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We investigate the cosmological perturbations in fðTÞ gravity. Examining the pure gravitational

perturbations in the scalar sector using a diagonal vierbein, we extract the corresponding dispersion

relation, which provides a constraint on the fðTÞ Ansätze that lead to a theory free of instabilities.

Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of

motion, and we study the growth of matter overdensities. We show that fðTÞ gravity with fðTÞ constant
coincides with General Relativity, both at the background as well as at the first-order perturbation level.

Applying our formalism to the power-law model we find that on large subhorizon scales (Oð100 MpcÞ or
larger), the evolution of matter overdensity will differ from �CDM cosmology. Finally, examining the

linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) fðTÞ
gravity is free of massive gravitons.
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I. INTRODUCTION

Cosmological observations of the last decade [1] indi-
cate that the observable universe experiences an acceler-
ated expansion. Although the simplest way to explain this
behavior is the consideration of a cosmological constant
[2], the difficulties associated with the fine-tuning problem
have led some authors to postulate more radical alterna-
tives. A first direction is to consider the dark energy
paradigm, which, at least at an effective level, can originate
from various fields, such as a canonical scalar field (quin-
tessence) [3], a phantom field, that is a scalar field with a
negative sign of the kinetic term [4], or the combination of
quintessence and phantom in a unified model named quin-
tom [5]. A second direction is to modify gravity itself,
using a function fðRÞ of the curvature scalar [6], higher
derivatives in the action [7], braneworld extensions [8],
string-inspired constructions [9], holographic properties
[10], UV modifications [11], etc.

Recently, a new alternative approach appeared in the
literature [12–14]. It is based on the old idea of the ‘‘tele-
parallel’’ equivalent of General Relativity (TEGR) [15,16],
which, instead of using the curvature defined via the Levi-
Civita connection, uses the Weitzenböck connection that
has no curvature but only torsion. The dynamical objects
in such a framework are the four linearly independent
vierbeins (these are parallel vector fields which is what
is implied by the appellations ‘‘teleparallel’’ or ‘‘absolute
parallelism’’). The advantage of this framework is that the
torsion tensor is formed solely from products of first de-

rivatives of the tetrad. As described in [16], the Lagrangian
density, T, can then be constructed from this torsion tensor
under the assumptions of invariance under general coordi-
nate transformations, global Lorentz transformations, and
the parity operation, along with requiring the Lagrangian
density to be second order in the torsion tensor. However,
instead of using the torsion scalar T, the authors of [13,14]
generalized the above formalism to a modified fðTÞ ver-
sion, thus making the Lagrangian density a function of T,
similar to the well-known extension of fðRÞ Einstein-
Hilbert action.
In comparison with fðRÞ gravity, whose fourth-order

equations may lead to pathologies, fðTÞ gravity has the
significant advantage of possessing second-order field
equations. This feature has led to a rapidly increasing
interest in the literature, and apart from obtaining accel-
eration [13,14], one can reconstruct a variety of cosmo-
logical evolutions [17,18], add a scalar field [19], use
observational data in order to constrain the model parame-
ters [20] and examine the dynamical behavior of the sce-
nario [21].
All the previous investigations on fðTÞ gravity have

focused on the background evolution. However, in order
to reveal the full scope and physical implications of the
theory, one must delve into the perturbative framework.
Thus, one must first investigate the perturbations of the
pure gravitational sector, and extract the corresponding
dispersion relations, since such an analysis is necessary
in order to determine the stability (or lack thereof) of the
theory. Additionally, one should examine the complete set
of gravitational plus matter perturbations, since they are
related to the structure growth, and therefore their evolu-
tion could constrain fðTÞ gravity via comparison with the
wealth of precision data from observations. Both of the
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above investigations are the main goals of this work. In
particular, the present investigation is interested in the first-
order perturbations of a Friedmann-Robertson-Walker uni-
verse under fðTÞ gravity.

The plan of the work is as follows. In Sec. II, we present
the cosmological scenario of fðTÞ gravity at the back-
ground level. In Sec. III, we examine the first-order per-
turbed equations for the scalar sector, we extract the
corresponding dispersion relations, we derive the evolution
equation for matter overdensities, and we evolve perturba-
tions for a specific model as an example. In Sec. IV, we
extend our analysis in the vector and tensor perturbations at
linear order. Finally, Sec. V is devoted to the summary of
our results. The calculations in the preceding sections are
performed in the Newtonian gauge; however, for complete-
ness we include the Appendix with the perturbed equations
for the scalar modes in the synchronous gauge.

II. THE COSMOLOGICAL BACKGROUND
IN fðTÞ GRAVITY

In this section, we study the cosmology of a universe
governed by fðTÞ gravity. In this manuscript, our notation
is as follows: Greek indices�; �; . . . run over all coordinate
space-time 0, 1, 2, 3, lower case Latin indices (from the
middle of the alphabet) i; j; . . . run over spatial coordinates
1, 2, 3, capital Latin indices A; B; . . . run over the tangent
space-time 0, 1, 2, 3, and lower case Latin indices (from the
beginning of the alphabet) a; b; . . .will run over the tangent
space spatial coordinates 1, 2, 3.

As we stated in the Introduction, the dynamical variable
of the old teleparallel gravity, as well as its fðTÞ extension,
is the vierbein field eAðx�Þ. This forms an orthonormal
basis for the tangent space at each point x� of the manifold,
that is eA � eB ¼ �AB, where �AB ¼ diagð1;�1;�1;�1Þ.
Furthermore, the vector eA can be analyzed with the use of
its components e�A in a coordinate basis, that is eA ¼ e�A@�.

In such a construction, the metric tensor is obtained from
the dual vierbein as

g��ðxÞ ¼ �ABe
A
�ðxÞeB� ðxÞ: (1)

Contrary to General Relativity, which uses the torsionless
Levi-Civita connection, in the present formalism one uses

the curvatureless Weitzenböck connection [22], �
w�

�� �
eA

�@�e�
A, whose torsion tensor reads

T�
�� ¼ �

w�

�� � �
w�

�� ¼ e�Að@�eA� � @�e
A
�Þ: (2)

Moreover, the contorsion tensor, which equals the differ-
ence between the Weitzenböck and Levi-Civita connec-
tions, is defined as

K��
� ¼ � 1

2
ðT��

� � T��
� � T�

��Þ: (3)

Finally, it proves useful to define

S�
�� ¼ 1

2
ðK��

� þ ��
�T��

� � ��
�T

��
�Þ: (4)

Note the antisymmetric relations T�
�� ¼ �T�

�� and

S�
�� ¼ �S�

��, as can be easily verified. Using these

quantities, one can define the so-called ‘‘teleparallel
Lagrangian’’ as [16,23,24]

LT � S�
��T�

��: (5)

In summary, in the present formalism, all the information
concerning the gravitational field is included in the torsion
tensor T�

��, and the teleparallel Lagrangian LT gives rise to

the dynamical equations for the vierbein, which imply the
Einstein equations for the metric.
From the above discussion one can deduce that the

teleparallel Lagrangian arises from the torsion tensor,
similar to the way the curvature scalar arises from the
curvature (Riemann) tensor. Thus, one can simplify the
notation by replacing the symbol LT by the symbol T,
which is the torsion scalar [14].
While in teleparallel gravity the action is constructed by

the teleparallel Lagrangian LT ¼ T, the idea of fðTÞ grav-
ity is to generalize T to a function T þ fðTÞ, which is
similar in spirit to the generalization of the Ricci scalar R
in the Einstein-Hilbert action to a function fðRÞ. In par-
ticular, the action in a universe governed by fðTÞ gravity
reads

I ¼ 1

16�G

Z
d4xe½T þ fðTÞ þ Lm�; (6)

where e ¼ detðeA�Þ ¼ ffiffiffiffiffiffiffi�g
p

and Lm stands for the matter

Lagrangian. Variation of the action with respect to the
vierbein gives the equations of motion

e�1@�ðeSA��Þ½1þ f0ðTÞ� � e�AT
�
��S�

��½1þ f0ðTÞ�

þ SA
��@�ðTÞf00ðTÞ � 1

4
e�A½T þ fðTÞ�

¼ 4�Ge
�
A T
em

�

�
; (7)

where a prime denotes the derivative with respect to T and
the mixed indices are used as in SA

�� ¼ e�AS�
��. Note that

the tensor T
em

�

�
on the right-hand side is the usual energy-

momentum tensor, in which we added an overset label in
order to avoid confusion with the torsion tensor.
If we assume the background to be a perfect fluid, then

the energy-momentum tensor takes the form

T
em

�� ¼ pg�� � ð�þ pÞu�u�; (8)

where u� is the fluid four velocity. Note that we are
following the conventions of [25], but with an opposite
signature metric. In the following sections, we will be
interested in the perturbed energy-momentum tensor, and
the signs of the perturbed terms are not affected due to the
indices mixing (one upper and one lower).
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Let us now focus on cosmological scenarios in a uni-
verse governed by fðTÞ gravity. Thus, throughout the work
we consider the common choice for the form of the vier-
bein, namely

eA� ¼ diagð1; a; a; aÞ; (9)

which leads to a flat Friedmann-Robertson-Walker (FRW)
background geometry with metric

ds2 ¼ dt2 � a2ðtÞ�ijdx
idxj; (10)

where aðtÞ is the scale factor. It has recently been shown
[26] that fðTÞ gravity does not preserve local Lorentz
invariance. In principle then, one should study the cosmol-
ogy resulting from a more general vierbein Ansatz. In this
paper, we specialize our attention to the diagonal form,
leaving the more general case for future investigation.

Using this vierbein, together with the above fluid
description of matter, one sees that Eqs. (7) lead to the
background (Friedmann) equations

H2 ¼ 8�G

3
�m � fðTÞ

6
� 2f0ðTÞH2 (11)

_H ¼ � 4�Gð�m þ pmÞ
1þ f0ðTÞ � 12H2f00ðTÞ : (12)

In these expressions, we have introduced the Hubble pa-
rameter H � _a=a, where a dot denotes a derivative with
respect to coordinate time t. Moreover, �m and pm stand,
respectively, for the energy density and pressure of the
matter content of the universe, with equation-of-state pa-
rameterwm ¼ pm=�m. Finally, we have employed the very
useful relation

T ¼ �6H2; (13)

which straightforwardly arises from evaluation of (5) for
the unperturbed vierbein (9). Lastly, note that General
Relativity is recovered by setting fðTÞ to a constant (which
will play the role of a cosmological constant), as expected.

III. SCALAR PERTURBATIONS IN fðTÞ GRAVITY

One of the most decisive tests for the reliability of a
gravitational theory is the examination of its perturbations.
This investigation reveals some of the deep features of the
theory, determining its stability and the growth of matter
overdensities. In this section, we analyze in detail the
linear-order scalar perturbations of fðTÞ gravity, leaving
the vector and tensor ones for the next section. In particu-
lar, we extract the full set of gravitational and energy-
momentum tensor perturbations in Sec. III A, and in
Sec. III B we examine the stability of the theory. Finally,
in Sec. III C we examine the growth of matter overden-
sities. For simplicity, we perform the calculations in the
Newtonian gauge (for completeness, the Appendix dis-
plays the scalar perturbations in the synchronous gauge).

A. Matter and scalar vierbein perturbations
up to linear order

We are interested in examining how the scalar vierbein
perturbations affect the equations of motion. We mention
that while in General Relativity the fundamental object is
the metric, which is then perturbed, in fðTÞ gravity, as well
as in the old teleparallel equivalent of General Relativity,
the fundamental object is the vierbein. Thus, the starting
point is the vierbein perturbation, which will then give rise
to the perturbed metric.
Using the symbol eA� for the perturbed vierbein and �eA�

for the unperturbed one, the scalar perturbation reads

eA� ¼ �eA� þ tA�; (14)

where

�e 0
� ¼ �0

� �ea� ¼ �a
� a �e�0 ¼ ��

0 �e�a ¼ �
�
a

a
(15)

t0� ¼�0
�c ta� ¼��a

�a	 t�0 ¼���
0 c t�a ¼�

�
a

a
	;

(16)

with indicial notation as stated at the beginning of Sec. II.
Here we have made the simplifying assumption that the
scalar perturbations tA� are diagonal, a procedure which is

sufficient to extract qualitative results about the stability of
the theory. As usual, we have kept terms up to first order in
the perturbations. Moreover, unless otherwise indicated,
subscripts zero and one will generally denote, respectively,
zeroth and linear order values of quantities.
In the above perturbations, we have introduced the scalar

modes 	 and c , which are functions of x and t. These
symbols, as well as the various coefficients, have been
conveniently chosen in order for the vierbein perturbation
to induce a metric perturbation of the known form in
Newtonian gauge with signature ðþ ���Þ, namely

ds2 ¼ ð1þ 2c Þdt2 � a2ð1� 2	Þ�ijdx
idxj: (17)

Thus, the determinant becomes

e ¼ detðeA�Þ ¼ a3ð1þ c � 3	Þ: (18)

Proceeding forward, we calculate T�
�� and S�

�� to first

order under the perturbations (15) and (16). The torsion
reads

T�
�� ¼ ð �e�A þ t�AÞ½@�ð �eA� þ tA�Þ � @�ð �eA� þ tA�Þ�; (19)

and thus the second is easily calculable using (4). After
some algebra, we find (indices are not summed over)
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T0
�� ¼ @�c�0

� � @�c�0
�;

Ti
0i ¼ H � _	S0

0i ¼ @i	

a2
;

Si
0i ¼ �Hþ _	þ 2Hc Ti

ij ¼ @j	;

Si
ij ¼ 1

2a2
@jð	� c Þ:

(20)

Additionally, up to first order the torsion scalar defined in
(5) is found to be

T � S�
��T�

�� ¼ T0 þ T1; (21)

where

T0 ¼ �6H2 (22)

is the previously seen zeroth order result and

T1 ¼ 12HðHc þ _	Þ (23)

is the first order one. Thus, we can easily express fðTÞ and
its derivatives up to first order as:

fðTÞ ¼ fðT0ÞþT1

dfðTÞ
dT

��������T¼T0

� f0þf1

f0ðTÞ ¼ dfðTÞ
dT

��������T¼T0

þT1

d2fðTÞ
dT2

��������T¼T0

� f00þf01

f00ðTÞ ¼ d2fðTÞ
dT2

��������T¼T0

þT1

d3fðTÞ
dT3

��������T¼T0

� f000 þf001 ;

(24)

that is the right-hand sides of these equations are functions
of T0 and linear functions of T1.

Let us now consider the perturbations of the energy-
momentum tensor. The perturbations are then expressed as

�T
em

0

0 ¼ ���m (25)

�T
em

0

i ¼ a�2ð�m þ pmÞð�@i�uÞ (26)

�T
em

i

0 ¼ ð�m þ pmÞð@i�uÞ (27)

�T
em

i

j ¼ �ij�pm þ @i@j�
S: (28)

where �S is the scalar component of the anisotropic stress.
Inserting everything in (7), we finally obtain

E0
0 � ð1þ f00Þðr2	Þ þ 6ð1þ f00ÞH _	þ 6ð1þ f00ÞH2c

� 3f01H
2 � T1 þ f1

4
¼ �4�G��m; (29)

Ei
0 � ð1þ f00Þ@i _	þ ð1þ f00ÞH@ic � 12H _Hf000@i	

¼ �4�Gð�m þ pmÞ@i�u; (30)

E0
a � 12H2@i�

i
að _	þHc Þf000 � ð1þ f00Þ@i�i

að _	þHc Þ
¼ 4�Gð�m þ pmÞ@i�i

a�u; (31)

Ei
a�

a
i �

f01
a
ð�3H2 � _HÞ þ f001

a
ð12H2 _HÞ

� ð1þ f00Þ
2a

X
b�a

@j�b
j @i�

i
bðc �	Þ �	ðT0 þ f0Þ

4a

� T1 þ f1
4a

þ ð1þ f00Þ
a

½6H _	þ 6H2c � 3H2	

þ €	þ _Hð2c �	Þ þH _c �

þ f000
a
ð�24H _H _	�48cH2 _H � 12H2 €	

� 12H3 _c þ 12H2 _H	Þ
¼ 4�G

a
ðpm	þ �pmÞ; (32)

Ei
b;b�a�

a
i �

ð1þ f00Þ
2

@j�
j
b@

i�a
i ð	� c Þ

¼ 4�Ga2@j�
j
b@

i�a
i �

S; (33)

where we have used the definition r2 ¼ P
i@i@

i and in-
dices are summed over only when explicitly shown with
the

P
symbol.

The above equations are perfectly general. In what
follows, we set the scalar anisotropic stress �S to zero
for simplicity, a choice which precludes the possibility of
anisotropic expansion of the Universe. However, the cos-
mological consequences of dark energy models with an-
isotropic stress have been previously considered in the
literature [27], and a detailed study of the effects of aniso-
tropic stress in fðTÞ cosmology would be an interesting
avenue for future research.
The zero-anisotropic-stress assumption, which accord-

ing to (33) implies 	 ¼ c , along with �pm ¼ 0, may lead
the system of perturbation equations becoming overdeter-
mined. Once the vanishing of the anisotropic stress is
implemented, we then have four equations determining
the three remaining perturbation variables ��m, 	 and
�u. However, in the limit f00ðTÞ ’ 0, Eqs. (30) and (31)
become identical, removing the overdetermination. We
therefore conclude that the requirement of no anisotropic
stress imposes another constraint on fðTÞ models, namely,
that f00ðTÞ ’ 0. However, note that this requirement on
fðTÞmight be relaxed for more general choices of vierbein
than (9).

B. Stability

In the previous subsection, we derived the linear equa-
tions of motion for the perturbations. In this subsection, we
will use them to examine the stability of fðTÞ gravity and
extract the dispersion relation for the pure gravitational
perturbations. Since we are concerned with the stability of
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the theory, in this subsection we ignore the matter sector in
the set of Eqs. (29)–(33). This is because if the gravita-
tional sector itself is unstable, the matter content cannot
cure the instability.

Working in Fourier space, we introduce the mode-
expansion of 	 as

	ðt;xÞ ¼
Z d3k

ð2�Þ3=2
~	kðtÞeik�x: (34)

Therefore, inserting this into (23), we obtain the modes of
the Fourier transformed T1 as

~T 1k ¼ 12H2 ~	k þ 12H _~	k; (35)

while (24) gives the modes of the Fourier transformed f1 as

~f 1k ¼ ~T1k

dfðTÞ
dT

��������T¼T0

¼ ~T1kf
0
0; (36)

the modes of the Fourier transformed f01 as

~f 0
1k ¼ ~T1k

d2fðTÞ
dT2

��������T¼T0

¼ ~T1kf
00
0 ; (37)

and the modes of the Fourier transformed f001 as

~f 00
1k ¼ ~T1k

d3fðTÞ
dT3

��������T¼T0

¼ ~T1kf
000
0 ; (38)

where obviously f0, f
0
0 and f000 do not depend on 	.

Inserting Eqs. (34)–(38) into (32), we obtain

€~	k þ � _~	k þ!2 ~	k ¼ 0; (39)

where !2 and � are, respectively, given by

!2 ¼
3H2

2 þ _H � f0
4 þ _Hf00 � ð36H4 � 48H2 _HÞf000 þ 144H4 _Hf0000

1þ f00 � 12H2f000
(40)

� ¼ 4H½1þ f00 � ð12H2 þ 9 _HÞf000 þ 36H2 _Hf0000 �
1þ f00 � 12H2f000

: (41)

Equation (39) allows one to study the stability of any
given model. In particular, a model for which !2 is nega-
tivewill clearly be unstable. Note that as mentioned before,
it is sufficient to consider a scenario without any matter
content. In such a pure gravitational case, the background
Eq. (12) (that is, with �m ¼ 0, pm ¼ 0) leads to a constant
H. Therefore, Eq. (40) reduces to the simple form

!2 ¼
3H2

2 � f0
4 � 36H4f000

1þ f00 � 12H2f000
: (42)

One can use relation (42) in order to determine if a
specific fðTÞ model is free of instabilities. For instance,
we can insert the power-law Ansatz fðTÞ ¼ �ð�TÞn, with
� ¼ ð6H2

0Þ1�n=ð2n� 1Þ in the absence of matter (H0 is

the present Hubble parameter), and the exponential Ansatz

fðTÞ ¼ ��Tð1� epT0=TÞ, with � ¼ 1=½1� ð1� 2pÞep�
in the absence of matter, considered in [14], and then we
can straightforwardly determine the allowed values for the
Ansatz-parameters numerically. It is easy to check that in
both these cases the stability condition is satisfied for the
phenomenologically relevant ranges of parameters, that is
0< n< 1 for the power-law model and 0< p< 1 for the
exponential model.

C. Growth of perturbations

Having examined the stability of fðTÞ gravity, in this
subsection we switch on the matter sector, and examine the
fluctuations about the FRW background in the presence

of matter. This is a crucial subject in every cosmological
scenario, and thus it is the starting point for a thorough
investigation of the cosmology in the fðTÞ framework.
In order to study the growth of perturbations, we assume

for simplicity a matter-only universe, that is we impose
pm ¼ 0 ¼ �pm. As usual, we define the matter overden-
sity � as

� � ��m

�m

: (43)

We now write Eq. (29) as

3Hð1þ f00 � 12H2f000 Þ _~	k þ ½ð3H2 þ k2=a2Þð1þ f00Þ
� 36H4f000 � ~	k þ 4�G� ~�k ¼ 0: (44)

Note that this is the relativistic version of the Poisson
equation in fðTÞ gravity. In summary, Eqs. (39) and (44)
can be used in order to evolve � for a given fðTÞ model,
which will allow for a comparison to observational data.
Before proceeding to the investigation of Eq. (44), let us

make a comment concerning the relation to General
Relativity. As we observe, a very interesting feature that
emerges from the above analysis, both of the pure gravi-
tational sector of the previous subsection as well as of the
matter inclusive sector of the present subsection, is that
the linear perturbations in fðTÞ gravity reduce to those of
General Relativity in the limit where fðTÞ is constant. For
example, if fðTÞ ¼ const ¼ �2�, where � is the cosmo-
logical constant, then one can immediately see that
Eqs. (29)–(33) reduce to the well-known first-order equa-
tions of General Relativity [25,28], and furthermore
Eqs. (39) and (44) reduce to the well-known equations
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for the growth of perturbations in �CDM cosmology (see,
e.g., [29]).

Obtaining General Relativity as a limiting behavior at
the level of both the background and the perturbations, is
not a standard feature of a gravitational theory. In particu-
lar, any covariant modified gravitational theory contains
extra degrees of freedom at the perturbational level, unless
this theory can be conformally transformed back to the
standard General Relativity. These degrees of freedommay
have no impact at the background level (under certain
symmetries), but the perturbative modes could in principle
leave their imprints at first order, even if one imposes the
General Relativity limit. This is the case, for example, for
Hořava-Lifshitz gravity [11] where, although the theory in
the Infra-Red coincides with General Relativity, at the
perturbative level one obtains the known strong coupling
problem, even in the IR [30].

However, as we see from the analysis of the present
work, fðTÞ gravity seems to coincide with General
Relativity when fðTÞ is constant, both at the background
level and at the first-order perturbation level, leaving pos-
sible differences to arise at second order or beyond. Such a
behavior is seen also in fðRÞ gravity, both in its metric and
Palatini formulation [31,32], and it is a significant feature
of fðTÞ gravity and a robust self-consistency test.

We now proceed to the investigation of the physical
implications of a nontrivial fðTÞ-Ansatz, studying the
growth of the overdensity for a specific model. We choose
the power-law model suggested in [14]:

fðTÞ ¼ �ð�TÞn; (45)

where � ¼ ð6H2
0Þð1�nÞð1��m0Þ=ð2n� 1Þ and H0 and

�m0 refer to the Hubble parameter and the matter density
parameter at present.

Our results for the growth of perturbations, arising from
a numerical elaboration, are presented in Figs. 1–3. In these

figures, we follow the growth of the matter overdensity �,
from the time of last scattering to the present one, for
different choices of n, for three different k-scales. In
Fig. 4, we depict the evolution of � for fixed n ¼ 0:2, but
for three different scales. As usual, we use the redshift z as
the independent variable, defined as 1þ z ¼ a0=a with a0
the present scale-factor value.
As expected, the n ¼ 0 case is identical to �CDM

scenario [29]. However, as n increases we find that there
is a suppression of growth at smaller redshifts, which can
act as a clear distinguishing feature of these models. We
also notice that larger scales are more strongly affected
than smaller ones. Therefore, observations which target
subhorizon scales close to the horizon could, in principle,
constrain these models.
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FIG. 1 (color online). The evolution of the matter overdensity
� as a function of the redshift z, on a scale of k ¼ 0:1h Mpc�1,
for three choices of n, for the power-law model given by (45).
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FIG. 2 (color online). The evolution of the matter overdensity
� as a function of the redshift z, on a scale of k ¼ 0:01h Mpc�1,
for three choices of n, for the power-law model given by (45).
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FIG. 3 (color online). The evolution of the matter overdensity
� as a function of the redshift z, on a scale of k ¼
0:001h Mpc�1, for three choices of n, for the power-law model
given by (45).
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Finally, note that, as we mentioned in the end of
Sec. III A, in order for our scenario to be free of over-
determination (since we have imposed the zero-aniso-
tropic-stress assumption which reduces the degrees of
freedom) we must have f00ðTÞ ’ 0. This condition in
the case of the power-law Ansatz requires n � 1, which
is what we have used for the numerical analysis.
Interestingly enough, it is exactly the same condition
that is needed in order to acquire an observationally
compatible dark-energy and Newton constant phenome-
nology at the background level [14] (for the power-law
Ansatz n ’ 1 also gives f00ðTÞ ’ 0 but we do not consider
this case due to the aforementioned phenomenological
reason).

IV. VECTOR AND TENSOR PERTURBATIONS
IN fðTÞ GRAVITY

In the previous section we focused on the scalar pertur-
bations of fðTÞ gravity, since they are sufficient to reveal
the basic features of the theory, allowing for a discussion of
the growth of matter overdensities. For completeness, in
this section we extend our analysis in order to include the
vector and tensor sectors of the theory in the absence of
matter.

The general perturbed vierbein at linear order reads as

e0� ¼ �0
�ð1þ c Þ þ aðGi þ @iFÞ�i

�

ea� ¼ a�a
�ð1�	Þ þ aðhai þ @i@

aBþ @iC
a þ @aCiÞ�i

�

e�0 ¼ ��
0 ð1� c Þ

e
�
a ¼ 1

a
½��

a ð1þ	Þ þ ðhia þ @i@aBþ @iCa þ @aC
iÞ��

i �
� ðGi þ @iFÞ�i

a�
�
0 : (46)

In these expressions, apart from the scalar modes 	 and c
of the previous section, we have introduced the transverse
vector modes Gi and Ci, the transverse traceless tensor
mode hai , and the scalar modes F and B, the divergence of
which will also contribute to the vector sector. Similarly to
the simple scalar case, the coefficients on the above ex-
pressions have been chosen in order for this vierbein
perturbation to give rise to a perturbed metric of the
familiar form:

g00 ¼ 1þ 2c

gi0 ¼ a½@iFþGi�
gij ¼ �a2½ð1� 2	Þ�ij þ hij þ @i@jBþ @jCi þ @iCj�:

(47)

Let us make a comment here concerning the number of
degrees of freedom of the perturbed theory. As may be
deduced straightaway, T�

��, K
�
�� and S��� are space-time

tensors under an infinitesimal coordinate transformation of
the form

x� ! x� þ 
�: (48)

This implies that the torsion scalar T is a generally cova-
riant scalar, and thus actions of the form of (6) are gen-
erally covariant as well as invariant under (48). As a result,
for our choice of vierbein (9), the number of degrees of
freedom (DOF) is identical to General Relativity. In par-
ticular, in 3þ 1 space-time dimensions, the metric, being
symmetric, has 10 independent DOF. This is reflected in
(46), which comprises
(i) 4 scalar DOF c , 	, F and B
(ii) 4 vector DOF, 2 associated with each of the diver-

genceless vectors Gi and Ci

(iii) 2 tensor DOF associated with the transverse, trace-
less and symmetric tensor hij

However, not all of these DOF are independent as there
exist 3þ 1 DOF associated with the coordinate transfor-
mation (48) (the temporal part of 
� is the scalar 
0, and its
spatial part can be decomposed into the gradient of a scalar
plus a divergenceless vector: @i


S þ 
Vi , leading to a total
of 2 scalar and 2 vector DOF). Subtracting these, we are
left with a total of 6 DOF: 2 scalar, 2 vector, and 2 tensor,
just as in the case of General Relativity.
We can therefore work in the Newtonian gauge,

setting F and B to zero. This is easily understood since
under (48), the gauge transformation of B is �ð2
SÞ=a2,
while that of F is ð1=aÞð�
0 � _
S þ 2H
SÞ. Therefore,

S can be chosen in order to give rise to B ¼ 0,
and similarly an accompanying choice of 
0 will lead to
F ¼ 0.
From the above analysis, it is clear that there are no

extra modes in fðTÞ theories, which often show up in
theories with less symmetry than General Relativity. For
example as discussed in [33], in the case of Hořava gravity,
which is invariant under spatial diffeomorphisms and
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FIG. 4 (color online). The evolution of the matter overdensity
� as a function of the redshift z, for a fixed n for the power-law
model given by (45), for three different scales.

COSMOLOGICAL PERTURBATIONS IN fðTÞ GRAVITY PHYSICAL REVIEW D 83, 023508 (2011)

023508-7



space-independent time reparametrizations but not under
space-dependent time reparametrizations, one can no
longer choose the longitudinal gauge, and thus an extra
scalar DOF remains. However, note that extra DOF can
still arise from more general choices of vierbein than (9).
The possible existence and phenomenology of these extra
modes is beyond the scope of this work and warrants
further study.

Additionally, we choose a gauge where the vector mode
Ci vanishes (through an appropriate choice of 
Vi ). As
usual, the vector modes are transverse, while the tensor
mode is transverse and traceless, namely

@iC
i ¼ @iG

i ¼ 0; @ih
ij ¼ �ijhij ¼ 0: (49)

Finally, we easily deduce the following relation between
the tensor perturbations in the vierbein and inverse vier-
bein:

h�¼1
a¼1 ¼ �ha¼1

�¼1: (50)

Using the above relations, the perturbed torsion tensor
(19) becomes

T0
�� ¼ @�c�0

� � @�c�0
� þ að@�G� � @�G�Þ

Ti
0i ¼ H � _	þ _hi

c�i
c

Ti
ij ¼ @j	þ @ihj

c�i
c � @jhi

c�i
c;

(51)

where for notational compactness we have introduced aG0

part of Gi, which is zero. This torsion tensor inserted into
(4) leads to

S0
0i ¼ 1

a2
@i	þ 1

2a2
X
j

@jhi
a�j

a þH

a
Gi

S0
ij ¼ 1

4a3
ð@iGj � @jGiÞ

Si
0i ¼ �H þ _	þ 2Hc þ 1

2
_hi
a�i

a

Si
j0 ¼ 1

4a
ð@iGj � @jGiÞ

Si
ij ¼ 1

2a2
@jð	� c Þ þ 1

2a2
ð@khja � @jhk

aÞ�k
a

þH

a
Gj þ 1

2a
_Gj: (52)

However, the torsion scalar is unaffected by the vector and
tensor modes, and thus it remains

T � T0 þ T1 ¼ �6H2 þ 12H2c þ 12H _	; (53)

and likewise the determinant e is still given by

e ¼ a3ð1þ c � 3	Þ: (54)

We now have all the necessary machinery in order to
extract the equations of motion for the vector and tensor
sectors. Following the steps of the previous section, we can
similarly decompose the energy-momentum tensor into its
vector and tensor components and ignore the vector and
tensor anisotropic stresses. We finally obtain

½1þ f0ðTÞ�r2Gj ¼ 0 (55)

for the vector mode. Since the quantity in square brackets
is zero only for the unphysical model fðTÞ ¼ �T (for
which the action (6) does not describe the gravitational
sector anymore), we can eliminate it, resulting in

r2Gj ¼ 0: (56)

Therefore, the vector modes in fðTÞ gravity decay as 1=a2,
that is similar to the General Relativity case.
For the tensor mode, we obtain

�
½1þ f0ðTÞ�

� €hai
2a

�r2hai
2a

þ 3H _hai
2a

�
� 6H _Hf00ðTÞ _hia

a

�
�j
a

¼ 0: (57)

Finally, similar to the scalar case, we can Taylor-expand
the derivatives of fðTÞ using (24), and Fourier-expand the
vector and tensor modes, in order to obtain the correspond-
ing dispersion relations. Moreover, we can split the tensor
sector into left-handed and right-handed polarizations.
However, such a detailed analysis of the gravitational
wave spectrum lies beyond the scope of this work. Here,
we retain only the simple forms (56) and (57), since they
are adequate in order to reveal the basic features of the
behavior.
Concerning the tensor Eq. (57), although there is a new

friction term, there are no new mass terms, which is a
behavior similar to the scalar case of the previous section.
Therefore, we can safely conclude that, in general, fðTÞ
theories do not introduce massive gravitons; thus when
fðTÞ tends to a constant we do not obtain the typical
problems of massive gravity, which is a significant advan-
tage of fðTÞ gravity. Additionally, note that similar to the
scalar case, in the limit where fðTÞ tends to a constant
we do recover the behavior of General Relativity at
linear order, which is a self-consistency test of the con-
struction. Lastly, from the equations of motion for scalar,
vector and tensor perturbations presented above, it is clear
that these three classes of perturbations decouple from one
another in fðTÞ gravity, just as they do in case of General
Relativity.

V. CONCLUSIONS

In this work we investigated the recently developed
fðTÞ gravity, going beyond the simple background
level. fðTÞ gravity is the extension of the teleparallel
equivalent of General Relativity, which uses the zero cur-
vature Weitzenböck connection instead of the torsionless
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Levi-Civita connection, in the same lines as fðRÞ gravity is
the extension of standard General Relativity. In particular,
we analyzed the first order perturbations of fðTÞ gravity.

Examining the scalar perturbations of fðTÞ gravity in
the Newtonian gauge, we derived the perturbed equa-
tions of motion and extracted the corresponding dis-
persion relation. Therefore, in constructing a realistic
fðTÞ-gravitational scenario, one should use an fðTÞ
Ansatz that leads to non-negative !2 in (42), in order to
obtain a theory free of instabilities. Moreover, we showed
that for the assumption of no scalar anisotropic stress to be
consistent, one needs the constraint f00ðTÞ ’ 0.

Additionally, we found that fðTÞ gravity with fðTÞ
set to a constant coincides with General Relativity,
not only at the level of the background but also for the
first-order perturbations. This is a significant advantage
of the theory as compared to other modified gravity
paradigms.

Furthermore, as an example of an application of our
formalism, we followed the growth of perturbations in a
specific fðTÞ model, namely, the power-law Ansatz pro-
posed in [14]. For this model we found that on large
subhorizon scales (Oð100 MpcÞ or larger), the evolution
of the matter overdensity differs from �CDM. Therefore,
future precise observational data on these scales could be
used to constrain or rule out such models.

Finally, we investigated the vector and tensor per-
turbations at linear order, extracting the corre-
sponding equations of motion for the vector and tensor
modes. We showed that fðTÞ gravity does not introduce
massive gravitons, which is a significant advantage. Lastly,
we verified again, as in the scalar sector, that in the limit
where fðTÞ tends to a constant the theory tends to General
Relativity, both at the background as well as at the linear
perturbation level.

Clearly fðTÞ cosmology presents a very rich behavior
and deserves further investigation.
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APPENDIX: SCALAR GRAVITATIONAL AND
MATTER PERTURBATIONS OF fðTÞ

COSMOLOGY IN THE SYNCHRONOUS GAUGE

Let us analyze the scalar gravitational and matter
perturbations in the synchronous gauge. The perturbed
vierbein read

ei� ¼ �ei� þ ti�; (A1)

with

�e0� ¼ �0
�; �ea� ¼ �a

�a; �e
�
0 ¼ �

�
0 ; �e

�
a ¼ ��

a

a

t0� ¼ 0; ta� ¼ �b
�

a

2
ð�a

bA� a2@b@
aBÞ

t�0 ¼ 0; t�a ¼ ���
b

1

2a
ð�b

aA� a2@b@aBÞ

e ¼ a3
�
1þ 3

2
Aþ 1

2

X
a

@i@iB

�
: (A2)

These symbols, as well as the various coefficients, have
been conveniently chosen in order for the vierbein pertur-
bation to induce a metric perturbation of the known form in
synchronous gauge, namely

ds2 ¼ dt2 � a2½�ijð1þ AÞ þ @i@jB�dxidxj: (A3)

Inserting these into the perturbed torsion tensor (19), and
then to (4) we obtain

Ti
0� ¼ �i

�

�
Hþ

_A

2

�
� 1

2
@tða2@i@bBÞ�b

�

Ti
ji ¼

1

2
@jA

S0
0i ¼ 1

2
@iA

Si
ij ¼ 1

4
@jA

Si
0j ¼ � 1

4
@tða2@i@jBÞ

Si
0i ¼ �

�
H þ

_A

2

�
þ 1

4
@t

�
a2

X
b�a

@j�b
j @i�

i
bB

�

¼ �
�
H þ

_A

2

�
þ 1

4
@tða2r2B� a2@i@

iBÞ: (A4)

Furthermore, up to second-order the torsion scalar defined
in (5) is found to be

T ¼ �6H2 �X
i

1

2
@iA@iA� 6H _Aþ 2H@tða2r2BÞ:

(A5)

Finally, concerning the first-order matter perturbations, we
use the results (25)–(28).
Inserting these results into (7), we extract the perturbed

equations of motion as

E0
0 ¼ �ð1þ f00Þ

2
r2A� 3H2f01ðTÞ � 3H _Að1þ f00Þ

þH@tða2r2BÞð1þ f00Þ �
T1 þ f1ðTÞ

4

¼ 4�G�T
em

0

0
; (A6)
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Ei
0 ¼

1

2
@i _Að1þ f00Þ þH@iAð1þ f00Þ � 6H _Hf000 ðTÞ@iA ¼ 4�G�T

em

0

i
; (A7)

E0
a ¼ ð1þ f00Þ

2a
@i�

i
a
_AþHf000 ðTÞ

a
@i�

i
a

�
� 1

2

X
b

@j�b
jA@i�

i
bA� 6H _Aþ 2H@tða2r2BÞ

�
¼ 4�G

a
�T
em

i

0
�i
a; (A8)

Ei
b ¼ �ð1þ f00Þ

4a3
@t½a2@tða2@j�j

b@
iBÞ� þ ð1þ f00Þ

4a
@j�

j
b@

iAþHð1þ f00Þ
4a

@tða2@j�j
b@

iBÞ � ð1þ f00Þ
2a3

@tðHa4@i@j�
j
bBÞ

þ 3
f000 ðTÞ
a

H _H@tða2@j�j
b@

iBÞ þ 6aH2 _Hf000 ðTÞ@i@j�j
bB� a

8
@j�

j
b@

iBðT0 þ f0Þ ¼ 4�G

a
�T
em

j

i
�j
b; (A9)

Ei
a�

a
i ¼ � f01

a
½3H2 þ _H� þ ð1þ f00Þ

�
1

a3

�
@tð�Ha2Þ

�
� 3A

2
þ a2r2B

�
þ @t

�
a2
�
�HA�

_A

2
þ 1

4
@tða2r2B� a2@i@

iBÞ

þH

2
ða2r2B� a2@i@

iBÞ
���

� 1

4a
ðr2A� @i@

iAÞ �H _AþH

4
@t½a2ðr2Bþ @i@

iBÞ�
�
þ f001 ðTÞ12H2 _H

a

þ f000 ðTÞ
a

�
�H

2
@t

�X
a

@iA@
iA

�
� 6H2 €A� 6H2 _HA�H _H@tða2r2BÞ þ 2H2@2t ða2r2BÞ þ 6H2 _Ha2@i@

iB

þ 3H _H@tða2@i@iBÞ
�
� ðT1 þ f1Þ

4a
þ ðT0 þ f0Þ

�
1

8a
A� a

8
@i@

iB

�
¼ 4�G�T

em

1

1 � 4�Gpm
1
2a Aþ 4�Gpm

a
2 @i@

iB;

(A10)

where we have used the definition r2 ¼ P
i@i@

i, and indices are summed over only when explicitly shown with the
P

symbol.
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