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Present treatments of eternal inflation regulate infinities by imposing a geometric cutoff. We point out

that some matter systems reach the cutoff in finite time. This implies a nonzero probability for a novel type

of catastrophe. According to the most successful measure proposals, our galaxy is likely to encounter the

cutoff within the next 5� 109 years.
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I. INTRODUCTION: TIME WILL END

A sufficiently large region of space with positive vacuum
energy will expand at an exponential rate. If the vacuum is
stable, this expansion will be eternal. If it is metastable,
then the vacuum can decay by the nonperturbative forma-
tion of bubbles of lower vacuum energy. Vacuum decay is
exponentially suppressed, so for a large range of parame-
ters the metastable vacuum gains volume due to expansion
faster than it loses volume to decays [1]. This is the
simplest nontrivial example of eternal inflation.

If it does occur in Nature, eternal inflation has profound
implications. Any type of event that has nonzero probabil-
ity will happen infinitely many times, usually in widely
separated regions that remain forever outside of causal
contact. This undermines the basis for probabilistic pre-
dictions of local experiments. If infinitely many observers
throughout the Universe win the lottery, on what grounds
can one still claim that winning the lottery is unlikely? To
be sure, there are also infinitely many observers who do not
win, but in what sense are there more of them? In local
experiments such as playing the lottery, we have clear rules
for making predictions and testing theories. But if the
Universe is eternally inflating, we no longer know why
these rules work.

To see that this is not merely a philosophical point, it
helps to consider cosmological experiments, where the
rules are less clear. For example, one would like to predict
or explain features of the cosmic microwave background
(CMB); or, in a theory with more than one vacuum, one
might wish to predict the expected properties of the vac-
uum we find ourselves in, such as the Higgs mass. This
requires computing the relative number of observations of
different values for the Higgs mass, or of the CMB sky.
There will be infinitely many instances of every possible
observation, so what are the probabilities? This is known as
the ‘‘measure problem’’ of eternal inflation.

In order to yield well-defined probabilities, eternal in-
flation requires some kind of regulator. Here we shall focus

on geometric cutoffs, which discard all but a finite portion
of the eternally inflating spacetime. The relative probabil-
ity of two types of events, 1 and 2, is then defined by

p1

p2
¼ hN1i

hN2i ; (1.1)

where hN1i is the expected number of occurrences of the
first type of event within the surviving spacetime region.
(We will drop the expectation value brackets below for
simplicity of notation.) Here, 1 and 2 might stand for
winning or not winning the lottery; or they might stand
for a red or blue power spectrum in the CMB. The general-
ization to larger or continuous sets of mutually exclusive
outcomes is trivial.
There are different proposals for what spacetime region

should be retained. Our basic observation in this paper
applies to all geometric cutoffs we are aware of, and indeed
seems to be an inevitable consequence of any simple
geometric cutoff: Some observers will have their lives
interrupted by the cutoff (Fig. 1).
Let events 1 and 2 be the observation of 1 o’clock and

2 o’clock on an observer’s watch. For simplicity, we will
suppose that local physics can be approximated as deter-
ministic, and we neglect the probability that the observer
may die between 1 and 2 o’clock, or that the clock will
break, etc. Each observer is born just before his watch
shows 1 and dies just after it shows 2, so that no observer
can see more than one event of each type.
Conventionally, we would say that every observer sees

both 1 o’clock and then 2 o’clock. But the figure shows that
for some observers, 2 o’clock will not be under the cutoff
even if 1 o’clock is. A fraction 1� N2=N1 of observers are
prevented from surviving to 2 o’clock. The catastrophic
event in question is evidently the cutoff itself: the observer
might run into the end of time.
One can imagine a situation where the relative number

of observations of 1 o’clock and 2 o’clock is relevant to
predicting the results of an experiment. Suppose that the
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observers fall asleep right after seeing 1 o’clock. They
wake up just before 2 o’clock with complete memory
loss: they have no idea whether they have previously
looked at their watches before. In this case, they may
wish to make a prediction for what time they will see.
Since N2 <N1, by Eq. (1.1), p2 <p1: the observation of
2 o’clock is less probable than that of 1 o’clock. This is
possible only if some observers do not survive to 2 o’clock.

The conclusion that time can end obtains whether or not
the observers have memory loss. Consider an observer who
retains her memory. She is aware that she is about to look at
her watch for the first time or for the second time, so the
outcome will not be a surprise on either occasion. But this
does not contradict the possibility that some catastrophic
event may happen between 1 and 2 o’clock. The figure
shows plainly that this event does happen to a nonzero
fraction of observers. The only thing that changes when

considering observers who remember is the type of ques-
tion we are likely to ask. Instead of asking about two
alternative events (1 or 2), we may find it more natural to
ask about the relative probability of the two different
possible histories that observers can have. One history,
‘‘1�’’, consists of seeing 1 o’clock and running into the
cutoff. The alternative, ‘‘12,’’ consists of seeing 1 o’clock
and then seeing 2 o’clock. From Fig. 1 we see that
N12 ¼ N2 and N1� ¼ N1 � N2. Since N1 >N2, we have
p1� > 0: there is a nonzero probability for the history in
which the observer is disrupted by the end of time.
Frequently asked questions. A number of objections

may be raised against our conclusion that time can end.
(i) Q: Cannot I condition on the end of time not

happening?1

A: Certainly. This is like asking what the weather
will be tomorrow, supposing that it will not rain. It is
a reasonable question with a well-defined answer:
The Sun will shine with probability x, and it will
snow with probability 1� x. But this does not mean
that it cannot rain. If the end of time is a real
possibility, then it cannot be prevented just by refus-
ing to ask about it.

(ii) Q: In some measures, the cutoff is taken to later and
later times. In this limit, the probability to encounter
the end of time surely approaches 0?
A: No. In all known measures of this type, an
attractor regime is reached where the number of
all types of events grows at the same exponential
rate, including observers who see 1 o’clock. The
fraction of these observers who also see 2 o’clock
before the cutoff approaches a constant less than
unity, as will be shown in Sec. III A.

(iii) Q: But as the cutoff is taken to later times, any
given observer’s entire history is eventually in-
cluded. Is not this a contradiction?
A: No. We do not know which observer we are, so
we cannot identify with any particular observer. (If
we could, there would be no need for a measure.)
Rather, we consider all observers in a specified
class, and we define probabilities in terms of the

FIG. 1 (color online). A multiverse populated by infinitely
many observers (vertical line segments) who first see 1 o’clock
(at events labeled ‘‘1’’) and then 2 o’clock (‘‘2’’). A geometric
cutoff selects a finite set of events, whose relative frequency
defines probabilities. Events that are not counted are indicated by
dashed lines. The left figure shows a global cutoff: all events
prior to the time t0 (curved line) are counted and all later events
ignored. (The global time has nothing to do with the observers’
clocks, which come into being at a rate dictated by the dynamics
of eternal inflation.) The right figure shows the causal patch
cutoff, which restricts to the causal past of a point on the future
boundary. In both figures, the cutoff region contains observers
who see 1 o’clock but not 2 o’clock. Their number, as a fraction
of all observers who see 1 o’clock before the cutoff, defines the
probability of reaching the end of time between 1 and 2 o’clock.

1In the above example, this would force us to ask a trivial
question (‘‘What is the relative probability of seeing 1 or 2, for
an observer whose history includes both 1 and 2?’’), which
yields the desired answer (p2=p1 ¼ 1). For a more interesting
example, consider an experiment that terminates at different
times depending on the outcome, such as the Guth-Vanchurin
paradox described in Sec. IV, or the decay of a radioactive atom.
In such experiments it is tempting to propose that the experiment
should be regarded to last for an amount of time corresponding
to the latest possible (conventional) outcome, regardless of the
actual outcome; and that any outcome (other than the end of
time) should be counted only if the experiment has been entirely
completed before the cutoff, in the above sense. This proposal is
not only futile (as described in the answer), but also ill-defined,
since any event in the past light-cone of the event P can be
regarded as the beginning of an experiment that includes P.

BOUSSO et al. PHYSICAL REVIEW D 83, 023525 (2011)

023525-2



relative frequency of different observations made
by these observers.

(iv) Q: If I looked at what happened on Earth up to the
present time (my ‘‘cutoff’’), I would find not only
records of past clocks that struck both 1 and 2, but
also some recently manufactured clocks that have
struck 1 but not yet 2. I could declare that the latter
represent a new class of clocks, namely, clocks
whose existence is terminated by my cutoff. But I
know that this class is fake: it wasn’t there before I
imposed the cutoff. Surely, the end of time in
eternal inflation is also an artifact that ought to be
ignored?
A: Only a finite number of clocks will ever be
manufactured on Earth. Probabilities are given not
in terms of the sample picked out by your cutoff,
but by relative frequencies in the entire ensemble. If
every clock ever built (in the past or future) strikes
both 1 and 2, then the probability for a randomly
chosen clock to undergo a different history van-
ishes, so we may say confidently that the cutoff has
introduced an artifact. In eternal inflation, however,
the cutoff cannot be removed. Otherwise, we would
revert to a divergent multiverse in which relative
frequencies are not well defined. The cutoff defines
not a sample of a preexisting ensemble; it defines
the ensemble. This is further discussed in Sec. III B.

(v) Q: Why not modify the cutoff to include 2 o’clock?
A: This is a possibility. If we deform the cutoff
hypersurface so that it passes through no matter
system, then nothing will run into the end of time.
It is not clear whether this type of cutoff can be
obtained from any well-defined prescription. At a
minimum, such a prescription would have to refer-
ence the matter content of the Universe explicitly in
order to avoid cutting through the world volumes of
matter systems. In this paper, we consider only cut-
offs defined by a purely geometric rule, which take
no direct account of matter.

Outline. The probability for the end of time is nonzero
for all geometric cutoffs. Its value, however, depends on
the cutoff. In Sec. II we compute the probability, per unit
proper time, that we will encounter the end of time. In
Sec. III we address a number of objections to our conclu-
sion that time will end, fleshing out the brief ‘‘Frequently
Asked Questions’’ section above. In Sec. IV, we discuss an
apparent paradox that is resolved by the nonzero probabil-
ity for time to end.

Any conclusion is only as strong as the assumptions it
rests on. The reader who feels certain that time cannot end
may infer that at least one of the following assumptions are
wrong: (1) the Universe is eternally inflating; (2) we may
restrict attention to a finite subset of the eternally inflating
spacetime, defined by a purely geometric prescription; and
(3) probabilities are computed as relative frequencies of

outcomes in this subset, Eq. (1.1). We discuss these as-
sumptions in Sec. VA.
In Sec. VB, we discuss whether, and how, the nonzero

probability for the end of time may be observed. We point
out that known predictions of various measures actually
arise from the possibility that time can end. On the prob-
lematic side, this includes the famous youngness paradox
of the proper time cutoff; on the successful side, the
prediction of the cosmological constant from the causal
patch cutoff.
In Sec. VC, we discuss how the end of time fits in with

the rest of physics. This depends on the choice of cutoff.
With the causal patch cutoff, there may be a relatively
palatable interpretation of the end of time which connects
with the ideas of black hole complementarity. The bound-
ary of the causal patch is a kind of horizon, which can be
treated as an object with physical attributes, including
temperature. Matter systems that encounter the end of
time are thermalized at this horizon. This is similar to an
outside observer’s description of a matter system falling
into a black hole. What is radically new, however, is the
statement that we might experience thermalization upon
crossing the black hole horizon.
This work was inspired by discussions with Alan Guth,

who first described to us the paradox mentioned in Sec. IV.
We understand that Guth and Vanchurin will be publishing
their own conclusions [2]. In taking seriously the incom-
pleteness of spacetime implied by geometric cutoffs, our
conclusion resembles a viewpoint suggested earlier by
Olum [3].

II. THE PROBABILITY FOR TIME TO END

The phenomenon that time can end is universal to all
geometric cutoffs. But the rate at which this is likely
to happen, per unit proper time � along the observer’s
worldline, is cutoff-specific. We will give results for five
measures.
Causal patch. The causal patch cutoff [4] restricts atten-

tion to the causal past of the endpoint of a single worldline
(see Fig. 1). Expectation values are computed by averaging
over initial conditions and decoherent histories in the
causal patch. The end of time, in this case, is encountered
by systems that originate inside the causal patch but even-
tually exit from it.
Our Universe can be approximated as a flat Friedmann-

Robertson-Walker universe with metric

ds2 ¼ �d�2 þ að�Þ2ðd�2 þ �2d�2Þ: (2.1)

Observers are approximately comoving (d�=d� ¼ 0).
We assume that the decay rate of our vacuum, per unit
four-volume, is much less than t�4

� . Then the decay can be

neglected entirely in computing where the boundary of the
causal patch intersects the equal time surfaces containing
observers. The boundary is given by the de Sitter event
horizon:
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�Eð�Þ ¼
Z 1

�

d�0

að�0Þ : (2.2)

We consider all observers currently within the horizon:
�< �Eð�0Þ, with �0 ¼ 13:7 Gyr. This corresponds to a
comoving volume Vcom ¼ ð4�=3Þ�Eð�0Þ3. Observers
located at � leave the patch at a time �0 determined by
inverting Eq. (2.2); in other words, they reach the end of
time at�� � �0 � �0 from now. An (unnormalized) proba-
bility distribution over �� is obtained by computing the
number of observers that leave the causal patch at the time
�0 þ��:

dp

d��
/ 4��Eð�0 þ ��Þ2

að�0 þ ��Þ : (2.3)

We compute að�Þ numerically using the best-fit cosmologi-
cal parameters from the WMAP5 data combined with SN
and baryon acoustic oscillations [5]. From the distribution
(2.3), we may obtain both the median and the expectation
value for ��. We find that the expected amount of proper
time left before time ends is

h��i ¼ 5:3 Gyr: (2.4)

Time is unlikely to end in our lifetime, but there is a 50%
chance that time will end within the next 3:7� 109 years.

Light-cone time. The light-cone time of an event is
defined in terms of the volume of its future light-cone on
the future boundary of spacetime [6–8]. The light-cone
time cutoff requires that we only consider events prior to
some light-cone time t0; then the limit t0 ! 1 is taken. It
can be shown that the light-cone time cutoff is equivalent to
the causal patch cutoff with particular initial conditions [7].
Thus, the probability for an observer to encounter the end
of time is the same as for the causal patch cutoff.

Fat geodesic. The fat geodesic cutoff considers a fixed
proper volume 4�d3=3 near a timelike geodesic [9]. To
compute probabilities, one averages over an ensemble of
geodesics orthogonal to an initial hypersurface whose de-
tails will not matter. One can show that the geodesics
quickly become comoving after entering a bubble of new
vacuum. Since our vacuum is homogeneous, we may pick
without loss of generality a fat geodesic at � ¼ 0. We shall
neglect the effects of local gravitational collapse and ap-
proximate the Universe as expanding homogeneously.
Equivalently, we take the proper distance d to be small
compared to the present curvature scale of the Universe but
large compared to the scale of clusters. These approxima-
tions are not essential, but they will simplify our calcula-
tion and save us work when we later consider the scale
factor cutoff.

We should only consider observers who are currently
(�0 ¼ 13:7 Gyr) within the fat geodesic, with �<
d=að�0Þ. An observer leaves the geodesic a time �� later,
with � ¼ d=að�0 þ��Þ. The unnormalized probability
distribution over �� is

dp

d��
/ 4�

d3ðda=d�Þ�0þ��

að�0 þ ��Þ4 : (2.5)

From this distribution, we find numerically that the ex-
pected amount of proper time left before the end of time is
5 Gyr. There is a 50% chance that time will end within the
next 3:3� 109 years.
While the result is similar, there is an important formal

difference between the fat geodesic and causal patch cut-
offs. The boundary of the fat geodesic is a timelike hyper-
surface, from which signals can propagate into the cutoff
region. Boundary conditions must therefore be imposed.
When a system leaves the fat geodesic, time ends from its
own point of view. But an observer who remains within the
cutoff region continues to see the system and to commu-
nicate with it. The image of the system and its response to
any communications are encoded in data specified on the
timelike boundary. In practice, the simplest way to deter-
mine these boundary conditions is to consider the global
spacetime and select a fat geodesic from it. This means that
the fat geodesic is not a self-contained description. The
content of the causal patch, by contrast, can be computed
from its own initial conditions without reference to a larger
spacetime region.
Scale factor time. Scale factor time is defined using a

congruence of timelike geodesics orthogonal to some ini-
tial hypersurface in the multiverse: dt � Hd�, where � is
the proper time along each geodesic and 3H is the local
expansion of the congruence. Probabilities are defined by
counting all events before some scale factor time t0 and
then taking the late-time limit t0 ! 1. The definition of
the scale factor time breaks down in nonexpanding regions
such as dark matter halos; attempts to overcome this limi-
tation (e.g., Ref. [10]) remain somewhat ad hoc. Here we
use for H the Hubble rate of a completely homogeneous
universe whose density agrees with the average density of
our Universe. This does not yield a precise and general
cutoff prescription, but it allows us to compute an approxi-
mate rate at which we are likely to encounter the cutoff: in
an everywhere-expanding timelike geodesic congruence,
the scale factor time cutoff is equivalent to the fat geodesic
cutoff [9]. Hence, it gives the same rate for time to end as
the fat geodesic cutoff.
Proper time. The proper time cutoff is defined in the

same way as the scale factor time cutoff but it simply uses
the proper time along the geodesic congruence as the
global time variable. In the proper time cutoff, the charac-
teristic time scale is the shortest Hubble time of all eter-
nally inflating vacua. In a realistic landscape, this is
microscopically short, perhaps of order the Planck time
[11]. Thus, time would be overwhelmingly likely to end in
the next second:

dp

d��
� t�1

Pl : (2.6)
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This is the famous ‘‘youngness paradox’’ in a new guise.
The cutoff predicts that our observations have super-
exponentially small probability, and that most observers
are ‘‘Boltzmann babies’’ who arise from quantum fluctua-
tions in the early Universe. Thus, this measure is already
ruled out phenomenologically at a high level of confidence
[11–18].

III. OBJECTIONS

Our intuition rebels against the conclusion that space-
time could simply cease to exist. In the introduction, we
answered several objections that could be raised against the
end of time. In this section, we will discuss two of these
arguments in more detail.

A. Time cannot end in a late-time limit

In some measure proposals, such as the proper time cutoff
[19,20], the scale factor time cutoff [10], and the light-
cone time cutoff [6], a limit is taken in which the cutoff
region is made larger and larger as a function of a time
parameter t0:

p1=p2 ¼ lim
t0!1N1ðt0Þ=N2ðt0Þ: (3.1)

Naively one might expect the cutoff observers to be an
arbitrarily small fraction of all observers in the limit
t0 ! 1. This turns out not to be the case.

One finds that the number of events of type I that have
occurred prior to the time t is of the form

NIðtÞ ¼ �NI expð�tÞ þOð�tÞ; (3.2)

with �< � � 3. Thus, the growth approaches a universal
exponential behavior at late times [7,11,21], independently
of initial conditions. The ratio N1=N2 appearing in
Eq. (1.1) remains well defined in the limit t0 ! 1, and
one obtains

p1

p2
¼ �N1

�N2

: (3.3)

The constants �NI, and thus the relative probabilities,
depend on how the time variable is defined; we will discuss
some specific choices below.

Suppose that observers live for a fixed global time
interval �t. Then a person dies before time t if and only
if he was born before t� �t. Therefore, the number of
births Nb is related to the number of deaths Nd by

NdðtÞ ¼ Nbðt� �tÞ: (3.4)

Using the time dependence of Nb given in (3.2), this can be
rewritten

NdðtÞ
NbðtÞ

� expð���tÞ; (3.5)

up to a correction of order eð���Þt which becomes negli-
gible in the late-time limit. Thus, the fraction of deaths to
births does not approach unity as the cutoff is taken to
infinity. The fraction of observers whose lives are inter-
rupted by the cutoff is

Nc

Nb

¼ 1� expð���tÞ; (3.6)

where Nc ¼ Nb � Nd is the number of cutoff observers.
Since (3.6) is true for any time interval �t, it is equiva-

lent to the following simple statement: any system has a
constant probability to encounter the end of time given by

dp

dt
¼ � � 3: (3.7)

This result can be interpreted as follows. Because of the
steady state behavior of eternal inflation at late times, there
is no way to tell what time it is. The exponential growth
(3.2) determines a t0-independent probability distribution
for how far we are from the cutoff, given by (3.7).

B. The end of time is an artifact

Could it be that observers who run into the cutoff are an
artifact, not to be taken seriously as a real possibility?
Certainly they would not exist but for the cutoff. Yet, we
argue that cutoff observers are a real possibility, because
there is no well-defined probability distribution without the
cutoff; in particular, only the cutoff defines the set of
allowed events. In order to convince ourselves of this, it
is instructive to contrast this situation with one where a
cutoff may introduce artifacts. We will consider two finite
ensembles of observers, without reference to eternal infla-
tion. We then restrict attention to a portion of each en-
semble, defined by a cutoff. We find that this sample looks
the same in both ensembles, and that it contains observers
that run into the cutoff. In the first ensemble, these observ-
ers are an artifact of sampling; in the second, they are real.
We will then explain why eternal inflation with a cutoff is
different from both examples.
A cutoff on a finite ensemble defines a sample. Consider

a civilization which begins at the time t ¼ 0 and grows
exponentially for a finite amount of time. (Wewill make no
reference to a multiverse in this example.) Every person is
born with a watch showing 1 o’clock at the time of their
birth, when they first look at it. One hour later, when they
look again, the watch shows 2 o’clock; immediately there-
after the person dies. After the time t� � 1 hour, no more
people are born, but whoever was born before t� gets to live
out their life and observe 2 o’clock on their watch before
they die. In this example, there is a well-defined, finite
ensemble, consisting of all observers throughout history
and their observations of 1 and 2. The ensemble contains
an equal number of 1’s and 2’s. Every observer in the
ensemble sees both a 1 and a 2, each with 100% probabil-
ity. No observer meets a premature demise before seeing 2.
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Now suppose that we do not know the full ensemble
described above. Instead, we are allowed access only to a
finite sample drawn from it, namely, everything that hap-
pened by the time t, with 1 h � t < t�. This sample
contains many observers who died before t; each of them
will have seen both 1 and 2. We refer to these as ‘‘histor-
ies’’ of type 12. It also contains observers (those who were
born after t� 1 h) who are still alive. Each of them has
seen 1 but not yet 2, by the time t, which we refer to as a
history of type 1� . What do we say about these observ-
ers? Should we declare that there is a nonzero probability
that an observer who sees 1 does not live to see 2? In fact, a
finite sample of a larger, unknown ensemble allows us to
draw no conclusion of this kind, because we have no
guarantee that our sampling of the ensemble is fair. The
true set of outcomes, and their relative frequency, is deter-
mined only by the full ensemble, not by our (possibly
unfaithful) sample of it. Similarly, if we had a considered
a more complicated system, such as observers with
watches of different colors, etc., the relative frequency of
outcomes in any subset need not be the same as the relative
frequency in the full ensemble, unless we make further
assumptions.

If we examined the full ensemble, we could easily verify
that every observer who sees 1 also lives to see 2. Thus we
would learn that 1� was an artifact of our sampling:
imposing a cutoff at fixed time produced a new class of
events that does not exist (or more precisely, whose relative
frequency drops to zero) once we take the cutoff away.
Armed with this knowledge, we could then invent an
improved sampling method, in which the 1� cases are
either excluded, or treated as 12 events.

As our second example, let us consider a civilization
much like the previous one, except that it perishes not by a
sudden lack of births, but by a comet that kills everyone at
the time t�. This, too, gives rise to a finite, well-defined
ensemble of observations. But unlike in the previous
example, there is a larger number of 1’s than 2’s: not
every observer who sees a 1 lives to see a 2. Thus, the
probabilities for the histories 12 and 1� satisfy p1� > 0,
p12 < 1. Indeed, if we choose parameters so the population
grows exponentially on a timescale much faster than 1 h,
most people in history who see 1 end up being killed by the
comet rather than expiring naturally right after seeing 2;
that is, p12 ¼ 1� p1� � 1 in this limit.

Again, we can contemplate sampling this ensemble, i.e.,
selecting a subset, by considering everything that happened
prior to the time t < t�. Note that this sample will look
identical to the finite-time sample we were given in the
previous example. Again, we find that there are apparently
events of type 1� , corresponding to observers who have
seen 1 but not 2 by the time t. But in this example, it so
happens that (i) events of type 1� actually do exist in the
full ensemble, i.e., have nonzero true relative frequency;
and (ii) assuming exact exponential growth, our sample is

faithful: the relative frequency of 1� vs 12 in the sample
(observers prior to t) is the same as in the full ensemble
(observers in all history, up to t�).

2

We learn from the above two examples that a subset of
an ensemble need not yield reliable quantitative informa-
tion about the relative frequencies of different outcomes, or
even qualitative information about what the allowed out-
comes are. All of this information is controlled only by the
full ensemble. In both examples, the set of events that
occurred before the time t < t� contain events of type
1� . But in the first example, these events are a sampling
artifact and their true probability is actually 0. In the
second example, 1� corresponds to a real possibility
with nonzero probability.
The cutoff in eternal inflation defines the ensemble. Now

let us return to eternal inflation. In order to regulate its
divergences, we define a cutoff that picks out a finite
spacetime region, for example, the region prior to some
constant light-cone time t. Naively, this seems rather simi-
lar to the examples above, where we sampled a large
ensemble by considering only the events that happened
prior to a time t < t�. But we learned that such samples
cannot answer the question of whether the histories of
type 1� are real or artifacts. To answer this question, we
had to look at the full ensemble. We found in the first
example that 1� was real, and in the second that 1� was
an artifact, even though the sample looked exactly the same
in both cases. In eternal inflation, therefore, we would
apparently need to ‘‘go beyond the cutoff’’ and consider
the ‘‘entire ensemble’’ of outcomes, in order to decide
whether 1� is something that can really happen.
But this is impossible: the whole point of the cutoff was

to define an ensemble. An infinite set is not a well-defined
ensemble, so the set we obtained by imposing a cutoff is
the most fundamental definition of an ensemble available
to us. We can argue about which cutoff is correct: light-
cone time, scale factor time, the causal patch, etc. But
whatever the correct cutoff is, its role is to define the
ensemble. It cannot be said to select a sample from a larger
ensemble, namely, from the whole multiverse, because this
larger ensemble is infinite, so relative abundances of events
are not well defined. If they were, we would have had no
need for a cutoff in the first place.

IV. THE GUTH-VANCHURIN PARADOX

Another way to see that the end of time is a real
possibility is by verifying that it resolves a paradox exhib-
ited by Guth and Vanchurin [22]. Suppose that before you
go to sleep someone flips a fair coin and, depending on the
result, sets an alarm clock to awaken you after either a short
time, �t � 1, or a long time �t � 1. Local physics

2Actually it is faithful only in the limit as t is much greater
than the characteristic growth time scale of the civilization,
because of the absence of any observers prior to t ¼ 0.
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dictates that there is a 50% probability to sleep for a short
time since the coin is fair. Now suppose you have just
woken up and have no information about how long you
slept. It is natural to consider yourself a typical person
waking up. But if we look at everyone who wakes up
before the cutoff, we find that there are far more people
who wake up after a short nap than a long one. Therefore,
upon waking, it seems that there is no longer a 50%
probability to have slept for a short time.

How can the probabilities have changed? If you accept
that the end of time is a real event that could happen to you,
the change in odds is not surprising: although the coin is
fair, some people who are put to sleep for a long time never
wake up because they run into the end of time first. So upon
waking up and discovering that the world has not ended, it
is more likely that you have slept for a short time. You have
obtained additional information upon waking—the infor-
mation that time has not stopped—and that changes the
probabilities.

However, if you refuse to believe that time can end, there
is a contradiction. The odds cannot change unless you
obtain additional information. But if all sleepers wake,
then the fact that you woke up does not supply you with
new information.

Another way to say it is that there are two reference
classes one could consider. When going to sleep we could
consider all people falling asleep; 50% of these people
have alarm clocks set to wake them up after a short time.
Upon waking we could consider the class of all people
waking up; most of these people slept for a short time.
These reference classes can only be inequivalent if some
members of one class are not part of the other. This is the
case if one admits that some people who fall asleep never
wake up, but not if one insists that time cannot end.

V. DISCUSSION

Mathematically, the end of time is the statement that our
spacetime manifold is extendible, i.e., that it is isometric to
a proper subset of another spacetime. Usually, it is assumed
that spacetime is inextendable [23]. But the cutoffs we
considered regulate eternal inflation by restricting to a
subset of the full spacetime. Probabilities are fundamen-
tally defined in terms of the relative abundance of events
and histories in the subset. Then the fact that spacetime is
extendible is itself a physical feature that can become part
of an observer’s history. Time can end.

A. Assumptions

We do not know whether our conclusion is empirically
correct. What we have shown is that it follows logically
from a certain set of assumptions. If we reject the con-
clusion, then we must reject at least one of the following
propositions:

Probabilities in a finite universe are given by relative
frequencies of events or histories. This proposition is

sometimes called the assumption of typicality. It forces
us to assign a nonzero probability to encountering the end
of time if a nonzero fraction of observers encounter it.
Even in a finite universe one needs a rule for assigning

relative probabilities to observations. This need is obvious
if we wish to make predictions for cosmological observa-
tions. But a laboratory experiment is a kind of observation,
too, albeit one in which the observer controls the boundary
conditions. A comprehensive rule for assigning probabil-
ities cannot help but make predictions for laboratory ex-
periments, in particular. However, we already have a rule
for assigning probabilities in this case, namely, quantum
mechanics and the Born rule, applied to the local initial
conditions prepared in the laboratory. This must be repro-
duced as a special case by any rule that assigns probabil-
ities to all observations [11]. A simple way to achieve this
is by defining probabilities as ratios of the expected num-
ber of instances of each outcome in the Universe, as we
have done in Eq. (1.1).
Probabilities in an infinite universe are defined by a

geometric cutoff. This proposition states that the infinite
spacetime of eternal inflation must be rendered finite so
that the above frequency prescription can be used to define
probabilities. Moreover, it states that a finite spacetime
should be obtained by restricting attention to a finite subset
of the infinite multiverse.3 It is possible that the correct
measure cannot be expressed in a geometric form.
Imagine, for instance, a measure that makes ‘‘exceptions’’
for matter systems that come into existence before the
cutoff, allowing all events in their world volume to be
counted. A purely geometric prescription would have
chopped part of the history off, but in this measure, the
cutoff surface would be deformed to contain the entire
history of the system. Such a cutoff would depend not
only on the geometry, but also on the matter content of
spacetime.4 A more radical possibility is that the measure
may not involve any kind of restriction to a finite portion of
spacetime. For example, Noorbala and Vanchurin [24],
who exhibit a paradox similar to that described in
Sec. IV, but do not allow for the possibility that time can

3We have considered measures in which the cutoff is com-
pletely sharp, i.e., described by a hypersurface that divides the
spacetime into a region we keep and a region we discard. In fact
this is not essential. One could smear out the cutoff by assigning
to each spacetime event a weight that varies smoothly from 1 to 0
over some region near the cutoff surface. There would still be a
finite probability for time to end.

4We have not attempted to prove this statement, so it should be
considered an additional assumption. Because the metric has
information about the matter content, we cannot rule out that a
geometric measure could be formulated whose cutoff surfaces
never intersect with matter. It seems unlikely to us that such a
cutoff could select a finite subset of the multiverse. A related
possibility would be to define a global time cutoff such that
typical observers live farther and farther from the cutoff in the
limit as t ! 1. This would invalidate our analysis in Sec. III A,
which assumed exponential growth in t.
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end, advocate a nongeometric type of measure. If such a
prescription could be made well defined and consistent
with observation (which seems unlikely to us), then one
might escape the conclusion that time can end. Similarly,
Winitzki [25–27] defined a measure where only finite
spacetimes are considered, and in this measure there is
no novel catastrophe like the end of time.

The Universe is eternally inflating. To prove this prop-
osition wrong would be a dramatic result, since it would
seem to require a kind of fundamental principle dictating
that Nature abhors eternal inflation. After all, eternal in-
flation is a straightforward consequence of general relativ-
ity, assuming there exists at least one sufficiently long-
lived field theory vacuum with positive vacuum energy (a
de Sitter vacuum). This assumption, in turn, seems innoc-
uous and is well motivated by observation: (1) The recent
discovery of accelerated expansion [28,29], combined with
the conspicuous lack of evidence that dark energy is not a
cosmological constant [5], suggests that our own vacuum is
de Sitter. If this is the case, the Universe must be eternally
inflating. (2) Slow-roll inflation solves the horizon and
flatness problems. Its generic predictions agree well with
the observed CMB power spectrum. But slow-roll inflation
requires a sufficiently flat scalar field potential. Eternal
inflation requires only a local minimum and so is less
fine-tuned. How could we consider slow-roll inflation,
but exclude eternal inflation?—There are also theoretical
motivations for considering the existence of de Sitter va-
cua: (3) In effective field theory, there is nothing special
about potentials with a positive local minimum, so it would
be surprising if they could not occur in Nature. (4) String
theory predicts a very large number of long-lived de Sitter
vacua [30–32], allowing for a solution of the cosmological
constant problem and other fine-tuning problems.

B. Observation

If we accept that time can end, what observable impli-
cations does this have? Should we expect to see clocks or
other objects suddenly disappear? In measures such as
scale factor time or light-cone time, the expected lifetime
of stable systems is of order 5� 109 years right now, so it
would be very unlikely for the end of time to occur in, say,
the next thousand years. And even if it did occur, it would
not be observable. Any observer who would see another
system running into the end of time is by definition located
to the causal future of that system. If the cutoff surface is
everywhere spacelike or null, as is the case for the light-
cone time cutoff and the causal patch cutoff, then the
observer will necessarily run into the cutoff before observ-
ing the demise of any other system.

Though the end of timewould not be observable, the fact
that time has not ended certainly is observable. If a theory
assigns extremely small probability to some event, then the
observation of this event rules out the theory at a corre-
sponding level of confidence. This applies, in particular, to

the case where the event in question is time not having
ended. For example, Eq. (2.6) shows that the proper time
measure is thus falsified.
An observation which indirectly probes the end of time

is the value of the cosmological constant. For definiteness
consider the causal patch measure, which predicts a coin-
cidence between the time when the observers live and the
time when the cosmological constant beings to dominate
the expansion of the Universe, t� � tobs. This represents
the most important phenomenological success of the mea-
sure, and we will now argue that it is tied intimately to the
end of time.
The most likely value of the cosmological constant is the

one which leads to the most observers inside the causal
patch. We will assume that there are a constant number of
observers per unit mass, and will imagine scanning the

possible values of t� � 1=
ffiffiffiffi
�

p
with tobs held fixed. It is

most useful to think of the distribution of values of logt�,
where the preferred value is largely determined by two
competing pressures. First, since the prior probability is flat
in�, there is an exponential pressure in logt� toward lesser
values. Second, if t� < tobs there is an exponential pressure
in t� (superexponential in logt�) toward greater values.
This is a simple consequence of the fact that all matter is
expelled from the causal patch at an exponential rate after
vacuum domination begins. These two pressures lead to
tobs � t�.
The end of time is implicitly present in this argument.

Suppose there are two generations of observers, one living
at t� and another at 10t�. Even if local physics says that
there are the same number of observers per unit mass in
each generation, the second generation must be atypical,
and hence have fewer members, if the prediction for the
cosmological constant is to remain valid. Where are the
missing members of the second generation? The answer is
that time has ended for them. They are not counted for the
purposes of any calculation, and so they do not exist.
Clearly, the setup is identical to the observers who see
1 o’clock and 2 o’clock discussed above.
In this paper, we have considered sharp geometric cut-

offs. However, intuition from AdS/CFT [6,8,33] suggests
that the cutoff should not be a completely sharp surface,
but should be smeared out over a time of order t�. If the
cutoff is smeared, there could be observable consequences
of approaching the end of time; the details would depend
on the precise prescription for smearing the cutoff.

C. Interpretation

The notion that time can come to an end is not
completely new. Space and time break down at singular-
ities, which are guaranteed to arise in gravitational collapse
[34]. But our conclusion is more radical: the world can
come to an end in any spacetime region, including regions
with low density and curvature, because spacetime is
incomplete.
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One might speculate that semiclassical gravity breaks
down on very large time scales, say t3�, the evaporation time

for a large black hole in de Sitter space, or expð�t2�Þ, the
recurrence time in de Sitter space. But in the most popular
measures, we are likely to encounter the end of time on the
much shorter time scale t�. Perhaps one could invent a new
cutoff that would push the end of time further into the
future. But there is no well-motivated candidate we are
aware of, and, as we have discussed, one would be likely
to lose some of the phenomenological success of the mea-
sures in solving, e.g., the cosmological constant problem.

How can we make sense of our conclusion? Is there a
way of thinking about it that would make us feel more
comfortable about the end of time? Does it fit in with
something we already know, or is this a completely new
phenomenon? The answer to this question turns out to
depend somewhat on which cutoff is used.

All measures One way to interpret the end of time is to
imagine a computer just powerful enough to simulate the
cutoff portion of the eternally inflating spacetime. The
simulation simply stops at the cutoff. If the measure in-
volves taking a late-time limit, then one can imagine
building larger and larger computers that can simulate
the spacetime until a later cutoff. These computers can
be thought of as the definition of the cutoff theory, much in
the same way that lattice gauge theory is used. There is no
physical significance to any time after the cutoff.5 This is
an interesting rephrasing of the statement of the end of
time, but it does not seem to mitigate its radicality.

Causal patch only Our result appears to admit an in-
triguing interpretation if the causal patch measure is used.
The original motivation for the causal patch came from
black hole complementarity [35]. Consider the formation
and evaporation of a black hole in asymptotically flat
space. If this process is unitary, then the quantum state
describing the collapsing star inside the black hole is
identical to the state of the Hawking radiation cloud.
Since these two states are spacelike separated, two copies
of the quantum state exist at the same time. But before the
star collapsed, there was only one copy. This amounts to
‘‘quantum xeroxing,’’ which is easily seen to conflict with
quantum mechanics.

A way around this paradox is to note there is no space-
time point whose past light-cone contains both copies. This
means that no experiment consistent with causality can
actually verify that xeroxing has taken place. Thus, the
paradox can be regarded as an artifact of a global viewpoint
that has no operational basis. A theory should be capable of
describing all observations, but it need not describe more

than that. Geometrically, this means that it need not
describe any system that cannot fit within a causal patch.
What the xeroxing paradox teaches us is that we must not
describe anything larger than the causal patch if we wish to
avoid inconsistencies in spacetimes with black holes.
But once we reject the global description of spacetime,

we must reject it whether or not black holes are present. In
many cosmological solutions, including eternal inflation,
the global spacetime is not accessible to any single experi-
ment. This motivated the use of the causal patch as a cutoff
to regulate the infinities of eternal inflation [4,36].
Let us return to the black hole spacetime and consider the

causal patch of an outside observer. This patch includes all
of the spacetime except for the interior of the black hole. As
Susskind has emphasized, to an outside observer, the causal
patch is a consistent representation of the entire world. The
patch has a boundary, the stretched horizon of the black
hole. This boundary behaves like a physical membrane,
endowed with properties such as temperature, tension, and
conductivity. When another observer falls into the black
hole, the outside observer would say that he has been
thermalized at the horizon and absorbed into the membrane
degrees of freedom. Later the membrane evaporates and
shrinks away, leaving behind a cloud of radiation.
It is very important to understand that this really is the

unique and complete description of the process from the
outside point of view; the black hole interior does not come
into it. The process is no different, in principle, from
throwing the second observer into a fire and watching the
smoke come out. Any object is destroyed upon reaching
the horizon. Yet, assuming that the black hole is large, the
infalling observer would not notice anything special when
crossing the horizon. There is no contradiction between
these two descriptions, since they agree as long as the two
observers remain in causal contact. Once they differ, it is
too late for either observer to send a signal to the other and
tell a conflicting story.
The end of time in the causal patch is an effect that fits

well with the outside observer’s description. When the
infalling observer enters the black hole, he is leaving the
causal patch of the outside observer. In the language of the
present paper, the outside observer defines a particular
causal patch, and the inside observer encounters the end
of time when he hits the boundary of this patch. We now
see that there is a different, more satisfying interpretation:
the inside observer is thermalized at the horizon. This
interpretation invokes a relatively conventional physical
process to explain why the inside observer ceases to exist.
Time does not stop, but rather, the observer is thermalized.
His degrees of freedom are merged with those already
existing at the boundary of the causal patch, the horizon.
If this interpretation is correct, it can be applied to black

holes that form in the eternally inflating universe, where it
modifies the theory of the infalling observer. It is no longer
certain that an infalling observer will actually make it to

5Ken Olum has pointed out for some time that one way to
interpret a geometric cutoff is that ‘‘we are being simulated
by an advanced civilization with a large but finite amount of
resources, and at some point the simulation will stop.’’ The
above interpretation adopts this viewpoint (minus the advanced
civilization).
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the horizon, and into the black hole, to perish only once he
hits the future singularity. Instead, time might end before
he enters the black hole. How is this possible?

In the traditional discussion of black hole complemen-
tarity, one picks an observer and constructs the associated
causal patch. It is impossible, by construction, for an
observer to leave his own patch. In other words, time
cannot end if we live in a causal patch centered on our
own worldline. In eternal inflation, however, one first picks
a causal patch; then one looks for observers in it. Some of
these observers will be closer to the boundary and leave the
patch sooner than others, who happen to stay in the patch
longer. Equivalently, suppose we do want to begin by
considering observers of a given type, such as an observer
falling towards a black hole. To compute probabilities, we
must average over all causal patches that contain such an
observer. In some patches the observer will be initially far
from the boundary, in others he will hit the boundary very
soon. This yields a probability distribution for the rate at
which time ends.

Suppose, for example, that we attempted to jump into a
black hole of mass m in our own galaxy (and neglect
effects of gravitational tidal forces, matter near the black
hole, etc.). Using the ensemble of causal patches defined in
Ref. [7], one finds that time would probably end before we
reach the horizon, with probability 1�Oðm=t�Þ. This
probability is overwhelming if the black hole is much
smaller than the cosmological horizon.
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