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Shape of cosmic string loops
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Complicated cosmic string loops will fragment until they reach simple, nonintersecting (‘‘stable’)
configurations. Through extensive numerical study we characterize these attractor loop shapes including
their length, velocity, kink, and cusp distributions. We find that an initial loop containing M harmonic
modes will, on average, split into 3M stable loops. These stable loops are approximately described by the
degenerate kinky loop, which is planar and rectangular, independently of the number of modes on the
initial loop. This is confirmed by an analytic construction of a stable family of perturbed degenerate kinky
loops. The average stable loop is also found to have a 40% chance of containing a cusp. We examine the
properties of stable loops of different lengths and find only slight variation. Finally we develop a new
analytic scheme to explicitly solve the string constraint equations.
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I. INTRODUCTION

Cosmic strings may be observed through their gravita-
tional wave emission, gravitational lensing of background
galaxies, imprints on the cosmic microwave background,
particle emission, and various other signatures. To work
out the signatures of cosmic strings it is essential to know
the properties of the string network, the number density of
loops, and their length and shape distributions. Several
observational signatures, including all burst events,
whether gravitational or other, depend on the sudden whip-
like motion of the string, a feature called a “cusp.” Yet
other signatures are affected by sharp corners on a string,
called “‘kinks.” (See Ref. [1] for a review.) Hence, to make
reliable observational predictions from cosmic strings, it is
important to characterize the generic properties of cosmic
string loops and to quantify the frequency with which kinks
and cusps occur.

Scherrer and Press (SP) [2] undertook a study of the
dynamics of large loops starting with randomly chosen
loops containing 10 harmonic modes. As each loop oscil-
lates, it self-intersects and reconnects, breaking into
smaller loops. In SP the loop is approximated by 128
discrete segments, thus limiting the resolution of their
study. The study in SP was followed up by Scherrer,
Quashnock, Spergel, and Press [3] with a focus on evalu-
ating the gravitational power emitted from string loops. A
similar study was undertaken by Casper and Allen (CA) [4]
and is the most extensive study done to date. CA consid-
ered loops with 10 harmonics and discretized the loop
using 600 segments.

In the present work we have built upon the SP scheme,
improvements coming from more computational power
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and choice of algorithms. To put our current study in
perspective, we have considered loops with 3—50 harmon-
ics and discretized using several times 10000 segments.
Our very fine resolution ensures that discretization effects
are unimportant as will be clear from our results. A com-
parison of previous loop fragmentation studies with this
one is given in Table 1.

Our conclusions can be summarized as follows. Large
loops with many oscillation harmonics split into smaller
loops until the small loops have a minimal number of
harmonics. In other words, the number of fragments is
directly proportional to the number of harmonics on the

TABLE I. Parameters from studies of loop fragmentation.
Modes refers to M in Eq. (4). The numbers provided here are
for the “type A” loops defined by SP and used by CA; see the
discussion after Eq. (4) for more details. For SP see [2] and for
CA see [4].

Source Segments ~ Modes Initial Stable
(M) loops (N) loops
Sp 128* 10 20 561
CA 600° 10 200 5723
Present work 10000 3 1000 8308
10000 10 3000 94628
10000 20 1000 63490
10000 30 1000 96207
10000 40 1000 128764
10000 50 1000 157968
50000 10 1000 32158
50000 50 1000 162 157

“Loops were also run with 256 segments without producing
significantly more small loops.

"The loops were rerun with 800 segments resulting in almost no
new daughter loops being produced.

© 2011 The American Physical Society
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initial loop; on average 3M loops are created from an initial
loop with M modes. The final non-self-intersecting (‘‘sta-
ble”’) loops are approximately planar and their left- and
right-moving modes tend to be orthogonal. The average
stable loop contains four kinks and has a 40% chance of
containing a cusp. Hence, realistic cosmic string loops
should be visualized as oscillating rectangular shapes,
like the “‘degenerate kinky loops” discussed in Ref. [5].
This picture is strikingly clear in the animations available
in Ref. [6].

The conclusion that stable loops are close to degenerate
kinky loops also means that gravitational and other radia-
tion from stable loops can be estimated by the radiation
from degenerate kinky loops, which is simple to calculate
analytically [5]. Knowing the shape of loops can also help
with other observational signatures, e.g. lensing.

Our detailed results can be found in Sec. III. At a finer
level, the shape of a cosmic string loop may also depend on
its length. We investigate this question in Sec. IV and find
only weak dependence. It is a fair approximation to think of
long loops as also being approximately planar and rectan-
gular. In Sec. V we give analytical arguments that help us
understand our numerical results. Notable is our demonstra-
tion of a set of perturbed degenerate kinky loops that are
stable. We conjecture that such loops are attractors for the
evolution of cosmic string loops.

In the appendixes we describe technical details of the
numerical algorithm, formulas to boost to the rest frame of
a loop, and finally, a new scheme to explicitly solve the
Nambu-Goto equations and the string constraint equations.
This new scheme is very suitable for constructing cosmic
string loops but in our numerical work we use the SP
scheme to aid comparison to previous work.

II. PROCEDURE

A string in flat spacetime is described by X* =
(t, x(o, 1)), where o is the parameter along the string and
t is Minkowski time. The solution of the Nambu-Goto
string equations yields independent left- and right-moving
modes

x (o, 1) =3la(o-) + b(o.)], (1)

where o+ = o = t. We choose equal intervals of o to
label equal amounts of energy which gives the additional
constraint

lpl=1=lql, 2

where p = a’ and ¢ = b’. Closure of a loop of length

L implies that
L L
f pdo = —[ qgdo 3)
0 0

while, in the center of momentum of the loop, each of the
two integrals vanishes. A helpful geometrical picture is
that the vector functions p and ¢ trace out a path on the
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FIG. 1. When two strings intersect, they reconnect in an inter-
commutation event with the production of four kinks (disconti-
nuities in the tangent to the string), two on each string.

surface of a two-dimensional sphere, also called the
“Kibble-Turok (KT) sphere.”

The velocity of a point on the string is (¢ — p)/2. Hence,
at points where the curves corresponding to p and —gq
intersect, the velocity of the string reaches the speed of
light. Such momentarily lightlike points on the string are
known as cusps. Finally note that p and ¢ need not be
continuous. If there is a break in either of the curves, it
implies a discontinuity in the tangent vector to the string,
which will appear as a sharp corner or kink.

The Nambu-Goto description of a cosmic string breaks
down when two string segments intersect. The Nambu-
Goto dynamics has to be supplemented by the condition
that the strings intercommute, i.e. reconnect, at the point of
intersection. This is sketched in Fig. 1, which also shows
the four kinks that are created during intercommutation,
two on each string.

To numerically model strings we follow SP and choose
initial loops from an ensemble constructed by expanding
the left and right movers in Fourier series

M
a(s) = Z Ay i cOS(ms + by i),

m=1

- 0
bi(s) = Z bm,,-cos(ms + ¢b,m,i),

m=1

where i stands for the three components of the vectors.
Here we have taken s € [0, 277]. The mode coefficient
vectors a,, and b,, are chosen so that each component of
these vectors is uniformly distributed in the interval [0, 1].
The phases ¢, ,,; and ¢, ; are chosen to be uniformly
distributed in the interval [0, 277]. This corresponds to the
“type A” scheme in SP and CA. Had we chosen the length
of the mode coefficient vectors in the interval [0, 1/m?], we
would have a direct correspondence with the ‘“‘type B”
scheme of SP and CA. As already discussed in CA, the type
A loops have more power on small scales and lead to more
fragmentations. For this reason we have only studied type
A loops in this work. However, the shape of the final stable
loop population is expected to be the same in both
schemes. We have checked this by considering several
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different values of M since this controls the power on small
scales. A comparison of our choice of parameters with
those of earlier work is given in Table I.

The challenge now is to meet the constraints in Eq. (2).
This is done by recognizing that we are free to choose the
parameter s as a function of the parameter o. By differ-
entiating Eq. (4) we obtain

ds M
1=|p|= o mglammsin(ms-i-qﬁa,m). (5)

This provides a differential equation for ¢ in terms of s
which we solve numerically with the additional require-
ment that ds/do = 0. To ensure that s(o) € [0, 27] for
o € [0, 1] we first rescale a,, and b,, before solving (5).
A numerical inversion then gives s as a function of ¢ which
finally allows us to obtain p(o) and g(o) at the initial time
t = 0. Note that the value of M corresponds to the “num-
ber of harmonics™ on the loop in terms of the parameter s
but not in terms of the invariant length o. However we will
still refer to M as the number of harmonics.

Once we know the function p(o) and ¢g(o), the Nambu-
Goto evolution is straightforward since only the arguments
of the functions change as given in Eq. (1). The numerical
implementation of intercommutation events is more in-
volved and described in Appendix A.

An intercommutation causes the original loop to frag-
ment into two smaller loops, with each of the two loops
having one left-moving kink and one right-moving kink. In
this way, the loops keep fragmenting with the production of
more and more kinks. The fragmentation ceases when a
loop reaches a non-self-intersecting configuration. It is
these stable loops that we wish to study and characterize.

In principle, two fragments of the initial loop can inter-
sect and reconnect to form a bigger loop. In practice, since
the fragments are flying apart, such collisions do not
happen frequently. In any case, we ignore such mergers.

III. NUMERICAL RESULTS

Most of our data is collected for loops of 10000 seg-
ments and 10 harmonic modes; see Table I. In Fig. 2 we
show a sample initial loop. We evolve the loop as described
in Sec. II and keep track of the fragmentations. We define
loop ““generations” in the following way. The initial loop
is the first generation. When it splits into two loops, those
are in the second generation, and so on for successive
generations. Once a loop is in a stable configuration, it is
counted in each subsequent generation. For example, a
stable loop that is generated in the third generation will
be counted in the third, fourth, etc., generations. At every
generation, we can plot the length distribution of loops as
shown in Fig. 3. The plot shows that the second generation
has roughly a uniform distribution of lengths but that the
stable loop distribution is sharply peaked at small lengths.
The stable loop length distributions are plotted in Fig. 4.
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FIG. 2. A sample initial loop with 10 harmonic modes. The
darker, thicker segments of the loop are nearer the viewer.

Though very small loops are formed through fragmenta-
tion, the peaks in this figure at L ~ 2/N show the resolu-
tion limit of the simulations. Clearly the bulk of the stable
loops are above our resolution limit. For comparison the SP
and CA results are shown and are in good agreement with
our results.

From the length distribution we calculate the average
length per generation for several values of M. In Fig. 5 we
show the average length scaled by M for the stable loops.
All the plots for M = 10, ..., 50 asymptote to the same
value, 0.33, which clearly demonstrates that the average
length of stable loops is proportional to 1/M. The plot for
M = 3 asymptotes to 0.36 and suggests that loops with
only very low harmonics could behave differently from
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FIG. 3 (color online). Length of loops versus generation. By
generation 10 the distribution is nearly identical to the stable
loop length distribution. As fragmentation occurs the length of
loops decreases. The distribution of the predominantly small
length stable loops can be seen in Fig. 4.
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FIG. 4 (color online). Length distribution of stable loops
shown on a logarithmic scale to better see the small length
behavior. The resolution limit of the simulations is seen by the
small peaks at L ~2/N. The length distribution is otherwise
independent of resolution, N. Comparison to the SP (solid, gray
line) and CA (dashed, gray line) shows good general agreement.
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FIG. 5 (color online). Average loop length multiplied by the
number of harmonics in the parent loop versus generation. This
weighted length asymptotes to ~0.33 for all initial loops.

loops with high harmonics. However, even the M =3
value of 0.36 is very close to 0.33, and we will disregard
this difference in the discussion below. Then the asymptote
at 0.33 = 1/3 implies that an initial loop with M harmon-
ics fragments into 3M stable loops, as can also be read off
from Table I. Given that the initial loop is straight on the
length scale 1/M, the stable loop is also composed of
roughly straight segments of length ~1/3M. This result
solidifies and quantifies the finding in Ref. [7] that frag-
mentation does not continue indefinitely to smaller and
smaller loops.
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FIG. 6 (color online). The number of kinks on stable loops.
Each loop must have at least 2 kinks. Most of the loops have
between 2 and 5 kinks independent of resolution and the number
of harmonic modes.

In terms of the p and ¢ curves on the KT sphere, since a
loop with only the fundamental harmonic wraps around a
great circle once, we expect that stable loops will wrap the
sphere only a third of the way. Also, the discussion below
shows that the p and g curves for the stable loops occur in
two disconnected segments on the KT sphere. Hence each
segment only covers a sixth of the KT sphere and can be
thought of as an arc on the KT sphere that extends 60° on
average.

Our result that the stable loops are made from roughly
straight segments can only work if the loops have kinks on
them. It can be argued that the average number of kinks
should be four [4]. Assume that there is an initial loop with
N, preexisting kinks. (In our numerical work, the initial
loops were smooth and so N, = 0.) Every intercommuta-
tion event adds four kinks and one extra loop to the system.
Therefore after n intercommutations there will be 4n + N,
kinks and n + 1 loops. So the average number of kinks per
loop is (4n + Ny)/(n + 1), which goes to 4 in the large n
limit. The distribution of kinks, however, needs to be
calculated numerically and is shown in Fig. 6. From this
argument and the numerical simulations we have the pic-
ture that stable cosmic string loops have roughly straight
sides and four corners (kinks) on average.

In general, stable loops have relativistic center of mass
velocities as shown in Fig. 7. To analyze the shape of a
stable loop, we must first transform to its center of mass
frame. Care must be taken to transform the coordinates so
that the gauge conditions in Egs. (2) are satisfied as de-
scribed in Appendix B. Let us denote the resulting curves
on the KT sphere in the rest frame by P and Q.

To analyze the planarity of a stable loop, we calculate
the “moment of inertia” tensors for P and Q via
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FIG. 7 (color online). The velocity distribution of stable loops
for various resolutions and numbers of modes. The distribution is
universal and sharply peaked at v ~ 1. Also shown are the SP
(solid, gray line) and CA (dashed, gray line) for comparison. The
resolution of SP did not allow them to produce high velocity
loops. Our results refine the peak at high velocity found by CA.

Aij = [P,-dea',, B’/ = /QlQ/dU'+ (6)

If the P (and similarly for the Q) curve is uniformly
distributed on the KT sphere, the three eigenvalues of the
A tensor would be equal. If one of the eigenvalues of A
vanishes, then P is distributed in a plane; and if two
eigenvalues vanish, the distribution is lineal. In Fig. 8 we
show the average eigenvalues as the loop continues to
fragment. It is clear that one of the eigenvalues vanishes,
and the largest eigenvalue is much larger than the middle
eigenvalue. So the P curve is mostly in one direction on the
KT sphere (say, around the z axis), with a little spread in
some other direction. Since the centroid of the P curve has
to vanish in the center of mass frame [see the discussion
below Eq. (3)], the P curve must contain two short seg-
ments, say, one near the north pole and the other near the
south pole. In an idealized (‘‘degenerate’’) case, the P
curve would consist of just 2 points on the KT sphere.
Similarly the Q curve would consist of just 2 other points.
Since the loop is a sum of the left and right movers, this
implies that the loop is planar and defined by the plane of
the P and Q curves.

As another check of this picture, we have plotted the
kink sharpness for the p curves, defined as [8]

hy=5(1—-P_-P,), )

where P-. are the values of P on either side of the kink. The
plot in Fig. 9 demonstrates a peak near sharpness of 1,
which implies P_ = —P_. This shows that there are 180°
jumps on the KT sphere, in accordance with our picture
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FIG. 8 (color online). The average of the eigenvalues of the P
and @ “moment of inertia” tensors (6) versus loop generation.
Since both P and Q have the same properties, both are included
in the average to increase the statistics. We notice that the
smaller eigenvalue approaches zero and the largest eigenvalue
is much larger than the middle eigenvalue showing that the P
and Q curves are localized on the KT sphere. This plot is for
N = 10000, M = 10. The asymptotic behavior is independent
of resolution and the number of modes.
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FIG. 9 (color online). The kink sharpness distribution [see
Eq. (7)]. The distribution is independent of resolution and the
number of modes on the initial string. We see that the distribu-
tion is sharply peaked at 1, that is, where the P before and after
the kink are antiparallel.

that the P curve corresponds to two small antipodal regions
on the KT sphere.

We can go a bit further and ask for correlations between
the left and right movers. For this we plot the distribution
of ((P - Q)?) in Fig. 10. (Angular brackets denote average
over a loop.) This plot shows that P and Q tend to get more
orthogonal with fragmentation.
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FIG. 10 (color online). The distribution of {(P - @)?) showing
that the left and right movers become more orthogonal to each
other with more fragmentation.

This picture of stable loops implies that the P and —Q
curves rarely cross each other and hence that cusps should
be suppressed. For an initial loop with M modes we expect
it to contain approximately M? cusps. (Each mode roughly
corresponds to a great circle on the KT sphere so the
number of intersections is proportional to M?.)

We have seen that on average 3M stable loops are
produced. If f is the “cusp survival fraction”—the fraction
of cusps on the initial loop that survive on the stable
loops—then on average we expect M?f/3M cusps on
each loop. Figure 11 shows that, on average, each stable
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FIG. 11 (color online). The average number of cusps on each
stable loop. On average we see that there is approximately a 40%
chance of a stable loop to contain a cusp. This result is inde-
pendent of resolution and the number of modes on the initial
loop.
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loop has a 40% of containing a cusp independent of
resolution and the number of modes on the initial loop so
the cusp survival fraction is found to be f = 6/5M. (We
have verified this is true in our simulations but do not show
the results here.)

IV. LENGTH-DEPENDENT RESULTS

The focus of this work is on the average properties of all
stable loops. The statistics we have presented give equal
weights to all loops. For some observational signatures,
however, long loops may be more relevant than short loops.
Hence, in this section, we provide some statistics as a
function of loop length. The results shown here are for
the N = 10000 and M = 10 runs. Logarithmic length bins
are chosen based on the distribution of loop lengths (see
Fig. 4). Ten bins are chosen between lengths of 1073 and
0.1. The initial bin begins at a length of 5 X 10~* to ensure
that all loops are above our resolution limit; approximately
94% of the loops are included. The final bin includes all
loops with lengths longer than 0.1.

The results are shown in Figs. 12—15. These figures show
the velocity, number of kinks, number of cusps, and eigen-
values, respectively, for each length bin. In the plots the
x error bar shows the width of the bin and the y error bar
provides the 95 percentile range for the values. The results
are as expected. The smallest loops are predominantly high
velocity, contain approximately four kinks per loop, have a
small chance of containing a cusp, and are planar. The
largest loops are predominantly lower velocity, contain
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FIG. 12. The velocity of stable loops versus the length of the
loop. The x error bars show the width of the length bins
employed, and the y error bars show the 95 percentile ranges
in each length bin. The square symbol shows the average in the
bin. Short loops have center of mass velocity ~1/+/2, which is
the root-mean-squared velocity of the string in the initial loop.
Longer loops tend to have a lower velocity consistent with the
fact that the initial loop is at rest.
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FIG. 13. Similar to Fig. 12 now for the number of kinks on

stable loops versus the length of the loop. Longer loops tend to
have a larger number of kinks though the variation is slight. The
loop with the maximum number of kinks has 8 kinks instead of
the canonical 4.
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FIG. 14. Similar to Fig. 12 now for the average number of
cusps on stable loops versus the length of the loop. Longer loops
typically contain more cusps on average. The loop with the
maximum number of cusps has only 3 cusps.

more than four kinks, have a higher chance of containing a
cusp, and are less planar.

V. DISCUSSION

Our numerical results point to the picture that stable
loops are deformations of degenerate kinky loops. In this
section we provide further evidence for this picture by
demonstrating that there exists a class of perturbed degen-
erate kinky loops that are stable.
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FIG. 15 (color online). Similar to Fig. 12 now for the eigen-
values of the moment of inertia tensors of the stable loops versus
the length. Longer loops are also planar and only slightly less so
than smaller loops.

QNN

FIG. 16. Snapshots during the evolution of the degenerate
kinky loop. Note that the loop periodically collapses to a double
line.

We begin by describing the degenerate kinky loop [5]

Pax = cos(ay)Z, qa = cos(By)X, (8)

where

Bo = 20 ] ()]

|x] denotes the greatest integer less than or equal to x, and
o+ €[0,1]. In Fig. 16 we show some snapshots of a
degenerate kinky loop.

Note that the degenerate kinky loop collapses to a
double line twice during an oscillation period, yet the
stable loops do not self-intersect. This must be due to the
fact that stable loops are not exactly degenerate. To show
that this is the case, consider

ay = 720_]

p = cos(a)Z, (10)
q = cos(Qmeo, + B)i + sinRQmweo, + B)9,

where 0 < € < 1 and now
B=0-en20,] (11)

As illustrated in Fig. 17, these perturbations stretch out the
point corresponding to ¢ on the KT sphere for the degen-
erate kinky loop to an arc of length e7 [5].

a = m20_]
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FIG. 17. The p and ¢ curves for a perturbed degenerate kinky
loop (10) plotted on the KT sphere. The p curve is represented
by the two points at the poles. The g curve is represented by the
arcs along the equator.

We can check explicitly that the self-intersection condi-
tion

x(o, 1) =x(d,1) (12)

is satisfied for such a loop if and only if o = ¢’ (mod 1),
for any t; that is, the loop does not intersect at any time. We
first write the intersection condition in terms of @ and b:

alc—1)+bloc+1)=alc" —1)+blc’ +1). (13)

Since for our loop (10) we have p - ¢ = 0 for all o and ¢,
we also have a - b = 0, and self-intersection requires

a(lc—t)=a(c' —1), bloc+1)=b(c'+1). (14)

The first condition is satisfied for o = ¢’ or for o/ =
1 — o_. Only the latter possibility is of interest since we
are looking for an intersection with oo # ¢”’. The second
condition for the x and y components leads to

sinQemro, ) = sin(ew) — sinRQewa’, — em), as)

cosRQemro,) = 1 + cos(emr) — cos(Qema’, — em).

Note that both equations must be satisfied for a self-
intersection to occur.

With the help of some trigonometric identities, we can
rewrite (15) as
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) ; 1 ; 1
sin 577'(()'+ + o —5 ]cos em|loy — oy +§ ]
- (677) (677.)
= sin| — ) cos| — ),
2 2
/ 1 / 1
cos|:¢577'(0'+ +o, — §>]COS[€W<0-+ — o, + 5)]
€T
= — 16
cos ( 5 ) (16)

Taking the ratio of these equations leads to

1 €T
tanl:ew(a'+ + 0o, — E)] = tan<7>, (17

so that ¢/, + o, = 1. By squaring and adding the equa-
tions, we obtain

COS|:€7T<0'+ - ol + %)] =+ cos(%), (18)

so that the second relation in Eq. (16) leads to

coslem(a, — o'y +1)]=coslem(o, + o, —=H] (19

or

sin(ewo ) sin[em(o’, — %)] =0, (20)

which implies o, = 0 or else o/, = 1/2. (Solutions such
as o, = 1/e can be ignored because we restrict o, to
lie in the interval [0, 277] and |€| < 1.) Therefore the only
solution is of the type o, = 0, ¢/, = l orelse o/, = 1/2,
o, = 1/2, which are both trivial. This shows that there are
no self-intersections. The conclusion is intuitive since b is
obtained by integrating ¢ and hence is a vector that lies in
the xy plane (see Fig. 17) and rotates in this plane. Since
0 < e < 1, b never attains the same vector value twice for
o, €[0,1].

The perturbed degenerate kinky loop discussed above
does not contain any cusps while our numerical results
show that roughly half of the stable loops have a cusp. To
understand the P and Q curves of a stable loop with cusps
we show an example of these curves for a sample loop from
our numerical runs in Fig. 18, which contains three kinks
and one cusp. In this example the P curve is like our
perturbed degenerate kinky loop but the Q curve is much
more elongated. The two curves are in planes nearly per-
pendicular to each other.

To construct a stable loop with cusps consider

p = sin(B_)% + cos(B_)2, @1
g = sin(B4)[sin(¢ )% + cos(¢)P] — cos(B-)z,
where

B+ =2meso. + (1 — €s)m20.] (22)

and ¢, is an arbitrary phase. There are two cusps due
to the intersections at *£Z. These occur at o = t = 0 and
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FIG. 18 (color online). The P and —Q curves plotted on the
KT sphere for a stable loop from our simulations. This loop
contains three kinks and one cusp. The two curves are repre-
sented by the dots. The Q curve is the dots along the equator. The
P curve is the dots perpendicular to the equator (running
vertically on the left of the sphere) and includes the lone
antipodal point (on the right of the sphere). Note that the points
on the sphere are not weighted equally and the centroids of both
P and Q curves are at the center of the sphere.

o =t =1/2. We have numerically confirmed that this
loop is stable for the parameter choice

1 1

a
N MY - Y < &

In Fig. 18 we show the p and g curves for a stable loop with
cusps similar to (21) extracted from our simulations.

(23)

VI. CONCLUSIONS

We have shown that the fragmentation of a large com-
plicated loop yields stable quasiplanar, quasirectangular
loops that are similar to degenerate kinky loops. If cosmic
string loops are the result of a large number of intercom-
mutings—even as few as five or six intercommutings may
be sufficient (e.g. Fig. 8)—we expect that they too will be
quasirectangular. Earlier work has examined the stability
of relatively simple loops (with a small number of harmon-
ics) and found stability over a region of parameter space
[9-12]. It is unclear if cosmological evolution can directly
produce these stable loops with few harmonics.
Cosmological loops will certainly contain kinks, and this
feature is missing in the loops investigated in these earlier
studies.

In a cosmological setting, when a loop is produced from
the infinite string network, it will fragment down to stable
loops within two oscillation periods, and therefore only
stable loops are relevant for cosmological signatures.
Indeed the aim of the CA and Scherrer, Quashnock,
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Spergel, and Press studies was to obtain the gravitational
power emitted from realistic cosmic string loops. We can
also estimate the gravitational power based on the analytical
results of [5] for emission from degenerate, kinky loops and
obtain an estimate that is within 13% of the CA result. The
gravitational power radiated from degenerate kinky loops is
analytically calculated to be 64In(2)Gu? = 44Gu?,
whereas CA numerically estimate 39G u> from their simu-
lations, where w is the string tension.

For cosmic strings, Hubble expansion, frictional damp-
ing, and radiation damping also come into play, though the
effects are generally on very long time scales and depend
on the environment in which the strings are placed. Hence
we expect that when a large loop is produced from the
network, it will fragment into stable loops within two
oscillation periods and then, as these stable loops oscillate
for many oscillation periods, damping effects start to play a
role and to change the Nambu-Goto dynamics. So to
characterize the effect of damping on the cosmic string
network loops, we can limit our study to the damping
effects on the perturbed degenerate kinky loops and the
stable loops with cusps described above.
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APPENDIX A: LOOP INTERCOMMUTATION

The numerical evolution in this work was performed
using the ““diamond method” for string evolution which is
discussed in [13]. Full details of our implementation along
with source code and documentation are available online
[6]. Here we will discuss one aspect of the evolution: loop
intercommutation.

The diamond method gets its name from the o grid
shown in Fig. 19. The top of the figure shows the grid
structure for an initial loop. Our initial loop segments are of
uniform length Ao, producing a regular grid. This grid
provides a simple geometric picture of the loop. With this
grid structure, a starting point x(0, 0), and values for p(o_)
and ¢(o ), taken to be piecewise constant functions, we
can calculate the coordinate of the string x(o, 7) during its
evolution if intersections do not occur.

In Fig. 19 we consider the case of an intersection at
points a and b, that is, x(o, tiy) = X(07p, t;y). In this
picture the intercommutation and production of two loops
is geometric. The shaded area is excised from the parent
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FIG. 19. Geometric splitting of a loop. Shown in this figure are
the o grids for various loops. The diagonal lines are lines of
constant o_ (up and to the right) and constant o, (up and to the
left). Time runs upward and o rightward. The left and right
edges of the grids are identified to describe a loop of string. The
initial loop is shown on the top with the intersection occurring at
points a and b. The dashed lines show the constant values of o
at which the intersection points occur and so at which kinks are
formed. The daughter loops are formed by cutting the grid and
identifying the new edges. In the figure the gray shaded region is
cut from the grid and becomes one loop whereas the remaining
unshaded pieces are connected. The new loops are shown below
the initial loop. The past light cone of the intersection point has
been removed since it no longer contains useful information. The
two intersecting diamonds are replaced by the three shaded
diamonds in the figure.

loop to become one daughter loop (bottom right grid) and
the remaining portions of the parent loop are reconnected
(bottom left grid). The past light cone of the intersection
point no longer contains meaningful information and has
been removed from the new grids. When an intersection
occurs, the grid structure is modified; an originally uniform
grid becomes nonuniform but otherwise contains the same
information. In the bottom left grid the light gray shaded
diamonds are the remnants of the original diamonds that
intersected. The dark gray shaded diamond is a new one
created by the reconnection of the grid after the middle
portion has been removed. These two grids now describe
independent loops which may be evolved in the usual way
for all times ¢ > t;,,.
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APPENDIX B: LOOP REST FRAME
TRANSFORMATION

The time coordinate of a loop, ¢, was chosen to be the

proper time and the same as the background spacetime
x% = t; see Sec. II. To make p and g easier to boost we
construct four-vectors from them with the time compo-
nents give by p® = —1 and ¢° = 1. At a fixed time, 7, we

may then write in the initial loop’s rest frame

da* -1
b=_—"= , B1
Pt =a ( » ) (BI)
where |p| = 1.
The center of mass velocity of a loop is given by
1
Uem = §<[qd0-+ - /pd()',) = jqd0+
= —]pda,. (B2)

With y = 1/4/1 — v2,, boosting to the rest frame of this
loop we find

_7(1 + vcm'p)

). (B3)

Notice that the time component of this four-vector is no
longer — 1. To correct this we apply a gauge transformation
to the coordinate o_. Let

G_=vylo_+ v, a), (B4)
so that
00 _
a— = 7(1 + Ve - p) (BS)
o_

An integration gives &_ € [0, 1/y] and a coordinate re-
scaling can be used to bring the interval back to [0, 1]. With
this we now have

o/ ~ aa’ aa’\(oa_\~! P°

P o_)=—= =——
o do_)\do_ v(1 + v, - p)

(B6)

where we have used (B3) for P°. Applying the same trans-
formation to the spatial piece of (B3) we find

) _p + (7 - 1)(vcm 'P)vcm/vtzzm + YU

y(I+vey - p)

Again this looks messy but we can verify that |[P| = 1, as
required. We can further verify that

96—

f P(6_)do = f P(fr_)(L)da_ —0.
do_

For g we proceed in the same way. In this case the gauge

transformation is 6, = y(o; — v, - b) and we find

~ ) q+ (7 - 1)(vcm ! q)vcm/vgm — YUcnm
Q(O-Jr) 7(1_vcm'q) '

Once again we can show that |Q] = 1.

= —1,

P(5_ (B7)

(B8)

(B9)
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The above equations are not in the best form for numeri-
cal evaluation. If |v,,,| = 1, then y > 1 so large numbers
will be subtracted from each other in the numerator. To
correct this it is better to write the equations in terms of
y ! =41 — v, since 0= y~! = 1. This provides the
alternative forms

_ 7_1p + (1 - 7_1)(vcm : P)vcm/vgm + v,

P s
l+v,p
-1 + (1 — -1 . 2 _
Q _ Y 9 ( Y )(vcm q)vcm/vcm vcm' (B10)
1 - Uem " 4

APPENDIX C: EXPLICIT SOLUTIONS OF THE
STRING EQUATIONS AND CONSTRAINTS

Here we describe an explicit analytical solution of the
Nambu-Goto equations of motion [Eq. (1)] and the string
constraints [Egs. (2) and (3)]. By choosing the decompo-
sition in terms of left and right movers we can solve the
Nambu-Goto equations as in Eq. (1). To solve the con-
straint in Eq. (2) we start with

p (0_) = (sinf cos, sind sing, cosh), (Cl)

where 6 and ¢ are functions of o_. We similarly choose
q(o ) with independent angular functions.

We require that p be periodic under o_ — o_ + 1.
(Throughout this section we consider a loop of length 1.)
Therefore we write

O(c_)=2mj_o_+ Y 6,cosQmmo_+a,), (C2)
m=0
where j_ is an integer and 6,, and «,, are arbitrary con-
stants that can be chosen randomly to generate random
loops. Similarly,
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dlo_)=2mk_o_ + i ¢, cosQamo_+ B,,), (C3)

m=0

where k_ is an integer and ¢, and B, are arbitrary
constants.

Next we come to the closure condition in Eq. (3). The
integral of p will, in general, not vanish. To correct this,
define

v_=-— [p(a,)da, (C4)
and boost p to velocity v_ followed by a gauge transforma-

tion as described in Appendix B. This gives us the final
solution

_ptly-—Dw_-pv /o2 +y v

P(5_ , (C5
where y_ = (1 — v*)~'/2 and
do_=v_(1+wv_-p)do_. (C6)

As in Appendix B, an integration shows that _ € [0, 1/y]
and a coordinate rescaling can be used to bring the interval
back to [0, 1].

It is straightforward to check directly that |P| = 1 and
also

fP(&_)d&_ =0. (C7)
In a similar way we construct Q(& . ).

This scheme has the advantage that it solves the con-
straints exactly and explicitly though it still requires inte-
grating p(o_) to find v_ and &_. We have not employed
this scheme in the work reported here but have remained
with the SP algorithm to facilitate comparison.
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