A � ¼ ðA0;
~AÞ and V� ¼ ðV 0;

~V Þ: (67)

The translational part of the Lagrangian (65), with
ð1ÞT� ¼ 0, is proportional to the quadratic form

Q :¼ 4ðV 2
0 �V 2

1 �V 2
2 �V 2

3Þmþ � ðA2
0 �A2

1

�A2
2 �A2

3Þm� þ 4ðA0V 0 �A1V 1

�A2V 2 �A3V 3Þm�: (68)

Expressed in terms of matrices, we have

Q¼ ðV 0;
~V ;A0;

~AÞ 	 �4mþg �2m�g
�2m�g m�g

 !
	

V 0

~V

A0

~A

0
BBBBBB@

1
CCCCCCA;

¼ ðV 0;
~V ;A0;

~AÞ 	T 	 ðV 0;
~V ;A0;

~AÞT; (69)

with g as the four-dimensional Minkowski metric.
With the useful abbreviations

x :¼ 4mþ; y :¼ 2m�; z :¼ m�; (70)

the new matrix T reads

T ¼

x 0 0 0 y 0 0 0

0 �x 0 0 0 �y 0 0

0 0 �x 0 0 0 �y 0

0 0 0 �x 0 0 0 �y

y 0 0 0 �z 0 0 0

0 �y 0 0 0 z 0 0

0 0 �y 0 0 0 z 0

0 0 0 �y 0 0 0 z

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

¼ �xg �yg

�yg zg

 !
: (71)5A teleparallel Lagrangian with a term with �2 � 0 has been

considered earlier by Müller-Hoissen and Nitsch [79].
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It has some simple properties:

T T ¼ T ;

traceT ¼ �2ðx� zÞ;
detT ¼ ðxzþ y2Þ4 > 0;

T �1 ¼ 1

xzþ y2
�zg �yg

�yg xg

 !
:

(72)

In the following we will make use of Dirac’s bra-ket
notation, see Dirac [80] and Schouten [81]. For this
purpose we define (abstract) vectors according to

<Xj :¼ ðV 0;
~V ;A0;

~AÞ and

jX> :¼ ðV 0;
~V ;A0;

~AÞT
(73)

such that the quadratic form Q becomes

Q ¼ <XjT jX > : (74)

To diagonalize the form (74), we introduce a new vector
jY> together with a suitable orthonormal matrix K such
that

jX> ¼: KjY > and <Xj ¼ <YjKT: (75)

Substitution of (75) into (74) yields the covariant
expression

Q¼<XjT jX>¼<YjKT 	T 	KjY>¼<YjDjY>:

(76)

We will choose the orthonormal matrix K such that the
product D :¼ KT 	T 	K is diagonal and thus contains
the eigenvalues of T as entries.

The eigenvalues of T turn out to be:

�1 ¼ 1

2
ðx� zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ zÞ2 þ 4y2

q
Þ;

�2 ¼ �3 ¼ �4 ¼ ��1;

�5 ¼ 1

2
ðx� z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ zÞ2 þ 4y2

q
Þ;

�6 ¼ �7 ¼ �8 ¼ ��5:

(77)

According to the Lorentz structure, that is, the ð1 � 3Þ
decomposition of four-vectors, we have two different ei-
genvalues for the time components and 2 threefold eigen-
values for the spatial components, respectively.

For the explicit construction of the matrix K we need
the eigenvectors ~u�n

of T , where n runs from 1 to 8.

Their components can be expressed (for y � 0) in terms
of A and B:

A :¼ � 1

2y

�
xþ zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ zÞ2 þ 4y2

q �
;

B :¼ � 1

2y

�
xþ z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ zÞ2 þ 4y2

q �
:

(78)

We normalize the eigenvectors by means of

a :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
and b :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p
: (79)

The columns of the matrix K are the normalized eigen-
vectors of the matrix T . Accordingly, we find K ¼

�A=a 0 0 0 �B=b 0 0 0
0 1=b 0 0 0 �1=a 0 0
0 0 �A=a 0 0 0 �B=b 0
0 0 0 1=b 0 0 0 �1=a

1=a 0 0 0 1=b 0 0 0
0 B=b 0 0 0 �A=a 0 0
0 0 1=a 0 0 0 1=b 0
0 0 0 B=b 0 0 0 �A=a

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

(80)

Because of the identity BA ¼ �1 and its consequences
�A=a ¼ 1=b and B=b ¼ 1=a, there is actually much more
symmetry than is apparent in the matrix (80), which in fact
depends essentially on only one parameter. This matrix has
simple properties like detK ¼ þ1, K 	KT ¼ 18�8; the
eigenvalues are e�i�, both with multiplicity four and with
tan� ¼ 1=A, cf. Eq. (87). Hence, in the eight-dimensional
vector space the matrix K represents a pure rotational
matrix.
Thus, the quadratic form Q assumes the diagonal form

Q ¼ <XjT jX> ¼ <Yjdiagð�1;� ~�1;�5;� ~�5ÞjY>;

(81)

with the obvious abbreviations ~�1 :¼ �1ð1; 1; 1Þ and
~�5 :¼ �5ð1; 1; 1Þ. The new vector jY> turns out to be

jY> :¼
V0
~V
A0
~A

0
BBB@

1
CCCA ¼ KTjX> ¼ KT 	

V 0
~V

A0
~A

0
BBBB@

1
CCCCA: (82)

Accordingly, the quadratic form (68) can now be written in
diagonal form as

Q ¼ �1ðV0
2 � ~V2Þ þ�5ðA0

2 � ~A
2Þ: (83)

We need to pay special attention also to the case y ¼ 0,
namely, when there is no coupling between the vector and
the axial-vector of the torsion. In this case, the matrix T is
diagonal with

T ðy ¼ 0Þ ¼ �xg 0
0 zg

� �
; (84)
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and the eigenvectors of (84) correspond to the eight-
dimensional unit vector. Thus, for y ! 0, the transforma-
tion matrix becomes the unit matrix:K ¼ 18�8. The trans-
formation to the diagonal matrix yields

K TTK ¼ D ¼ diagðx;�x;�x;�x;�z; z; z; zÞ: (85)

In this case, the quadratic form Q reduces to

Qðy ! 0Þ ¼ xðV0
2 � ~V2Þ � zðA0

2 � ~A
2Þ

¼ 4mþðV0
2 � ~V2Þ �m�ðA0

2 � ~A
2Þ: (86)

2. Representation of K in terms of angles

The matrix K as a rotation matrix can be parametrized
by introducing a suitable angle variable. For this purpose
we use

sin� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p and cos� ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p : (87)

In terms of this parameter �, the matrix K can be dis-
played in compact form as

K ¼ cos�I4�4 sin�I4�4

� sin�I4�4 cos�I4�4

� �
; (88)

where I4�4 is the 4� 4 unit matrix and ðx; y; zÞ are related
to the parameter � by

tan� ¼ xþ z� �

2y
¼ �2y

xþ zþ �
; (89)

with

� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ zÞ2 þ 4y2

q
: (90)

Thus, the matrix product T 	K reduces to

T 	K¼ cos�I4�4 sin�I4�4

� sin�I4�4 cos�I4�4

 !
	D¼K 	D; (91)

the condition for a similarity transformation.

3. A possible parameter set

We can read off from (77) the relations �1�2 < 0 and
�5�6 < 0. As an example, let us consider the case �1 > 0
and �5 > 0. With these assumptions we can define

�0 :¼
ffiffiffiffi
�

p
1V0; ~� :¼

ffiffiffiffi
�

p
1
~V; �1 > 0;

�0 :¼
ffiffiffiffi
�

p
5A0; ~� :¼

ffiffiffiffi
�

p
5
~A; �5 > 0:

(92)

With (92), the quadratic form Q (83) assumes its ‘‘special
relativistic’’ appearance

Q ¼ ð�2
0 � ~�2Þ þ ð�2

0 � ~�2Þ ¼ �g��ð���� þ ����Þ:
(93)

This is the sum of the squares of two four-vectors in a
suitable orthonormal reference frame and the Lorentz
covariance is manifest.

Let us analyze the conditions to be imposed provided
one assumes �1 > 0, �5 > 0. From (77) we derive the
constraints

x� z > 0() 4mþ �m� > 0

() 3a0 � 2ða2 � a3Þ> 0; (94)

and

xzþ y2 < 0()mþm� þ ðm�Þ2 < 0

()
�
a0 � a2

2

�
ða0 � 2a3Þ þ ðb0 þ �2Þ2 < 0:

(95)

On the other hand, assuming instead �1 > 0, �5 < 0 leads
to the condition

xzþ y2 > 0()mþm� þ ðm�Þ2 > 0

()
�
a0 � a2

2

�
ða0 � 2a3Þ þ ðb0 þ �2Þ2 > 0:

(96)

One could similarly find the parameter conditions associ-
ated with the other two cases.
If V� and A� are both timelike—as they will turn out to

be for the cosmological model which we derive below—
every set of parameters fulfilling the inequalities (94) and
(95) will lead to a strictly positive kinetic energy matrix for
the translational gauge potentials.

4. Eigenvalues of the kinetic matrix of
the Lorentz gauge potential ���

Similarly, as in Sec. IVC1, we consider the quadratic
form C representing the curvature square terms in (65) and
hence the kinetic parts of the connection. This quadratic
form is given by

C :¼ w6R
2 � w3X

2 þ�3RX

¼ ðR; XÞ 	 w6 �3=2

�3=2 �w3

 !
	 R

X

 !

¼ <ZjBjZ> : (97)

We wish to diagonalize the symmetric ð2� 2Þ-matrix

B :¼ w6 �3=2
�3=2 �w3

� �
; (98)

whose eigenvalues are


1;2 ¼ 1

2
ðw6 �w3 � ffiffiffiffi



p Þ; 
 :¼ ðw6 �w3Þ2 þ�; (99)

where

� :¼ �4 detB ¼ 4w3w6 þ�2
3: (100)

This diagonalization can be simply accomplished with a
rotation matrix whose columns are orthogonal unit eigen-
vectors; the transformation matrix and the eigenvectors can
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be parameterized by a single angle � that can be deter-
mined from

tan� ¼ w6 þ w3 � ffiffiffiffi



p
�3

¼ ��3

w6 þ w3 þ ffiffiffiffi



p : (101)

Then,

MTBM¼ 
1 0

0 
2

 !
; M :¼ cos� sin�

�sin� cos�

 !
: (102)

Consequently, with

ðR̂; X̂Þ ¼ ðR; XÞ 	M; (103)

the quadratic form C can be expressed as

C ¼ <ZjBjZ> ¼ <ZMjMTBMjMTZ>

¼ <ẐjDRjẐ> ¼ 
1R̂
2 þ 
2X̂

2; (104)

where DR :¼ MTBM denotes a diagonal matrix.
The quadratic curvature terms in the Lagrangian can

now be rewritten in the form

VR2 ¼ � 1

24%
ð
1R̂

2 þ 
2X̂
2Þ�: (105)

As an illustrative example, consider, in particular, the
case where 
1 and 
2 are both negative. This immediately
leads to the following constraints on the coupling
constants:

w6 � w3 < 0; and �2
3 þ 4w3w6 < 0; (106)

from which we can infer that

w6 < 0; and w3 > 0 (107)

for the aforementioned case, 
1 < 0 and 
2 < 0. Then
we can rescale the variables and introduce new ones
according to

R :¼ R̂ffiffiffiffiffiffiffiffiffij
1j
p and X :¼ X̂ffiffiffiffiffiffiffiffiffij
2j

p (108)

such that the quadratic form C in this particular case
becomes

C ¼ �ðR2 þX2Þ: (109)

For the three other cases, namely ð
1 > 0; 
2 > 0Þ,
ð
1 < 0; 
2 > 0Þ, ð
1 > 0; 
2 < 0Þ, one can do an analo-
gous rescaling.

5. Partly diagonalized Lagrangian

Thus, the process of diagonalization for the case�1 > 0,
�5 > 0, 
1 < 0, 
2 < 0 leads to the following diagonal
pieces of the VBHN-Lagrangian,

VT2 ¼ 1

12�
½ð�2

0 � ~�2Þ þ ð�2
0 � ~�2Þ�� ¼ 1

12�
Q�;

VR2 ¼ 1

24%
ðR2 þX2Þ� ¼ � 1

24%
C� (110)

(with analogous results for the other sign choice cases).
Collecting the results received so far, we can give a new
representation of the Lagrangian (65) in the form of

VBHN ¼ 1

2�
ða0 ~R� 2
0Þ�þ 1

2�
ða0?ð1ÞT� ^ ð1ÞT�

þ b0
ð1ÞT� ^ ð1ÞT�Þ þ 1

12�
Q�� 1

24%
C�: (111)

6. Correspondences of eigenvalues of the kinetic matrices
to spin and parity

In this section we considered sufficient conditions for
the coefficients of the kinetic energy matrix being positive.
We now assume that the trace and the axial-vector pieces of
the torsion are both propagating independently. Then we
require that the four-vectors �� and �� are timelike during
the whole evolution. Accordingly, the propagation of in-
dependent massive modes is characterized by ���� < 0

and ���� < 0. This is met by the requirement (92). Other

choices of the signs of �k’s will lead to spacelike four-
vectors. The null case will be treated separately in a
continuation of this paper.
The Lagrangian (111) admits the introduction of a num-

ber of strictly positive functions, that is, functions of �k ’s,
such that for each of its dynamical variables we can asso-
ciate to each eigenvalue of the kinetic energy matrix the
corresponding spin and parity state.
If we decompose the four-dimensional 1-forms V and

A into ð1 � 3Þ, respectively, we are naturally led to their
spin contents. Namely, we can introduce (massive) three-
dimensional vectors ~� and ~� and can associate to each of
them a corresponding three-dimensional spin and parity
state. This method is not sensitive to a possible occurrence
of multiplicities of spin and parity states. For this purpose,
we have to investigate the corresponding lower-dimensional
subspaces.

In our model, with ð1ÞT� ¼ 0, we have only propagating
scalar and three-dimensional vector modes. In a heuristic
manner, the diagonalization allows for the following
tentative correspondences:

�1ðV0Þ ���
 0þ; �1ð ~VÞ ���
 1þ;

�5ðA0Þ ���
 0�; �5ð ~AÞ ���
 1�;


1ðR̂Þ ���
 0þ; 
2ðX̂Þ ���
 0�;
~R ���
 2þ:

(112)

In the case of a nonvanishing tensor torsion ð1ÞT� � 0,
those terms deliver massive modes of spin state 2� that
would combine with the corresponding spin 2þ-mode of
the Riemannian curvature scalar ~R. Because of the com-
plexity of these results, we will defer their presentation to
follow up work.
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D. Excitations of the gravitational field

We differentiate the Lagrangian (64) with respect to
torsion and curvature. Then, with the help of (19), we
find the translational excitation

H� ¼ � 1

�
ða2?ð2ÞT� þ a3

?ð3ÞT�Þ � 1

�
�2ðð2ÞT� þ ð3ÞT�Þ

(113)

and the Lorentz excitation

H�� ¼ 1

2�
ða0��� þ b0#��Þ þ 1

%
ðw3

?ð3ÞR��

þ w6
?ð6ÞR��Þ þ

1

2%
�3ðð3ÞR�� þ ð6ÞR��Þ; (114)

respectively. Alternatively, the field excitations can be
given in terms of the field strengths in a more suitable
and symmetric form (V ¼ V �#

� and A ¼ A�#
�)

H� ¼ 1

3�
½ða2V� � �2A�Þ��

� þ ð�2V�

þ a3A�Þ#�
��; (115)

H�� ¼
�
a0
2�

� w6

12%
R� �3

24%
X

�
��� þ

�
b0
2�

þ w3

12%
X

� �3

24%
R

�
#��: (116)

From (115) we find in particular

H� ^ #� ¼ 1

�
?ða2V � �2AÞ: (117)

E. Explicit form of field equations for
the new Lagrangian

By substituting the excitations (113) and (114), and the
Lagrangian (64) into the gauge currents (23) and (24), and
then the latter two, together with the excitations (113) and
(114), into the field equations (21) and (22), we find the
explicit forms of the field equations: the first field equation
reads,

�
a0
�
� w6

6%
R� �3

12%
X

�
G� þ 
0

�
�� �

�
b0
�
þ w3

6%
X� �3

12%
R

�
?X� þ 1

24%
ðw3X

2 � w6R
2 ��3RXÞ��

þ 1

3�
Df?½ða2V � �2AÞ ^ #�� þ ða3Aþ �2V Þ ^ #�g þ 2a2

9�

�
V �V � � 1

4
V 2��

�

�
��

þ 2a3
9�

�
A�A� � 1

4
A2��

�

�
�� þ 1

�
ðe� 5

ð1ÞT�Þ ^ ½a2?ð2ÞT� þ a3
?ð3ÞT� þ �2ðð2ÞT� þ ð3ÞT�Þ� ¼ ��; (118)

and the second field equation,

a0
2�

�
2?ð1ÞT½� ^ #�� � 2

3
V ^ ��� þ 1

3
A ^ #��

�
þ b0

2�

�
2ð1ÞT½� ^ #�� � 2

3
V ^ #�� � 1

3
A ^ ���

�

þ 1

24%
ð2w3dX ��3dRÞ ^ #�� � 1

24%
ð2w6dRþ�3dXÞ ^ ��� � 1

24%
ð2w6Rþ�3XÞT� ^ ����

þ 1

12%
ð2w3X ��3RÞT½� ^ #�� � 1

3�
½a2V ½���� � �2A½���� þ ða3Aþ �2V Þ ^ #��� ¼ 	��: (119)

The source of the second field equation is the material spin
angular momentum 3-form 	��. According to its definition
in (20), it is antisymmetric in � and �. It is related to the
source of the first field equation, the canonical energy-
momentum 3-form of matter ��, via the angular momen-
tum law D	�� þ #½� ^��� ¼ 0.

It may not be superfluous to look at the structures
of the two field equations and at the ways we ordered
them. The first line of (118) emerges from the curvature
dependent pieces of the gauge energy-momentum E�. We
find, symbolically written, �Einsteinþ cosmol:termþ
pseudoscalar curvþ curv2. If only a0 � 0 and b0 � 0,
we recover the left-hand-side of (45); if only a0 � 0, we
have just the EC theory. The second line and the first piece

of the third line of (118) are of the following structure:
d torsionþ torsion2. From the point of view of gauge
theory, ‘‘d torsion’’ is the leading term, see DH� in (21);
the remaining ‘‘torsion2’’ pieces collect the torsion depen-
dent parts of the gauge energy-momentum E�. Of course,
also the frame e� and the coframe #� feature in this
equation directly or indirectly via �� ¼ ?#�.
We ordered the second field equation (119) in a similar

way. In the first line we have the terms linear in torsion
originating from the gauge spin E��, see (24); compare

also as a special case the left-hand-side of (46). In the
second and third line, we have ‘‘d curvþ curv� torsion .’’
The leading term is ‘‘d curv’’, the rest arises from the
differentiation process of ‘‘D curv’’ with the help of (2).
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Again the coframe #� enters explicitly or implicitly
via #�� ¼ #� ^ #�, ��� ¼ ?ð#� ^ #�Þ, and ���� ¼
?ð#� ^ #� ^ #�Þ.

Accordingly, the two field equations are now expressed
in terms of the torsion and the curvature of spacetime. In
the sense of gauge theory one may now want to insert the
definitions of torsion, Eq. (5), and curvature, Eq. (12) cum
(11). Then we would get second order quasilinear partial
differential equations in the coframe and Lorentz connec-
tion: ‘‘d ?d# þ lower order� energy-momemtum’’ and
‘‘d ?d�þ lower order� spin .’’ However, our experience
on the search for exact solutions, in particular, for cosmo-
logical models, has shown that it is to be preferred to stay
with the well-behaved tensor-valued 2-forms of torsion and
curvature and not to switch to the proper gauge variables
coframe and Lorentz connection.

As we saw already, the Lagrangian (64) has a remark-
able symmetry which we will find also on the level of the
excitations (115) and (116), the field equations (118) and
(119), as well as on the level of the coupling constants.
Hence, we can introduce the following tentative corre-
spondences (in four dimensions) between variables and
parameters, respectively,

F. A consequence of a topological term

There is a subtlety present in the Lagrangian (64) and the
corresponding field equations (118) and (119). Because of
the Nieh-Yan identity [48]—see also [14], Eqs. (3.9.7) and
(B.4.15)—we have

dð#� ^ T�Þ � T� ^ T� þ R�� ^ #�� ¼ T� ^ T� � ?X:

(123)

The torsion square term can be expressed in its irreducible
components according to

T� ^ T� ¼ ð1ÞT� ^ ð1ÞT� þ 2ð2ÞT� ^ ð3ÞT�

¼ ð1ÞT� ^ ð1ÞT� � 2

3
A ^ ?V : (124)

We substitute (124) into the right-hand-side of the Nieh-
Yan identity (123) and find

dð#� ^ T�Þ ¼ ð1ÞT� ^ ð1ÞT� � 2

3
A ^ ?V � X?: (125)

For the sake of a neater argument let us first extend our
parity mixed PG Lagrangian (64) by including also the
�1-term from (55):

V̂ ¼ VBHN þ V
�1 ¼ VBHN þ �1

�
ð1ÞT� ^ ð1ÞT�: (126)

If we substitute (64) into (126), then we recognize that we

can recover from �V̂ the right-hand side (rhs) of the Nieh-
Yan identity (125) for the specific coupling constants

b0 ¼ �2; �1 ¼ 1; �2 ¼ 2; (127)

all other constants, apart from � and %, vanish. Since the
left-hand side (lhs) of (125) is an exact form, the choice
(127) corresponds to a ‘‘null Lagrangian’’ with vanishing
field equations.
By the same token, we can add a multiple (say �=�) of

the exact ‘‘topological’’ form dð#� ^ T�Þ to V̂. After some
simple algebra, we find

V̂þ �

�
dð#�^T�Þ ¼ 1

�
ð�1þ�Þð1ÞT�^ ð1ÞT�

þ 1

2�
½a0?Rþðb0�2�Þ ?X�2
0��

þ 1

6�
½a2V ^ ?V �a3A^ ?A�2ð�2þ2�ÞA^ ?V �

� 1

24%
ðw6R

?R�w3X
?Xþ�3R

?XÞ: (128)

This is equivalent to certain changes in the parameters of
our action (126), specifically

�1 ! �1 þ �; b0 ! b0 � 2�; �2 ! �2 þ 2�:

(129)

From this we can infer that the field equations cannot
depend on the parameters �1, b0, �2 by themselves, but
rather must depend on these parameters only through
certain combinations which are invariant under this trans-
formation, such as

b0 þ 2�1; 2�1 � �2; b0 þ �2: (130)

The two field equations of the Lagrangian V̂ are found

via H�

�1 ¼ �2�1
ð1ÞT�=� as

lhs of ð118Þ � 2�1

�
½Dð1ÞT�

þ ðe� 5
ð1ÞT�Þ ^ ðð2ÞT� þ ð3ÞT�Þ� ¼ ��; (131)

lhs of ð119Þ � 2�1

�
#½� ^ ð1ÞT�� ¼ 	��: (132)

Specifically, using the first Bianchi identity,

PETER BAEKLER, FRIEDRICH W. HEHL, AND JAMES M. NESTER PHYSICAL REVIEW D 83, 024001 (2011)

024001-14



?X� ¼ R�� ^ #� � DT� ¼ Dðð1ÞT� þ ð2ÞT� þ ð3ÞT�Þ;
(133)

and the expressions (7) and (8) for the irreducible pieces,
one can find that the b0, �1, and �2 terms on the left-hand-
side of the first field equation (131) add up to

� 1

�
D½ðb0 þ 2�1Þð1ÞT� þ ðb0 þ �2Þðð2ÞT� þ ð3ÞT�Þ�

þ 1

�
ð2�1 � �2Þðe�ð1ÞT�Þ ^ ðð2ÞT� þ ð3ÞT�Þ; (134)

similarly, for the left-hand-side of the second field equation
(132) we have

1

�
ðb0 þ 2�1Þ ð1ÞT½� ^ #�� � 1

6�
ðb0 þ �2Þð2V ^ #��

þA ^ ���Þ: (135)

There are several points worth noting: (i) As expected,
the parameters occur only in the invariant combinations

(130). (ii) All the �1 terms are proportional to ð1ÞT�.

(iii) For solutions such that ð1ÞT� vanishes, the equations
contain the parameters only in the combination b0 þ �2.

Having obtained these insights, it is no longer necessary
to keep the rather complicated �1 term. Exploiting
the freedom to choose a suitable � in (129), namely
� ¼ ��1, we can, without loss of generality, drop the
�1-term altogether and return to our model Lagrangian
(64) with the two field equations (118) and (119).

V. FRIEDMAN COSMOLOGIES
WITH PROPAGATING MODES OF
THE LORENTZ CONNECTION

Since the early 1970s, cosmological models for EC and
PG have been developed, see Kopczyński [82], Trautman
[83], Tafel [84], Kuchowicz [85,86], Kerlick [87], and
others [88,89], to name a few. Minkevich et al. [90] devel-
oped the subject in a series of papers. A report on the status
of the subject was given by Puetzfeld [91].

For our new Lagrangian we follow these procedures and
search for FLRW type of cosmological models.

A. Homogeneous and isotropic coframe and torsion

Assuming a homogeneous and isotropic scenario, the
orthonormal coframe for a Friedman cosmos is

#0 ¼ dt;

#1 ¼ aðtÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p ;

#2 ¼ aðtÞrd�;
#3 ¼ aðtÞr sin�d�;

(136)

with the metric

g ¼ �#0 � #0 þ X3
a¼1

#a � #a

¼ �dt2 þ a2ðtÞ
1� kr2

dr2 þ a2ðtÞr2ðd�2 þ sin2�d�2Þ;
(137)

where aðtÞ is the expansion factor and k the curvature
index.
Now we can compute, up to antisymmetry, the non-

vanishing components of the Riemannian connection
(a; b; c; . . . ¼ 1; 2; 3 are spatial anholonomic (frame)
indices):

~�a
0 ¼ a0ðtÞ

aðtÞ #
a; ~�2

1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

aðtÞr #2;

~�3
1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

aðtÞr #3; ~�3
2 ¼ � cot�

aðtÞr #
3:

(138)

As in Einstein’s theory, the temporal rate of change of the
expansion factor aðtÞ determines the Hubble function

HðtÞ :¼ a0ðtÞ=aðtÞ: (139)

By differentiation and elimination of a0ðtÞ, we find
H0ðtÞ þH2ðtÞ ¼ a00ðtÞ=aðtÞ: (140)

This determines the Riemannian sector of spacetime.
The most general torsion compatible with homogeneity

and isotropy can be characterized by two independent
functions uðtÞ and vðtÞ, see Goenner and Müller-Hoissen
[92] and Baekler [93]. We will choose for the torsion the
parametrization

T0 ¼ 0;

T1 ¼ uðtÞ#01 þ vðtÞ#23;

T2 ¼ uðtÞ#02 þ vðtÞ#31;

T3 ¼ uðtÞ#03 þ vðtÞ#12:

(141)

The irreducible decomposition of T� implies a vanishing
tensor piece, whereas the vector and axial-vector pieces
survive:

ð1ÞT� ¼ 0; ð2ÞT� ¼ u

0
#01

#02

#03

0
BBB@

1
CCCA; ð3ÞT� ¼ v

0
#23

#31

#12

0
BBB@

1
CCCA:

(142)

This yields for the corresponding 1-forms in (7) and (8)

V ¼ �3uðtÞ#0; A ¼ �3vðtÞ#0: (143)

Incidentally, the purely spatial part of the torsion ð3ÞT�

corresponds to Cartan’s spiral staircase [94,95] with a
time dependent pitch of the spiral. As such, one can easily
visualize it, see [95].
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By simple algebra, we can calculate the contortion K��

in terms of the torsion, see [14],

K�� ¼ e½� 5 T�� � 1

2
ðe� 5 e� 5 T�Þ#�: (144)

We find then the Riemann-Cartan connection according to

��� ¼ ~��� � K�� or, explicitly,

�a
0 ¼ ½HðtÞ � uðtÞ�#a; �a

b ¼ ~�a
b þ 1

2
vðtÞ�cab#c:

(145)

B. Irreducible pieces of the curvature

Having now coframe, connection, and torsion at our
disposal, we can immediately calculate the different pieces
of the curvature 2-form. We introduce the Hubble function
HðtÞ (139) and find straightforwardly

ð1ÞR�� ¼ 0; (146)

ð2ÞR�� ¼ 1

4
fvðtÞ½HðtÞ � 2uðtÞ� � v0ðtÞg

�
0 #23 �#13 #12

� 0 �#03 #02

� � 0 �#01

� � � 0

0
BBB@

1
CCCA; (147)

ð3ÞR�� ¼ � 1

12
XðtÞ���; (148)

ð4ÞR�� ¼ 1

2

�
H0ðtÞ � u0ðtÞ þHðtÞuðtÞ � u2ðtÞ þ 1

4
v2ðtÞ

� k

a2ðtÞ
� 0 #01 #02 #03

� 0 #12 #13

� � 0 #23

� � � 0

0
BBBBB@

1
CCCCCA; (149)

ð5ÞR�� ¼ 0; (150)

ð6ÞR�� ¼ � 1

12
RðtÞ#��; (151)

with the (pseudo-)scalar functions

XðtÞ ¼ �3fv0ðtÞ þ vðtÞ½3HðtÞ � 2uðtÞ�g; (152)

RðtÞ ¼ 6

�
½H0ðtÞ � u0ðtÞ� þHðtÞ½HðtÞ � uðtÞ�

þ ½HðtÞ � uðtÞ�2 � 1

4
v2ðtÞ þ k

a2ðtÞ
�
: (153)

The matrices in (147) and (149) are antisymmetric, respec-
tively. Therefore, we indicated those matrix elements with

a diamond symbol that are, because of this antisymmetry,
redundant.
Since we chose as our variables curvature and torsion,

the relations between curvature and torsion provided by the
nonvanishing irreducible pieces and, in particular, by (152)
and (153), are vital information in our search for exact
solutions.

C. A spinless perfect fluid as model of matter

The sources of the two field equations are the
energy-momentum current �� and the spin current 	��.

These 3-forms we represent as tensor-valued 0-forms
according to

�� ¼ T �
���; 	�� ¼ S��

���; (154)

the reciprocal relations read

T �
� ¼ ?ð�� ^ #�Þ; S��

� ¼ ?ð	�� ^ #�Þ: (155)

In the following we will only consider matter models
with vanishing spin, 	�� ¼ 0. This simplifying assump-

tion, which may be justified for spherical symmetry, cer-
tainly has to be dropped in a more advanced stage of our
model building.
Because of the Friedman (or FLRW) symmetry of our

cosmological model, the energy-momentum tensor must
have the spinless perfect fluid form

T �
� ¼ ½�ðtÞ þ pðtÞ�U�U

� þ pðtÞ��
�; (156)

where � ¼ �ðtÞ is the energy density, p ¼ pðtÞ the pres-
sure, and U� the four-velocity of the fluid, with the nor-
malization U�U� ¼ �1. Because of the symmetry
requirements, we only have the dependencies �ðtÞ and
pðtÞ. In a comoving reference system, we have U� ¼ ��

0 ,

U0 ¼ 1, and

T �
� ¼
 diagð��ðtÞ; pðtÞ; pðtÞ; pðtÞÞ: (157)

From (156) we deduce for the trace

T �
� ¼ ��ðtÞ þ 3pðtÞ (158)

and for the trace-free part

T y�
� ¼ ½�ðtÞ þ pðtÞ�ðU�U

� þ 1

4
��
�Þ

¼
 1

4
½�ðtÞ þ pðtÞ� diagð�3; 1; 1; 1Þ: (159)

D. Differential equations for torsion and curvature

According to the FLRW-symmetry requirements, the
first field equation (118) as a vector-valued 3-form, has
only two (algebraically) independent components and in
the same manner the second field equation (119) as an
antisymmetric tensor-valued 3-form also has only two
independent components.
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1. First field equation

We substitute into the first field equation (118) the
coframe (136), the torsion (141), and the expansion factor
via (139) and (140), but leave RðtÞ and XðtÞ as they are.

Then we find as independent nonvanishing equations only
the components �ðtÞ ¼ e1 5 ½e2 5 ðe3 5 �0Þ� and pðtÞ ¼ e0 5
½e2 5 ðe3 5 �1Þ�:

��ðtÞ ¼ 1

2
½a0RðtÞ þ b0XðtÞ� þ 3a0f½uðtÞ �HðtÞ�0 þHðtÞ½uðtÞ �HðtÞ�g þ 3

2
b0½v0ðtÞ þHðtÞvðtÞ� � 3

2
fa2uðtÞ½uðtÞ

� 2HðtÞ� � a3v
2ðtÞg þ 3�2vðtÞ½uðtÞ �HðtÞ� � �

4%
½2w6RðtÞ þ�3XðtÞ�f½uðtÞ �HðtÞ�0 þHðtÞ½uðtÞ �HðtÞ�g

� �

8%
½�3RðtÞ � 2w3XðtÞ�½v0ðtÞ þHðtÞvðtÞ� � �

24%
½w6R

2ðtÞ þ�3RðtÞXðtÞ � w3X
2ðtÞ� � 
0 (160)

and

�pðtÞ ¼ � 1

2
½a0RðtÞ þ b0XðtÞ� þ a0

�
H0ðtÞ þ 3H2ðtÞ þ 2k

a2ðtÞ
�
� ða0 þ a2Þu0ðtÞ þ 1

2
ð2�2 � b0Þv0ðtÞ

� ð5a0 þ 2a2ÞHðtÞuðtÞ � 1

2
ð5b0 � 4�2ÞHðtÞvðtÞ þ 1

2
ð4a0 þ a2Þu2ðtÞ þ ð2b0 � �2ÞuðtÞvðtÞ � 1

2
ða0 þ a3Þv2ðtÞ

þ 
0 � �

12%
½2w6RðtÞ þ�3XðtÞ�

�
H0ðtÞ þ 3H2ðtÞ þ 2k

a2ðtÞ � u0ðtÞ � 5HðtÞuðtÞ þ 2u2ðtÞ � 1

2
v2ðtÞ

�

þ �

24%
½�3RðtÞ � 2w3XðtÞ�½v0ðtÞ þ 5HðtÞvðtÞ � 4uðtÞvðtÞ� þ �

24%
½w6R

2ðtÞ þ�3RðtÞXðtÞ � w3X
2ðtÞ�: (161)

A further relation between the fluid density �ðtÞ and the pressure pðtÞ can be gained by taking the trace #� ^ �� of the first
field equation or, equivalently, by computing �ðtÞ � 3pðtÞ from (160) and (161). However, in order to find a compact
expression, we resolve (152) with respect to v0ðtÞ and (153) with respect to H0ðtÞ. If we substitute these expressions, we
find6

�½�ðtÞ� 3pðtÞ� ¼ a0RðtÞþ ðb0 þ�2ÞXðtÞþ 3a2½u0ðtÞ�u2ðtÞþ 3HðtÞuðtÞ�þ 3a3v
2ðtÞ� 4
0

¼ 1

2
ð2a0 �a2ÞRðtÞþ ðb0 þ�2ÞXðtÞþ 3

4
ð4a3 �a2Þv2ðtÞþ 3a2

�
H0ðtÞþ 2H2ðtÞþ k

a2ðtÞ
�
� 4
0: (162)

Let us now get back to the first field equation (160) with (161). One strategy is to eliminate the time derivative H0ðtÞ of
the Hubble function by a suitable linear combination of (160) and (161). Accordingly, we put the linear combination
fe1 5 ½e2 5 ðe3 5 �0Þ� þ 3e0 5 ½e2 5 ðe3 5 �1Þ� � ½�ðtÞ þ 3pðtÞ�g to zero and, isolating the derivatives of the torsion func-
tions, we find

�3½a2u0ðtÞ � �2v
0ðtÞ� ¼ �½�ðtÞ þ 3pðtÞ� þ 3HðtÞ½a2uðtÞ � �2vðtÞ� þ a0RðtÞ þ b0XðtÞ þ 6b0vðtÞ½HðtÞ � uðtÞ�

þ �

2%
½2w3XðtÞ ��3RðtÞ�vðtÞ½HðtÞ � uðtÞ� � 6a0

�
½HðtÞ � uðtÞ�2 � 1

4
v2ðtÞ þ k

a2ðtÞ
�

þ �

2%
½�3XðtÞ þ 2w6RðtÞ�

�
½HðtÞ � uðtÞ�2 � 1

4
vðtÞ2 þ k

a2ðtÞ
�
� 2
0

� �

12%
½w6R

2ðtÞ þ�3RðtÞXðtÞ � w3X
2ðtÞ�: (163)

Alternatively, the last relation (163) can also be expressed as

6On the right-hand-side there emerges only a time derivative of the torsion, this can be seen from the general structure of this
expression: #� ^ �� ¼ ð�� 3pÞ� ¼ �dð#� ^H�Þ � 4V � T� ^H� � 2R�

� ^H�
�.
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� 3

aðtÞ
d

dt
faðtÞ½a2uðtÞ � �2vðtÞ�g ¼ �½�ðtÞ þ 3pðtÞ� þ a0RðtÞ þ b0XðtÞ þ 6b0vðtÞ½HðtÞ � uðtÞ� þ �

2%
ð2w3XðtÞ

��3RðtÞÞvðtÞ½HðtÞ � uðtÞ� � 6a0

�
½HðtÞ � uðtÞ�2 � 1

4
v2ðtÞ þ k

a2ðtÞ
�

þ �

2%
½�3XðtÞ þ 2w6RðtÞ�

�
½HðtÞ � uðtÞ�2 � 1

4
vðtÞ2 þ k

a2ðtÞ
�
� 2
0

� �

12%
½w6R

2ðtÞ þ�3RðtÞXðtÞ � w3X
2ðtÞ�: (164)

This equation suggests to impose the interrelationship

uðtÞ ¼ �vðtÞ; with � :¼ �2

a2
; (165)

between the two torsion pieces as a simple special case; a
further possible choice could be

uðtÞ � �vðtÞ ¼ c

aðtÞ ; c ¼ constant � 0: (166)

Then the left-hand-sides of (163) and (164) vanish
and we find a purely algebraic equation in the variables

fvðtÞðor uðtÞÞ; RðtÞ; XðtÞ; HðtÞ; �ðtÞ; pðtÞg. We will defer the
study of these two alternatives to future work.
We can also manipulate the first field equation (160)

with (161) in a different way in order to arrive at algebraic
relations. We can resolve (153) and (152) with respect to
u0ðtÞ and v0ðtÞ and substitute these expressions into (160)
and (161), respectively.
After eliminating the derivatives of the torsion we arrive

at

��ðtÞ ¼ �3mþuðtÞ½2HðtÞ � uðtÞ� � 3

4
m�v2ðtÞ þ 3a0

�
H2ðtÞ þ k

a2ðtÞ
�
� 3m�½HðtÞ � uðtÞ�vðtÞ

� �

4%
½�3XðtÞ þ 2w6RðtÞ�

�
½HðtÞ � uðtÞ�2 � 1

4
v2ðtÞ þ k

a2ðtÞ
�
þ �

4%
½�3RðtÞ � 2w3XðtÞ�vðtÞ½HðtÞ � uðtÞ�

þ �

24%
½w6R

2ðtÞ � w3X
2ðtÞ þ�3RðtÞXðtÞ� � 
0 (167)

and

�pðtÞ ¼ � 1

3
mþRðtÞ � 1

3
m�XðtÞ þ 2ðmþ � a0ÞH0ðtÞ þm�vðtÞ½uðtÞ �HðtÞ� þ 1

4
m�v2ðtÞ þ a0

�
½HðtÞ � uðtÞ�2

� 1

2
v2ðtÞ þ k

a2ðtÞ
�
þ 2ðmþ � a0Þ

�
HðtÞ½2HðtÞ � uðtÞ� þ 1

2
u2ðtÞ � 1

4
v2ðtÞ þ k

a2ðtÞ
�

þ �

12%
½�3RðtÞ � 2w3XðtÞ�vðtÞ½HðtÞ � uðtÞ� � �

12%
½�3XðtÞ þ 2w6RðtÞ�

�
½HðtÞ � uðtÞ�2 � 1

4
v2ðtÞ þ k

a2ðtÞ
�

þ �

72%
½w6R

2ðtÞ � w3X
2ðtÞ þ�3RðtÞXðtÞ� þ 
0: (168)

Inspecting the equations there are the following
dependencies,

�ðtÞ ¼ �½aðtÞ; HðtÞ; uðtÞ; vðtÞ; RðtÞ; XðtÞ�;
pðtÞ ¼ p½aðtÞ; HðtÞ; H0ðtÞ; uðtÞ; vðtÞ; RðtÞ; XðtÞ�;

(169)

that is, the density depends only algebraically on the
variables whereas the pressure, besides non linear terms,
contains only the derivative ofHðtÞ. Thus, also this general
case belongs to the class of descriptor systems, that is, to
the differential-algebraic systems.

2. Second field equation

Similarly, also for the second field equation (119), we
find only two independent components. Both vanish by the
assumption of vanishing matter spin 	��. Thus,

�f2w6R
0ðtÞþ�3X

0ðtÞþ½�3vðtÞþ4w6uðtÞ�RðtÞ
þ2½�3uðtÞ�w3vðtÞ�XðtÞg�12%½2mþuðtÞþm�vðtÞ�

¼24�%e0 5 ½e2 5 ðe3 5 	01Þ�¼ 0; (170)
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�f�3R
0ðtÞ�2w3X

0ðtÞþ2½�3uðtÞ�w6vðtÞ�RðtÞ
�½4w3uðtÞþ�3vðtÞ�XðtÞg�12%½2m�uðtÞ�m�vðtÞ�

¼ 24�%e0 5 ½e2 5 ðe3 5	23Þ�¼ 0: (171)

These are two ordinary linear differential equations
(ODEs) of first order in the curvature components
RðtÞ and XðtÞ. By suitable linear combinations, we can
uncouple the first derivatives of these equations. We add
2w3� Eq. (170) to �3� Eq. (171) and find, provided
� ¼ �2

3 þ 4w3w6 � 0, see (100),

R0ðtÞþ 2

�
uðtÞþ�3

w3 �w6

�
vðtÞ

�
RðtÞ

��2
3 þ 4w2

3

�
vðtÞXðtÞ� 12%=�

�
½2ð2mþw3 þm��3ÞuðtÞ

þ ð�m��3 þ 2m�w3ÞvðtÞ� ¼ 0: (172)

Similarly, we add �3� Eq. (170) to�2w6� Eq. (171) and
find, provided �2

3 þ 4w3w6 � 0,

X0ðtÞþ 2

�
uðtÞ��3

w3 �w6

�
vðtÞ

�
XðtÞ

þ�2
3 þ 4w2

6

�
vðtÞRðtÞ� 12%=�

�
½ð2mþ�3 � 4m�w6ÞuðtÞ

þ ð2m�w6 þm��3ÞvðtÞ� ¼ 0: (173)

Let us introduce, by also using (66), the following
abbreviations

!2
0
:¼ 4%

�

2m�w6 þm��3

�
;

!2
1
:¼ 4%

�

2mþw3 þm��3

�
;

(174)

!2
2
:¼ 4%

�

m��3 � 2m�w3

�
;

!2
3
:¼ 4%

�

2mþ�3 � 4m�w6

�
:

(175)

The constants !2
0 and !2

1 are of even parity, whereas !2
2

and !2
3 are of odd parity. This allows us to give the

components of the second field equation (172) and (173)
a more compact and transparent form,

R0ðtÞ ¼ 6!2
1uðtÞ � 3!2

2vðtÞ � 2uðtÞRðtÞ

þ vðtÞ
�

½ð�2
3 þ 4w2

3ÞXðtÞ � 2�3ðw3 � w6ÞRðtÞ�;
(176)

X0ðtÞ ¼ 3!2
3uðtÞ þ 3!2

0vðtÞ � 2uðtÞXðtÞ

� vðtÞ
�

½ð�2
3 þ 4w2

6ÞRðtÞ � 2�3ðw3 � w6ÞXðtÞ�:
(177)

The choice of signs in (174) and (175) will be motivated in
the next subsection, for the moment they are just a short-
hand notation for certain non linear combinations of the
fundamental coupling constants of the theory.
It may be a bit more transparent, to put (176) and (177)

into a matrix form and to reinsert �:

d

dt

RðtÞ
XðtÞ

 !
¼ 3

2!2
1 �!2

2

!2
3 !2

0

 !
	 uðtÞ

vðtÞ

 !

� 2

�
uðtÞ þ�3

w3 � w6

�2
3 þ 4w3w6

vðtÞ
�

RðtÞ
XðtÞ

 !

� vðtÞ
�2

3 þ 4w3w6

0 �2
3 þ 4w2

3

�2
3 þ 4w2

6 0

 !
	 RðtÞ

XðtÞ

 !
:

(178)

We have eight variables but only seven relations be-
tween them. However, we still have to choose an appro-
priate equation of state p ¼ pð�Þ. In cosmological models
for late times, pðtÞ � 0 is a widespread assumption.

E. Rearranging the field equations into first order form

For certain purposes (in particular numerical evolution)
it is more convenient to replace the 3 dynamical second
order equations for the gauge potentials by 6 first order
equations for the observable quantities fa;H; u; v; R; Xg.
From (139), (152), and (162) one can obtain the first
order set

a0ðtÞ ¼ HðtÞaðtÞ; (179)

H0ðtÞ ¼ �2H2ðtÞ � k

a2ðtÞ þ
1

3a2

�
�½�ðtÞ � 3pðtÞ�

þ 4
0 �
�
a0 � a2

2

�
RðtÞ � ðb0 þ �2ÞXðtÞ

þ 3

4
ða2 � 4a3Þv2ðtÞ

�
; (180)

u0ðtÞ ¼ u2ðtÞ � 3HðtÞuðtÞ þ 1

3a2
f�½�ðtÞ � 3pðtÞ� þ 4
0

� a0RðtÞ � ðb0 þ �2ÞXðtÞ � 3a3v
2ðtÞg; (181)

v0ðtÞ ¼ � 1

3
XðtÞ � vðtÞ½3HðtÞ � 2uðtÞ�; (182)

along with Eqs. (176) and (177) for R0ðtÞ, X0ðtÞ. In addition
to the dynamical geometric variables, these equations also
include the material energy density and the pressure, �ðtÞ,
pðtÞ. The material energy density �ðtÞ is related to the
dynamical variables by (167)—a relation which could be
used to eliminate it from the system. The energy density
and pressure are necessarily related by

�0ðtÞ ¼ �3HðtÞ½�ðtÞ þ pðtÞ�: (183)
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This relation follows, on the one hand from the basic
Noether symmetry conservation law applied to the source,
and, on the other hand can be derived directly from (167)
using the system of 6 first order Eqs. (176), (177), and
(179)–(182).

The above system needs to be supplemented by an
appropriate equation specifying a relation for pðtÞ in terms
of suitable dynamical variables. In GR such a relation is
often taken in the form of a fluid equation of state p ¼
pð�Þ. One could also use such an assumption for our PG
model or, more generally, one could consider any specific
relation of the form

p ¼ pða;H; u; v; R; XÞ (184)

to reduce the dynamical equations of the model to a closed
system of 6 nonlinear coupled first order ordinary differ-
ential equations (1st order ODEs) describing the dynamics
of 3 geometric degrees of freedom. Alternatively, if one
had a relation of the form

p0ðtÞ ¼ f½pðtÞ; �ðtÞ; uðtÞ; vðtÞ; 	 	 	�; (185)

this would be sufficient for integrating the system (176),
(177), (179)–(183), and (185).

To investigate more general models in the presence of
torsion, one cannot just prescribe a simple equation of
state. One could consider some explicit source fields and
their dynamics; these sources would determine �ðtÞ, pðtÞ.
Also one could relax the assumption of vanishing source
spin density. In follow up work some systems will be
presented which might be more stable numerically.

The prescription of an (algebraic) equation of state
reduces the phase-space to one of 6 dimensions. Systems
of ODEs with algebraic constraints are usually called
differential-algebraic equations (DAEs) or also descriptor
systems.7 For the numerical evaluation we would have a
DAE of the form 6 � 1, that is, 6 ODEs of first order and
one algebraic equation which makes the whole system of
equations determinate.

Numerical simulations of those systems, including the
case uðtÞ � vðtÞ, will be discussed in detail in a continu-
ation of this paper. For the subcase of the Shie-Nester-Yo
Lagrangian (53), such computations have been already
done by Li, Sun, and Xi [72,73,96].

F. Acceptable choices of signs

Concerning the acceptable choices of signs for the pa-
rameters: at the Lagrangian level of analysis we know of
only one necessary requirement, namely, in order to satisfy
the principle of least-action it is absolutely necessary to
take kinetic energy terms—here meaning specifically the

quadratic-in-time-derivative terms—to have a positive
coefficient.
For our model this is sufficient to fix the signs for the

quadratic-in-curvature terms, since it turns out that the
scalar curvature and pseudoscalar curvatures are each lin-
ear in the time derivatives of certain connection coeffi-
cients. Hence, physically in Eq. (105) one must take only
the case 
1 < 0, 
2 < 0.
Regarding the quadratic torsion terms, the situation is

not so simple. For our cosmological model at least,
from (139), (143), and (145), it can be seen that only
V 0 contains a time derivative of a gauge potential (spe-
cifically, a0). Thus, by the least-action requirement on this
quadratic-in-time-derivative kinetic term one must take,
from (64), the coefficient a2 < 0. Consequently, since by
convention a0 > 0, one should require mþ > 0.
Beyond these considerations, one can ascertain which

constraints are physically appropriate for the parameters
only from a detailed analysis of the equations of motion.
This is left to future work.

VI. DISCUSSION AND CONCLUSION

In this work we introduce systematically the notion of
even and odd parity terms for the construction of
gravitational field Lagrangians in the context of the
Poincaré gauge field theory (PG). Exploiting the theory
of algebraic invariants, a Lagrangian results that is at
most quadratic in the field strengths torsion and
curvature. Here, we rigorously include interaction
terms of even and odd parity form, like those of
(vector torsion� axial vector torsion), that is, V ^ ?A,
and (scalar curvature� pseudoscalar curvature), that is,
R ^ ?X. To obtain some insight into the dynamics of those
‘‘shadows’’ in a physically realistic model, we constrained
ourselves to a model containing only scalar and vector
parts and their corresponding axial versions. The VBHN

Lagrangian (64) can be viewed as a generalization of the
recently presented VSNY0 Lagrangian (54) of Chen et al.
[12]. In light of the difficulties caused by nonlinearities
[36–39], our model (aside from adding a couple of unim-

portant terms quadratic in the nondynamic ð1ÞT� torsion
components) may well be the most general PG model that
can be expected to have a dynamical connection with well-
behaved dynamics.
From a theoretical point of view, the inclusion of addi-

tional interaction terms of odd parity character could ex-
plain some empirical facts we are faced with in cosmology.
Besides the usual handling of even parity functionals of the
field variables, we treat those of odd parity character on
the same footing. This may open the discussion to explain
the empirical imbalance of matter and antimatter on a
cosmological scale and other related questions that are
still open.
Empirically, the inclusion of additional parameters be-

yond those of the model (54) will enhance the capacity to

7See the link http://www4.ncsu.edu/eos/users/s/slc/www/
RESDESCRIPT/resdescript.html: ‘‘Usually the term DAE refers
to systems of ordinary differential equations Fðx0; x; tÞ ¼ 0 with
the Jacobian of F with respect to x0 being singular.’’

PETER BAEKLER, FRIEDRICH W. HEHL, AND JAMES M. NESTER PHYSICAL REVIEW D 83, 024001 (2011)

024001-20



account for the accelerated universe observations in terms
of dynamical geometry—dark energy could be a PG dy-
namical connection. It is noteworthy that with the new
pseudoscalar cross coupling parameters the acceleration
of the universe can be more directly influenced by the 0�
mode, see (180), which is known to also couple to fermion
spin.

In this work, we present for the first time (as far as we
know) the notion of the diagonalization of a Lagrangian.
This identifies certain special parameter combinations of
the primary coupling constants that are expected to play
important roles in future studies of the dynamics of our
model, and leads to the recognition of certain conditions on
the set of primary coupling constants fa2; a3; w3; w6; �3g
such that the (diagonalized) kinetic energy matrix T has
strictly positive entries. Aworking hypothesis is that these
conditions are needed to have a well-defined propagation
of massive modes.

According to the diagonalization, the irreducible pieces
ð2ÞT� and ð3ÞT� can be associated with the two four-vectors
�� and �� of even and odd parity character. For these
vectors to have proper evolution in time, it is expected that
certain signature properties (conjectured to be positive) for
the corresponding eigenvalues of the kinetic energy matrix

are necessary. The irreducible curvature pieces ð3ÞR�� and
ð6ÞR�� are essentially a scalar R and a pseudoscalar X,
respectively. The proper choice of parameters is such that
the associated kinetic matrix has positive eigenvalues.

In our model, we noted that in the general PG weak
gravity sector, mediated by the coframe #�, the associated
field strength, the torsion, could carry modes of spin 2, of
spin 1, and of spin 0 (each with even and odd parity).

Restricting to the even parity terms, this is similar to
Bekenstein’s TeVeS (tensor-vector-scalar) theory [97].
However, in our case the different modes are carried by
the torsion alone. There is no need for any other scalar or
vector fields.
For strong gravity, mediated by the Lorentz connection

���, in our model we found spin 0 of both parities. This
restriction to zero spin modes is due to our simple
Lagrangian (64) in which only the scalar and pseudoscalar
pieces of the curvature were allowed. Straightforward gen-
eralizations are possible. In metric-affine gravity (MAG),
even the inclusion of spin 3 modes, see [16], is possible—
and all of this on the basis of a Riemann-Cartan or metric-
affine geometry of spacetime, respectively.
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