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We study, by numerical methods, the time evolution of scalar perturbations in radiation era of Randall-

Sundrum braneworld cosmology. Our results confirm an existence of the enhancement of perturbation

amplitudes (near horizon crossing), discovered recently. We suggest the approximate solution of equations

of the perturbation theory in the high-energy regime, which predicts that the enhancement factor is

asymptotically constant, as a function of scale. We discuss the application of this result for the problem of

primordial black hole production in braneworld cosmology.
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I. INTRODUCTION

During last decade, braneworld cosmological scenarios,
in which our four-dimensional Universe is realized as a
hypersurface embedded in a higher-dimensional space-
time, have attracted much attention. In first scenarios of
this kind, suggested as early as in 1980’s [1,2], it had been
shown that matter fields can be confined to a field-
theoretical domain wall (topological defect) in a world
with noncompact extra dimensions. The progress in string
theory in subsequent years, especially the discovery of
D-branes, has revived interest to the idea of braneworlds.
In general, the string theory is quite promising, it may
provide an unified description of gauge interactions and
gravity. In the present context, it is most important that it
predicts the existence of p-branes, (pþ 1)-dimensional
submanifolds of the ten (or 11)-dimensional spacetime
on which open strings end. Gauge particles and fermions
which correspond to string end points can only move along
these p-branes, while gravitons can propagate in the full
spacetime (‘‘bulk’’). It is tempting to assume that our
(3þ 1)-dimensional spacetime is such a 3-brane. If only
gravity can probe the bulk, the extra dimensions can be
very large (in comparison with the smallest length scale
tested, so far, in particle physics �10�16 cm). It had been
assumed in [3] that the extra dimensions are compact, in
analogy with the old Kaluza-Klein (KK) picture [4].
Slightly later, in works by Randall and Sundrum [5,6], it
was pointed out that this condition is not necessary and the
extra dimension may be even noncompact.

The Randall-Sundrum (RS) model is of particular inter-
est due to its relative simplicity, in spite of the fact that it
includes nontrivial gravitational dynamics. In the RS2
model [6] a single brane is embedded in a anti-de Sitter
(AdS) bulk and, although the 5th dimension extends infi-
nitely, the warped structure of the bulk geometry (i.e., the
curvature of the bulk spacetime) leads to a recovery of the
standard General Relativity (GR) on the brane at scales

larger than the bulk curvature scale ‘. In particular,
Newton’s law is recovered at large distances and the
Friedmann’s equation for the evolution of the Universe is
obtained at low energy.
At high energies, i.e., in the very early Universe, the

Friedmann equation differs substantially from GR by a
correction term which is proportional to �=�, where � is
the density of brane matter and � is the brane tension. This
term leads to a faster Hubble expansion at high energies.
Inflationary expansion of the Universe is also modified in
brane cosmology: the evolution of the inflaton field is more
strongly damped, and the brane Universe inflates at much
faster rate than what is expected from standard cosmology.
Another important effect at high energies is the excitation
of KK-modes, which escape from our brane into the five-
dimensional bulk, leading, in particular, to the suppression
of the power spectrum of inflationary gravitational wave
background.
Cosmological perturbation theory in braneworld cos-

mology also has some distinct features [7–12]. The equa-
tions of the perturbation theory contain high-energy
corrections (� �=�) similar to those in the Friedmann
equation and, in addition, the correction terms arising
from the fluctuations of the bulk geometry. Perturbations
on brane, e.g., the scalar perturbations (which we are
interested in), are coupled with the bulk perturbations.
Technically, in a case of the scalar perturbations and AdS
bulk, the problem is reduced to the solution of a system of
equations for the density contrast variable and the so-called
master variable (it appears that all quantities describing the
bulk perturbations are written in terms of this variable
[7,8,13]).
In the context of braneworld models, a question about

existence and evolution laws of the higher-dimensional
black holes is very interesting and important. In a model
with the 5th large extra dimension, a physically meaningful
black hole solution is the five-dimentional–Schwarzschild
[14,15], if the horizon size is sufficiently small compared
with an effective size of the extra dimension. Really, it is
natural to assume that primordial braneworld black holes
formed in the early Universe with a horizon size rs � ‘
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would be described by a five-demensional–Schwarzschild
metric because in this case the AdS curvature has very little
effect on the geometry. Numerical calculations support
the existence of static solutions for such small rs [16].
However, the results of these calculations cannot be ex-
trapolated to the case rs � ‘.

Unfortunately, an exact solution representing a localized
and stable black hole is known only in four-dimensional
braneworld model [17], whereas the corresponding solu-
tion in the five-dimensional braneworld model has not been
found. The process of the gravitational collapse on the
brane is very complicated, due to, in particular, gravita-
tional interaction between the brane and the bulk (see, e.g.,
[18]). Even in the simplest case of RS-type brane, and
Oppenheimer-Snyder (OS)-like collapse, braneworld grav-
ity introduces important new features in the black hole
formation process (the high energy- and KK-corrections
to the field equations of GR, i.e., the same corrections
which affect the expansion of the early Universe, are also
efficient here). These features lead to a nonstatic exterior
of the black hole [19] in the case of the OS-collapse.
Moreover, there are arguments [20,21] based on AdS/
CFT correspondence that the nonstatic behavior exists
also in a general collapse. If, really, the black hole solutions
in braneworld scenarios, for a black hole larger than AdS
radius, are quite different from those in four-dimensional
GR (i.e., if, as authors of [20,21] argue, these solutions are
necessarily nonstatic and predict short lifetime of large
black holes due to the strongly enhanced evaporation),
there is an unique chance to probe the extra dimension
by astronomical observations of massive black holes.

Predictions for an evolution of the small (rs � ‘) black
holes are less dramatic (and less speculative). The differ-
ences from the four-dimensional case are reduced to a
larger probability of accretion, in the high-energy regime
(due to the fact that in this regime the radiation density is
proportional to t�1 rather than t�2), and to a relative
increase of the primordial black hole (PBH) lifetime, for
a given initial mass. In particular, initial mass of PBHs
evaporating today can be 109–1010 g rather than � 1015 g
as predicted by GR.

For the PBHs having small masses, there are astrophys-
ical constraints on their abundance, based, e.g., on studies
of extragalactic photon and neutrino backgrounds. These
constraints give, as usual, the information about primordial
density perturbations (we assume that PBHs form from
these perturbations). For an extraction of this information
one must know the evolution of these perturbations in
radiation era. In the recent work by Cardoso et al. [22] it
had been shown that the density perturbations with short
wavelengths are amplified during horizon reentry. The
magnitude of this enhancement depends, clearly, on a scale
of the density perturbations. The smaller is the scale, the
earlier the perturbation crosses horizon, and, if comoving
wave number k is larger than some critical value kc, this

crossing happens at high-energy regime. The straightfor-
ward calculation of the enhancement factor, in the region
of scales which are relevant for PBHs with small masses,
evaporating near today, is quite difficult, even numerically,
due to a very complicate machinery of cosmological per-
turbation theory in braneworld cosmology.
In the present paper, we study the dependence of the

enhancement factor on the comoving size of the density
perturbations. We carried out detailed numerical calcula-
tions of gauge-invariant amplitudes of curvature perturba-
tions as functions of the scale factor and the corresponding
enhancement factors. We found the approximate solution
(of the equations for perturbation amplitudes), describing
the time evolution of the amplitudes near horizon crossing.
According to this solution, the magnitude of the enhance-
ment factor does not depend, in the high-energy region, on
the comoving scale. Using this conclusion, it is possible to
calculate the enhanced perturbation amplitudes for arbi-
trarily small scale.
The plan of the paper is as follows. In Sec. II, the

equations of perturbation theory in RS2 braneworld cos-
mology which are necessary for curvature perturbation
calculations are given. In Sec. III, the approximate solution
of these equations in the high-energy limit is suggested. In
the Sec. IV, the main relations characterizing the PBH
evolution in the RS2 braneworld are briefly reviewed.
The scheme used in the numerical calculations is presented
in Sec. V. The results of the paper and conclusions are
summarized in the last section.

II. SCALAR PERTURBATIONS IN RS2 MODEL

A. Braneworld cosmology in RS2 model

More than ten years ago, in works [23–26], exact cos-
mological solutions in the braneworld had been obtained. It
was shown also [27], for the case when the bulk is empty,
that five-dimensional geometry of all these cosmological
solutions is the well-known [28] Schwarzschild-AdS (Sch-
AdS) spacetime (i.e., the spacetime with five-dimensional
black hole geometry), having the metric

ð5Þds2 ¼ �hðrÞd�2 þ dr2

hðrÞ þ r2d�2
K: (1)

Here, d�2
K is a metric of a unit three-dimensional sphere,

plane, or hyperboloid (for K ¼ þ1, 0, �1, respectively),

hðrÞ ¼ K þ r2

‘2
�M

r2
; (2)

K is the curvature of the horizon, M is the mass parameter
of the black hole at r ¼ 0, ‘ is the AdS curvature radius.
The most natural physical interpretation is that a cosmo-
logically evolving brane is moving in this spacetime, while
for an observer on the brane this motion will be seen as an
expansion of the Universe. If the brane trajectory is given
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by equations �b ¼ TðtÞ, rb ¼ aðtÞ, where t is the proper
time of the brane, the induced metric on the brane becomes

ð4Þds2 ¼ �dt2 þ a2ðtÞd�2
K; (3)

which is the metric of the Friedmann-Lemaitre-Robertson-
Walker (FLRW) spacetime.

The parameterM is unknown, but the value of it can not
be too large for the braneworld scenario to be consistent,
e.g., with nucleosynthesis data [25]. We suppose that
M ¼ 0 and shall consider below only this particular case.
Further, we shall consider the spatially flat brane only,
i.e., K ¼ 0. Introducing a new spatial coordinate z by
relation z ¼ ‘=r, the metric (1) with M ¼ 0, K ¼ 0
becomes conformally flat

ð5Þds2 ¼ ‘2

z2
ð�d�2 þ dz2 þ �ijdx

idxjÞ: (4)

On the brane, the connection of � and t is given by [13]

�b ¼ TðtÞ; _T ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2

�
_a

a

�
2

s
; (5)

and a z coordinate of the brane is zb ¼ ‘=rb ¼ ‘=a.
The main hypothesis of any braneworld model is that

the string theory predicts Einstein gravity in the bulk, i.e.,
the equation

GAB ¼ �2
5T AB (6)

takes place. In our case, the bulk energy-momentum tensor
has the form

T AB ¼ ��5

�2
5

GAB þ ��
A�

�
BS���ðy� ybÞ; (7)

where �5 is the bulk cosmological constant, �5 is a five-
dimensional gravitational coupling constant, S�� is an

effective energy-momentum tensor for the brane, yb is
the brane position (transverse coordinate of the brane). In
the Gaussian normal (GN) system, yb ¼ 0. The tensor S��

consists of a brane tension term and the matter energy-
momentum tensor T��,

S�� ¼ �g�� þ T��: (8)

Using junction condition [29], one obtains the effective
four-dimensional Einstein equation on a brane [30]:

ð4ÞG�� ¼ ��4g�� þ �2T�� þ �4
5��� � E��: (9)

In this equation, the quantities � and �4, which are
four-dimensional gravitational coupling constant and
four-dimensional cosmological constant, respectively, are
given by relations

�4 ¼ 1

2

�
�5 þ �4

5

6
�2

�
; �2 ¼ �2

5

�

6
: (10)

In AdS bulk, �5 < 0. In addition, we will use the RS fine
tuning condition

�5 ¼ ��4
5

6
�2; (11)

which is necessary for static solutions to exist in RS2
model. The four-dimensional gravitational constant be-
comes

�2 ¼ ��4
5

6
¼ ��5

�
: (12)

At last, the bulk Einstein equations GAB ¼ ��5gAB give
the relation between the five-dimensional cosmological
constant and the AdS curvature radius �5 ¼ �6=‘2.
Further, the tensor ��� in Eq. (9) is given by the

expression

��� ¼ � 1

4
T��T

�
� þ 1

12
T�
�T��

þ 1

24
g��½3T�	T

�	 � ðT�
�Þ2�; (13)

and E�� is the limiting value on the brane of the electric

part of the bulk Weyl’s tensor. The latter term is, in the
effective Einstein’s equations, an external source, with an
energy-momentum tensor TE

�� defined as

TE
�� ¼ � 1

�2
E��; TE�

� ¼ 0: (14)

In the case which we consider in the present paper, this
tensor is equal to zero because the Weyl tensor CABCD

vanishes for an AdS bulk.
The���-tensor term in the effective Einstein equations

(components of this tensor are quadratic in �) leads to
the following modification of the Friedmann equation
(�2 ¼ 8
G):

H2 ¼ 8
G

3
�

�
1þ �

2�

�
: (15)

Deriving this formula, the fine tuning condition Eq. (11)
and equalities K ¼ 0, M ¼ 0 in Eq. (2) are used.
The solution of Eq. (15) for a radiation-dominated state
(p ¼ �=3) on the brane is (see, e.g., [31])

aðtÞ ¼ aeq
t1=4ðtþ tcÞ1=4

t1=2eq

; (16a)

HðtÞ ¼ 2tþ tc
4tðtþ tcÞ ; (16b)

�ðtÞ ¼ 3

32
Gtðtþ tcÞ ; (16c)

where tc � ‘=2. The conservation equation has the same
form as in four-dimensional case:

_� ¼ �3Hð�þ pÞ: (17)

As one can see, at late times (i.e., at low energy density),
the well-known relations of four-dimensional cosmology
are recovered. The time dependence of the horizon mass in
RS model is (we put c ¼ 1)
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MhðtÞ � 4
�

3H3
¼ 8t2ðtþ tcÞ2

Gð2tþ tcÞ3
: (18)

The transition between the so-called high-energy (HE)
and low-energy (LE) regimes happens at the ‘‘critical’’
epoch, at which H‘ ¼ 1, and horizon mass at this time

(this happens at t ¼ ‘
2
ffiffi
2

p ¼ tc=
ffiffiffi
2

p
) is

Mhðtc=
ffiffiffi
2

p Þ � 5� 1025 g

�
‘

0:1 mm

�
: (19)

The critical value of the comoving wave number kc, which
corresponds to this critical epoch, can then be written using
the known relations between the horizon mass and the
comoving wave number (see, e.g., [32]) as

kc � keq

�
Mhðtc=

ffiffiffi
2

p Þ
Meq

��1=2
�
g�c
g�eq

��1=12

� 3� 1010 Mpc�1

�
‘

0:1 mm

��1=2
�
g�c
100

��1=12
; (20)

where keq, Meq, and g�eq are wave number, horizon mass,

and effective number of relativistic degrees of freedom
corresponding to the time of matter-radiation equivalence,
and g�c is the number of relativistic degrees of freedom
corresponding to the critical epoch.

The main parameter of the model ‘ can be constrained
by Newton’s law tests in table-top experiments. The most
recent results [33,34] give the following limit, which is
very important for cosmological implications of the model:

‘ & ð0:015–0:044Þ mm: (21)

The corresponding constraints from astronomical observa-
tions are somewhat weaker (see, e.g., [35]).

B. Scalar perturbations

The case when M ¼ 0 in Eq. (2) corresponds to a pure
AdS bulk spacetime. It is known that in this case a study of
cosmological perturbations in the bulk and the brane is
greatly simplified. It was shown in [7,8,13] that a solution
of the perturbed five-dimensional Einstein equations in a
vacuum AdS bulk, having only metric perturbations,

ð5Þ�GA
B ¼ 0; (22)

can be reduced to a solution of the evolution equation for
the ‘‘master variable’’ � (which depends only on coordi-
nates in the two-dimensional orbit space, i.e., on �, z),
whereas all gauge-invariant metric perturbations in the
bulk are written in terms of this �.

In Poincare coordinate system [used above, in Eq. (4)],
the wave equation governing the evolution of the master
variable in the bulk (the master equation) is

� @2�

@�2
þ @2�

@z2
þ 3

z

@�

@z
þ

�
1

z2
� k2

�
� ¼ 0: (23)

Here, and everywhere below, we work with Fourier trans-
forms (with respect to the xi’s) of � and all the perturba-
tion functions.
The important boundary condition for� can be obtained

from Israel’s junction conditions [29]. These conditions
take the simplest form in a GN coordinate system, in which
the bulk metric is

ð5Þds2 ¼ g��dx
�dx� þ dy2: (24)

The perturbed five-dimensional metric in this system is
given, in generalized five-dimensional longitudinal gauge,
by the expression

gAB ¼
�n2ð1þ 2 ~AÞ 0 n ~Ay

0 a2½ð1þ 2 ~RÞ�ij� 0

n ~Ay 0 1þ 2 ~Ayy

0
B@

1
CA:
(25)

All quantities in Eq. (25), and, in particular, n, a, are
functions of GN coordinates t, y. On the brane one has
nb ¼ 1, ab ¼ aðt; y ¼ 0Þ. The functions aðy; tÞ and nðy; tÞ
are known from the solution of the Einstein equations in

GN coordinate system [25]. Scalar quantities ~A, ~Ay, ~Ayy,
~R

in Eq. (25) are gauge invariants. The formulas relating the
derivatives in two coordinate systems are given by

@

@y
¼ 1

a

�
�‘

_a

a

@

@�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
_a

a

�
2
‘2

s
@

@z

�
; (26a)

@

@t
¼ 1

a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
_a

a

�
2
‘2

s
@

@�
� ‘

_a

a

@

@z

�
: (26b)

Using the expressions for the junction conditions [36],
we neglect in them the terms with anisotropic stress per-
turbation in the perturbed energy-momentum tensor for
matter on the brane and, correspondingly, all terms con-
taining the brane bending scalar �ðt; xiÞ (describing the
perturbed position of the brane) in the expression for the
perturbed extrinsic curvature tensor. In this approximation,
one can introduce the following notations:

� ¼ ~Ab; � ¼ � ~Rb; (27)

having in mind that these gauge-invariant perturbations
of the bulk metric coincide, on the brane, with lapse
and curvature perturbations in the conventional four-
dimensional cosmological perturbation theory.
Junction conditions give the expressions for matter per-

turbations ð��; �q; �pÞ on the brane through the linear
combinations of gauge invariants and their derivatives
and, therefore, through the master variable � and its
derivatives. Using these expressions, one can obtain,
for �, a boundary condition on the brane expressed
through the gauge-invariant quantity � [defined below in
Eq. (33)] [12]:
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�
@�

@y
þ 1

‘

�
1þ �

�

�
�þ 6�a3

�k2
�

�
b
¼ 0: (28)

Considering the perturbed effective Einstein equations

ð4Þ�G�� ¼ �2�T�� þ �4
5���� � �E��; (29)

one can parameterize the perturbations of E�� in the form

[10,37]:

�E0
0 ¼ �2��EY; (30a)

�Ei
0 ¼ �2kYi�qE ; (30b)

�Ei
j ¼ ��2

�
1

3
��EY�i

j þ k2�
EY
j
i

�
; (30c)

Y¼ eikx; Yi ¼�1

k
@iY; Yij ¼ 1

k2
@i@jYþ 1

3
�ijY;

(31)

treating the trace free tensor �E�� as an additional fluid

source term in Eq. (29) with a radiationlike equation of
state. This assumption is in full analogy with a case of the
tensor T��, where one has

�T0
0 ¼ ���Y; (32a)

�T0
i ¼ �kYi�q; (32b)

�Tj
i ¼ ��Y�i

j þ k2�
Yj
i : (32c)

The perturbations of the Weyl fluid ð��E ; �qE; �
EÞ trans-
fer effects of the bulk metric perturbations (effects of ‘‘KK
degrees of freedom’’) to the brane.

The solution of the perturbed equations (29) is a general-
ization of the results of standard four-dimensional cosmo-
logical perturbation theory. The corresponding formulas
are derived in [22] (in the approximation �
 ¼ 0). These
formulas express gauge invariants �, � in terms of the
gauge-invariant matter perturbation variables� (which is a
density contrast in the comoving gauge) and V (which is a
peculiar velocity in the longitudinal gauge), as in the four-
dimensional perturbation theory. These invariants are
given by the relations (in the longitudinal gauge)

�� ¼ ��� 3H�q; að�þ pÞV ¼ �k�q: (33)

There are two differences from the four-dimensional the-
ory: the formulas include i)Oð�=�Þ corrections and ii) KK
corrections, i.e., the terms proportional to ��E , �qE , and
�
E . These latter terms can be expressed through the
master variable [12]:

��E ¼
�
k4�

3�2a5

�
b
; (34a)

�qE ¼
�

k2

3�2a3

�
_�� _a

a
�

��
b
; (34b)

�
E ¼ 1

6�2a3

�
3 €�� 3

_a

a
_�þ k2

a2
�� 3

2
�2
5ðpþ �Þ�0

�
b
;

(34c)

where the prime denotes @y and the dot denotes @t.

Using the results of [22] and Eq. (34), one can easily
obtain the ordinary differential equation for the gauge-
invariant �. In the approximation c2s ¼ _p= _� ¼ 1=3,
w ¼ p=� ¼ 1=3, one has

€�þH _�þ
�
1

3

�
k

a

�
2 � 4�

�‘2
� 18�2

�2‘2

�
� ¼ 4k4

9‘a5
�b:

(35)

This equation contains the term which is proportional to
�b in the right-hand side. Therefore, this equation is con-
nected with Eqs. (23) and (28).
Another important gauge invariant is the curvature per-

turbation on uniform density slices. It is defined by the
relation � ¼ c �H��= _�, where c is the curvature per-
turbation. The relation between � and � also contains �b:

� ¼
�
1

4
þ 3�a2ð3�þ 2�Þ

4k2‘2�2

�
�þ 3Ha

4k2
d�

d
þ k2

6‘a3
�b:

(36)

III. THE HIGH-ENERGY REGIME

Studying, in the high-energy regime of radiation-
dominated era (when, in particular, H � �

�‘ , @y � �@t),

the dependence of � and � on time before horizon cross-
ing, by power series methods, and taking into account only
the dominant growing mode, one can obtain (at leading
order in k) the result [22]

�as � 4

3
ðkÞ2; �as

b � 3‘a3�k�2ðkÞ3: (37)

Here, a� is the scale factor at time of Hubble horizon
crossing. In the high-energy regime one has

 ¼ 1

3aH
; a ¼ a�ð3kÞ1=3: (38)

The connection between a� and the comoving wave num-
ber is

a� ¼ k

H�
¼ ac 	 ð

ffiffiffi
2

p � 1Þ1=3
�
kc
k

�
1=3

; (39)
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ac � aðtc=
ffiffiffi
2

p Þ � 1:25�1=4
R

�
H0‘

c

�
1=2

� 10�16

�
‘

0:1 mm

�
1=2

: (40)

One can rewrite Eqs. (37) in the form:

�as � 4

27

�
a

a�

�
6
;

1

‘
�as

b � 1

9

�
a

a�

�
9 a3�
k2

: (41)

As one can see from Eqs. (41) and (39), the value of �as at
Hubble horizon crossing is constant and the corresponding
value of �as

b depends only on k.
We are interested in a behavior of � and �b in a

relatively short time interval, from a ¼ a� up to a & 3a�.
As the results of the numerical calculations show (see
Sec. VI), just near a � 3a� the �b, � values reach maxi-
mum. At later times the oscillations begin, and amplitudes
of these oscillations are equal, approximately, to the maxi-
mum magnitudes of �b, � reached at the previous period
of the smooth behavior.

Our key assumption is the following: the growth of �b

amplitude in the interval (a� 
 3a�) can be described, in
the limit of large k, k � kc, by a function which does not
depend on the comoving wave number k. Namely, one
assumes that

1

‘
�b ¼ 1

9

a3�
k2

�
a

a�

�
9
f�

�
a

a�

�
; (42)

in the asymptotical limit of the high-energy regime
k � kc. The function f� decreases with a growth of
a=a� and it is assumed that f�ð1Þ ¼ 1.

According to this assumption, the time evolution of �b,
starting from the horizon reentry, is the same for all co-
moving wave numbers k, and the k dependence of �b

enters only through initial conditions at a ¼ a�. It may
be justified as follows. A general solution of the master
equation is given by the expression [38]

�b ¼ ‘3

z

Z
dmSðmÞZ0ðmzÞe�i!�; (43)

where Z0 is the linear combination of Hankel functions and

SðmÞ is the arbitrary function, ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. The vari-

able m has a physical sense of the KK mass. In the high-
energy regime, when H‘ � 1, the physical sizes of per-
turbations, at horizon reentry, are smaller than ‘, a�=k ¼
1=H� � ‘. Correspondingly, k � a�=‘. At the same time,
it is well known that in the high-energy regime the con-
tribution to �b from the massive KK modes is, in general,
significant (in contrast with the low energy case), i.e., the
characteristic values of m contributing to the integral for
�b can be much larger than a�=‘. So, in the high-energy
regime, characteristic m values are of the same order as k
values, or even larger, and the k dependence of �b can be

effectively masked (if !char ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

char þ k2
q

� mchar).

The assumption (42) is used below for numerical calcu-
lations of � in the region k � kc. The results of these
calculations show (see Sec. VI for details) that in this
region of k, the ratios �ðaÞ=�ða�Þ are the same for differ-
ent k (for a� < a & 3a�). It follows from here that, in
addition to (42), one can assume that

� ¼ 4

27

�
a

a�

�
6
f�

�
a

a�

�
; f�ð1Þ ¼ 1; (44)

in the same interval of a, a� 
 3a�.
Substituting now the expressions (42) and (44) for �b

and � in the equations used for the numerical calculations,
one can see that all of them become independent on k (in
the high-energy regime).

In the high-energy regime, when a� t1=4, the following
useful relation holds:

H2a2 ¼
�
a

a�

��6
k2: (45)

Using this relation and ansatzes (42) and (44), one obtains,
from Eq. (36) for � ,

� ¼ 1

27

�
a

a�

�
6
f�

�
a

a�

�
þ 1

3
f�

�
a

a�

�

þ 1

9

�
6f�

�
a

a�

�
þ a

a�
f0�

�
a

a�

��
þ 1

54

�
a

a�

�
6
f�

�
a

a�

�
: (46)

At a ¼ a�, one has, as it must be, � � 1, if the condition

a

a�
f0�

�
a

a�

�
� f�

�
a

a�

�
(47)

holds. At a=a� ¼ 3, i.e., near the maximum, one has

�max ¼ �

�
a

a�
� 3

�
¼ 1

27
36
�
f�ð3Þ þ 1

2
f�ð3Þ

�
: (48)

If f�ð3Þ � f�ð3Þ � 0:15, one obtains that �max � 6.
This value is close to a value of the enhancement factor
(see Sec. VI).
The equation (35) for �, after substituting of Eqs. (42)

and (44), becomes

3
a

a�
f00� þ 30f0� þ

�
a

a�

�
5
f� ¼

�
a

a�

�
5
f�: (49)

Neglecting in Eq. (49) the terms with derivatives, in ac-
cordance with Eq. (47), one obtains the approximate result

f�

�
a

a�

�
� f�

�
a

a�

�
: (50)

Analogously, from the equation (28) for the boundary
condition, one obtains

a

a�
f0� � 8f� þ 8f� ¼ 0: (51)

For consistency with Eq. (50), the function f�ða=a�Þ must
obey the inequality
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a

a�
f0�

�
a

a�

�
� f�

�
a

a�

�
: (52)

This condition is consistent with the similar condition (47)
and with (50).

In conclusion, we showed in this section, that the as-
sumptions (42) and (44) lead to the independence of the
ratio �ðaÞ=�ða�Þ on k in the interval a� 
 3a�, in the high-
energy regime. Estimates show that for the mode with
k ¼ 10kc the critical epoch corresponds to the moment
of time when a ¼ 3a�. Therefore, beginning from
k � 10kc, the interval (a� 
 3a�) is entirely in the high-
energy regime. Correspondingly, the asymptotical region
in which �ðaÞ=�ða�Þ is independent on k begins from k’s
which are larger than 10kc (say, from k� 30kc).

IV. CHARACTERISTICS AND EVOLUTION OF
FIVE DIMENSIONAL BLACK HOLES

The formation and evolution of PBHs in RS2 cosmology
had been investigated in [31,39–44].

Supposing that the braneworld PBHs localized on
the brane are represented by the five-dimensional
Schwarzschild solution [14,15] for the metric, one obtains,
for the induced four-dimensional metric on the brane, the
expression

ds2 ¼ �
�
1�

�
rs
r

�
2
�
dt2 þ

�
1�

�
rs
r

�
2
��1

dr2 þ r2d�2;

(53)

which does not coincide with the four-dimensional
Schwarzschild metric. Correspondingly, the relation be-
tween PBH mass MBH and radius

rs ¼
ffiffiffiffiffiffiffi
8

3


s �
‘

‘4

�
1=2

�
MBH

M4

�
1=2

‘4 (54)

is different from the analogous relation in the four-
dimensional case (throughout this section, we will use,
following [39], the convenient notations, in which M4 is
the Planck mass, ‘4 ¼ M�1

4 is the Planck length, t4 ¼ ‘4 is
the Planck time).

It follows from Eq. (54) that if PBH’s radius at its
formation is smaller than AdS radius ‘, the following
inequality for PBHs mass holds:

MBH

M4

<
‘

‘4
: (55)

We assume, as usual, that PBHs form with masses equal,
approximately, to the horizon mass Mh at the time of
formation,

MBH � Mh: (56)

Using the expression for Mh [Eq. (18)] and the relation
tc ¼ ‘=2, one can see that the equality (56) is con-
sistent with the inequality (55) only if t < tc, i.e., in the

high-energy regime. It means that PBHs which form in the
high-energy regime are five-dimensional black holes.
A rate of a loss of the PBH’s mass, due to the five-

dimensional evaporation, is proportional to r�2
s for the

evaporation in the brane as well as in the bulk. So,
one has dMBH=dt�M�1

BH. Resulting lifetime of the black
hole tevap is proportional to M2

BH rather than M3
BH as in the

four-dimensional case

tevap
t4

� ‘

‘4

�
MBHðtc; tevapÞ

M4

�
2
: (57)

In this formula, tc is the time of the onset of evaporation,
MBHðtc; tevapÞ is the PBH mass at t ¼ tc, which evaporates

at t ¼ tevap (one assumes that tc � tevap). Here we assume,

following [42], that in the relatively short period of time
from the PBH formation ti, up to the end of the high-energy
regime tc, black hole does not evaporate but increases its
mass due to the accretion. The increase of mass due to
the accretion is determined by the equation [40,41]
dM=dt� qM=t [q is the (unknown) parameter of an effi-
ciency of the accretion, 0< q< 1]. It is assumed, for
simplicity, in a derivation of Eq. (57) that at t ¼ tc the
accretion process ends completely, giving place for the
pure evaporation.
One can check that if AdS radius is too small, the

condition for five dimensionality of PBHs rs < ‘ can not
be satisfied. Comparing the mass-lifetime relation (57)
with the expression for the radius (54), one can determine,
for a given lifetime, the minimal possible value of ‘ given
by the relation

t0teqtNS
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15

0 5 10 15

15

10

5

0
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log
10

t s

lo
g 10

M
B

H
g

FIG. 1 (color online). Black hole mass M�
BH versus the mo-

ment of time at which it evaporates, assuming the case of RS
cosmology with ‘ ¼ 0:1 mm. Labels ‘‘tNS,’’ ‘‘teq,’’ and ‘‘t0’’

show, correspondingly, the nucleosynthesis, matter-radiation
equivalence, and present epochs.
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‘min �
�
tevap

t4

�
1=3

‘4: (58)

If, e.g., PBH evaporates today, tevap � t0 � 1017 s, one has

‘min ¼ 1020‘4.
The BH mass at the onset of the evaporation (t ¼ tc),

if the age of the black hole is equal to the age of the
Universe, is

MBHðtc; t0Þ
�M�

BHðt0Þ � 5� 109
�

‘

0:1 mm

��1=2
g; ‘> 1020‘4

(59)

and, in general, for PBH evaporating at time t,

M�
BHðtÞ� 5�109

�
‘

0:1 mm

��1=2
�
t

t0

�
1=2

g; ‘>

�
t

t4

�
1=3

‘4:

(60)

The dependence of M�
BH on t for ‘ ¼ 0:1 mm is shown

in Fig. 1.
One should note, in a conclusion of this section, that if

the accretion efficiency is not small, the initial masses of
the PBHs are smaller than its masses at the onset of the
evaporation. And, even without any accretion, initial
masses of the five-dimensional PBHs are, for the same
values of total lifetime, much smaller than initial masses
in the standard cosmology. It means that in the five-
dimensional case the known astrophysical constraints on
the PBH abundance correspond to primordial perturbations
on smaller scales.
The dependence of horizon mass on time and k in brane

cosmology is shown in Fig. 2. It is seen that PBHs with
mass less than �1025 g are produced in the high-energy
regime. The corresponding comoving wave numbers are
larger than 1011 Mpc�1. If ‘ � 0:1 mm, then PBHs evap-
orating today correspond to k * 1017 Mpc�1 � 106kc.

V. NUMERICAL SCHEME

It follows from Sec. IV that in brane cosmology
PBHs having, at formation, relatively small masses
(& ð109–1010Þ g) and, in particular, evaporating near today
had been produced long before the critical epoch, tform �
tc. The corresponding comoving sizes of perturbed regions
are also small, k�1 � ð10�16–10�17Þ Mpc. Therefore, it is
practically important to determine the enhancement factors
for rather large values of k, k * ð106–107Þkc. The straight-
forward numerical calculations of these factors for such
large k are quite difficult and unreliable, but, luckily, the
numerical calculations for moderately large k, k�
ð10–30Þkc show the flattening and the possible saturation
of the dependence of the enhancement factor Q on k. We
argue now that, really, QðkÞ does not depend on k in the
limit of very large k, k � kc.
For the numerical solution of the system of Eqs. (23) and

(35) with boundary condition (28), a pseudospectral cal-
culation method was employed. Such methods are often
used in the tasks of hydrodynamics and a detailed descrip-
tion can be found, e.g., in [45].
To be able to perform a spectral transformation over the

set of Chebyshev polynomials, we do a following change
in the variables:

�ð�; zÞ ! �ðt; �Þ; (61)

� ¼ 2z� ðzreg þ zbðtÞÞ
zreg � zbðtÞ ; �1 � � � 1; (62)

where t has the meaning of cosmic time on the brane and is
related to � by
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FIG. 2 (color online). The dependence of horizon mass on
cosmic time t (upper panel) and comoving wave number k
(lower panel). Solid curves show the case of RS cosmology
assuming that ‘ ¼ 0:1 mm, while dashed curves are for the case
of standard four-dimensional cosmology.
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d�

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘2HðtÞ2p

aðtÞ ; (63)

while zreg is the position of the regulatory boundary (arti-

ficial cutoff that is introduced to make a computational
domain finite, see, e.g., [46,47]).

The equation for � (23) is rewritten in new variables as

@2�

@t2
þ Kt�

@2�

@t@�
þ K��

@2�

@�2
þ Kt

@�

@t
þ K�

@�

@�

þ K� ¼ 0; (64)

where

Kt�ðt; �Þ ¼ 2
@�

@�

�
dt

d�

��1
; (65a)

K��ðt; �Þ ¼
��

@�

@�

�
2 �

�
2

zreg � zbðtÞ
�
2
��

dt

d�

��2
; (65b)

Ktðt; �Þ ¼ 2
d2t

d�2

�
dt

d�

��2
; (65c)

K�ðt; �Þ ¼
�
2
@2�

@�2
� 6

zðt; �Þðzreg � zbðtÞÞ
��

dt

d�

��2
; (65d)

Kðt; �Þ ¼ �
�

1

zðt; �Þ2 � k2
��

dt

d�

��2
: (65e)

Further, a new variable � related to time derivative of
� is introduced [46] to reduce the task to two first-order
equations:

@�

@t
¼ �� Kt�

@�

@�
� Fð�;�0

�; t; �Þ; (66)

@�

@t
¼ �K��

@2�

@�2
þ

�
@Kt�

@t
� K�

�
@�

@�

� Kt

�
�� Kt�

@�

@�

�
� K�

� Gð�;�;�0
�;�

00
��; t; �Þ: (67)

To solve this system using difference method, the
transformation of all quantities over set of Chebyshev
polynomials is done for the � (and �) axis. This is
done at each time step so that system of partial differential
Eqs. (66) and (67) reduces to the system of ordinary
differential equations.

Thus, at each point ðtp; �nÞ, the following quantities are

known:

�;�;�0
�;�

00
��; F;G;

and also known are Chebyshev transforms

~� n; ~�n; ð ~�0
�Þn; ð ~�00

��Þn; ~Fn; ~Gn:

The grid (see Fig. 3 for illustration) based on Gauss-
Lobatto points is used here

�n ¼ cos

�

n

N

�
; n ¼ 0; 1; . . . ; N (68)

because it allows to perform fast Fourier transforms (FFTs)
between the set of values of any variable (e.g., �) in

Gauss-Lobatto points and its Chebyshev components ~�n.

Chebyshev transforms of derivatives, such as ð ~�0
�Þn and

ð ~�00
��Þn, are also easily obtained using recurrence relations

from the Chebyshev components of the function (see [45]
for details).
Equations that are actually solved on each time step are

d ~�n

dt
¼ ~FnðtÞ; d~�n

dt
¼ ~GnðtÞ: (69)

FIG. 3 (color online). (upper panel) The computational grid on
which we solve the system of Eqs. (35) and (64) with boundary
condition (28). The physical brane is at � ¼ �N ¼ �1, while the
regulatory one is at � ¼ �0 ¼ 1. (lower panel) An example of
computational result for master variable � (in this case, we took
k ¼ 30kc and N ¼ 64, so brane is at � ¼ �64 ¼ �1). The grid
over n is shown to be homogenous; however, note that the actual
�n grid is inhomogeneous due to Eq. (68).
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For points on the brane,�ðtpÞ is also evaluated at each step
and Eq. (35) is solved using a finite difference method (in
our case, a 4th order Adams-Bashforth-Moulton scheme).

The boundary conditions are imposed on the values of

the highest two components of the master variable, ~�N and
~�N�1. This is done by demanding the following:

�0
�ð�1Þ ¼ XN

n¼0

~�nT
0
nð�1Þ; (70a)

�0
�ð1Þ ¼

XN
n¼0

~�nT
0
nð1Þ; (70b)

where Tnð�Þ is the nth order Chebyshev polynomial. The
value of �0

�ð1Þ is assumed to be zero (condition on the

regulatory brane), while the value on the physical brane
�0

�ð�1Þ is related to other quantities by the boundary

condition (28), which can be expanded as

�
@�

@�

�
�¼�1

¼
0
B@

H‘�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2‘2

p � 1
‘ ð1þ �

�Þ�� 6�a3�
�k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2‘2

p
aðzreg�zbðtÞÞ � H‘

a
@�
@� þ Kt�H‘ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2‘2
p

1
CA

�¼�1

:

(71)

Following the approach of [46], we also use the following
additional condition: ~�N ¼ ~�N�1 ¼ 0.
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FIG. 4 (color online). The result of the numerical calculation
of master variable� for k ¼ 3kc. Upper panel: the illustration of
�ð�n; tÞ (here, N ¼ 32, units over time and� axis are arbitrary);
lower panel: the value of � on the brane,�b. The normalization
is given by � ¼ 1 for a � a�.
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FIG. 5 (color online). The calculation of the density contrast
and curvature perturbation on the brane for k ¼ 3kc for the cases
of full five-dimensional calculation (curves labeled ‘‘5D’’),
effective approach (approximation of �b ¼ 0, curves labeled
‘‘Eff’’), and General Relativity, i.e. standard cosmology (GR).
Note that the value of a� is the same for five-dimensional and Eff
cases but is different for GR because of the different evolution of
the background quantities. Upper panel: Comoving density
contrast � as a function of the scale factor, normalized to � ¼
1 in superhorizon regime. Lower panel: Curvature perturbation �
calculated using the same three approaches.
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VI. RESULTS AND CONCLUSIONS

The main results of the numerical calculations are shown
in Figs. 4–8. Figures 4 and 5 show, for a given value of k,
k ¼ 3kc, the evolution, near horizon crossing, of three
variables: �b (Fig. 4), � (Fig. 5, upper panel), and �
(Fig. 5, lower panel). It is clearly seen that all three
variables rise with a, up to a� 3a�. It is also seen from
Fig. 5 that the corresponding rise of � and � in GR is
weaker, and, as a result, we have an enhancement. It
follows also, from Fig. 5, that the enhancement is not
zero in the approximation �b ¼ 0 when there are no KK
corrections in the equations of the five-dimensional per-
turbation theory.

In Figs. 6 and 7, it is shown how the evolution curves
for � and �b change with an increase of k. It is seen,
from Fig. 6, that the enhancement grows with k, but
there is a clear tendency of a slowdown of this growth at
k > 10kc.

Following [22], we define the factors that show the
degree of enhancement of the perturbation amplitudes:

Q eff ¼ �eff

�GR

; QE ¼�5D

�eff

; Q5D ¼ �5D

�GR

¼QeffQE:

(72)

In a case of the effective theory (�b ¼ 0), the enhance-
ment reaches an asymptotic value Qeff � 3 at k� 100kc.
However, the direct calculation of Q5D (or, equivalently,
QE) for very large wave numbers k � kc is not easy, due
to a quite complicate behavior of � in the bulk (see Fig. 3
for an illustration: the larger value of k, the more frequent
are the oscillations in the bulk). Because of limitations of
computing resources, we have been able to make direct

calculations in five-dimensional case only for a limited
range of k & 30kc.
In order to study the PBH production for masses

M�
BHðt0Þ � 109 g [such PBHs, as we have seen in Sec. IV,

evaporate near today, if the value of ‘ is close to its upper
bound (21)], we need information about cosmological
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FIG. 6 (color online). The result of the numerical calculation
of � for different values of k.
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FIG. 7 (color online). The result of the numerical calculation
of �b for different values of k, normalized to �k ¼ 1 in the
superhorizon regime. Arrows show the horizon crossing time
(k ¼ aH) for each mode.
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FIG. 8 (color online). Enhancement factors that show the
degree of increasing of the perturbation amplitude after horizon
entry. From bottom to top, curves show the enhancement of the
amplitude of five-dimensional calculation compared to the ef-
fective one, effective theory compared to General Relativity
result, and five-dimensional calculation compared to General
Relativity result.
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perturbations for k * 106kc. To perform calculations for
such large wave numbers, we have used an approximate
approach according to which �bða=a�Þ has the same form
[and is given by Eq. (42)] for all large wave numbers (see
the discussion in Sec. III). In these calculations, we have
used, for the required function f�ða=a�Þ, the corresponding
function obtained from the direct numerical calculation for
k ¼ 30kc. Using this approach, we have calculated the
enhancement factors for large values of k (k * 30kc). The
results of the calculation are shown in Fig. 8.

In summary, we stressed in this paper that, in RS2 brane
cosmology, the PBHs of relatively small mass (the concen-
tration of which in space can be constrained by cosmologi-
cal arguments) form in the high-energy regime and the
corresponding comoving wave numbers are very large,
k� ð106–107Þkc. We thoroughly studied, by numerical

methods, the evolution of scalar perturbation amplitudes
(those needed for calculations of the PBH production) near
horizon crossing for a wide range of comoving scales. We
confirmed the main conclusion of [22], according to which
amplitudes of the curvature perturbation get enhanced after
horizon reentry (before a beginning of the oscillation
phase). We developed an approximate phenomenological
approach for calculations of the perturbation amplitudes for
very small scales, where the direct numerical methods are
powerless. We argued, using this approach, that in the
asymptotic limit of high energies, the enhancement factor
is constant as a function of the perturbation scale. We
presented details of the numerical scheme (based on the
pseudospectral method), which is used for a treating of
scalar cosmological perturbations on the brane and in the
bulk.
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