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In the recent paper by Mielczarek et al. (Ref. [8]), an idea of the method which can be used to put some

constraint for the reheating phase was proposed. Another method of constraining the reheating tempera-

ture has been recently studied by Martin and Ringeval (Ref. [17]). Both methods are based on observations

of the cosmic microwave background (CMB) radiation. In this paper, we develop the idea introduced in

this first article to put constraint on the reheating after the slow-roll inflation. We restrict our consid-

erations to the case of a massive inflaton field. The method can be, however, easily extended to the

different inflationary scenarios. As a main result, we derive an expression on the reheating temperature

TRH. Surprisingly, the obtained equation is independent on the unknown number of relativistic degrees of

freedom g� produced during the reheating. Based on this equation and the WMAP 7 observations, we find

TRH ¼ 3:5� 106 GeV, which is consistent with the current constraints. The relative uncertainty of the

result is, however, very high and equal to �ðTRHÞ=TRH � 53. As we show, this uncertainty will be

significantly reduced with future CMB experiments.

DOI: 10.1103/PhysRevD.83.023502 PACS numbers: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

The reheating [1,2] is a hypothetical process in which
the inflaton field [3] is converted into the standard model
particles. The mechanism of reheating is usually assumed
to be a parametric production of particles [4]. However, the
considerations are purely speculative due to the lack of any
possible empirical verification of the reheating phase. Up
to now, only some weak constrains on the basic parameters
of reheating are available. In particular, the reheating
temperature TRH can be constrained from the both sides.
From bottom the constraint is given by the big bang
nucleosynthesis (BBN), namely TRH * 10 MeV [5,6].
From the top, the constraint comes from the energy scale
at the end of inflation TRH & 1016 GeV. Roughly 18 orders
of magnitude remain to place the reheating temperature
somewhere between. Worse, there is no observational
window available at these energy scales. Such a window
exists however at the energies of inflation. It is because the
perturbations created during the inflation can be studied
by its impact on the cosmic microwave background
(CMB) radiation and subsequently by the large scale struc-
tures (LSS). The method of constraining the reheating
phase indirectly by the inflationary observational window
was recently studied in Ref. [7]. It was shown that it
leads to the lower constraint on the reheating temperature
TRH * 6 TeV.

In this paper, we present an alternative method which
can be used to fix at least some details of reheating based
on observations of the cosmic microwave background
(CMB) radiation. In comparison with the method presented
in Ref. [7], it will be possible not only to put a constraint on
TRH, but just fix its value. The idea of the method was

sketched in Ref. [8]. It bases on the fact that the total
increase of the scale factor from the observed part of
inflation till now can be determined from the CMB. The
number of e-foldings from the observed part of inflation till
its end can be determined too. Based on this, the e-folding
number from the end of inflation till the recombination can
be found. As we show, this can be used to determinate the
reheating temperature. For simplicity, we assume the slow-
roll inflation (described by a massive inflaton field), which
is in good agreement with the CMB observations. After
inflation, the inflaton field undergoes coherent oscillations
at the bottom of a potential well. The reheating takes
place when the Hubble parameter H falls to the value of
the inflaton decay rate ��. We assume that the reheating

is instantaneous. After reheating, the standard radiation
phase takes place. The evolution of radiation is assumed
to be adiabatic. During the reheating, the effective number
of relativistic species produced is given by g�. The decay
rate of the inflaton field can be related with the remaining
two parameters g� and TRH by the Friedmann equation as
follows

�2
� ’ 8�

3m2
Pl

g�
�2T4

RH

30
; (1)

where mPl ¼ 1:22� 1019 GeV. Therefore, only two from
the parameters of reheating ð��; TRH; g�Þ are independent.
In this paper, we show that the reheating temperature
can be determined independently on the remaining
two parameters. Up to now, the constraints on TRH were
dependent on the value of g�. However, in the equation
derived in this paper, the g� factors surprisingly cancel out.
Having TRH, the decay rate �� can be expressed in terms
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The considerations presented in this paper are restricted
to the simplest setup in order to capture the essence of the
method. However, extension to the different inflationary
scenarios and to the more detailed models of reheating can
be done straightforwardly.

II. METHOD

The main idea of the method can be understood by
looking at Fig. 1. In this figure we schematically present
evolution of the Hubble radius RH :¼ 1=H, together with
the evolution of an arbitrary physical length scale �. The
present value of this length scale is equal to �0, what we
call the pivot scale. The following values of the scale factor
were distinguished:

a0-the present value of the scale factor, we set a0 ¼ 1 for
convenience.

a1-the scale factor at the end of the radiation era. Later,
we set this to be a scale factor at the recombination which
takes place soon after the end of the radiation era.

a2-the scale factor at which the instantaneous reheating
takes place (beginning of the radiation era).

a3-the scale factor at the end of inflation. The inflation
field starts to oscillate.

a4-the scale factor at which the length scale of the
present value �0 crossed the Hubble radius during inflation.

The total increase of the scale factor from a4 to a0 will
be of particular importance. We call it �tot, which can be
expressed as follows

�tot ¼
Y3
i¼0

�i; where �i :¼ ai
aiþ1

: (2)

So, if we know durations of the four stages between the a4
and a0, the �tot can be determined. This is, however,
practically impossible to obtain because we do not know
details of the intermediate periods as �2 and �1.
Hopefully, there is an alternative method to determinate

�tot, which can be used to put constraints on �2 and �1.
This method bases on the observation of the CMB radia-
tion. In particular, on the measurements of the scalar power
spectrum. The form of this spectrum is parameterized by
the function

P sðkÞ ¼ As

�
k

k0

�
ns�1

: (3)

The As is an amplitude and ns is a spectral index of the
scalar perturbations. The k0 is some arbitrary fixed
scale called pivot number. We can relate it to the pivot
scale �0 introduced earlier by �0 ¼ 2�=k0. In particular,
the WMAP collaboration choice is k0 ¼ 0:002 Mpc�1

(we also use this choice in this paper). For this value, the
seven years of observations made by the WMAP satellite
give the following values of the amplitude and spectral
index of the scalar perturbations [9]

As ¼ 2:441þ0:088
�0:092 � 10�9; (4)

ns ¼ 0:963� 0:012: (5)

On the other hand, the well known prediction of the slow-
roll inflation is

P sðkÞ ¼ 1

��

�
H

mPl

�
2

|fflfflfflfflfflffl{zfflfflfflfflfflffl}:¼S

�
k

aH

�
ns�1

; (6)

where � is the so-called slow-roll parameter equal to

� ¼ m2
Pl

4�

1

�2
: (7)

For the considered massive slow-roll inflation ns ¼ 1� 4�.
Let us now consider the power spectrum at the length

scale �0 which corresponds to the pivot number k0. From
observation, an amplitude of the scalar perturbations at
this scale is equal to P sðk0Þ ¼ As. On the other hand, this
amplitude is formed when k ’ aH. Therefore, for the mode
k0 we have S ¼ As.
Cosmological evolution of the pivot scale �0 is given by

�ðaÞ ¼ �0

a

a0
: (8)

This relation is represented by the red line in Fig. 1. The
value of � was equal to the Hubble radius at a4. Based on
this, one can derive

�tot ¼ a0
a4

¼ �0

�ða4Þ ¼
H

k0
; (9)

where H is the value of the Hubble parameter when the �
crossed the horizon during the inflation. In the second
equality, we have used relation �ðaÞ ¼ 2�

k
a
a0
, together

with k ’ aH at the horizon crossing. Namely, �0 ¼ 2�
k0

and �ða4Þ ¼ 2�
H

1
a0
, where a0 ¼ 1. At the pivot scale,

S ¼ As, so

FIG. 1 (color online). Schematic evolution of the Hubble ra-
dius (blue line) for the standard cosmological scenario. The
straight (red) line represents evolution of the physical length
scale �ðaÞ, where �ða0Þ ¼ �0.
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H

mPl

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
��As

p
: (10)

Expressing the � from ns ¼ 1� 4�, we find

�tot ¼ 1

2

mPl

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� nsÞAs

q
: (11)

The essential conclusion derived from this equation is that:
Based on the CMB observations, one can determinate the
total increase of the scale factor from the observed moment
of inflation till now. In principle, from the WMAP 7
observations we determinate

�tot ¼ ð8:0� 1:5Þ � 1051: (12)

III. INFLATION AND REHEATING

The increase of a scale factor during the part of inflation
from a4 to a3 is given by

�3 ¼ eNobs ; (13)

where Nobs is the e-folding number, which can be ex-
pressed as follows

Nobs ’ � 8�

m2
Pl

Z 0

�obs

Vð�Þ
V0ð�Þd� ¼ 2�

�2
obs

m2
Pl

¼ 2

1� ns
: (14)

We have used here Vð�Þ ¼ m2

2 �2 and defined �obs ¼
�ða4Þ. In particular, based on the WMAP 7 data one can
find Nobs ¼ 54� 18. The uncertainty is high because of
the strong sensitivity on the uncertainty of the spectral
index ns. This will later propagate to the uncertainty of
the reheating temperature. As we show in Sec. V, the
uncertainty of Nobs can be significantly reduced with the
future CMB experiments.

During the slow-roll inflation, evolution of the inflaton
field � is well approximated by

�ðtÞ ¼ �max � mmPlffiffiffiffiffiffiffiffiffi
12�

p t: (15)

From comparison with the numerical results, it can be seen
that this approximation holds till the end of inflation, when
� � 0. Therefore, the kinetic term

_�2

2
’ m2m2

Pl

24�
; (16)

is approximately constant during the inflation. This con-
tribution to the total energy density is, however, dominated
by the potential part during the slow-roll inflation. At the
end of inflation, the contribution from the potential part
falls to zero (Vð� ¼ 0Þ ¼ 0), and the kinetic term domi-
nates. One can therefore estimate that, at the end of in-
flation, the energy density is given by

�ða3Þ ’ m2m2
Pl

24�
: (17)

A validity of this approximation was confirmed by the
numerical computations.
After inflation, the field starts to oscillate at the bottom

of the potential well. During this evolution, the energy
density drops as in the matter dominated universe [10]

�ðaÞ ’ �ða3Þ
�
a3
a

�
3
: (18)

This evolution holds till a2, when H � �� and the reheat-

ing takes place. Then, the energy density

�ða2Þ ¼ g�
�2T4

RH

30
; (19)

here g� ¼ gðTRHÞ is the number of ultrarelativistic degrees
of freedom generated during the reheating, where gðTÞ is
defined as follows

g ¼ X
boson

gB þ 7

8

X
fermion

gF: (20)

In particular, for Glashow-Weinberg-Salam (GWS)
model SUð2ÞL �UYð1Þ � SUcð3Þ, we have g ¼ 106:75.
Therefore one may expect that g� � 106:75 if the tem-
perature of reheating is greater than the electroweak energy
scale, TRH * 300 GeV.
Based on (18) we have

�2 ¼ a2
a3

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�ða3Þ
�ða2Þ

3

s
; (21)

and applying (17) and (19) we derive

�2 ¼ 1

�

�
5

4
�m

2m2
Pl

g�T4
RH

�
1=3

: (22)

This result will be useful in the subsequent section when
deriving the expression on TRH. However, before we pro-
ceed to this issue we can see what we already can say about
the reheating temperature. Let us notice that the following
condition �ða2Þ 	 �ða3Þ must be fulfilled. Energy scale
of reheating cannot be higher than energy at the end of
inflation. In order to use this constraint one has to firstly
determinate inflaton mass in Eq. (17). It can be done by
noticing that the Friedmann equation reduces to

H2 ’ 8�

3m2
Pl

1

2
m2�2 (23)

in the slow-roll regime (� 
 1). Based on this and condi-
tion S ¼ As, together with ns ¼ 1� 4�, one can derive [8]

m ¼ mPl

1

4

ffiffiffiffiffiffiffiffiffiffiffi
3�As

p ð1� nsÞ: (24)

Applying this expression to the WMAP 7 results we obtain

m ¼ ð1:4� 0:5Þ � 10�6mPl ¼ ð1:7� 0:6Þ � 1013 GeV:

(25)

With use of this value, the condition �ða2Þ 	 �ða3Þ
reduces to
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g1=4� TRH 	 6:5� 1015 GeV: (26)

Based on this, part of the parameter space ðg�; TRHÞ can be
excluded. It was shown as the shadowed region above the
thick line in Fig. 2. As we mentioned earlier, if TRH *
300 GeV then g� � 106:75. This constraint excludes an-
other part of the parameter space. This was represented in
Fig. 2 as the shadowed region constrained by the vertical
line. Based on the above constraints, one can conclude that

TRH 	 2:0� 1015 GeV: (27)

This corresponds to the inflationary bound on the reheating
temperature.

IV. REHEATING TEMPERATURE

After reheating, the Universe is filled by the relativistic
plasma. Expansion of this relativistic gas is assumed to be
adiabatic and the masses of particles are neglected. The
adiabatic approximation is valid until the entropy transfer
between the radiation and other components can be
neglected. In turn, this second approximation is valid if
the temperature is much higher than the masses of the
particles. Then, dS ¼ 0, which implies sa3 ¼ const, where
the entropy density s of radiation is given by

s ¼ 2�2

45
gT3: (28)

Based on this, one can derive expression on the increase of
the scale factor from reheating till the recombination

a1
a2

¼ T2

T1

�
�
g2
g1

�
1=3

: (29)

We have T2 ¼ TRH and T1 is equal to the recombination
temperature Trec. During recombination g1 ¼ g� ¼ 2 and

during reheating g2 ¼ g�, therefore

�1 ¼ TRH

Trec

�
�
g�
2

�
1=3

: (30)

Finally, increase of the scale factor from recombination till
now is given by

�0 ¼ 1þ zrec; (31)

where zrec is the recombination redshift which can be
determined from the CMB observations. It is worth men-
tioning that an intermediate stage other than recombination
can be used here. In particular, the equilibrium point (end
of the radiation epoch, where �rad ¼ �mat) can be chosen.
The corresponding value of redshift can be also determined
from the CMB observations.
At this point, we have all required to find the expression

on TRH. We have found all �i and �tot. Based on (2), the
following relation is fulfilled

�tot ¼ �3�2�1�0: (32)

Inserting (13), (22), (30), and (31), we obtain

�tot ¼ eNobs
1

�

�
5

4
�m

2m2
Pl

g�T4
RH

�
1=3 TRH

TCMB

�
g�
2

�
1=3

; (33)

where we have used Trec ¼ TCMBð1þ zrecÞ. The important
observation is that g� factors cancel out. This is crucial,
because the expression on TRH will be free from the
dependence on the unknown g� parameter. With use of
(11), (14), and (24), the above equation can be rewritten
into the following form

TRH ¼ 15mPl

16 � �7=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ns
As

s �
k0

TCMB

�
3
exp

�
6

1� ns

�
: (34)

This equation is a main result of this paper. Taking the
constant parameters TCMB ¼ 2:725 K ¼ 2:348� 10�4 eV
and k0 ¼ 0:002 Mpc�1 (and reexpressing units: Mpc�1 ¼
6:39� 10�30 eV) one can rederive Eq. (34) to the practical
form

TRH ¼ 3:36� 10�68

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ns
As

s
exp

�
6

1� ns

�
GeV: (35)

In Fig. 3 we show relation (35) as a function of the spectral
index ns. We also mark the regions excluded from the
inflationary constraint and the BBN constraint. For the
data from the WMAP 7 observations, Eq. (35) leads to

TRH ¼ 3:5� 106 GeV: (36)

The relative uncertainty of this result is

�ðTRHÞ
TRH

� 53: (37)

Here a first order Taylor expansion was applied when
calculating propagation of uncertainties:

0 50 100 150 200 250 3001013

1014

1015

1016

1017

g

T
R

H
G

eV

FIG. 2 (color online). Section of the reheating parameters
space ðTRH; g�Þ. The shadowed region is excluded by Eq. (26)
and g� > 106:75 valid for TRH * 300 GeV. The thick line

represents TRH ¼ g�1=4
� � 6:5� 1015 GeV.
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�ðTRHÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@TRH

@ns

�
2
�2ðnsÞ þ

�
@TRH

@As

�
2
�2ðAsÞ

s
: (38)

However, due to the strong (exponential) dependence of
TRH on ns, the applied linear approximation may turn out to
be insufficient. Therefore, one can expect greater uncer-
tainty of TRH than obtained here. Future studies need to
address this issue. The high relative uncertainty (37) is
mainly a result of the weakly determined value of Nobs,
which is a function of ns. In the next section, we will
examine how this uncertainty can be reduced with the
future CMB experiments.

As it was discussed in Refs. [11,12], if TRH �
106–9 GeV, then it may be possible to measure TRH with
the planned space-based laser interferometer experi-
ments such as the Big Bang Observer. The value TRH ¼
3:5� 106 GeV obtained here fulfills this condition. Our
prediction has therefore chance to be verified in future.

Furthermore, based on Eq. (1), one can express the
inflaton decay rate �� in terms of g�:

�� ’ 1:7� 10�6 ffiffiffiffiffi
g�

p
GeV; (39)

where the previously derived value of TRH was used. It is
reasonable to expect that �� ¼ � �m, which comes from

the Heisenberg uncertainty relation. The � is a dimension-
less parameter. With use of the inflaton mass found earlier
we find

� ’ 10�19 ffiffiffiffiffi
g�

p
: (40)

Based on this result, one can deduce that the inflaton
decays into the very light particles comparing with its
mass. This is also the reason why the reheating takes place
at the relatively low energies. It becomes unstable only
when the sufficiently low energies are reached. However,
the origin of this low vale of decay rate �� cannot be

understood without a deeper understanding of the infla-
tionary cosmology.

V. FORECASTING

As we have shown in the previous section, the value of
TRH is strongly dependent on ns. Therefore, the method
presented can be used effectively only if the value of ns is
determined with high precision. The value of ns from the
WMAP 7 observations is not determined sufficiently pre-
cise to obtain a strong prediction concerning the reheating
temperature. However, it may change if the new observa-
tional data will be available. In this section, we predict how
the uncertainty on TRH will be reduced with the future
CMB experiments. In particular, we consider the Planck
satellite [13] experiment which is currently on the stage
of collecting data. We consider the ACTPol [14] ground-
based experiment which is under construction at present.
We also consider the planned CMBPol [15] satellite
experiment.
The uncertainty of TRH comes mainly from ns, therefore,

in the considerations we fix the value of As. Following
Ref. [16], the expected uncertainties of ns from the men-
tioned CMB experiments are the following

�ðnsÞ ¼
8<
:
0:0031 Planck

0:0021 Planckþ ACTPol
0:0014 CMBPol

: (41)

Based on this, let us first see the resulting uncertainties of
the e-folding number Nobs. We find

�ðNobsÞ ¼
8<
:
4:5 Planck

3:1 Planckþ ACTPol
2:0 CMBPol

: (42)

This significant reduction of the uncertainty of Nobs (with
respect to the WMAP 7 results) will be crucial for deter-
mining the reheating temperature. Based on (35) with (41),
we forecast

�ðTRHÞ
TRH

¼
8<
:
13:5 Planck

9:2 Planckþ ACTPol
6:1 CMBPol

: (43)

Here, the values of the parameters ns and As were set to be
those obtained from the WMAP 7 observations.
In order to have �ðTRHÞ=TRH smaller than unity, the

uncertainty of ns should be reduced by 2 orders of magni-
tude with respect to the WMAP 7 results. At present, there
is however no experiment planned to reach such sensitivity.
The uncertainty may be nevertheless additionally reduced
by combining data from the different available experi-
ments. This is possible because of the angular scale de-
pendent sensitivity of the CMB experiments. In particular,
the ground-based experiments can provide much better
data of the CMB polarization at the small angular scales
(high multipoles) than the space-based experiments can.

BBN

Inflation

0.950 0.955 0.960 0.965 0.970

102

106

1010

1014

1018

10 2

10 6

ns

T
R

H
G

eV

FIG. 3 (color online). The thick line represents Eq. (35) with
As ¼ 2:441� 10�9. Dashed lines corresponds to ns ¼ 0:963,
taken from the WMAP 7 observations, what leads to TRH ¼
3:5� 106 GeV. The shadowed regions are excluded by the
inflationary and BBN constraints.
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VI. SUMMARY

In this paper, we have developed a new method of con-
straining the reheating phase after inflation. The method
bases on the observations of the cosmic microwave back-
ground radiation. In particular, the fact that the total in-
crease of the scale factor from the observed part of inflation
till now can be determined is used. Based on this, we have
found the expression on the reheating temperature. The
expression is free from the dependence on the unknown
g� parameter. With use of the WMAP 7 results, we have
determined TRH ¼ 3:5� 103 TeV. The relative uncer-
tainty of this result is equal to �ðTRHÞ=TRH � 53. This
high uncertainty can be, however, significantly reduced
with the future CMB data. One can expect the reheating
temperature to be quite precisely determined (reaching
�ðTRHÞ=TRH ¼ Oð1Þ) within the present decade.

The value of reheating temperature determined in this
paper is consistent with the known bounds, in particular,

with the lower bound TRH * 6 TeV recently found in
Ref. [7]. It is also interesting to note that within the
supersymmetric extension of the standard model, the upper
bound on the reheating temperature exists TRH & 104 TeV
(see Refs. [17–19]). Our result is also in agreement within
this condition. Finally, it is worth mentioning that the low
value of the reheating temperature, as determined here, can
have interesting implications on the phenomenology of
primordial black holes [20].
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