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The quantum theory of optical coherence is applied to the scrutiny of the statistical properties of the

relic inflaton quanta. After adapting the description of the quantized scalar and tensor modes of the

geometry to the analysis of intensity correlations, the normalized degrees of first-order and second-order

coherence are computed in the concordance paradigm and are shown to encode faithfully the statistical

properties of the initial quantum state. The strongly bunched curvature phonons are not only super-

Poissonian but also superchaotic. Testable inequalities are derived in the limit of large-angular scales and

can be physically interpreted in the light of the tenets of Hanbury Brown–Twiss interferometry.

The quantum mechanical results are compared and contrasted with different situations including the

one where intensity correlations are the result of a classical stochastic process. The survival of second-

order correlations (not necessarily related to the purity of the initial quantum state) is addressed by

defining a generalized ensemble where super-Poissonian statistics is an intrinsic property of the density

matrix and turns out to be associated with finite volume effects which are expected to vanish in the

thermodynamic limit.
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I. FORMULATION OF THE PROBLEM

The current data accounting for various properties of the
cosmic microwave background (CMB) anisotropies and
polarization are all consistent with the presence, prior to
matter-radiation equality, of a quasiflat spectrum of curva-
ture perturbations whose origin is customarily attributed to
an (early) inflationary stage of expansion occurring when
the Hubble rate was, roughly, of the order of 1 millionth
of the Planck energy scale (see Refs. [1–4] and, for a
more comprehensive perspective on large-scale data, also
Ref. [5]). When CMB data are combined with other data
sets (such as the large-scale structure data [6,7] and the
supernova data [8,9]) the typical parameters describing the
large-scale curvature modes are slightly (but not crucially)
modified. The agreement between the parameter determi-
nations obtained by combining different data sets seems to
reach the level of the per mill. This apparent (statistical)
accuracy can be reached within the simplest scenario,
conventionally dubbed �CDM where � stands for the
dark energy component and CDM for the cold dark matter
component. The quest for statistical accuracy should not
forbid thinking, in broader terms, of the very nature of the
preinflationary initial conditions whose precise nature is all
but well established [5] and anyway not explained in the
framework of the �CDM paradigm.

Can we establish, independently of the CMB data sets
(see, e.g., Refs. [1–4]), the duration of the inflationary

stage of expansion?1 Not really: inflation could have
been very long or it could have been just minimal (i.e.,
with approximate duration between 63 and 65 e-folds by
assuming the largest value of the slow-roll parameter com-
patible with the current upper limits set by the WMAP data
[1,2]). Is it known which were the initial conditions of the
scalar and tensor modes of the geometry around the onset
of the inflationary dynamics? Not really: if inflation lasted
much more than the required 65 e-folds probably the only
sound initial state for the inflaton quanta (and within the
logic of inflationary models) was the vacuum. Conversely,
if the duration of inflation was just minimal (or close to
minimal) then different kinds of quantum mechanical ini-
tial states could play a decisive role and their associated
energy density can only be constrained by back-reaction
considerations [10].
The pair of questions contained in the previous para-

graph are usually answered within two opposite points of
view. Within the first set of hypotheses, the duration of the
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1In the �CDM paradigm, the total curvature of the Universe
receives, at the present time, a leading contribution from the
extrinsic curvature and a subleading contribution from the in-
trinsic (spatial) curvature. The role of inflation is, in this context,
to make the ratio between intrinsic and extrinsic curvature
sufficiently minute at the onset of the radiation-dominated epoch
so that it can easily be of order 1 today (during a decelerated
stage of expansion the ratio between intrinsic and extrinsic
curvature is actually increasing). The duration of the inflationary
phase required to solve the latter goal represents one of the ways
of pinning down the minimal number of inflationary e-folds.
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inflationary phase is determined by the aim of reproducing
some structure in the temperature or polarization angular
power spectra: in this case the duration of the inflationary
phase is correlated (by construction) with the spectral
behavior of the initial data for the scalar and tensor modes
of the geometry. The second (often tacit) assumption is that
the duration of inflation is much larger than 60 e-folds: in
this way quantum mechanical initial conditions are better
justified but the initial state does not have specific observ-
able consequences. In different terms, the present measure-
ments on the large-scale temperature and polarization
anisotropies are only able to probe the power spectrum of
curvature (adiabatic) fluctuations possibly present prior to
matter-radiation equality over typical wavelengths much
larger than the Hubble radius at the corresponding epoch.
The increase of the number of inflatons or the addition of
supplementary (nonadiabatic) components in the initial
conditions [11–13] automatically increases the number of
parameters by making the model less predictive even if,
potentially, more sound.

The aim of the present paper is less pretentious than the
two extreme approaches mentioned in the previous para-
graph: instead of arguing (on a purely theoretical basis)
how long inflation must have been, it seems plausible to
scrutinize whether it is possible, at least in principle, to
determine the statistical properties of the initial state of
relic inflaton quanta. In this respect it is both plausible and
useful to draw a physical analogy with a similar class of
problems arising in the quantum optical treatment of the
fluctuations of visible light (see [14–16] for three classic
treatises covering, with different emphasis, all the theoreti-
cal tools which will also play a role in the forthcoming
considerations). Consider, for the sake of concreteness, a

scalar quantum field V̂ð ~x; �Þ where ~x denotes the spatial

coordinate and � the time variable, or V̂ð ~x; �Þ might denote
the quantum field describing either relic phonons or the
single polarization of a graviton; in the following discus-

sion, however, the scalar field V̂ð ~x; �Þ denotes the single
polarization of an electromagnetic wave in the visible

frequencies as sometimes done in quantum optics [14].
The correlation function2

Gð1Þð ~x; ~y; �1; �2Þ ¼ hV̂ð ~x; �1ÞV̂ð ~y; �2Þi (1.1)

can be probed, in quantum optics, by the Young two-slits
experiment which is sensitive to the interference of the
amplitudes of the radiation field [16] (see Fig. 1). Young
interferometry is not able, by itself, to provide information
on the statistical properties of the quantum state of the
radiation field since various states with diverse physical
properties (such as laser light and chaotic light) lead to
comparable degrees of first-order coherence. The normal-
ized counterpart of Eq. (1.1) can be written as

gð1Þð ~x; ~y; �1; �2Þ ¼ hV̂ð ~x; �1ÞV̂ð ~y; �2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjV̂ð ~x; �1Þj2ihjV̂ð ~y; �2Þj2i

q ; (1.2)

which defines the degree of first-order coherence. In Young
interferometry the light field can be classified depending

upon the value of gð1Þð ~x; ~y; �1; �2Þ:
(i) the light is first-order coherent provided

gð1Þð ~x; ~y; �1; �2Þ ¼ 1;

(ii) the light is partially coherent if 0<

gð1Þð ~x; ~y; �1; �2Þ< 1;

(iii) the light is incoherent if gð1Þð ~x; ~y; �1; �2Þ ¼ 0.

In the Young two-slit experiment the electric fields emerg-
ing from the two pinholes produce the interference fringes
on the second screen. The maximal (total) intensity on

the second screen can be written as Imax ¼ I1 þ I2 þ
2

ffiffiffiffiffiffiffiffiffiffiffi
I1I2

p
gð1Þð�Þ while the minimal (total) intensity on the

second screen can be written as Imin ¼ I1 þ I2 �
2

ffiffiffiffiffiffiffiffiffiffiffi
I1I2

p
gð1Þð�Þ where I1 and I2 denote the intensity of
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FIG. 1 (color online). The Young (plot on the left) and Hanbury Brown–Twiss (plot on the right) experiments are compared; �
denotes the time delay (the speed of light c has been restored while natural units ℏ ¼ c ¼ 1 will be used throughout).

2The averages h. . .i can denote either ensemble (statistical) or
quantum averages depending on the nature of the source and also
upon the preferred physical description. In the present paper the
amplitude and the intensities are always related to quantum
fields unless explicitly stated (see, in particular, Sec. VI).
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the radiation field in each of the two pinholes. The visibil-
ity, i.e., ðImax � IminÞ=ðImax þ IminÞ coincides exactly

with gð1Þð�Þ in the case I1 ¼ I2. If g
ð1Þð�Þ ¼ 1, the visi-

bility is maximized, and as discussed before, the light is
said to be first-order coherent.

Until the mid-1950s, Eq. (1.1) has been used to define
the coherence of the radiation field: a field was said to be
coherent when the interference fringes are maximized in a
Young-type (two-slit) correlation experiment of the type of
the one reported in the left plot of Fig. 1. The applications
of the Hanbury Brown–Twiss (HBT) effect (first to stellar
interferometry [17] and then more specifically to quantum
optics [18]) demanded the accurate study of not only
the correlations between field strengths [as defined in
Eq. (1.1)] but also the analysis of the correlations between
the intensities of the radiation field, i.e.,

Gð2Þð ~x; ~y; �1; �2Þ ¼ hÎð ~x; �1ÞÎð ~y; �2Þi; (1.3)

where now Îð ~x; �Þ ¼ V̂2ð ~x; �Þ is the intensity of the radia-
tion field. In the realistic case when the radiation field is
described by the electric field, the intensity will simply be
the squared modulus of the electric field. The physical
implications of HBT interferometry in general and of
Eq. (1.3) in particular have been important for many areas
of physics ranging from stellar astronomy [17] and quan-
tum optics [14–16], to pion interferometry [19–21] and
subatomic physics (see [22,23] for two comprehensive
reviews). In subatomic physics HBT interferometry has
been used to determine the hadron fireball dimensions
[21] which is related to the linear size of the interaction
region in proton-proton collisions. In Fig. 1 Young inter-
ferometry (plot on the left) is schematically compared to
HBT interferometry (plot on the right). In short the differ-
ence between the two experiments resides in the order of
the correlation. In the case of Young interferometry (plot
on the left in Fig. 1) the fringes on the second screen arise
as the result of the interference electric field amplitudes.
In the case of HBT interferometry the intensities of the
radiation field are measured at the correlator (see right
plot in Fig. 1). Since the intensities are quadratic in the
amplitude of the electric fields, HBT involves the study of
second-order correlation effects. Furthermore, since in
quantum theory the intensities of the radiation field are
quantized, HBT correlations represented some of the first
evidence of quantum effects in the description of optical
fields [14] as neatly expressed by Glauber [24,25] (see, in
particular, Sec. IV of the first paper quoted in Ref. [25]).

The Glauber theory of optical coherence [24,25] gener-
alizes the concept of first-order coherence to higher orders
and, in particular, to second-order. The second-order cor-
relator defined in Eq. (1.3) can be written in its normalized
form in full analogy with Eq. (1.2). In the case when the
intensities are purely classical stochastic variables the
degree of second-order coherence can be written as

�g ð2Þð ~x; ~y; �1; �2Þ ¼ hIð ~x; �1ÞIð ~y; �2Þi
hIð ~x; �1ÞihIð ~y; �2Þi : (1.4)

It is also common to define a slightly different normalized
correlator (see, e.g., [22])

Rð ~x; ~y; �Þ ¼ hIð ~x; �ÞIð ~y; �Þi
hIð ~x; �ÞihIð ~y; �Þi � 1: (1.5)

If the intensities are constructed from an appropriate field
operator, Eq. (1.4) is usually written, in a quantum optical
context, as

�g ð2Þð ~x; ~y; �1; �2Þ ¼ h:Îð ~x; �1ÞÎð ~y; �2Þ:i
h:Îð ~x; �1Þ:ih:Îð ~y; �2Þ:i

; (1.6)

where the colon makes explicit the normal ordering of the
operators. In quantum optics it is natural to impose the
normal ordering in the correlators since the detection of
light quanta (i.e., in the optical range of frequencies)
occurs by detecting a current induced by the absorption
of a photon [24,25]. In Fig. 1 (plot on the right) the basic
logic of the HBT experiment is schematically illustrated:
the electric field is first split into two components through
the beam splitter, and then it is time-delayed and finally
recombined at the correlator. The HBT setup provides
therefore an operational definition for correlating the
intensities of the radiation field. Conversely Young inter-
ferometry only probes the correlations between the
amplitudes of the radiation field. According to the
Glauber theory of optical coherence, the radiation field

is said to be first-order coherent if gð1Þð ~x; ~y; �1; �2Þ ¼ 1;
the radiation field is said to be second-order coherent

if gð2Þð ~x; ~y; �1; �2Þ ¼ 1. As we shall see in a moment, the
coherent states of the radiation field are both first-order and
second-order coherent.
HBT interferometry encodes two complementary pieces

of information characterizing the source, i.e.,
(i) the linear (or angular) size of the emitting (hyper)

surface;
(ii) the statistical properties of the emitting quanta (pho-

tons, pions, phonons, gravitons).

The first aspect is illustrated in the left plot of Fig. 2 where
the correlations of the intensities of the radiation field
Ið ~x; �1Þ and Ið ~y; �2Þ are depicted in the situation where
�1 ¼ �2 ¼ �. In Eqs. (1.4) and (1.5) hIð ~x; �ÞIð ~y; �Þi de-
notes the intensities measured both in ~x and in ~y while
hIð ~x; �Þi and hIð ~y; �Þi denote the intensities measured
separately in the two points. This definition is schemati-
cally illustrated in the left plot of Fig. 2. In a quantum
mechanical perspective Eqs. (1.5) and (1.6) imply that the
normalized degree of second-order coherence can be
measured by counting the photons. More specifically, sup-
posing that �1 ¼ �2 the number of particles observed
simultaneously in ~x and ~y can be divided by the product
of the number of counts observed separately in ~x and ~y
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(see also Fig. 2). The same reasoning holds, of course, also
in the case of pions [21] as well as in the case of other
particles obeying the Bose-Einstein statistics such as relic
phonons and relic gravitons. In this sense HBT interferom-
etry is deeply connected to what is known, in high-energy
physics, as the study of Bose-Einstein correlations [21,22].

In the case of the relic phonons and gravitons the normal
ordering of the correlators is not specifically justified
(even if it is technically useful, as we shall see). One of
the purposes of the present study is to give the correct
quantum mechanical definition of the degree of second-
order coherence in the case of the relic phonons and of the
relic gravitons in strongly correlated quantum states with
large occupation numbers per Fourier mode.

If the detection of the intensity occurs at the same spatial
location (i.e., ~x ¼ ~y) the degree of second-order coherence
will depend upon the time difference � ¼ �1 � �2 with a
bell-like shape. For � ! 0 (zero time-delay limit) the
degree of second-order coherence reaches a specific
value which depends upon the statistical properties of the
source and which will be discussed in a moment. When

gð2Þð�Þ ! 1 in the limit � � 1, the width of gð�Þ estimates
the coherence time of the source. A similar discussion can
be conducted for the degree of space-time coherence and
allows, in pion physics, an approximate determination of
the hadronic fireball dimensions [21] (see also [22,23]).

If photons are detected by photoelectric counting [15],
Eq. (1.6) can be written, for a single of the radiation field
and in the limit � ! 0 (i.e., zero time-delay limit), as

�g ð2Þð0Þ ¼ hâyâyâ âi
hâyâi2 ¼ D2 � hN̂i

hN̂i2 þ 1;

D2 ¼ hN̂2i � hN̂i2;
(1.7)

where â and ây obey the usual Heisenberg-Weyl algebra
½â; ây� ¼ 1 and D2 denotes the variance. To pass from
the first equality in Eq. (1.7) to the second expression

involving D2 it must be noted that, using the commutation

relations, hâyâyâ âi ¼ hN̂2i � hN̂i where N̂ ¼ âyâ. Using
now the definition of D2 we also have that hâyâyâ âi ¼
½D2 � hN̂i þ hN̂i2�. The second equality in Eq. (1.7) is
finally proven by appreciating that, in the definition of

�gð2Þð0Þ, the term hâyâyâ âi is divided by hâyâi2.
From Eq. (1.7) it is clear that different quantum states

will lead to different values of gð2Þð0Þ. For practical appli-
cations it is useful to define the so-called Mandel parameter
[related to the zero-time-delayed correlator of Eq. (1.5)]
whose expression is

Q ¼ hN̂i½ �gð2Þð0Þ � 1� ¼ D2

hN̂i � 1: (1.8)

In the case of a coherent state [24,25]

D2 ¼ hN̂i; �gð2Þð0Þ ¼ 1; and Q ¼ 0; (1.9)

and the radiation field is said to be second-order coherent.
If the quantum state coincides with a Fock state containing
n particles (i.e., jni), the Mandel parameter equals �1.
The (single mode) Fock states defines the lower limit of
the degree of second-order coherence i.e., Q � �1 and

�gð2Þð0Þ � 1� 1=hN̂i (the equality is reached exactly in the
case of a Fock state). Chaotic (e.g., white) light has the
property of leading to a degree of second-order coherence

double than in the case of a coherent state, i.e., �gð2Þð0Þ ¼ 2
which is a direct consequence of the (single mode) density
matrix for a thermal state (see, e.g., [14]). The quantum
mechanical correlations are then reflected in the degree of
second-order coherence and, ultimately, in the magnitude

and sign of �gð2Þð0Þ. In Fig. 2 hN̂i �g2ð0Þ is illustrated for
different quantum states as a function of the average

multiplicity �n ¼ hN̂i of each state. To distinguish graphi-

cally the different states it is practical to plot �n �gð2Þð0Þ as a
function of �n [rather than �gð2Þð0Þ itself as a function of �n].

b
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FIG. 2. In the plot on the left the physical idea of interfering intensities is schematically illustrated. In the plot on the right the
different values of the intercept �n �g2ð0Þ are reported for different quantum states as a function of the average multiplicity of each
quantum state.
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Chaotic light is an example of bunched quantum state [i.e.,

�gð2Þð0Þ> 1 implying more degree of second-order coher-
ence than in the case of a coherent state]. Fock states are

instead antibunched [i.e., �gð2Þð0Þ< 1], implying a degree of
second-order coherence smaller than in the case of a
coherent state. Experimentally the zero time-delay limit
is justified because the counting of photons (or pions) is
made for typical times smaller than the coherence time of
the source. In this sense bunched particles tend to arrive at
the photodetector more simultaneously than their anti-
bunched counterpart. The concept of bunching will be
relevant for a complete understanding of the physical
properties of curvature phonons (see, e.g., Secs. II and VI).

In this paper it will be argued that the tenets of the
quantum theory of optical coherence can be used to fully
characterize the correlation properties of cosmological
perturbations. To explore different sets of initial conditions
in conventional inflationary models the idea has been often
either to play with a preinflationary phase of limited dura-
tion or to assign, in fully equivalent terms, an initial state
on a given spacelike hypersurface [see, e.g., [10,26,27] and
references therein]. Different initial states result in large-
scale modifications of the power spectrum which can be
used either to suppress or to increase the power at large
scales [27] (see also [28,29]). Still, as it will be shown,
different initial state lead to the same degree of first-order
coherence. Second-order interference effects (and second-
order coherence) provide a framework where the statistical
properties of the initial state can be classified and under-
stood. The final aim of the approach pursued in this paper
would be to reconstruct, by direct analysis of temperature
and polarization correlations, the analog of the Mandel
parameter and the degree of second-order coherence of
the predecoupling initial conditions.

To pursue the program briefly outlined in the previous
paragraph the first step is to apply and translate the theory
of (quantum) optical coherence to the case of relic inflaton
quanta (i.e., relic gravitons and relic curvature phonons).
The layout of the paper is therefore the following.
Section II contains a quantum mechanical premise where
the second-order correlations are examined for a single
degree of freedom (e.g., a mode of a cavity) but for
quantum states whose statistical properties are very
similar to those arising in the field theoretical discussion
of the quantized scalar and tensor modes of the geometry.
In Sec. III the quantum treatment of the scalar and tensor
modes of the geometry is specifically discussed in a unified
perspective and by emphasizing those aspects which are
germane to the present analysis. In Sec. IV the degree of
first-order coherence is computed and analyzed with par-
ticular attention to wavelengths larger than the Hubble
radius. The intensity correlations are studied in Sec. V. In
Secs. VI and VII the degree of second-order coherence is
computed in different situations and always in the frame-
work of the �CDM scenario. The possibilities of a direct

estimate of the degree of second-order coherence are also
outlined. Section VIII contains the concluding remarks and
the perspectives of forthcoming analyses.

II. SINGLE MODE OF THE FIELD

By defining the quantum averages with respect to the
state jsi, the normalized degree of second-order coherence3

of Eq. (1.7) can be written as

�g ð2Þ ¼ hsjâyâyâ â jsi
hsjâyâjsi : (2.1)

By coarse graining over technical details which will be the
subject of the forthcoming sections, it is fair to say that the
quantum state of relic phonons (or relic gravitons) belongs
to the same class of generalized coherent states which
arise in the quantum theory of parametric amplification
of Glauber and Mollow [see, e.g., the Hamiltonian of
Eq. (3.3) in the first paper of [30]]. The state jsi introduced
in Eq. (2.1) will then be the result of the action of a
given unitary operator U on a given initial state jini, i.e.,
jsi ¼ Ujini. In this analogy the unitary operatorU is to be
understood as a time evolution operator. The averages
over jsi can then be made explicit. Since U�1 ¼ Uy

and ½b̂; b̂y� ¼ 1, the linear relation between the creation

and annihilation operators (â, ây) and ðb̂; b̂yÞ can be
parametrized by the two complex coefficients c�:

â ¼ Uyb̂U ¼ cþb̂þ c��b̂y; (2.2)

since jcþj2 � jc�j2 ¼ 1, c� depend upon three real num-
bers (i.e., one amplitude and two phases); this occurrence
is related to an underlying SUð1; 1Þ dynamical symmetry
(see, e.g., [31] which will be made explicit in Sec. III).
If the total number of e-folds greatly exceeds the maxi-

mal number of e-folds presently accessible by large-scale
observations4 (i.e., Ntot � Nmax), the state jini coincides,
in practice, with the vacuum, i.e., b̂jini ¼ 0. In this case
the state jsi preserves the minimum uncertainty relations
[30–33] (see also [34]). These states are often dubbed
squeezed [33–36] and lead to a specific degree of
second-order coherence which will be extremely relevant
for the forthcoming considerations. The value of Nmax can
be computed once the postinflationary thermal history is
sufficiently well specified (see, e.g., [5,37,38]) and will be
discussed in greater detail later on; for the moment it
suffices to posit that Nmax ’ 63. If Ntot ’ Nmax ’ Nmin the
statistical properties of jini can have an impact on
the large-scale power spectra as argued in [26], and in
this case, jini does not necessarily coincide with j0i.

3For sake of conciseness, the arguments of �gð2Þ shall be
omitted and it will be understood that �gð2Þ refers, in this section,
to a single mode of the field and in the zero time-delay limit.

4In the standard terminology it is customary to introduce also
Nmin, i.e., the minimal number of e-folds necessary to fix the
problems of the standard big-bang cosmology.
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Using Eq. (2.2) the numerator and denominator of Eq. (2.1)
are separately given by5

hsjâyâyâ â jsi
¼ jc�j4hinjb̂ b̂ b̂yb̂yjini þ jcþj4hinjb̂yb̂yb̂ b̂ jini

þ jc�j2jcþj2½hinjb̂b̂yb̂b̂yjinihinjb̂b̂yb̂yb̂jini
þ hinjb̂yb̂ b̂ b̂yjini þ hinjb̂yb̂b̂yb̂jini�; (2.3)

hsjâyâjsi2 ¼ ½jc�j2hinjb̂b̂yjini þ jcþj2hinjb̂yb̂jini�2:
(2.4)

Excluding, for the moment, the logical possibility that the
initial fluctuations have nothing to do with quantum
mechanics (see Sec. VI), the state jini can be either pure
or mixed.

Let us now pause for a moment and let us elaborate on
the distinction between pure (or mixed) states and corre-
lated states which will be relevant for the forthcoming
considerations. The purity of a state does not determine,
by itself, the degree of second-order coherence. A corre-
lated state (i.e., a state exhibiting a degree of second-order
coherence potentially larger than a coherent state) can be
however modeled in terms of a mixed state whose statisti-
cal weights are appropriately chosen. Consider, for in-
stance, the following parametrization of the density matrix

�̂ ¼ jinihinj ¼ X
n

Pnjnihnj;
X1
n¼0

Pn ¼ 1: (2.5)

Thanks to the parametrization of Eq. (2.5), the second-
order correlation effects of the state jiniwill be reflected in
the correlation properties of the statistical ensemble de-
fined by the weights Pn [39]. A nonvanishing initial degree
of second-order coherence

�g ð2Þ
in ¼ hinjb̂yb̂yb̂ b̂ jini

hinjb̂yb̂jini � 1 (2.6)

implies, in terms of the parametrization of Eq. (2.5), that
the statistical weights must satisfy the condition

X1
n¼0

nðn� 1ÞPn �

�X1
n¼0

nPn

�
2
; (2.7)

while there are various ways of satisfying the condition
(2.7) it can be shown that if we want all the cumulant
moments of the distribution Pn to depend only upon the
lowest two [40], then Pn must obey the following recur-
rence relation:

ðnþ 1ÞPnþ1 ¼ ðaþ bnÞPn; b � 0: (2.8)

If b ¼ 0, then �gð2Þin ¼ 1 and Pn is given by the standard

form of the Poisson distribution with average multiplicity
�n ¼ a. If, however, b � 0 the generating function of the
distribution is simply6

M ðsÞ ¼ X1
n¼0

snPn ¼ ð1� bÞa=b
ð1� bsÞa=b ; (2.9)

where clearly Mð1Þ ¼ 1 as it must be to be compatible
with Eq. (2.5). From Eq. (2.9) the various moments of the
distribution are obtained by taking the derivatives of
Eq. (2.9) at s ¼ 1. It is useful to parametrize the variance
in terms of the ratio between a and b (i.e., � ¼ a=b) and in
terms of �n (the average multiplicity). In terms of these
quantities the generating function of Eq. (2.9) can be
written as

M ðsÞ ¼ ��

½ �nð1� sÞ þ ��� ;
D2

�n2
¼ 1

�n
þ 1

�
; (2.10)

where D2 and �n are defined, respectively, as D2 ¼
M00ð1Þ þM0ð1Þ � ½M0ð1Þ�2 and �n ¼ M0ð1Þ; the prime
in the two preceding expressions denotes a derivation
with respect to s. While �n simply denotes the number of
particles of the initial state, D2 (and hence �) measures the
degree of second-order coherence of the initial state.
Equation (2.10) shows that the higher moments of the
distribution are all expressible, as anticipated, solely in
terms of � and �n since they are given, by definition, as
derivatives of MðsÞ. The final expression for Eq. (2.1) is
then given by

�g ð2Þ ¼ 1

�

�n2 �N2 þ �n2ð �N þ 1Þ2 þ 4 �N �n2ð �N þ 1Þ
½2 �N �nþ �nþ �N�2 þ �Nð �N þ 1Þ½4 �n2 þ 8 �nþ 1� þ �N2ð �n2 þ 4 �nþ 2Þ þ ð �N þ 1Þ2 �n2

½2 �N �nþ �nþ �N�2 ; (2.11)

where �N ¼ jc�j2 and jcþj2 ¼ 1þ �N. There are various
notable limits of Eq. (2.11):

(i) if �n ¼ 0 Eq. (2.11) reduces to

�g ð2Þ ¼ 3þ 1
�N
; (2.12)

which is the result expected in the case of the
squeezed vacuum state;

5Units ℏ ¼ c ¼ 1 will be used throughout.

6The probability generating function MðsÞ can be directly
obtained from Eq. (2.8) even without knowing the explicit form
of Pn; it suffices to multiply the right- and left-hand sides of
Eq. (2.8) by sn and to sum over n both sides of the resulting
equation. In this way the finite difference equation (2.8) will be
transformed in a differential equation in s which can be solved
by imposing the boundary condition Mð1Þ ¼ 1.
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(ii) if �N ¼ 0 and � ¼ 1, �gð2Þ ¼ 2 which is the case of a
thermal state (see, e. g., [14,15]);

(iii) if �N ¼ 0 and � ! 1 then �gð2Þ ¼ 1, which is the
case of a coherent state (see, e.g., [14,15]);

(iv) if �N � 1 and �n � 1 then �gð2Þ ! 3ð1þ 1=�Þ=2;
thus, if � ! 1 we shall have that also �gð2Þ ! 3 as
long as �N � 1 and �n � 1—this result agrees with
the well known result concerning the (single mode)
squeezed thermal states [41].

The most general situation corresponds to the case where
not only �n � 0 and �N � 0 but also when � � 0. It is
appropriate to conclude this discussion with a simple re-
mark on the normal ordering in the definition of the degree
of second-order coherence. Suppose that we define the
degree of second-order coherence without resorting to
normal ordering; for instance we can antinormal order
(i.e., hsjâ â âyâyjsi) or even adopt a mixed kind of ordering

(e.g., hsjââyâyâjsi). Denoting with gð2Þg the degree of
second-order coherence with generic ordering, it can be
shown that

gð2Þg ¼ �gð2Þ þOð1=hNiÞ; (2.13)

where hNi schematically denotes the mean number of
quanta which depends, ultimately, upon the initial state.

III. RELIC PHONONS AND RELIC GRAVITONS

The simplest setup compatible with the �CDM para-
digm stipulates that the background geometry is confor-
mally flat with metric tensor �g�� ¼ a2ð�Þ���, where �

denotes the conformal time coordinate.7 The scalar and
the tensor fluctuations of the geometry can be described as
[42–44]

�ðsÞg00 ¼ 2a2�; �ðsÞgij ¼ 2a2c�ij;

�ðtÞgij ¼ �a2hij; @ih
i
j ¼ hii ¼ 0;

(3.1)

where �ðsÞ and �ðtÞ denote, respectively, the scalar and the

tensor fluctuations of the corresponding quantity; the
gauge freedom has been completely fixed in Eq. (3.1) by
selecting the conformally Newtonian gauge. If the infla-
tionary stage of expansion is driven by a single background
scalar field ’, defining with �ðsÞ’ the scalar fluctuation of

the inflaton and with ’ the actions describing the evolution
of the scalar and tensor modes of the geometry can be
written, respectively, as (see, for instance, [10,45])

SðsÞ ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p z2

a2
�g	
@	R@
R; (3.2)

SðtÞ ¼ 1

8‘2P

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�g	
@	hij@
hij; (3.3)

where R represents the curvature perturbation on comov-
ing orthogonal hypersurfaces whose explicit expression,
in the case at hand, is

R ¼ �c �H�s’

@�’
; z ¼ a@�’

@� lna
; (3.4)

and H ¼ @� lna. Using that �g�� ¼ a2ð�Þ���,

Eqs. (3.2) and (3.3) can be written as

SðsÞ ¼ 1

2

Z
d4x�	
@	R@
Rz2; (3.5)

SðtÞ ¼ 1

2

Z
d4x�	
@	h@
ha

2: (3.6)

Equation (3.6) holds for each of the two tensor polariza-

tions (see, e.g., [10,46]) having defined h� ¼ ffiffiffi
2

p
‘Ph with

� ¼ �, � and ‘P ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
[see also Eq. (6.5) where the

reduced Planck mass �MP ¼ ‘�1
P enters the definition of

the slow-roll parameters]. Indeed hijð ~x; �Þ can be decom-

posed as

hijð ~x; �Þ ¼
X
�

qð�Þij h
ð ~x; �Þ; (3.7)

where q�ij ¼ ðâiâj � b̂ib̂jÞ and q�ij ¼ ðâib̂j þ âjb̂iÞ; defin-
ing with k̂ the direction of propagation of the wave, â, b̂,

and k̂ form a triplet of mutually orthogonal unit vectors.
Probably the first paper mentioning quantum mechanics as
a possible source of large-scale inhomogeneities, though
not in the framework of any inflationary hypothesis, is the
one of Sakharov [47]. The emphasis on the action for the
normal mode of the scalar fluctuations (i.e., scalar pho-
nons) appeared in a paper by Lukash [48] in the context of
fluid models. Later on different authors applied it to scalar
field matter with particular attention to the quantization of
the fluctuations [49,50] (see also [51]). The form of the
actions is the one derived in [10]. The scalar and tensor
fluctuations of the geometry can be canonically quantized;
after introducing the appropriate normal modes

�ð ~x; �Þ ¼ að�Þhð ~x; �Þ; �ð ~x; �Þ ¼ zð�ÞRð ~x; �Þ; (3.8)

the tensor and scalar Lagrangian densities become, respec-
tively,

LðtÞð ~x; �Þ ¼ 1

2
½ð@��Þ2 þ ð@� lnaÞ2�2 � 2ð@� lnaÞ�@��

� ð@i�Þ2�; (3.9)

LðsÞð ~x; �Þ ¼ 1

2
½ð@��Þ2 þ ð@� lnzÞ2�2 � 2ð@� lnzÞ�@��

� ð@i�Þ2�; (3.10)

whose associated canonical momenta

7The conventions adopted in the redshifts are such that the
present value of the scale factor a0 is normalized to 1; note that
in Sec. I � denoted, consistently, the time coordinate in
Minkowski space.
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�ðtÞ ¼ @��� ð@� lnaÞ�; �ðsÞ ¼ @��� ð@� lnzÞ�;
(3.11)

can be used to derive the canonical Hamiltonians

HðtÞ ¼ 1

2

Z
d3x½�2

ðtÞ þ 2ð@� lnaÞ�ðtÞ�þ ð@i�Þ2�; (3.12)

HðsÞ ¼ 1

2

Z
d3x½�2

ðsÞ þ 2ð@� lnzÞ�ðsÞ�þ ð@i�Þ2�: (3.13)

Since Eqs. (3.12) and (3.13) have the same canonical
structure, the two problems can be treated simultaneously
by resorting to the Hamiltonian:

Ĥð�Þ ¼ 1

2

Z
d3x½�̂2 � 2i
ð�̂ �̂þ�̂ �̂Þ þ @k�̂@k�̂�;

(3.14)

where �̂ and �̂ are the two canonically conjugate field
operators. In Eq. (3.14) 
 ¼ ið@� lnaÞ=2 (in the case of the
tensor modes) and 
 ¼ ið@� lnzÞ=2 (in the case of the scalar
modes). Similarly �̂ will coincide either with �̂ðtÞ (in the

case of the tensor modes) or with �̂ðsÞ (in the case of the

scalar modes). The Fourier representation of the field
operators can be written as

�̂ð ~x; �Þ ¼ 1ffiffiffiffi
V

p X
~p

�̂ ~pð�Þe�i ~p	 ~x;

�̂ð ~x; �Þ ¼ 1ffiffiffiffi
V

p X
~p

�̂ ~pð�Þe�i ~p	 ~x;
(3.15)

where V represents a fiducial (normalization) volume. In
the continuum limit we will have

P
~k ! V

R
d3k=ð2�Þ3

and the canonical commutation relations impose, in

Fourier space, ½�̂ ~k; �̂
y
~p� ¼ i�ð3Þð ~k� ~pÞ where �̂y

~k
¼ �̂� ~k

and �̂y
~k
¼ �̂� ~k because of the hermiticity of the corre-

sponding field operators in real space. Introducing creation

and annihilation operators obeying ½â ~k; â
y
~p� ¼ �ð3Þð ~k� ~pÞ,

the field operators and the canonical momenta can be ex-
pressed as

�̂ ~p ¼ 1ffiffiffiffiffiffi
2p

p ðâ ~p þ ây� ~pÞ; �̂ ~p ¼ �i

ffiffiffiffi
p

2

r
ðâ ~p � ây� ~pÞ:

(3.16)

Inserting Eq. (3.16) into Eq. (3.14) the resulting
Hamiltonian in the continuum limit is

Ĥð�Þ ¼ 2
Z

d3pfpK0ð ~pÞ
þ ½
�ð�ÞK�ð ~pÞ þ 
ð�ÞKþð ~pÞ�g; (3.17)

where the operators K�ð ~pÞ and K0ð ~pÞ,

Kþð ~pÞ ¼ ây~pâ
y
� ~p;

K�ð ~pÞ ¼ â ~pâ� ~p;

K0ð ~pÞ ¼ 1

2
½ây~pâ ~p þ â� ~pâ

y
� ~p�;

(3.18)

satisfy the commutation relations of the SUð1; 1Þ Lie
algebra, i.e.,

½K�ð ~pÞ;Kþð ~qÞ� ¼ 2K0ð ~pÞ�ð3Þð ~p� ~qÞ;
½K0ð ~pÞ;K�ð ~qÞ� ¼ �K�ð ~pÞ�ð3Þð ~p� ~qÞ:

(3.19)

The group SUð1; 1Þ is not a symmetry group of the
Hamiltonian of the problem but the SUð1; 1Þ algebra can
be viewed, in the terminology of [52] (see also [53]), as the
spectrum generating algebra insofar as the total (general-
ized) charge does commute with all the generators of the
group (as well as with the total Hamiltonian) while the total
number of particles does commute with the charge but not
with the full Hamiltonian. Owing to the group structure
(3.19) and to the specific form of the Hamiltonian of
Eq. (3.17), the multiparticle final state can be obtained by
applying to the initial state j�ið ~pÞi the product of two
unitary operators �ð’pÞ and �ð�pÞ:
j�fð ~pÞi ¼ �ð’pÞ�ð�pÞj�ið ~pÞi; j�fi ¼

Y
~p

j�fð ~pÞi;

(3.20)

where the unitary operators are defined as8

R ð’pÞ ¼ exp½�2i’pK0ð ~pÞ�;
�ð�pÞ ¼ exp½��

pK�ð ~pÞ � �pKþð ~pÞ�;
(3.21)

with �p ¼ rpe
i�p and 	p ¼ ð2’p � �pÞ; the time evolu-

tion of the variables rpð�Þ, ’pð�Þ, and 	pð�Þ is given by

drp
d�

¼ 2i
 cos	p;

d’p

d�
¼ p� 2i
 tanhrp sin	p;

d	p

d�
¼ 2p� 4i


sin	p

tanh2rp
:

(3.22)

Equation (3.22) is symmetric for rp ! �rp and 
 ! �
.

The corresponding Hamiltonian of Eq. (3.14) is actually
symmetric for

z ! 1

z
�̂ ~k ! �k�̂ ~k; �̂ ~k !

1

k
�̂ ~k; (3.23)

and analogously in the tensor case for a ! 1=a. The trans-
formation of Eq. (3.23) is related to electric-magnetic
duality [54–56] in conformally flat background geometries

8Note that ’p should not be confused with ’ (denoting the
inflaton field). This confusion cannot actually arise since it is
clear that ’p is a momentum-dependent phase.
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when the a and z are replaced by the (dynamical) gauge
coupling. The relation between the Schrödinger and the
Heisenberg descriptions is easily worked out by appreciat-
ing that

�̂ ~kð�Þ ¼ fkð�Þâ ~kð�0Þ þ f�kâ
y
� ~k
ð�0Þ; (3.24)

�̂ ~kð�Þ ¼ gkð�Þâ ~kð�0Þ þ g�kâ
y
� ~k
ð�0Þ: (3.25)

In Sec. II the operators at the initial time �0 have been

denoted with b̂; thus, accounting for the momentum de-

pendence, we will denote b̂ ~k ¼ â ~kð�0Þ, by� ~k
¼ ây� ~k

ð�0Þ.
The evolution of the mode functions fkð�Þ and gkð�Þ can
be obtained from the evolution equations in the Heisenberg
description,

i@��̂ ¼ ½�̂; Ĥ�; i@��̂ ¼ ½�̂; Ĥ�; (3.26)

and they are given by

@�fk ¼ gk þ @� lnafk; @�gk ¼ �k2fk � ð@� lnaÞgk
(3.27)

for the tensor case and by

@� ~fk ¼ ~gk þ @� lnz~fk; @�~gk ¼ �k2 ~fk � ð@� lnzÞ~gk
(3.28)

for the scalar case. Both sets of mode functions are sub-
jected to the following Wronskian normalization for any �:

~f pð�Þ~g�pð�Þ � ~f�pð�Þ~gpð�Þ ¼ i; (3.29)

fpð�Þg�pð�Þ � f�pð�Þgpð�Þ ¼ i: (3.30)

IV. FIRST-ORDER COHERENCE

The degree of first-order coherence is measured by the
following normalized correlation function:

gð1Þð ~x; ~y; �Þ ¼ h�̂ð ~x; �Þ�̂ð ~y; �Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj�̂ð ~x; �Þj2ihj�̂ð ~y; �Þj2i

q : (4.1)

In the usual quantum optical setup provided by standard
interferometers (such as Michelson, Mach-Zehnder, or

Sagnac) the �̂ operators are replaced either by electric
field operators or even by classical fields. In Young inter-
ferometry the electric fields are split, time-delayed, and
then recombined on a screen. It is easy to show that the
analog of Eq. (4.1) is nothing but the visibility, i.e., the
normalized difference between the maximal and the mini-
mal intensity of the light detected on the Young screen.

In quantum theory, the degree of first-order coherence is
fully determined by the averaged multiplicity of the initial
state. Let us suppose that the initial state is characterized
by an averaged multiplicity �nq per each field mode.

Following the notations employed in Sec. II but accounting
for the momentum dependence, we will have

hinjb̂y~q b̂ ~pjini ¼ �nq�
ð3Þð ~q� ~pÞ: (4.2)

Given the average occupation number of the initial
state, Eq. (4.1) can be computed in explicit terms.
Recalling Eqs. (3.15) and (3.16) the two-point function is
simply given by

h�̂ð ~x; �Þ�̂ð ~y; �Þi ¼ 1

4�2

Z
qdq½cosh2rq � cos	q sinh2rq�


 ð2 �nq þ 1Þj0ðqrÞ; (4.3)

h:�̂ð ~x; �Þ�̂ð ~y; �Þ:i
¼ 1

2�2

Z
qdq½cosh2rq � cos	q sinh2rq� �nqj0ðqrÞ; (4.4)

where the normal-ordered case has been included for com-
parison and where j0ðqrÞ is the zeroth-order spherical
Bessel function [57,58]. To deduce Eqs. (4.3) and (4.4) it
is useful to recall that

â ~q ¼ e�i’q½coshrqb̂ ~q � ei�q sinhrqb̂
y
� ~q�; (4.5)

where, as in Eqs. (3.20) and (3.21), �q ¼ ð2’q � 	qÞ.
Since sinh2rq ¼ �Nq is the averaged multiplicity of the

squeezed vacuum state, the expression appearing inside
the square brackets in Eqs. (4.3) and (4.4) can also be
written as

cosh2rq � cos	q sinh2rq

¼ 2 �Nq þ 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nqð �Nq þ 1Þ

q
cos	q: (4.6)

The solution of either Eq. (3.22) or Eqs. (3.27) and (3.28)
leads to an even more explicit form of the degree of first-
order coherence which will be indirectly mentioned in
Sec. VII. In spite of the statistical properties of the initial
state and in spite of the operator ordering, Eqs. (4.3) and
(4.4) imply that

lim
qr!0

gð1Þðr; �Þ ¼ 1; r ¼ j ~x� ~yj; q ¼ j ~qj: (4.7)

Concerning the limit of Eq. (4.7) few comments are in
order. Mathematically the correct limit to be implemented
is r ! 0 since the correlation function is the result of an
integral over the comoving three-momentum; at the same
time the physical limit, as indicated in Eq. (4.7), is qr � 1
(and also, as we shall see in the case of second-order
correlations, jk�j � 1). From the explicit expression of

gð1Þðr; �Þ it is also clear that the integrals over q might
not always be convergent. Still the result of the limit holds
because, for r ! 0 the divergent contributions in the nu-
merator and in the denominator exactly cancel.
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The result of Eq. (4.7) can be dubbed by saying that the
relic gravitons and the relic phonons are always first-order
coherent9 irrespective of the statistical properties of the
initial state which could be rather different such as a mixed
or a pure state. In both cases the density operator of the
initial state can be defined in the most appropriate basis, for
instance, a Fock basis or a coherent state basis. For a
thermal (or chaotic) ensemble the density matrix can be
written, in the Fock basis, as

�̂¼X
fng
Pfngjfngihfngj; Pfng ¼

Y
~k

�n
n~k

~k

ð1þ �n ~kÞn ~kþ1
; (4.8)

where, in analogy with the notations employed in Sec. II,

�n ~k ¼ Tr½�̂ây~k â ~k� is the average occupation number of each

Fourier mode and, following the standard notation, jfngi ¼
jn ~k1

ijjn ~k2
ijjn ~k3

i . . . where the ellipses stand for all the

occupied modes of the field. The density matrix always
describes a mixed state but the �n ~k should not be necessarily

identified with the Bose-Einstein occupation number. In
the case of a multimode coherent state the density matrix
can instead be written as

�̂ ¼ jf
gihf
gj;
jf
gi ¼ Y

~k

jf
~kgi;

jf
~kgi ¼ e�j
~k
j2=2X

n ~k



n ~k

~kffiffiffiffiffiffiffi
n ~k!

p jn ~ki:

(4.9)

The initial state of Eq. (4.9) is pure and its averaged multi-
plicity per Fourier mode is given by �nk ¼ j
kj2. Hence
Eq. (4.7) holds both for the state of Eq. (4.8) and for the
state of Eq. (4.9) as well as for all the possible initial states
(either pure or mixed). This simply means that the degree
of first-order coherence is only sensitive to the particle
content of the initial state but not to its statistical proper-
ties. Initial states exhibiting a high degree of correlation
cannot be distinguished just by looking at the analog
of Young interferometry. A given multiparticle state can
always be projected on the coherent state basis [14].

The idea is to write the multiparticle density matrix of a
mixed state in the basis of a multimode coherent state using
the overcompleteness of jf�gi

�̂ ¼
Z

Pðf�gÞjf�gihf�gjd�f�g; (4.10)

d�f�g ¼ � ~k

�
1

�
d2�~k

�
; (4.11)

where Pðf�gÞ is the phase-space functional. The represen-
tation of Eq. (4.10) cannot be more singular than a Dirac
delta function and it should also be positive semidefinite:
these two properties are not satisfied by any quantum
state. For instance, in the case of the density matrices of
Eqs. (4.8) and (4.9) the corresponding phase-space func-
tionals are

Pðf�gÞ ¼ Y
~k

1

�n ~k

exp½�j�~kj2= �n ~k�; (4.12)

Pðf�gÞ ¼ Y
~k

�ð2Þð�~k � 
~kÞ: (4.13)

There are indeed states leading to a phase-space functional
which is more singular than a delta function (the delta
function case corresponding to a coherent state) such as
the squeezed states and various of their generalizations
[59,60]. As will be clear in what follows, the method of
the phase-space functional will just be mentioned as a
cross-check in the calculation of some expectation values
involving the initial state of the relic phonons and of the
relic gravitons. In the cases where this technique will be
employed, the P representation will always be well defined
and regular. When normal ordering is imposed, in the
coherent state basis defined by Eqs. (4.10) and (4.11) and
by Eqs. (4.12) and (4.13), the quantum averages are re-
placed by averages over complex numbers weighted by the
phase-space functional related to the so-called Glauber-
Sudarshan P representation [14–16]. The latter properties
go under the name of the optical equivalence theorem and
greatly simplify the calculations of field correlators pro-
vided the density matrix of the quantum states involved in
the average can be represented in the coherent state basis
with P distribution not more singular than a Dirac delta
function [14–16]. This observation can be used to check
the results of various correlators in the limit of large
occupation numbers since, in this limit, the ordering of
the higher-order correlators is immaterial as discussed at
the end of Sec. II.
The main result of this section can be summarized by

saying that the field describing the relic phonons and the
relic gravitons is always first-order coherent when the
relevant wavelengths are larger than the Hubble radius at
each corresponding epoch. Furthermore, given the explicit

form of Eqs. (4.3) and (4.4), we can also conclude that 0 �
gð1Þðr; �Þ � 1; i.e., the field is first-order coherent in the
large-scale limit and partially coherent for smaller scales.

V. INTENSITY CORRELATIONS

The degree of second-order coherence is defined as in
Eq. (1.6), i.e.,

9The terminology ‘‘first-order coherence’’ (and later on of ‘‘-
second-order coherence’’) is the one borrowed from the Glauber
theory of optical coherence as formulated in [24,25]. In Sec. I the
basics of Glauber approach to optical fields have been reviewed
and will now be applied in the present and in the following
sections to the case of relic phonons and relic gravitons.
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gð2Þð ~x; ~y; �Þ ¼ hÎð ~x; �ÞÎð ~y; �Þi
hÎð ~x; �ÞihÎð ~y; �Þi ; (5.1)

where Îð ~x; �Þ ¼ �̂2ð ~x; �Þ and Îð ~y; �Þ ¼ �̂2ð ~y; �Þ. As an-
ticipated in the introductory section Eq. (5.1) differs from
the quantum degree of second-order coherence appearing
in Refs. [14–16]. In quantum optics the intensities are
measured by phototubes and the correlation is proportional
to the transition rate for a joint absorption of photons at the
two points. The treatment of the photoelectric effect shows
that the transition amplitude is proportional to the matrix

element of ÊðþÞð ~y; �2ÞÊðþÞð ~x; �1Þ; accordingly the degree
of second-order coherence is defined, in quantum optics,
as [14–16]10

�gð2Þð ~x; ~y; �1; �2Þ

¼ h:Êð�Þð ~x; �1ÞÊð�Þð ~y; �2ÞÊðþÞð ~y; �2ÞÊðþÞð ~x; �1Þ:i
h:Êð�Þð ~x; �1ÞÊðþÞð ~x; �1Þ:ih:Êð�Þð ~y; �2ÞÊðþÞð ~y; �2Þ:i

;

(5.2)

where Êð�Þð ~x; �Þ and ÊðþÞð ~x; �Þ denote, respectively, the
negative and the positive frequency parts of the electric
field operator for a single polarization. By rewriting
Eq. (5.2) in the notation of the present paper the quantum
degree of second-order coherence becomes, in the case
�1 ¼ �2 ¼ �,

�gð2Þð ~x; ~y;�Þ

¼ h:�̂ð�Þð ~x;�Þ�̂ð�Þð ~y;�Þ�̂ðþÞð ~y; �Þ�̂ðþÞð ~x;�Þ:i
h:�̂ð�Þð ~x; �Þ�̂ðþÞð ~x;�Þ:ih:�̂ð�Þð ~y;�Þ�̂ðþÞð ~y;�Þ:i ; (5.3)

where, as above, �̂ð�Þð ~x; �Þ and �̂ðþÞð ~x; �Þ denote

the negative and the positive frequency parts of �̂.
Equations (5.1) and (5.3) are technically different but
physically equivalent. The numerical value of the normal-
ized degree of second-order coherence (in the zero time-
delay limit) can differ between Eqs. (5.1) and (5.3) for a
given quantum state. However, as discussed in Eq. (2.13)
these difference vanish either when the number of particles
of the initial state is large or when the number of produced
particles is large. Barring for specific numerical differences
which are relevant in the limit of small occupation num-
bers, Eq. (5.3) shall be primarily considered; if appropriate,
the relations of the obtained results with the normal-
ordered definition shall be swiftly mentioned. The degree
of second-order coherence given in Eq. (5.1) can be esti-
mated as

hÎð ~x; �ÞÎð ~y; �Þi ¼ 1

V2

X
~q

X
~p

X
~q0

X
~p0
F ðq; p; q0; p0; ~x; ~y; �Þ;

(5.4)

where the expression F ðq; p; q0; p0; ~x; ~y; �Þ is given by

fhâ ~qâ ~pâ
y
~q0 â

y
~p0 ie�ið ~qþ ~pÞ	 ~xþið ~q0þ ~p0Þ	 ~y

þ hây~q ây~pâ ~q0 â ~p0 ieið ~qþ ~pÞ	 ~x�ið ~q0þ ~p0Þ	 ~yhâ ~qâ
y
~pâ ~q0 â

y
~p0 i


 e�ið ~q� ~pÞ	 ~x�ið ~q0� ~p0Þ	 ~y

þ hâ ~qâ
y
~pâ

y
~q0 â ~p0 ie�ið ~q� ~pÞ	 ~xþið ~q0� ~p0Þ	 ~yhây~q â ~pâ ~q0 â

y
~p0 i


 eið ~q� ~pÞ	 ~x�ið ~q0� ~p0Þ	 ~y þ hây~q â ~pâ
y
~q0 â

y
~p0 ieið ~q� ~pÞ	 ~xþið ~q0� ~p0Þ	 ~yg:

(5.5)

Inserting Eq. (4.5) into Eq. (5.5) various averages will
appear such as

hb̂y~q b̂y~pb̂ ~q0 b̂ ~p0 i; hb̂ ~qb̂
y
~pb̂

y
~q0 b̂ ~p0 i; . . . ; (5.6)

where the ellipses stand for the four remaining permuta-
tions. Each of the averages of Eq. (5.6) are evaluated using
the density matrix of the initial state, i.e., for instance,

hb̂y~q b̂y~pb̂ ~q0 b̂ ~p0 i ¼ Tr½�̂b̂y~q b̂y~pb̂ ~q0 b̂ ~p0 �; (5.7)

and similarly for all the other expectation values of the
fields arising in Eq. (5.5) upon insertion of Eq. (4.5). The
density matrix appearing in Eq. (5.7) can be the density
matrix either of a pure state or of a mixed state and can be
written, in general terms, as

�̂ ¼ X
fng
Pfngjfngihfngj;

X
fng
Pfng ¼ 1: (5.8)

As already mentioned in Sec. II we are interested in the
possibility that the initial state has a specified degree of
second-order coherence. The simplest nontrivial situation
is the one discussed in Eq. (2.8) and hereby generalized to
the situation where a ! ak and b ! bk do depend upon
the momentum (as appropriate in the case of many bosonic
degrees of freedom). Thus the field theoretical general-
ization of the probability distribution implicitly mentioned
in Sec. II can be written as

Pfng ¼
Y
~k

�ð� ~k þ n ~kÞ
�ð� ~kÞ�ðn ~k þ 1Þ

�
�n ~k

�n ~k þ � ~k

�
n ~k

�
� ~k

�n ~k þ � ~k

�
� ~k
: (5.9)

The evaluation of Eq. (5.7) proceeds therefore by noticing
that

hb̂yi b̂yj b̂kb̂‘i ¼ hb̂yi b̂yi b̂ib̂ii�ij�jk�‘k

þ hb̂yi b̂yj b̂ib̂ji�ik�j‘½1� �ij�
þ hb̂yi b̂yj b̂jb̂ii�i‘�jk½1� �ij�; (5.10)

where b̂i and b̂yj denote the annihilation and creation

operators related to two generic momenta, i.e., for instance

10As in Sec. II, �gð2Þ denote the normal-ordered degree of
second-order coherence while in Eq. (5.1) the bar has been
omitted.
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b̂ ~q and b̂y~p; furthermore, following the same shorthand

notation, �ij denotes the delta functions over the three-

momenta (i.e., �~q; ~p). In Eq. (5.10) two different classes of

terms appear: in the first class of terms (i.e., hb̂yi b̂yi b̂ib̂ii)
there are four different operators all acting on the same

momentum; in the second class of terms (i.e., hb̂yi b̂yj b̂ib̂ji
and hb̂yi b̂yj b̂jb̂ii) the momenta are paired two by two (as the

corresponding deltas indicate). Since the averages are to be
computed using the initial density matrix characterized, in
general, by the statistical weights discussed above, we have

hb̂yi b̂yj b̂kb̂‘i ¼
X
mi

miðmi � 1ÞPiðmiÞ;

hb̂yi b̂yj b̂ib̂ji ¼
X
mi;mj

mimjPijðmi;mjÞ;

hb̂yi b̂yj b̂jb̂ii ¼
X
mi;mj

mimjPijðmi;mjÞ:

(5.11)

In Eq. (5.11) the following shorthand notations have been
used:

PiðmiÞ 
 PkiðmkiÞ; Pijðmi;mjÞ 
 PkiðmkiÞPkjðmkjÞ:
(5.12)

The second relation of Eq. (5.12) is indeed trivial in the
light of the very definition of Pfmg:

Pfmg ¼ Pk1ðmk1ÞPk2ðmk2ÞPk3ðmk3Þ . . . :; (5.13)

where the ellipses stand for the product over the various
momenta; at the same time the explicit appearance of Pij

is useful to trace the origin of the various terms. Inserting
Eq. (5.11) into Eq. (5.10) the correlator becomes

hb̂yi b̂yj b̂kb̂‘i ¼
X
mi

�
miðmi � 1ÞPiðmiÞ

� 2mi

X
mj

mjPijðmi;mjÞ
�
�ij�jk�‘k

þ X
mi;mj

mimjPijðmi;mjÞ½�ik�j‘ þ �i‘�jk�:

(5.14)

Finally, using Eqs. (5.12) and (5.13), Eq. (5.14) can be
written as

hb̂yi b̂yj b̂kb̂‘i ¼
X
mi

½miðmi � 1ÞPiðmiÞ

� 2miPiðmiÞ
X
mj

mjPjðmjÞ��ij�jk�‘k

þX
mi

miPiðmiÞ
X
mj

mjPjðmjÞ½�ik�j‘þ�i‘�jk�:

(5.15)

For an explicit evaluation of the sums of Eq. (5.15) it is
useful to employ the probability generating function and
the cumulant generating function

M ¼ Y
~k

M ~kðsk; �n ~k; � ~kÞ; C ¼ Y
~k

C ~kðsk; �n ~k; � ~kÞ;

(5.16)

whose specific form, from Eq. (5.9), becomes

M ~kðsk; �n ~k; � ~kÞ ¼
�
� ~k

~k

½� ~k þ ð1� skÞ �n ~k�� ~k

;

C ~kðsk; �n ~k; � ~kÞ ¼ �� ~k ln

�
1þ ð1� skÞ

�n ~k

� ~k

�
;

(5.17)

and coincides with the expression already derived in
Eq. (2.10) in the case of a single degree of freedom. The
various sums of Eq. (5.15) can be explicitly evaluated as
combinations of the derivatives of the probability generat-
ing function. The final result can be expressed as

hb̂yi b̂yj b̂kb̂‘i¼ �n2i

�
1

�i
�1

�
�ij�jk�k‘þ �ni �nj½�ik�j‘þ�i‘�jk�:

(5.18)

By restoring, in Eq. (5.18), the standard notations for the
comoving three-momenta of the field we will have that

hb̂y~q b̂y~pb̂ ~q0 b̂ ~p0 i ¼ �n2q

�
1

�q
� 1

�
�~q; ~p� ~p; ~q0�~q0; ~p0

þ �nq �np½�~q; ~q0� ~p; ~p0 þ �~q; ~p0� ~p; ~q0 �: (5.19)

The same procedure leading to Eqs. (5.18) and (5.19) can
be used to compute, with the due differences, all the other
expectation values arising in the evaluation of the intensity
correlation. In particular,

hb̂ib̂jb̂yk b̂y‘ i ¼ �n2i

�
1

�i
� 1

�
�ij�jk�k‘ þ ð �ni þ 1Þð �nj þ 1Þ


 ½�ik�j‘ þ �i‘�jk�; (5.20)

hb̂ib̂yj b̂kb̂y‘ i ¼ �n2i

�
1

�i
� 1

�
�ij�jk�k‘

þ ð �ni þ 1Þð �nk þ 1Þ�ij�k‘

þ �nkð �ni þ 1Þ�i‘�jk; (5.21)

hb̂yi b̂jb̂yk b̂‘i ¼ �n2i

�
1

�i
� 1

�
�ij�jk�k‘ þ �ni �nk�ij�k‘

þ �nið �nk þ 1Þ�i‘�jk; (5.22)

hb̂yi b̂jb̂kb̂y‘ i ¼ �n2i

�
1

�i
� 1

�
�ij�jk�k‘

þ �nið �n‘ þ 1Þ½�ij�k‘ þ �ik�‘j�; (5.23)

hb̂ib̂yj b̂yk b̂‘i ¼ �n2i

�
1

�i
� 1

�
�ij�jk�k‘

þ �n‘ð �ni þ 1Þ½�ij�k‘ þ �ik�‘j�: (5.24)

The physical role of the quantum correlations can be
neatly understood by taking the Bose-Einstein limit in
the correlators of Eqs. (5.19), (5.20), (5.21), (5.22), (5.23),
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and (5.24). In the latter limit �i ! 1 for every mode of
the field; Eq. (5.9) turns into the standard thermal ensemble

and the contributions of the terms of the type hb̂yi b̂yi b̂ib̂ii
exactly cancel; and the standard rules of evaluating
correlators in thermal field theory are quickly recovered
[61,62]. It is useful, at this level, to take the limit �k ! 1
uniformly for all modes of the field. From Eq. (5.17) it can
be immediately appreciated that, in the limit �k ! 1,
the probability generating function becomes Mk !
exp½ðsk � 1Þ �nk� which is exactly the generating function
of the Poisson distribution. The Poisson distribution for
each mode of the field is customarily associated with a
multimode coherent state but this is not exactly our case:
the situation described by Eqs. (5.8) and (5.9) in the limit
�k ! 1 is the one of a mixed state with Poissonian distri-
bution and this cannot be identified with a multimode
coherent state since, in the latter case, the off-diagonal
elements of the density matrix do not vanish [as is the
case for Eq. (5.9)]. Finally, if the limit �k ! 0 is taken
uniformly for all modes of the field, the probability distri-
bution for each k mode becomes logarithmic as can be
shown by using directly the recurrence relation character-
izing the distribution of Eq. (5.9).

We are then in the condition of computing explicitly the
intensity correlations in terms of an initial state character-
ized by the presence of quantum correlations reducing, in
appropriate limits, to various statistical mixtures. The re-
sult can be written as

hÎð ~x; �ÞÎð ~xþ ~r; �Þi ¼
Z

d lnkGð2Þ
v ðk; �Þ½2þ coskrj0ðkrÞ�

þ
Z

d lnkGð2Þ
s ðk; �Þ½1þ 2j0ðkrÞ�;

(5.25)

where j0ðkrÞ is the spherical Bessel function of zeroth

order; the two functions Gð2Þ
v ðk; �Þ and Gð2Þ

s ðk; �Þ denote,
respectively, the bulk (volume) and boundary (surface)
contributions

Gð2Þ
v ðk; �Þ ¼ k �n2kð�Þ

4�2V

�
1

�k
� 1

�
½2 �Nkð�Þ þ 1

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nkð �Nk þ 1Þ

q
cos	k�2; (5.26)

G ð2Þ
s ðk; �Þ ¼

Z d3q

64�5

k3

qj ~k� ~qjF ðq; �ÞF ðj ~k� ~qj; �Þ

(5.27)

with r ¼ j ~x� ~yj and
F ðq; �Þ ¼ ½2 �nqð�Þ þ 1�f2 �Nqð�Þ þ 1

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nqð�Þ½ �Nqð�Þ þ 1�

q
cos	qð�Þg: (5.28)

We shall also assume, from now on, that �n ~k ¼ �nk and that

� ~k ¼ �k with j ~kj ¼ k. The denominator appearing in the

degree of second-order coherence is

hÎð ~x; �ÞihÎð ~y; �Þi ¼
��������
Z

d lnkGð1Þðk; �Þ
��������

2

; (5.29)

Gð1Þðk; �Þ ¼ k2

4�2
ð2 �nk þ 1Þ½2 �Nk þ 1

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nkð �Nk þ 1Þ

q
cos	k�; (5.30)

where the superscript reminds us that we are dealing here
with the square of the first-order correlation discussed in
Sec. III. The normally ordered definition of the degree of
second-order coherence introduced in Eq. (5.3) leads to a
result which is somehow similar to the one obtained in
the case of Eq. (5.1). For future comparison the normal-
ordered intensity correlation can be written, in explicit
terms, as

h:�̂ð�Þð ~x; �Þ�̂ð�Þð ~y; �Þ�̂ðþÞð ~y; �Þ�̂ðþÞð ~x; �Þ:i
¼

Z
d lnk �Gð2Þ

v ðk; �Þ þ
Z

d lnk �Gð2Þ
s ðk; �Þ½1þ j0ðkrÞ�;

(5.31)

where now

�Gð2Þ
v ðk; �Þ ¼ k �n2k

4�2V

�
1

�k
� 1

�
½2 �Nk þ 1

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nkð �Nk þ 1Þ

q
cos	k�2; (5.32)

�G ð2Þ
s ðk; �Þ ¼

Z d3q

64�5

k3

qj ~k� ~qj
�F ðq; �Þ �F ðj ~q� ~kj; �Þ;

(5.33)

�F ðq; �Þ ¼ �nq½2 �Nq þ 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nqð �Nq þ 1Þ

q
cos	q�:

(5.34)

Of course in case the normal-ordered expression is used,
also the denominator of Eq. (5.3) must be ordered and
computed accordingly. The result is

h�̂ð�Þð ~x; �Þ�̂ðþÞð ~x; �Þih�̂ð�Þð ~y; �Þ�̂ðþÞð ~y; �Þi
¼

��������
Z

d lnk �Gð1Þðk; �Þ
��������

2

; (5.35)

�G ð1Þðk; �Þ ¼ k2

2�2
�nk½2 �Nk þ 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nkð �Nk þ 1Þ

q
cos	k�:

(5.36)

There are two main differences between the normal-
ordered correlators and the non-normal-ordered ones: a
numerical factor in Eq. (5.31) and the ubiquitous presence
of �nk instead of (2 �nk þ 1). The expressions of Eqs. (5.32)
and (5.33) vanish in the limit �nk ! 0 while in the case of
Eqs. (5.26) and (5.27) the same limit does not vanish.
Furthermore, the degree of second-order coherence inher-
its a volume dependence which is directly linked to the
existence of an initial state with a nonvanishing degree of
second-order correlation. To conclude the present section it
is appropriate to mention that the averages over the initial
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state can also be conducted by making appropriate use
of the phase-space functional previously discussed [see
Eqs. (4.10) and (4.11)]. In particular, the multiparticle
states defined by the density matrix of Eqs. (5.8) and
(5.9) lead to a P representation given by

Pðf�gÞ ¼ Y
~k

��kk
�nk�ð�kÞ j�kj�2ð1��kÞe�j�kj2�k= �nk : (5.37)

The P representation of Eq. (5.37) has interesting limits.
In particular for �k ! 1 the P representation of Eq. (4.12)
is reproduced. The representation (5.37) has been first
discussed in [63] in the purely quantum mechanical case.

VI. DEGREE OF SECOND-ORDER COHERENCE

A. Basic considerations

The degree of second-order coherence discussed in
Sec. V will now be evaluated explicitly in various poten-
tially interesting situations. The specific values of the
cosmological parameters determined using the WMAP
7 yr data alone in the light of the vanilla �CDM scenario
[1,2] are11

ð	b;	c;	de; h0; ns; "reÞ

 ð0:0449; 0:222; 0:734; 0:710; 0:963; 0:088Þ; (6.1)

where 	X denotes the present critical fraction of the
corresponding species (i.e., respectively, baryons, CDM
particles, dark energy), and ns denotes the scalar spectral
index [see also Eqs. (6.4), (6.5), and (6.6)]. If a tensor
component is allowed in the analysis of the WMAP 7 yr
data alone the relevant cosmological parameters are deter-
mined to be [1,2]

ð	b;	c;	de; h0; ns; "reÞ

 ð0:0430; 0:200; 0:757; 0:735; 0:982; 0:091Þ: (6.2)

In the case of Eq. (6.1) the amplitude of the scalar modes is
AR ¼ ð2:43� 0:11Þ 
 10�9 while in the case of Eq. (6.2)
the corresponding values of AR and of rt are given by

AR ¼ ð2:28� 0:15Þ 
 10�9; rt < 0:36 (6.3)

to 95% confidence level. The experimental parametrization
of the scalar and tensor power spectra is [1,2]

P RðkÞ ¼ AR

�
k

kp

�
ns�1

; P tðkÞ ¼ At

�
k

kp

�
nt
; (6.4)

where nt, ns are, respectively, the tensor spectral index,
and kp ¼ 0:002 Mpc�1 is the pivot scale;rt ¼ At=AR

denotes the ratio between the tensor and the scalar power
spectrum at kp. The qualitative features of the effects

discussed here do not change if, for instance, one would
endorse the parameters drawn from the minimal tensor
extension of the �CDM paradigm and compared not to
the WMAP 7 yr data release but rather with the WMAP
3 yr data release [64,65], implying, for instance, AR ¼
2:1þ2:2�2:3 
 10�9, ns ¼ 0:984, and rt < 0:65 (95% confi-

dence level).
The numeric values reported in Eqs. (6.1), (6.2), and

(6.3) determine bounds on the slow-roll parameters appear-
ing directly in the evaluation of the degree of second-order
coherence. In particular, within the present notations, the
slow-roll parameters are defined as where, as usual,

� ¼ � _H

H2
¼ �M2

P

2

�
V;’

V

�
2
;

� ¼ €’

H _’
¼ �� ��;

�� ¼ �M2
P

V;’’

V
;

(6.5)

and �MP ¼ MP=
ffiffiffiffiffiffiffi
8�

p
is the reduced Planck mass, H is the

Hubble parameter, V is the inflaton potential, and the
overdot denotes a derivation with respect to the cosmic
time12 coordinate t. To lowest order in the slow-roll ex-
pansion we also have that

nt ¼ �2�; ns ¼ 1� 6�þ 2 ��;

rt ¼ 16� ¼ �8nt:
(6.6)

The mean number of particles per Fourier mode can be
obtained from Eq. (3.22). While �nk and �k are a property of
the initial state, the quantities �Nk and 	k can be computed
explicitly, for instance, in the case of a single-field infla-
tionary model. To get the explicit solutions either in
terms of Eq. (3.22) or in terms of Eqs. (3.27) and (3.28),
background fields need to be expressed in terms of the
conformal time coordinate and in terms of the slow-roll
parameters of Eq. (6.5):

@� lna ¼ aH ¼ � 1

�ð1� �Þ ; (6.7)

@� lnz ¼ � 1þ �þ �

�ð1� �Þ ; (6.8)

@2� lnaþ ð@� lnaÞ2 ¼ 2� �

�2ð1� �Þ2 ; (6.9)

@2� lnzþ ð@� lnzÞ2 ¼ 2þ 2�þ 3�þ ��þ �2

ð1� �Þ2�2 : (6.10)

Recalling that �Nk ¼ sinh2rk and denoting with �NðpÞ and
�NðgÞ the average number of phonons and gravitons, the
final result turns out to be

11Note that "re denotes the optical depth at reionization and has
nothing to do with the slow-roll parameter � which will be
introduced in a moment.

12Recall that, as usual, the relation between cosmic and con-
formal time parametrization is given by að�Þd� ¼ dt.
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�N ðpÞ
k þ 1

2
¼ �

4
ð�k�Þ½jHð1Þ


 ð�k�Þj2 þ jHð1Þ

�1ð�k�Þj2�;

(6.11)

�N ðgÞ
k þ 1

2
¼ �

4
ð�k�Þ½jHð1Þ

	 ð�k�Þj2 þ jHð1Þ
	�1ð�k�Þj2�;

(6.12)

where Hð1Þ
� ðzÞ is the Hankel function of the first kind of

index � and argument z [57,58]. In Eqs. (6.11) and (6.12)
the indexes of the Hankel functions depend upon the slow-
roll parameters as

	 ¼ 3� �

2ð1� �Þ ; 
 ¼ 3þ �þ 2�

2ð1� �Þ : (6.13)

Using Eq. (6.6) 	 and 
 can be written directly in terms of
the scalar and tensor spectral indices

	 ¼ 6þ nt
2ð2þ ntÞ ; 
 ¼ 8þ 3nt � 2ns

2ð2þ ntÞ : (6.14)

In the range of parameters mentioned in Eqs. (6.1), (6.2),
and (6.3) the indexes 	> 1 and 
> 1 are always positive
definite, and moreover,

ð3� 2	Þ ¼ � 2�

1� �
< 0;

ð3� 2
Þ ¼ � 4�þ 2�

ð1� �Þ ;

ð3� 4	Þ ¼ � 3þ �

1� �
< 0;

ð3� 4
Þ ¼ � 3þ 9�þ 4�

ð1� �Þ :

(6.15)

Equations (6.11) and (6.12) can be expanded in the limits
jk�j � 1 and jk�j � 1 holding, respectively, when the
corresponding wavelengths are either shorter or larger
than the Hubble radius. In the limit jk�j � 1, Eqs. (6.11)
and (6.12) become

�N ðpÞ
k þ 1

2
¼ �2ð
Þ

2�

�
� k�

2

�
1�2


�
1þ jk�j2

4ð
� 1Þ2
�
; (6.16)

�N ðgÞ
k þ 1

2
¼ �2ð	Þ

2�

�
� k�

2

�
1�2


�
1þ jk�j2

4ð	� 1Þ2
�
: (6.17)

In the limit of short wavelengths the particles are all inside
the Hubble radius, and consequently,

�N ðpÞ ¼ �NðgÞ ! 1

2
; (6.18)

where the factor 1=2 confirms, a posteriori, the correctness
of all the normalizations and implies that, in the vacuum,
there is half a quantum per Fourier mode. The degree of
second-order coherence is also determined by a phase [see,
e.g., Eq. (5.28)] whose explicit form for phonons and
gravitons can be written as

cos	ðpÞ
k ¼ �

4
ð�k�Þ jH

ð1Þ

�1ð�k�Þj2 � jHð1Þ


 ð�k�Þj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðpÞ

k ðNðpÞ
k þ 1Þ

q ;

(6.19)

cos	ðgÞ
k ¼ �

4
ð�k�Þ jH

ð1Þ
	�1ð�k�Þj2 � jHð1Þ

	 ð�k�Þj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðgÞ

k ðNðgÞ
k þ 1Þ

q ;

(6.20)

where, consistently with the notation of Eqs. (6.11) and
(6.12), the superscripts refer, respectively, to the case of the
gravitons and of the phonons. In the limits jk�j � 1 and
jk�j � 1, Eqs. (6.19) and (6.20) lead, respectively, to

lim
jk�j!0

cos	ðs;tÞ
k ! �1; lim

jk�j!1
cos	ðs;tÞ

k ! 0; (6.21)

where the superscripts simply mean that the mentioned
limits hold separately for the scalar and for the tensor
modes.

B. Initial vacuum state

The relevant physical limit of the degree of second-order
coherence can be expressed as follows:

lim
jk�j!0;jkrj!0

gð2Þð ~x; ~xþ ~r; �Þ: (6.22)

The limits appearing in Eq. (6.22) imply that the degree of
second-order coherence is evaluated at coincidental spatial
points and when the comoving momenta are much shorter
either than @� lna (in the case of the gravitons) or than
@� lnz (in the case of the phonons). As in the case of the
limit discussed in Eq. (4.7) the mathematical definition of
the limit only involves r since the degree of second-order
coherence is always defined as the ratio of integrals over
the comoving three-momentum. At the same time the limit
r ! 0 is physically realized for typical wave numbers
jkrj ! 0 and jk�j ! 0 and this defines, according to
Eq. (6.22), the normalized degree of second-order coher-
ence in the asymptotic limit of typical scales (or wave-
lengths) larger than the Hubble radius. This kind of
procedure has some analogy with quantum optics where
often the results of the momentum integrations in the
numerator and in the denominator of the degree of
second-order coherence simplify in the limit r ! 0 and
lead to a degree of second-order coherence which only
depends on time (see, e.g., [15,16]).
It is useful to remark that, a posteriori, the order of the

limits appearing Eq. (6.22) is not essential: the same results
can be obtained by changing the order in which the limits
are taken. From the explicit expressions of Eq. (5.25) the
degree of second-order coherence can be written as

lim
kr!0

gð2Þðr; �Þ ¼ 3

R
d lnk½Gð2Þ

v ðk; �Þ þ Gð2Þ
s ðk; �Þ�

jR d lnkGð1Þðk; �Þj2 ;

(6.23)
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recalling that j0ðzÞ ! 1 for z ! 0. Using all the results
derived in the present section [and, in particular,
Eqs. (6.16), (6.17), and (6.21)], also the limit jk�j ! 0
can be taken with the result that13

lim
jk�j!0;jkrj!0

gð2Þðr; �Þ ¼ Avð	Þ þBsð	Þ; (6.24)

A vð	Þ ¼ 3�2

V

R
d lnk �n2kð1� �kÞ=�kk3�4	

jR d lnkð2 �nk þ 1Þk3�2	j2 ; (6.25)

B sð	Þ ¼ 3

2

R
d lnkk3

R
d lnqq3�2	ð2 �nq þ 1ÞYðj ~k� ~qjÞ

jR d lnkð2 �nk þ 1Þk3�2	j2 ;

(6.26)

where

Y ðj ~k� ~qjÞ ¼
Z 1

�1
dx

2 �nj ~k� ~qj þ 1

j ~k� ~qj2	 ;

j ~k� ~qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k2 � 2qx

q
:

(6.27)

The initial vacuum state is recovered when �nk ! 0 imply-
ing that the particle content of the initial state vanishes. In
the latter limit, in particular, we have

lim
�nk!0

Avð	Þ ¼ 0; (6.28)

lim
�nk!0

Bsð	Þ ¼ 3

2

R
d lnkk3

R
d lnqq3�2	Yðj ~k� ~qjÞ

jR d lnkk3�2	j2 ;

(6.29)

the same result holds, as previously remarked, by exchang-
ing 	 with 
. By introducing the rescaling y ¼ q=k the
explicit form of Eq. (6.29) becomes

B sð	Þ ¼ 3

2

R
d lnkk3�2	

R
d lnqq3�2	

R
1
�1

dx
ð1þy2�2yxÞ	

jR d lnkk3�2	j2 :

(6.30)

After integration over the x variable, the numerator of
Eq. (6.30) becomes

Z
d lnkk3�2	

Z
d lnqq3�2	

Z 1

�1

dx

ð1þ y2 � 2yxÞ	

¼ 1

2ð1� 	Þ
Z

d lnkk6�4	
Z

dyy1�2	½j1þ yj2ð1�	Þ

� j1� yj2ð1�	Þ�: (6.31)

The value of the integral over y ¼ q=k can be estimated as

4ð1� 	Þ
�

1

3� 2	
½1� y3�2	

min � þ 1

3� 4	
½y3�4	

max � 1�
�
:

(6.32)

The limit ymax ! 1 can be taken14 since ð3� 4	Þ< 0
[and ð3� 4
Þ< 0]. Conversely the value of ymin ¼ q0=k
forbids taking the limit ymin ! 0 since (3� 4	) and
(3� 4
) are both negative as established in Eq. (6.15).
Since the term containing ymin dominates, the integral of
Eq. (6.31) can be estimated up to subleading corrections.
Integrating over k and going then back to Eq. (6.24) we
have

lim
jk�j!0;jkrj!0

gð2Þðr; �Þ ¼ 3: (6.33)

The value given by Eq. (6.33) coincides with the value
obtained, in the case of a single degree of freedom (and for
the squeezed vacuum state) as discussed in Sec. II. As
mentioned in Sec. II the normal ordering in the operator
(or its absence) does not affect the degree of second-order
coherence as long as the average number of particles per
field mode is much larger than 1. This is, a posteriori,
exactly the physical limit of Eqs. (6.11) and (6.12). In
connection with Eq. (6.33) two finalremarks are in order.
As mentioned after Eq. (6.22) the limits appearing in
Eq. (6.33) signify that the result holds for typical comoving
three-momenta larger than the Hubble radius; the strict
mathematical limit would instead stipulate that r ! 0.
The limit defined in Eqs. (6.22) and (6.33) demands that
the integrals appearing in the numerator and in the denomi-
nator of the degree of second-order coherence are eval-
uated for typical wavelengths larger than the Hubble
radius.

C. Classical stochastic variables

The result obtained in Eq. (6.33) implies that the relic
gravitons and relic phonons are highly bunched and their
statistics is super-Poissonian. The large-scale curvature
fluctuations might also be classical stochastic variables.
In the latter case, however, the degree of second-order
coherence in the zero time-delay limit will typically be

between 1 and 2, i.e., 1 � gð2Þ � 2. In this case the aver-

ages appearing in gð2Þ will have to be interpreted as sto-

chastic averages. The lower limit [i.e., gð2Þ ¼ 1] is easy to
justify. Suppose, indeed, that the relic phonons (or grav-
itons) are just produced independently. This means that the
intensity I can be viewed as a classical (discrete) variable
characterized by a Poissonian probability distribution. In

this case hI ri ¼ hIir, and consequently, gð2Þ ¼ 1. It is also
possible to conceive a completely classical situation where

13The result will be given in the case of the gravitons. The
results for the phonons can be obtained from the ones of the
gravitons by replacing 	 ! 
.

14It is worth stressing that the negative sign of the combinations
(3� 4	) and (3� 4
) is a direct consequence of the determi-
nations of cosmological parameters reported in Eqs. (6.1), (6.2),
and (6.3).
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the source is chaotic in such a way that hI ri ¼ r!hIir. In
the latter case the probability distribution for the (possibly
time- or space-dependent) intensity can be written as

PðIÞ ¼ �I�1 exp½�I= �I�, where �I ¼ hIi.

D. Finite volume effects

As a next step of complication it is useful to analyze the
case where the number of particles in each Fourier mode is
the same but second-order correlations are allowed in the
initial state, i.e.,

�n k ¼ �n; �k ¼ �: (6.34)

Following the same steps outlined in the vacuum situation,
the analog of the limit given in Eq. (6.33) is

lim
jk�j!0;jkrj!0

gð2Þðr; �Þ ¼ 3þ 3�2

k30V

ð1� �Þ
�

�n2

ð2 �nþ 1Þ2


 ð3� 2	Þ2
4	� 3

: (6.35)

Concerning this expression a few comments are in order:
(i) the first term (i.e., 3) remains also in the limit �n ! 0

(i.e., in the vacuum case);
(ii) the second term goes to zero in the infinite volume

limit (which is the one which must be enforced) and
also in the case of a Bose-Einstein distribution (i.e.,
� ! 1);

(iii) the numerical factors in the second term depend
upon the slow-roll parameter.

The result of Eq. (6.35) shows, in a specific example, that
second-order correlation effects possibly present in the
initial state vanish when the volume goes to infinity and
the average multiplicity goes to infinity (while their ratio is
kept fixed). The implications of this result are interesting
per se but a closer scrutiny goes beyond the aims of this
script.

E. Bose-Einstein occupation number

As suggested by the general equations derived in
Sec. VI, the degree of second-order coherence is sensitive
to the overall duration of the inflationary phase even in the
case �k ¼ 1where, by definition, volume effects are absent
and the generalized statistical ensemble of Eq. (5.9) re-
duces to the thermal (or chaotic) one [see Eq. (4.8)].
Resorting to the quantum mechanical analogy discussed
in Sec. II, it would be tempting to conclude on the basis
of Eq. (2.11) that the degree of second-order coherence
should still equal 3. Indeed, the limit �N ’ �n � 1 and

� ! 1 imply, from Eq. (2.11), that �gð2Þ ! 3. This conclu-
sion is incorrect as long as, in the realistic field theoretical
case, �Nk � �nk; more specifically,

�n k ¼ 1

ek=kT � 1
; �k ¼ 1; (6.36)

where kT is the (comoving) thermal momentum whose
explicit value can be usefully expressed in Hubble units
(i.e., units of the Hubble rate H0) as

kT
H0

¼ eNmax�Ntot

�
T

H

��
AR

2:43
 10�9

�
1=4



�

h20	R0

4:15
 10�9

�
1=4

�
0:7

h0

�
: (6.37)

In Eq. (6.37) the comoving value of the thermal momen-
tum15 depends upon the ratio ðT=HÞ which measures the
ratio between the temperature and the Hubble rate when
Ntot ’ Nmax, i.e.,�

T

H

�
� 144:5

�
106:75

g�

�
1=4

�
2:43
 10�9

AR

�
1=4

�
0:01

�

�
1=4

;

(6.38)

where g� denotes the total number of spin degrees of

freedom for T > 200 GeV. IfNtot � Nmax, kT will become
arguably much smaller than H0 as Eqs. (6.37) and (6.38)
imply immediately.
The uncertainty in the estimates of Eqs. (6.37) and (6.38)

resides not only in the (inevitably) unknown value of the
total number of e-folds but also inNmax whose value cannot
be precisely assessed even within the consistent lore pro-
vided by the conventional inflationary scenarios. Indeed,
the uncertainty affecting the determination of Nmax is due
to the lack of a specific knowledge of the postinflationary
thermal history. Suppose, for instance, that right at the end
of the inflationary phase, the standard radiation-dominated
phase starts. In this case we have that

Nmax ¼ 62:2þ 1

2
ln

�
�

10�5

�
� ln

�
h0
0:7

�

þ 1

4
ln

�
h20	R0

4:15
 10�5

�
: (6.39)

Recalling that, according to the WMAP 7 yr data, the
amplitude of the scalar power spectrum at the pivot scale
kp ¼ 0:002 Mpc�1 is given by AR ¼ 2:43
 10�9, the

estimate of Eq. (6.34) becomes (see, e.g., [37])

Nmax ¼ 63:6þ 1

4
ln�: (6.40)

The figures given in Eq. (6.34) are just a dim indication
since Nmax can indeed be much larger. Suppose, for in-
stance, that right after inflation the Universe expands at a
rate which is slower than radiation. In this case Nmax

increases. In particular, if, after inflation, the energy den-
sity of the plasma is dominated by a stiff source with sound
speed coinciding with the speed of light, we get to the
estimate

15As already mentioned we shall normalize to 1 the present
value of the scale factor a0 ¼ 1.
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Nmax ¼ 78:3þ 1

3
ln�; (6.41)

where it has been assumed that the stiff phase starts right
after inflation and stops right before big-bang nucleosyn-
thesis (see, e.g., [38,66–68] and references therein). By
definition Nmax is derived by requiring that the present size
of the Hubble radius is all contained in the event horizon at
the onset of the inflationary phase. Being optimistic we can
say that Nmax ¼ 63� 15 which is anyway a pretty large
indetermination. The indetermination on the specific
values of Ntot and Nmax implies that, unless Ntot ’ Nmax,
the thermal wavelength k�1

T will be much larger than the
present value of the Hubble rate. Bearing in mind
the previous caveats, using Eq. (6.36) and recalling
Eqs. (6.24), (6.25), and (6.26) we shall have that Bsð	Þ ¼
jN ð	Þj2=jDð	Þj2 where

N ð	Þ ¼ ffiffiffi
3

p Z
d lnkk6�4	

Z
dyy1�2	 coth

�
ky

2kT

�



Z j1þyj

j1�yj
z1�2	 coth

�
kz

2kT

�
; (6.42)

D ð	Þ ¼ ffiffiffi
2

p Z
d lnkk3�2	 coth

�
ky

2kT

�
: (6.43)

The evaluation of the integrals can be performed with
different methods and even numerically. It is instructive,
however, to derive an explicit analytic estimate based on
the observation that cothx can be approximated with 1=x
for x < 1 and with 1 for x > 1. The integrals of Eqs. (6.42)
and (6.43) can therefore be evaluated by using this simple
approximation scheme which can be improved by keeping
further terms in the expansion. To lowest order wewill then
have that

Dð	Þ ¼
ffiffiffi
2

p
kT

ð1� 	Þ ½ð2kTÞ
2�2	 � k2�2	

min �

þ
ffiffiffi
2

p
3� 2	

½k3�2	
max � ð2kTÞ3�2	�: (6.44)

The leading and subleading terms in Eq. (6.44) are deter-
mined by the hierarchy between kmin, H0, and kT. In
particular, if kmin > 2kT then it will always be true that
k > 2kT since, by definition of kmin, k cannot be
smaller than kmin. But then from Eqs. (6.36) and (6.43)
ð2 �nk þ 1Þ ’ 1 for all the range of the momenta. This
situation happens, in particular, when Ntot � Nmax. In
this situation the degree of second-order coherence
will reproduce the vacuum case; i.e., for jkrj � 1

and jk�j � 1, gð2Þðr; �Þ ! 3. In the opposite situation
kmin > 2kT but then the leading term in Eq. (6.44) will be
the one coming from kmin (which will be assumed to
coincide with H0 for the purpose of numerical estimates).
The rationale for the latter statement stems from the
value of (3� 2	) which is always negative in the case
of conventional slow-roll dynamics. The same kind of

considerations can be used for the estimate ofN ð	Þwhich
can also be written, after integration over z, as

N ð	Þ ¼
Z

dkk5�4	
Z

dyy1�2	 coth

�
k

2kT

�



� ð2kT=kÞ2ð1�	Þ

ð1� 2	Þð2� 2	Þ þ
j1þ yj2ð1�	Þ

2ð1� 	Þ
�

�
2kT
k

� j1� yjð1�2	Þ

ð1� 2	Þ
�
: (6.45)

Using Eq. (6.14) expressing the relation between the in-
dices	 (and
) and the tensor (and scalar) spectral indices,
the final result for the degree of second-order coherence
can be written, in the limit kr ! 0 and k� ! 0,

gð2Þðr; �Þ ¼ 3

2

�
1� ðnt � 2Þðnt þ 2Þðnt þ 8Þ

2rt

�
; (6.46)

gð2Þðr;�Þ¼ 3

2

�
1�ð3ns�4nt�11Þð2ns�nt�4Þðntþ2Þ

8ðns�1Þðnt�nsþ3Þ
�
;

(6.47)

where Eq. (6.46) holds for the gravitons while Eq. (6.47)
holds in the case of the scalar phonons. Both expressions
have been obtained by using the relations previously de-
rived in Eq. (6.6) and by demanding, as previously ex-
plained, that Ntot ’ Nmax. It is interesting to notice that as
long as rt and ns � 1 both diminish, the second term in the
square brackets increases above 1 and it can happen that

gð2Þðr; �Þ< 3, possibly becoming even negative.
Let us now assume, for a moment, that the intensity

correlations are experimentally accessible and that gð2Þ
(i.e., the degree of second-order coherence in the large-
scale limit) can be directly measured. The considerations
developed in the present section suggest four considera-
tions:

(i) if gð2Þ ¼ 3 the HBT correlations would imply that
the fluctuations are bunched, super-Poissonian, and
probably coming from a vacuum initial state;

(ii) if gð2Þ > 3 the initial state contained second-order
correlations which are not characterized by Bose-
Einstein statistics but which, nonetheless, dominate
at large scale; this would probably be a remnant of
the initial state and would imply, within the infla-
tionary lore, Ntot � Nmax � Nmin;

(iii) if 2< gð2Þ < 3 the initial conditions are dominated
by a thermal ensemble and Ntot � Nmax;

(iv) if 1< gð2Þ � 2 the intensity correlations are still
super-Poissonian but not squeezed.

The possibilities listed above are the result of the prelimi-
nary discussion reported here and must be sharpened fur-
ther. At the same time they illustrate how a direct study of
the intensity correlations would make the problem of the
large-scale initial conditions much less elusive. Finally,
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recalling the terminology introduced at the end of Sec. II,
curvature phonons can even be superchaotic.

The value of �gð2Þ measures, in the context of HBT
interferometry, the statistical tendency of the phonons to
distribute themselves in bunches rather than randomly and
thus obeying a Poissonian distribution. If the degree of
second-order coherence is larger than 1 the positive corre-
lation between the particles arriving at the HBT detectors is
dubbed as super-Poissonian. In the case of the curvature
phonons the degree of second-order coherence can even be
larger than 2. In this case it is natural to talk about the
possibility that the statistics is superchaotic since the case

�gð2Þ ¼ 2 corresponds to the statistics of chaotic (i.e., white)
light. The bounds summarized in the previous paragraph
are illustrated in Fig. 3 where, in the left and right plots, the
degrees of first-order and second-order coherence are re-
ported. The regions A, B, and C correspond, respectively,
to a superchaotic state, to a squeezed thermal state, and to
a super-Poissonian statistical ensemble not necessarily
related to quantum mechanics.

VII. HBT TEMPERATURE AND
POLARIZATION CORRELATIONS

Some preliminary considerations will now be developed
with the purpose of suggesting that HBT correlations could
be directly assessed by studying higher-order temperature
and polarization correlations in the limit of large-angular
scales. Consider, to begin with, the brightness perturba-
tions which fully describe the temperature and polarization
anisotropies in the �CDM model neglecting, for simplic-
ity, the tensor modes16 which are indeed absent in the
vanilla �CDM:


Iðn̂; �Þ ¼ 1

ð2�Þ3=2
Z

d3k
Iðk;�; �Þ;


Pðn̂; �Þ ¼ 1

ð2�Þ3=2
Z

d3k
Pðk; �; �Þ:
(7.1)

As usual, � ¼ k̂ 	 n̂ denotes the projection of the Fourier
mode on the direction of propagation of the CMB pho-
ton;17 notice, furthermore, that 
Pðn̂; �Þ ¼ 
Qðn̂; �Þ. Since

�ðn̂; �Þ ¼ 
Qðn̂; �Þ � i
Uðn̂�Þ, it transforms as a spin

�2 for rotations around a plane orthogonal to the direction
of propagation of the radiation. The three-dimensional
rotations and the rotations on the tangent plane of the
sphere at a given point combine to give a Oð4Þ symmetry
group [69]. Generalized ladder operators raising (or low-
ering) the spin weight of a given function can then be
defined as [69,70]

Ks�ðn̂Þ ¼ �ðsin#Þ�s

�
@# � i

sin#
@’

�
ðsin#Þ�s;

n̂ ¼ ð#;’Þ:
(7.2)

In real space the E-mode and the B-mode polarization will
have spin weight s ¼ 0


Eðn̂; �Þ ¼ � 1

2
fKð1Þ� ðn̂Þ½Kð2Þ� ðn̂Þ
þðn̂; �Þ�

þ Kð�1Þ
þ ðn̂Þ½Kð�2Þ

þ ðn̂Þ
�ðn̂; �Þ�g; (7.3)


Bðn̂; �Þ ¼ i

2
fKð1Þ� ðn̂Þ½Kð2Þ� ðn̂Þ
þðn̂; �Þ�

� Kð�1Þ
þ ðn̂Þ½Kð�2Þ

þ ðn̂Þ
�ðn̂; �Þ�g; (7.4)

and will therefore be invariant under rotations around
n̂ exactly as 
Iðn̂; �Þ. Recalling that � ¼ cos# the deriva-
tives with respect to # can be traded for derivatives with

n g 

n

(1)

Superchaotic limit

1

n

(2)
n g 

A B

C

A : generic remnants 
      of initial state
B: thermal initial 
      state 
C: generically

super−Poissonian

Poissonian boundary
Chaotic limit

FIG. 3. The degrees of first-order (left plot) and second-order (right plot) coherence are reported in the case of the scalar phonons.

16The same considerations developed in this section can be
however extended to the case of the tensors by considering
higher-order correlations of the B-mode polarization, if and
when they will be measured.

17The angular variables � ¼ k̂ 	 n̂ defined and used in the
present section have no relation with �ð ~x; �Þ used and defined
in Sec. III in Eq. (3.8); similarly the angular variable ’ of
Eq. (7.2) is not related to the inflaton background field.
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respect to �, and Eqs. (7.3) and (7.4) imply, in the �CDM
framework and in the absence of gravitons,


Eðn̂; �Þ ¼ �@2�fð1��2Þ
Pðn̂; �Þg; 
Bðn̂; �Þ ¼ 0;

(7.5)

where the second equality is easily deduced since the
derivatives with respect to ’ vanish in the absence of the
tensor contribution of the gravitons to the brightness per-
turbations. Therefore, in the �CDM model we have at
our disposal three complementary degrees of second-order
coherence which can be defined

gð2ÞTTðm̂; n̂; �Þ ¼ h
Iðm̂; �Þ
Iðm̂; �Þ
Iðn̂; �Þ
Iðn̂; �Þi
h
Iðm̂; �Þ
Iðm̂; �Þih
Iðn̂; �Þ
Iðn̂; �Þi ;

(7.6)

gð2ÞEEðm̂; n̂; �Þ ¼ h
Eðm̂; �Þ
Eðm̂; �Þ
Eðn̂; �Þ
Eðn̂; �Þi
h
Eðm̂; �Þ
Eðm̂; �Þih
Eðn̂; �Þ
Eðn̂; �Þi ;

(7.7)

gð2ÞTEðm̂; n̂; �Þ ¼ h
Tðm̂; �Þ
Eðm̂; �Þ
Tðn̂; �Þ
Eðn̂; �Þi
h
Tðm̂; �Þ
Eðm̂; �Þih
Tðn̂; �Þ
Eðn̂; �Þi :

(7.8)

The degrees of second-order coherence defined in
Eqs. (7.6), (7.7), and (7.8) can be connected with the degree
of second-order coherence introduced in Secs. V and VI.
In the gauge defined by Eq. (1.1) the brightness perturba-
tions of Eq. (7.1) obey, in Fourier space,

@�
I þ ðik�þ "0Þ
I ¼ @�c � ik��þ "0
�

I0 þ�vb

þ ð1� 3�2Þ
4

SPðk; �Þ
�
; (7.9)

@�
P þ ðik�þ "0Þ
P ¼ 3

4
ð1��2ÞSPðk; �Þ; (7.10)

where SPðk; �Þ can be expressed as the sum of the quadru-
pole of the intensity, of the monopole of the polarization,
and of the quadrupole of the polarization, i.e., respectively,
SPðk; �Þ ¼ ð
I2 þ 
P0 þ
P2Þ; note that, in Eqs. (7.9) and
(7.10), "0 and "ð�; �0Þ denote, respectively, the differential
optical depth and the optical depth itself

"0 ¼ xe~nea��e; "ð�; �0Þ ¼
Z �

�0

xe~nea��ed� (7.11)

and should not be confused with � defined, in the present
paper, as one of the slow-roll parameters [see, e.g.,
Eq. (6.5)]. The line of sight solution of Eqs. (7.9) and
(7.10) can be written, respectively, as


Iðk;�;�0Þ¼
Z �0

0
Kð�Þ

�

I0þ�þ�vb

þð1�3�2Þ
4

SP

�
e�i�xð�Þ

þ
Z �0

0
d�e�"ð�;�0Þð�0 þc 0Þe�i�xð�Þd�; (7.12)


Pðk;�;�0Þ ¼ 3

4
ð1��2Þ

Z �0

0
Kð�ÞSPðk;�Þe�ik�ð���0Þd�;

(7.13)

where Kð�Þ ¼ "0e�"ð�;�0Þ is the visibility function and
xð�Þ ¼ kð�0 � �Þ. The visibility function can be approxi-
mated as a double Gaussian with two peaks roughly
corresponding to the redshifts of recombination and reio-
nization, i.e., zrec ’ 1088:2� 1:2 and zreion ¼ 10:5� 1:2
according to [1,2]. The semianalytical parametrizations of
the visibility function (such as the ones of [71,72]) are
relevant when investigating the degree of second-order
coherence for angular scales larger than 1 deg. In the
present analysis the focus will be on the large-angular
scales corresponding to typical multipoles ‘ � ffiffiffiffiffiffiffi

zrec
p

where

the finite width of the visibility function is immaterial and
the opacity suddenly drops at recombination. This implies
that the visibility function presents a sharp peak at the
recombination time. Thus, since Kð�Þ is proportional to

a Dirac delta function and e�"ð�;�0Þ is proportional to a
Heaviside theta function, Eq. (7.9) leads to the well known
pair of separated contributions, i.e., the Sachs-Wolfe (SW)
and the integrated Sachs-Wolfe (ISW) contributions:


Iðk;�; �0Þ ¼ 
ðSWÞ
I ðk;�; �0Þ þ
ðISWÞ

I ðk;�; �0Þ; (7.14)


ðSWÞ
I ðk;�; �0Þ ¼

�
�Rðk; �Þ

5

�
�rec

e�i�yrec ; (7.15)


ðISWÞ
I ðk; �; �0Þ ¼

Z �0

�rec

ð�0 þ c 0Þe�i�xð�Þd�; (7.16)

where, by definition, xð�recÞ ¼ yrec. Equations (7.15) and
(7.16) can be evaluated within various approximation
schemes. The SW and the ISW contributions can be sepa-
rately evaluated. In particular, the ordinary SW contribu-
tion becomes


ðSWÞ
I ðk;�; �0Þ ¼ �Rð ~k; �iÞ

5
SðqrecÞe�i�yrec ; (7.17)

S ðqÞ ¼ 1þ 4

3q
� 16

3q2
þ 16ð ffiffiffiffiffiffiffiffiffiffiffiffi

yþ 1
p � 1Þ

3q3
; (7.18)

while the ISW contribution is


ðISWÞ
I ðk;�; �0Þ ¼ �2Rð ~k; �iÞ

Z �0

�rec

@�TRð�Þe�i�xð�Þd�;

(7.19)

T Rð�Þ ¼ 1�H ð�Þ
a2ð�Þ

Z �

0
a2ð�0Þd�0: (7.20)

Both in Eqs. (7.17) and (7.19),Rð ~k; �Þ denotes the constant
value of curvature perturbations at �i < �eq. By further

approximating the integrand in Eq. (7.19) the whole
large-scale contribution can be written, for the present
purposes, as
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Iðk; �0Þ ¼ Rð ~k; �iÞe�i�yrec ;

�SðqrecÞ ¼ �
�
SðqrecÞ

5
þ ½@�TR�qrec

�
;

(7.21)

where

qrec ¼ arec
aeq

¼ zeq þ 1

zrec þ 1
¼ 3:04

�
h20	M0

0:134

�
: (7.22)

Equation (7.21) directly relates the curvature perturbations
to the brightness perturbations. It then follows that the two-
point function of temperature perturbations bears the mark,
up to time-dependent factors, of the two-point function
defined in the context of first-order coherence effects (see
Sec. III). In particular we have that

h
̂Iðm̂; �0Þ
̂Iðn̂; �0Þi ¼
X
‘

ð2‘þ 1Þ
4�

CTT
‘ P‘ðm̂ 	 n̂Þ; (7.23)

CTT
‘ ¼

�S2ðqrecÞ
4�2z2

Z
d lnqq2ð2 �nqþ 1Þ


 ½2 �Nqþ 1� 2cos	q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Nqð �Nqþ 1Þ

q
�j2‘½yrec�: (7.24)

In a similar fashion the degree of second-order coherence
can be estimated as

h
Iðm̂; �Þ
Iðm̂; �Þ
Iðn̂; �Þ
Iðn̂; �Þi
¼ X

‘

ð2‘þ 1Þ½Z‘ þQ‘P‘ðm̂ 	 n̂Þ�; (7.25)

where

Z‘ ¼
�S2ðqrecÞ

z4

Z
d lnq½2Gð2Þ

v ðq; �0Þj2‘ð2yrecÞ

þGð2Þ
s ðq; �0Þj2‘ðyrecÞ�; (7.26)

Q‘ ¼
�S2ðqrecÞ

z4

Z
d lnq½Gð2Þ

v ðq; �0Þj2‘ð2yrecÞ

þ 2Gð2Þ
s ðq; �0Þj2‘ðyrecÞ�: (7.27)

The degree of second-order coherence of Eq. (7.6) can
therefore be written as

gð2ÞTTðm̂; n̂; �Þ ¼
P
‘

ð2‘þ 1Þ½Z‘ þQ‘P‘ðm̂ 	 n̂Þ�
jP
‘

ð2‘þ 1ÞCTT
‘ j2 : (7.28)

All the inequalities established for the degree of second-
order coherence and all the considerations presented before
are also applicable to Eq. (7.28): in the limit m̂ 	 n̂ ! 1,

using the well known identities, gð2ÞTT coincides with the
result expressed, for instance, by Eq. (6.23). In the cases
m̂ 	 n̂ � 1 a specific angular dependence should be taken
into account when trying to infer the degree of second-
order coherence from the observational data. The consid-
erations developed in this last section exclude the presence
of the tensor modes which can be however included with-
out problems.

VIII. CONCLUDING REMARKS

In conventional Hanbury Brown–Twiss interferometry
the statistical properties of the source are often part of the
experimental setup but the space-time dimensions of the
emitters need to be determined. For large-scale curvature
perturbations the reverse is true: while the statistical prop-
erties of the source are unknown, the gross uniformity of
the temperature fluctuations at last scattering implies that
curvature perturbations prior to matter-radiation equality
had typical wavelengths larger than the Hubble radius at
the corresponding epoch.
Can we directly scrutinize the statistical properties of the

large-scale curvature perturbations without positing an
excessive number of assumptions on the preinflationary
expansion and on the postinflationary thermal history?
This has been the main question addressed in the present
paper. As a partial and preliminary answer, it has been
suggested that a useful approach to large-scale curvature
perturbations of quantum mechanical origin consists in
scrutinizing their large-scale coherence properties. Using
then the analogy with a similar problem arising in quantum
optics, various results have been obtained and they can be
summarized as follows:
(i) in the limit of wavelengths larger than the Hubble

radius the degree of first-order coherence goes
always to 1 in spite of the correlation properties of
the initial state;

(ii) the degree of second-order coherence bears the
mark of the statistical properties of the initial state;
the curvature phonons are bunched and their degree
of bunching exceeds the typical value of a chaotic
source;

(iii) direct limits on (or specific determinations of) the
degree of second-order coherence from tem-
perature and polarization maps can probe the
correlation properties of large-scale gravitational
fluctuations;

(iv) the degree of second-order coherence does depend,
in a computable manner, upon the values of the
slow-roll parameters, upon the nature of the initial
state, and upon the duration of the inflationary
phase;

(v) a set of model-independent limits on the degree of
second-order coherence has been derived in the
form of a collection of inequalities which can be
tested explicitly once the degree of second-order
coherence is defined in terms of the correlators
involving the relevant brightness perturbations.

On a more technical ground, the tenets of the quantum
theory of optical coherence have been carefully translated
to the quantized treatment of the scalar and tensor normal
modes of the geometry. The correct quantum mechanical
definition of the degree of second-order coherence has
been derived and it has been shown to be equivalent, in
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the limit of a large number of phonons per Fourier mode, to
the standard normal-ordered definition customarily em-
ployed in Hanbury Brown–Twiss interferometry and based
on the quantum theory of photoelectric detection.

Preinflationary initial conditions are often assigned (or
imposed) by combining theoretical prejudice with loose
elements of phenomenological consistency such as the
suppression or the increase of large-scale power spectra.
Instead of arguing that the theoretical prejudice necessarily
selects a specific number of inflationary e-folds, a preferred

set of initial conditions, and a unique preinflationary his-
tory, it is also worthwhile to take a more modest approach
and to ask ourselves whether it is possible to gain infor-
mation on the correlation properties of predecoupling ini-
tial conditions by using the logic of Hanbury Brown–Twiss
interferometry, i.e., the study of the intensity correlations
of the scalar and tensor fluctuations of the geometry. The
results reported in the present analysis represent a first step
along this direction.
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