
Determination of dark energy by the Einstein Telescope: Comparing with CMB,
BAO, and SNIa observations

W. Zhao,1 C. Van Den Broeck,2 D. Baskaran,1 and T.G. F. Li2

1School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom
2Nikhef – National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, The Netherlands

(Received 1 September 2010; published 11 January 2011)

A design study is currently in progress for a third-generation gravitational-wave (GW) detector called

the Einstein Telescope (ET). An important kind of source for ETwill be the inspiral and merger of binary

neutron stars up to z� 2. If binary neutron star mergers are the progenitors of short-hard �-ray bursts,

then some fraction of them will be seen both electromagnetically and through GW, so that the luminosity

distance and the redshift of the source can be determined separately. An important property of these

‘‘standard sirens’’ is that they are self-calibrating: the luminosity distance can be inferred directly from

the GW signal, with no need for a cosmic distance ladder. Thus, standard sirens will provide a powerful

independent check of the �CDMmodel. In previous work, estimates were made of how well ETwould be

able to measure a subset of the cosmological parameters (such as the dark energy parameter w0) it will

have access to, assuming that the others had been determined to great accuracy by alternative means. Here

we perform a more careful analysis by explicitly using the potential Planck cosmic microwave

background data as prior information for these other parameters. We find that ETwill be able to constrain

w0 and wa with accuracies �w0 ¼ 0:099 and �wa ¼ 0:302, respectively. These results are compared with

projected accuracies for the JDEM baryon acoustic oscillations project and the SNAP type Ia supernovae

observations.
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I. INTRODUCTION

In the past decade, various observations, including
type Ia supernovae (SNIa) [1], the temperature and polar-
ization anisotropies power spectrum of the cosmic micro-
wave background (CMB) radiation [2], the baryon acoustic
oscillations (BAO) peak in the distribution of Sloan Digital
Sky Survey luminous red galaxies [3], and weak gravita-
tional lensing [4], have all suggested that the present
Universe is undergoing an accelerated expansion. A pos-
sible explanation would be the presence of a fluid called
dark energy, which should have positive density but nega-
tive pressure (for a review, see [5]). Understanding the
physical character of dark energy, assuming it exists, is
one of the main challenges of modern cosmology. A key
question is then how well we will be able to differentiate
between various dark energy models by measuring the dark
energy equation of state (EOS) and its time evolution.

Currently, among the main methods to determine the
dark energy EOS are observations of SNIa, CMB, and
large-scale structure. The capabilities of these methods
will be improved significantly in the near future [6,7].
However, we note that all these methods are based on the
observations of various electromagnetic waves. In addition
to these electromagnetic methods, the observation of gravi-
tational waves (GW) will provide a new technique, where
gravitational-wave sources, in particular, inspiraling and
merging compact binaries, can be considered as standard
candles, or standard sirens [8]. In the case of ground-based
detectors, the idea is to use binaries composed of two

neutron stars (BNS), or a neutron star and a black hole
(NSBH). These are hypothesized to be at the origin of
short-hard �-ray bursts (shGRBs). In many cases it is
possible to identify the host galaxy of a shGRB and deter-
mine its redshift. From the gravitational-wave signal itself
one would be able to measure the luminosity distance in an
absolute way, without having to rely on a cosmic distance
ladder: standard sirens are self-calibrating.
The use of GW standard sirens to measure the Hubble

constant with a network of advanced ground-based detec-
tors has been studied by Nissanke et al. [9], and with LISA
(using extreme mass ratio inspirals) by MacLeod and
Hogan [10]. Supermassive binary black holes may be
useful to study dark energy with LISA [11–16]; more
generally, they can constrain alternative theories of cos-
mology and gravity [17–20]. Observations of BNS events
with the Big Bang Observer would also allow for dark
energy studies [21].
Currently a third-generation ground-based observatory

called Einstein Telescope (ET) is undergoing a design study
[22]. The latter would be able to see BNS inspirals up to
redshifts of z� 2 and NSBH events up to z� 8, corre-
sponding to millions of sources over the course of several
years, some fraction of which will have a detectable elec-
tromagnetic counterpart (e.g., a shGRB). Sathyaprakash
et al. have investigated how well cosmological parameters
could be determined with ET assuming 1000 ‘‘useful’’
sources [23]. Among the parameters which ET will have
access to are
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ðH0;�m;�k; w0; waÞ; (1)

where H0 is the Hubble parameter at the current epoch,�m

the density of matter by the critical density,�k a parameter
related to spatial curvature, and w0 and wa parameters
determining the dark energy EOS and its time evolution
(see below for more precise definitions). ETwill not be able
to arrive at a completely independent measurement of all
these parameters at once. In [23] it was assumed that, e.g.,
all parameters exceptw0 had been measured by other means
(electromagnetic or GW) and could be assumed known with
arbitrary accuracy for all practical purposes. Here we con-
tinue this study in more depth, with a focus on the dark
energy parametersw0 andwa. Instead of assuming the other
parameters to be exactly known, we will use the predicted
CMB prior from Planck. CMB measurements give accurate
values for H0, �m, �k, but have large uncertainties in
w0 and wa. Heuristically, imposing this prior effectively
‘‘fixes’’ the values of H0, �m, �k. To measure w0, wa

with GW standard sirens is then an important check of the
values obtained through electromagnetic means.

The outline of the paper is as follows. In Sec. II, we
recall the basics of using short-hard �-ray bursts as stan-
dard sirens in potential ET-GW observations. We then
discuss the determination of the dark energy parameters
by the ET-GW method alone, after which we impose the
Planck CMB prior. In Sec. III, we discuss the capabilities
of the JDEM BAO project and of the SNAP SNIa project,
and a comparison as well as the potential combination with
the ET-GWmethod is given. In Sec. IV we conclude with a
summary of our main results.

II. SHORT-HARD �-RAY BURSTS AS A KIND OF
STANDARD SIREN

A. The expanding Universe and the dark energy

We will work with the Friedmann-Lemaı̂tre-Robertson-
Walker universes, which are described by

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2d�2 þ r2sin2�d�2

�
;

(2)

where t is the cosmic time, and ðr; �;�Þ are the comoving
spatial coordinates. The parameter k ¼ 0, 1, �1 describes
the flat, closed, and open universe, respectively. The evo-
lution of the scale factor aðtÞ depends on the matter and
energy contents of the Universe. Within general relativity,
the equations governing this evolution are�

_a

a

�
2 � H2 ¼ 8�G�tot

3
� k

a2
;

€a

a
¼ � 4�G

3
ð�tot þ 3ptotÞ; (3)

where �tot and ptot are the total energy density and pressure
in the Universe, and H is the Hubble parameter. Since in

this paper we are mainly interested in the later stages of the
evolution of the Universe, where the radiation component
can be ignored, we only take into account baryonic matter,
dark matter, and dark energy. The baryon and dark matter
are both modeled as pressureless dust. We will assume that
the EOS of a dark energy component is responsible for the
recent expansion of the Universe, which should be deter-
mined by observations. In this paper, we shall adopt a
phenomenological form for the equation-of-state parame-
ter w as a function of redshift z:

wðzÞ � pde=�de ¼ w0 þ wað1� aÞ þO½ð1� aÞ2�
’ w0 þ wa

z

1þ z
: (4)

This is the so-called Chevallier-Polarski-Linder form, [24]
which has been adopted by many authors, including the
DETF (Dark Energy Task Force) group [6]. In the present
epoch where z ’ 0, we have w ’ w0. wa describes the
evolution of w to next-to-leading order in (1� a). Since
we are mostly interested in the later stages of the
Universe’s evolution, higher order terms will be ignored.
The evolution of dark energy is determined by the

energy conservation equation _�de þ 3Hð�de þ pdeÞ ¼ 0.
By using the EOS of dark energy, Eq. (4), we find that

�de ¼ �de;0 � EðzÞ; (5)

where �de;0 is the value of �de at z ¼ 0, and

EðzÞ � ð1þ zÞ3ð1þw0þwaÞe�3waz=ð1þzÞ: (6)

Using Eq. (3), the Hubble parameter H then becomes

HðzÞ ¼ H0½�mð1þ zÞ3 þ�kð1þ zÞ2 þ ð1��m

��kÞEðzÞ�1=2: (7)

In this expression, �m � 8�G�m;0=3H
2
0 is the density of

matter (baryon as well as dark matter) relative to the
critical density, and �k � �k=H2

0 is the contribution of

the spatial curvature. H0 is the Hubble parameter at the
present epoch. Throughout this paper, we shall adopt a
fiducial cosmological model with the following values
for the parameters [2]:

w0 ¼ �1; wa ¼ 0; �bh
2
0 ¼ 0:022 67;

�ch
2
0 ¼ 0:1131; �k ¼ 0; h0 ¼ 0:705; (8)

where h0 ¼ H0=ð100 km s�1 Mpc�1Þ. The other parame-
ters are obtained as �m ¼ �b þ�c ¼ 0:2736, �de ¼
1��m ��k ¼ 0:7264. In Sec. II D, the CMB prior for
the dark energy determination will be discussed, where the
perturbation parameters As and ns (the amplitude and
spectral index of primordial density perturbations, respec-
tively) and the reionization parameter � (the optical depth
of reionization) are also needed. In our fiducial model, we
take these to be [2]

As¼2:445�10�9; ns¼0:96; �¼0:084: (9)
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To conclude this subsection, we state the expression for
the luminosity distance dL of the astrophysical sources as a
function of redshift z (see, e.g., [6]):

dLðzÞ ¼ ð1þ zÞ

8>>>><
>>>>:
jkj�1=2 sin

�
jkj1=2 Rz

0
dz0
Hðz0Þ

�
ð�k < 0Þ;R

z
0

dz0
Hðz0Þ ð�k ¼ 0Þ;

jkj�1=2 sinh

�
jkj1=2 Rz

0
dz0
Hðz0Þ

�
ð�k > 0Þ;

(10)

where jkj1=2 � H0

ffiffiffiffiffiffiffiffiffiffij�kj
p

. This formula will be used fre-
quently in the subsequent discussion.

B. Short-hard �-ray bursts and gravitational waves

Current observational studies of dark energy strongly
rely on standard candles, i.e., sources for which the intrin-
sic luminosity is assumed to be known within a certain
tolerance so that they can be used to determine luminosity
distance. A widely used standard candle is the type Ia
supernova (SNIa) [1,25]. The intrinsic luminosity of dis-
tant SNIa needs to be calibrated by comparison with differ-
ent kinds of closer-by sources, leading to a ‘‘cosmic
distance ladder.’’ This is not the case with GW standard
sirens. As pointed out by Schutz, the chirping GW signals
from inspiraling compact binary stars (neutron stars and
black holes) can provide an absolute measure of distance,
with no dependence on other sources [8]. The GW ampli-
tude depends on the so-called chirp mass (a certain combi-
nation of the component masses) and the luminosity
distance. However, the chirp mass can already be measured
from the signal’s phasing, so that the luminosity distance
can be extracted from the amplitude.

Before discussing standard sirens in more detail, let us
first recall some basic facts about the gravitational radia-
tion emitted by inspiraling compact binaries. Gravitational
waves are described by a second rank tensor h��, which, in

the so-called transverse-traceless gauge, has only two in-
dependent components hþ and h�, hxx ¼ �hyy ¼ hþ,
hxy ¼ hyx ¼ h�, all other components being zero. A de-

tector measures only a certain linear combination of the
two components, called the response hðtÞ, which is given
by (see, e.g., [26])

hðtÞ ¼ Fþð�;�; c ÞhþðtÞ þ F�ð�;�; c Þh�ðtÞ; (11)

where Fþ and F� are the detector antenna pattern func-
tions, c is the polarization angle, and ð�;�Þ are angles
describing the location of the source on the sky, relative to
the detector. In general these angles are time-dependent. In
the case of Einstein Telescope, binary neutron star signals
can be in band for hours, but almost all of the signal-to-
noise ratio will be accumulated in the final minutes of the
inspiral process. With LISA, Doppler modulation due to
the orbital motion, as well as spin precession, will allow for
accurate determination of the angular parameters (see, e.g.,

[27] and references therein), but this is unlikely to happen
for BNS (or NSBH) signals in ETwith Doppler modulation
due to the Earth’s rotation. Nevertheless, some improve-
ment in parameter estimation can be expected, which for
simplicity we do not take into account here. In the sequel,
ð�;�; c Þ will be considered constant.
Consider a coalescing binary at a luminosity distance dL,

with component masses m1 and m2. Write M ¼ m1 þm2

for the total mass and 	 ¼ m1m2=M
2 for the symmetric

mass ratio, and define the ‘‘chirp mass’’ as Mc ¼ M	3=5.
For sources at cosmological distances, what enters the
waveform is the observed chirp mass, which differs
from the physical chirp mass by a factor (1þ z): Mc;obs ¼
ð1þ zÞMc;phys. Below, Mc will always refer to the ob-

served quantity. To leading order in amplitude, the GW
polarizations are

hþðtÞ ¼ 2M5=3
c d�1

L ð1þ cos2ð
ÞÞ!2=3ðt0 � tÞ
� cos½2�ðt0 � t;M;	Þ þ�0�; (12)

h�ðtÞ ¼ 4M5=3
c d�1

L cosð
Þ!2=3ðt0 � tÞ
� sin½2�ðt0 � t;M;	Þ þ�0�; (13)

where 
 is the angle of inclination of the binary’s orbital
angular momentum with the line of sight, !ðt0 � tÞ the
angular velocity of the equivalent one-body system around
the binary’s center of mass, and �ðt0 � t;M;	Þ the corre-
sponding orbital phase. The parameters t0 and �0 are con-
stants giving the epoch of merger and the orbital phase of the
binary at that epoch, respectively. The phase � has been
computed perturbatively in the so-called post-Newtonian
formalism (see [28] and references therein). Since we will
mostly be concerned with binary neutron stars, spin will not
be important, in which case the phase is known up to 3.5PN
in the usual notation [29], and this is what we will use here.
During the inspiral, the change in orbital frequency over

a single period is negligible, and it is possible to apply a
stationary phase approximation to compute the Fourier
transform H ðfÞ of the time domain waveform hðtÞ. One
has

H ðfÞ ¼ Af�7=6 exp½ið2�ft0 � �=4þ 2c ðf=2Þ
� ’ð2;0ÞÞ�; (14)

where the Fourier amplitude A is given by

A ¼ 1

dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þð1þ cos2ð
ÞÞ2 þ F2�4cos2ð
Þ

q

�
ffiffiffiffiffiffiffi
5�

96

s
��7=6M5=6

c : (15)

The functions c and ’ð2;0Þ are

c ðfÞ ¼ �c 0 þ 3

256	

X7
i¼0

c ið2�MfÞi=3; (16)
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’ð2;0Þ ¼ tan�1

�
� 2 cosð
ÞF�
ð1þ cos2ð
ÞÞFþ

�
: (17)

The parameters c i can be found in [26]. H ðfÞ is taken
to be zero outside a certain frequency range. The
upper cutoff frequency is dictated by the last stable orbit,
which marks the end of the inspiral regime and the onset of
the final merger. We will assume that this occurs when the

radiation frequency reaches fupper ¼ 2fLSO, with fLSO ¼
1=ð63=22�MobsÞ the orbital frequency at the last stable
orbit, and Mobs ¼ ð1þ zÞMphys the observed total mass.

In this paper we shall focus on the observation of GW
sources by the Einstein Telescope, a third-generation
ground-based gravitational-wave detector. Although the
basic design of ET is still under discussion, one possibility
is to have three interferometers with 60� opening angles
and 10 km arm lengths, arranged in an equilateral triangle
[22]. The corresponding antenna pattern functions are

Fð1Þ
þ ð�;�; c Þ ¼

ffiffiffi
3

p
2

�
1

2
ð1þ cos2ð�ÞÞ cosð2�Þ cosð2c Þ

� cosð�Þ sinð2�Þ sinð2c Þ
�
;

Fð1Þ
� ð�;�; c Þ ¼

ffiffiffi
3

p
2

�
1

2
ð1þ cos2ð�ÞÞ cosð2�Þ sinð2c Þ

þ cosð�Þ sinð2�Þ cosð2c Þ
�
;

Fð2Þ
þ;�ð�;�; c Þ ¼ Fð1Þ

þ;�ð�;�þ 2�=3; c Þ;
Fð3Þ
þ;�ð�;�; c Þ ¼ Fð1Þ

þ;�ð�;�þ 4�=3; c Þ: (18)

The performance of a GW detector is characterized by
the one-side noise power spectral density ShðfÞ (PSD),
which plays an important role in the signal analysis. We
take the noise PSD of ET to be [30,31]

ShðfÞ ¼ S0

2
4xp1 þ a1x

p2 þ a2
1þ b1xþ b2x

2 þ b3x
3 þ b4x

4 þ b5x
5 þ b6x

6

1þ c1xþ c2x
2 þ c3x

3 þ c4x
4

3
5; (19)

where x � f=f0 with f0 ¼ 200 Hz, and S0 ¼ 1:449�
10�52 Hz�1. The other parameters are as follows:

p1 ¼ �4:05; p2 ¼ �0:69; a1 ¼ 185:62;

a2 ¼ 232:56; b1 ¼ 31:18; b2 ¼ �64:72;

b3 ¼ 52:24; b4 ¼ �42:16; b5 ¼ 10:17;

b6 ¼ 11:53 c1 ¼ 13:58; c2 ¼ �36:46;

c3 ¼ 18:56; c4 ¼ 27:43: (20)

For data analysis proposes, the noise PSD is assumed to be
essentially infinite below a certain lower cutoff frequency
flower (see the review [26]). For ET we take this to be
flower ¼ 1 Hz.

The waveforms in Eq. (14) depend on the seven free
parameters ðlnMc; ln	; t0;�0; cosð
Þ; c ; lndLÞ; note that
for ‘‘useful’’ events the sky position will be known. In
order to deal with the parameter estimation, throughout
this paper, we employ the Fisher matrix approach [32].
Comparing with the Markov chain Monte Carlo analysis,
the Fisher information matrix analysis is simple and accu-
rate enough to estimate the detection abilities of the future
experiments. In the case of a single interferometer A (A ¼
1, 2, 3), the Fisher matrix is given by

�ðAÞ
ij ¼ hH ðAÞ

i ;H ðAÞ
j i; H ðAÞ

i ¼ @H ðAÞðfÞ=@pi;

(21)

where H ðAÞ is the output of interferometer A, and the pi

denote the free parameters to be estimated, which are

ðlnMc; ln	; t0;�0; cosð
Þ; c ; lndLÞ: (22)

The angular brackets denote the scalar product, which, for
any two functions aðtÞ and bðtÞ is defined as

ha; bi ¼ 4
Z fupper

flower

~aðfÞ~b�ðfÞ þ ~a�ðfÞ~bðfÞ
2

df

ShðfÞ ; (23)

where ~a and ~b are the Fourier transforms of the functions
aðtÞ and bðtÞ. The Fisher matrix for the combination of the
three independent interferometers is then

�ij ¼
X3
A¼1

�ðAÞ
ij : (24)

The inner product also allows us to write the signal-to-

noise ratios �ðAÞ, A ¼ 1, 2, 3 in a compact way:

�ðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH ðAÞ;H ðAÞi

q
: (25)

The combined signal-to-noise ratio for the network of the
three independent interferometers is then

� ¼
�X3
A¼1

ð�ðAÞÞ2
�
1=2

: (26)

In this paper, we shall focus on the estimation of the
parameter lndL. The 1-� observational error, �o, can be
estimated from the Fisher matrix�ij. An important point is

that shGRBs are believed to be beamed: the � radiation is
emitted in a narrow cone more or less perpendicular to the
plane of the inspiral. We will take the total beaming angle
to be at most 40� [33] (corresponding to 
 � 20�). It will
be assumed that shGRBs are produced by the mergers of
the neutron star binaries. For definiteness we take them to
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have component masses of ð1:4; 1:4ÞMsun. We will consider
1000 sources up to a redshift of z ¼ 2, which is where the
angle-averaged signal-to-noise ratio approximately
reaches the value 8 for sources with 
 < 20�.

Before continuing, we mention that coalescing binaries
composed of a neutron star and a black hole could also
cause shGRBs [33]. For a fixed distance, a NSBH event
will have a larger signal-to-noise ratio than a BNS event,
leading to an improved measurement of lndL. The intrinsic
event rates for NSBH are quite uncertain, but they are
expected to be considerably lower than for BNS [34]; on
the other hand, NSBH events will be visible to ET out to
redshifts of z� 4 [23]. It is likely that the inclusion of
NSBH would have a noticeable beneficial effect on the
determination of cosmological parameters, especially if
the black holes have spin, but this we leave for future
studies.

For a given event, distance measurements will be subject
to two kinds of uncertainties: the instrumental error �o

which can be estimated using a Fisher matrix as discussed
above, and an additional error �l due to the effects of weak
lensing. As in previous work [23] we assume the contri-
bution to the distance error from weak lensing to satisfy
�l ¼ 0:05z. Thus, the total uncertainty on � lndL is taken
to be

� lndL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

o þ �2
l

q
: (27)

In the next subsection we discuss how the information
from multiple GW standard sirens can be combined to
compute the expected measurement uncertainties on cos-
mological parameters.

C. Gravitational-wave standard sirens

Now let us turn to the determination of the cosmological
parameters, including dark energy parameters, by GW
standard sirens. For each shGRB source, the luminosity
distance dL is measured from the GWobservation, and the
redshift z can be obtained from the electromagnetic coun-
terpart. Thus, the dL � z relation can be employed to
constrain various cosmological parameters. For the cosmo-
logical model introduced in Sec. II A, we consider five free
parameters ðw0; wa;�m;�k; h0Þ which can be constrained
by GW standard sirens. We note that the value of �de (the
relative energy density of the dark energy component) is
determined by the quantities �m and �k through �de �
1��m ��k.

In order to estimate the errors on these parameters, we
study a Fisher matrix FGW

ij for a collection of inspiral

events:

FGW
ij ¼ X

k

@iðlndLðkÞÞ@jðlndLðkÞÞ
ð� lndLðkÞÞ2

; (28)

where the indices i and j run from 1 to 5, denoting the free
parameters ðw0; wa;�m;�k; h0Þ. Equation (10) gives the

expression for dL, and the partial derivatives with respect
to the parameters are evaluated at the parameter values
corresponding to the fiducial cosmological model of
Sec. II A. The uncertainty � lndL is calculated by using
Eq. (27). The index k ¼ 1; 2; . . . , labels the event at
ðzk; �̂kÞ, where the vector �̂ stands for the angles
ð�;�; 
; c Þ. Here we should mention that, in (28), we
have ignored the photometric redshift errors and the pos-
sible errors generated by the peculiar velocities of the
sources relative to the Hubble flow [35]. Given that the
majority of our sources will be at z > 0:4, we do not expect
the latter to make much difference to our main results.
Since dL is independent of �̂, this Fisher matrix can be

rewritten as

FGW
ij ¼X

zk

@iðlndLðzkÞÞ@jðlndLðzkÞÞ
8<
:X

�̂k

1

ð�lndLðzk;�̂kÞÞ2
9=
;:

(29)

When the number of events is large, the sum over events in
(29) can be replaced by an integral, so that we obtain

FGW
ij ¼

Z 2

0
@iðlndLÞ@jðlndLÞfðzÞAðzÞdz; (30)

where fðzÞ is the number distribution of the GW sources
over redshift z. AðzÞ is the average of 1=ð� lndLðz; �̂ÞÞ2
over the angles ð�;�; 
; c Þ with the constraint 
 < 20�:

AðzÞ �
�

1

ð� lndLðz; �̂ÞÞ2
	
�̂;
<20�

: (31)

In order to calculate the averaged quantity AðzÞ, we used a
Monte Carlo sampling with 10 000 choices of �̂ for a given
z, where z ranges from 0 to 2 in steps of 0.1. The results are
indicated in Fig. 1 by the red dots. We find that these points

FIG. 1 (color online). The averaged quantity A�1=2ðzÞ [defined
in (31)] as a function of redshift z. The red dots denote the results
based on the Monte Carlo sampling, and the solid line denotes
the fit results.
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can be fit very accurately by a simple relation (see the black
solid line in Fig. 1):

A�1=2ðzÞ ¼ 0:1449z� 0:0118z2 þ 0:0012z3; (32)

which is used in our subsequent calculation.
In (30), the upper integration limit z ¼ 2 is the redshift

at which the angle-averaged signal-to-noise ratio is ap-
proximately 8 [23]. In our fiducial model with �k ¼ 0,
the number distribution fðzÞ is given by

fðzÞ ¼ 4�N rðzÞd2CðzÞ
HðzÞð1þ zÞ ; (33)

where dC is the comoving distance, which is defined as
dCðzÞ �

R
z
0 1=Hðz0Þdz0. The function rðzÞ describes the

time evolution of the burst rate, and the constant N (the
number of the sources per comoving volume at redshift
z ¼ 0 over the observation period) is fixed by requiring the
total number of the sources NGW ¼ R

2
0 fðzÞdz. The ex-

pected total number of inspirals per year within the horizon
of ET is �several� 105 for neutron star binaries. If, as
suspected, neutron star binaries are progenitors of shGRBs
[33], it might be possible to make a coincident detection of
a significant subset of the events in the GW and electro-
magnetic windows, which can then be considered as stan-
dard sirens. As we have mentioned, shGRBs are believed
to be beamed with small beaming angle, so only a small
fraction of the total number of neutron star binaries are

expected to be observed as shGRBs. Following [23], we
assume that about 1000 events (� 10�3 of the total number
of binary coalescences) will be observed in both windows,
i.e., NGW ¼ 1000 throughout this paper.
Since the time evolution of the source rate is as yet

unclear, in this paper we shall consider two different forms
for the function rðzÞ. In the first case we assume that the
sources are distributed uniformly, i.e., with constant co-
moving number density throughout the redshift range 0 �
z � 2 (hereafter we will refer to this as the uniform distri-
bution). In this case we have rðzÞ ¼ 1, which is what was
assumed in the previous work [23]. In the other case, we
take rðzÞ to be the following function: rðzÞ ¼ ð1þ 2zÞ for
z � 1, rðzÞ ¼ ð15� 3zÞ=4 for 1< z < 5, and z ¼ 0 for
z 	 5. This approximate fit to the rate evolution is sug-
gested in [36]. Hereafter, we shall call this the nonuniform
distribution. In Fig. 2, we plot the distribution function f as
a function of redshift z in the two cases. Note that in the
case with nonuniform distribution, the sources are a little
more concentrated at z ¼ 1. In what follows we will find
out how this affects the uncertainties on the cosmological
parameters.
Using the definition (30), we can calculate the Fisher

matrix FGW
ij for the following two cases: a. GWevents with

uniform distribution; b. GWevents with nonuniform distri-
bution. The results are listed in Tables I and II.
From the Fisher matrices, we can calculate the 1-�

uncertainties on the parameters, which are �pi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFGWÞ�1

ii

q
. For the case with uniform distribution, by using

the results in Table I, we find that

�w0 ¼ 2:62; �wa ¼ 9:53; ��m ¼ 0:815;

��k ¼ 2:03; �h0 ¼ 1:20� 10�2: (34)

We plot the two-dimensional uncertainty contour of the
parameters w0 and wa in Fig. 3 (blue curve, i.e., line 2, in
the left panel). Unfortunately, we find that the error bars on
the parameters are all fairly large, especially for the dark
energy parameters w0 and wa. This is caused by the strong
degeneracy between (w0, wa) and the other parameters
(�m, �k, h0), especially (�m, �k). To illustrate this, let
us do the following calculation. First we fix the values of
the parameters (�m,�k, h0) to be their fiducial values, and
only consider (w0, wa) as free parameters. By using the
results in Table I, we obtain

FIG. 2 (color online). The normalized distribution of the GW
sources.

TABLE I. GW Fisher matrix in the case with uniform distribution.

w0 wa �m �k h0

w0 0:273 681� 104 0:433 681� 103 0:753 068� 104 0:261 216� 104 0:221 885� 105

wa 0:433 681� 103 0:753 710� 102 0:128 638� 104 0:406 152� 103 0:317 462� 104

�m 0:753 068� 104 0:128 638� 104 0:221 212� 105 0:704 345� 104 0:571 447� 105

�k 0:261 216� 104 0:406 152� 103 0:704 345� 104 0:251 558� 104 0:213 013� 105

h0 0:221 885� 105 0:317 462� 104 0:571 447� 105 0:213 013� 105 0:216 280� 106
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�w0 ¼ 0:064; �wa ¼ 0:388: (35)

We find that the values of �w0 and �wa become much
smaller in this case. The two-dimensional uncertainty con-
tour of w0 and wa is also plotted in Fig. 3 (black curve, i.e.,
line 1, in the left panel). This figure shows that there is
correlation between the parameters w0 and wa. Recall that
a goal of the dark energy programs is to test whether
dark energy arises from a simple cosmological constant,
(w0 ¼ �1, wa ¼ 0). For a given data set we can do better
(as far as excluding the cosmological constant model is
concerned) than simply quoting the values of �w0 and
�wa. This is because the effect of dark energy is generally
not best constrained at z ¼ 0. For the phenomenological
form of the EOS of the dark energy wðzÞ ¼ w0 þ
waz=ð1þ zÞ, the constraint on wðzÞ varies with the redshift
z. So, similar to [6], we can define the best pivot redshift,
denoted as zp, where the uncertainty in wðzÞ equals the

uncertainty in a model that assumes wa ¼ 0. In this
paper, we denote the EOS at this best pivot redshift as
wp � wðzpÞ. The best pivot redshift zp can be calculated

by zp ¼ �1=ð1þ �wa

��w0
Þ, where � is the correlation coeffi-

cient of w0 and wa. The value of �wp is calculated by

�wp ¼ �w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. In this case (two free parameters),

the results for zp and �wp are

zp ¼ 0:188; �wp ¼ 0:019: (36)

The value of �wp as well as that of �wa are commonly

used to describe the detection ability of the experiments
[6].
On the other hand, we can also fix the values of the

parameters (w0, wa) to be their fiducial values, and only
consider (�m, �k, h0) as free parameters. By using the
results in Table I, we obtain

��m ¼ 0:021; ��k ¼ 0:087;

�h0 ¼ 5:48� 10�3: (37)

Again we find that the values of these errors, especially the
values of ��m and ��k, are much smaller that those in
Eq. (34). These results show that the GW standard sirens
can constrain the dark energy parameters rather well, on
condition that we can break the strong degeneracy between
the parameters (w0, wa) and the parameters (�m, �k, h0).
In the next subsection, we will find that this can be realized
if we consider the CMB observations as a prior.

FIG. 3 (color online). The two-dimensional uncertainty contours of the dark energy parameters w0 and wa in the case with uniform
distribution.

TABLE II. GW Fisher matrix in the case with nonuniform distribution.

w0 wa �m �k h0

w0 0:256 794� 104 0:427 648� 103 0:731 269� 104 0:244 368� 104 0:194 634� 105

wa 0:427 648� 103 0:762 633� 102 0:129 200� 104 0:399 934� 103 0:303 753� 104

�m 0:731 269� 104 0:129 200� 104 0:219 941� 105 0:682 599� 104 0:529 628� 105

�k 0:244 368� 104 0:399 934� 103 0:682 599� 104 0:234 666� 104 0:186 267� 105

h0 0:194 634� 105 0:303 753� 104 0:529 628� 105 0:186 267� 105 0:162 814� 106
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To conclude this subsection we discuss the determination
of the dark energy parameters (w0, wa) by ET observations
in two cases considered in this paper. By using the results in
Tables I and II, we calculate the errors of the two parameters
(the other parameters are fixed at their fiducial values). The
two-dimensional uncertainty contours are shown in Fig. 4
(upper left panel). This figure shows that the errors of the
parameters are a little larger for the nonuniform distribution
than those in the corresponding case with the uniform
distribution. This is because the sources in the nonuniform
distribution are a little more concentrated at the redshift
z ¼ 1. Hence the number of the sources in the high redshift
and the low redshift regions is smaller, making it more
difficult to constrain the dark energy’s evolution. So, in
addition to the number of the sources, the redshift distribu-
tion of the sources also plays a crucial role for the detection
of dark energy. The results listed in (35) constitute the
optimistic case among the cases we have considered. On
the other hand, it is helpful to list the results in the case with
nonuniform distribution, which are

�w0 ¼ 0:077; �wa ¼ 0:445: (38)

We find that these uncertainties are a little larger than those
in (35). We can also calculate the values of zp and �wp for

this case, which are

zp ¼ 0:200; �wp ¼ 0:020: (39)

The value of �wp is also a little larger than that in the case

with uniform distribution.

D. Planck CMB prior

As will be clear from the discussion above, the ability of
GW sources to constrain dark energy depends strongly on
how well the background parameters �m and �k can be
measured beforehand. Indeed, if one tries to determine these
backgroundparameters aswell as the dark energy parameters
together using GW sources, the values of �w0 and �wa

become very large, and the constraints on dark energy be-
come meaningless. Hence we should consider another ob-
servational method which can determine these background
parameters through a prior observation. As we shall see, this
is also necessary for the other ways used to study dark
energy—BAO and SNIa—so that it does not diminish the
value of having self-calibrating standard sirens: GW obser-
vations will provide uswith an important independent check.
Observations of the cosmic microwave background tem-

perature and polarization anisotropies are always used as the
required prior. The WMAP satellite has already given fairly
good results for the CMB TT (temperature-temperature
autocorrelation) and TE (temperature-polarization cross

FIG. 4 (color online). The two-dimensional uncertainty contours for the dark energy parameters w0 and wa, in the different cases.
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correlation) power spectra in the multipole range ‘ < 800.
The background parameters (�m, �k) have already been
well determined by 7-year WMAP observations; for ex-
ample, the constraint on the curvature is �0:0133<�k <
0:0084 (95% C.L.) [2]. These constraints are expected to be
greatly improved by the Planck observations [37], which
will give good data on the CMB TT and TE power spectra
up to ‘� 2000. In addition, Planck is also expected to
observe the EE (electric type polarization) power spectrum.
In this subsection, we shall consider the potential CMB
observations by the Planck satellite. For the noise power
spectra of Planck, we consider the instrumental noises at
three frequency channels: at 100 GHz, 143 GHz, and
217 GHz. For the reduced foreground radiations (including
dust and synchrotron), we assume that the reduced factor
�fg ¼ 0:1, i.e., 10% residual foregrounds are considered as
the noises. The total noise power spectraNTT

‘ andNEE
‘ of the

Planck satellite can be found in [38]. Note that in this paper
we assume 4 sky (28 months) survey.

In order to estimate the constraints on the cosmological
parameters, we shall again use the Fisher information
matrix technique. The Fisher matrix is calculated by [39]

FCMB
ij ¼ X‘max

‘¼2

X
XX0;YY0

@CXX0
‘

@pi

Cov�1ðDXX0
‘ ; DYY0

‘ Þ@C
YY0
‘

@pj

;

(40)

where pi are the cosmological parameters to be evaluated.

CXX0
‘ are the CMB power spectra and DXX0

‘ are their esti-

mates. Cov�1 is the inverse of the covariance matrix. The
nonvanishing components of the covariance matrix are
given by

CovðDXX
‘ ;DXX

‘ Þ¼ 2

ð2‘þ1Þfsky ðC
XX
‘ þNXX

‘ Þ2ðX¼T;EÞ;

CovðDTE
‘ ;DTE

‘ Þ¼ 1

ð2‘þ1Þfsky ½ðC
TE
‘ Þ2þðCTT

‘ þNTT
‘ Þ

�ðCEE
‘ þNEE

‘ Þ�;
CovðDTT

‘ ;DEE
‘ Þ¼ 2

ð2‘þ1Þfsky ðC
TE
‘ Þ2;

CovðDTT
‘ ;DTE

‘ Þ¼ 2

ð2‘þ1ÞfskyC
TE
‘ ðCTT

‘ þNTT
‘ Þ;

CovðDEE
‘ ;DTE

‘ Þ¼ 2

ð2‘þ1ÞfskyC
TE
‘ ðCEE

‘ þNEE
‘ Þ:

Note that in the calculation we have adopted ‘max ¼ 2000,
and the sky-cut factor fsky ¼ 0:65 suggested by the Planck

Bluebook [37].

The CMB power spectra CXX0
‘ depend on all the cosmo-

logical parameters, including the background parameters
and the perturbation parameters. In the calculation,
we first build the Fisher matrix for the full nine parameters
ðw0; wa;�bh

2
0;�ch

2
0;�k; ns; As; h0; �Þ. In order to obtain

the constraint on the parameter �m, we change the
full Fisher matrix to the new one of the nine para-
meters ðw0; wa;�m;�ch

2
0;�k; ns; As; h0; �Þ, where �m ¼

ð�bh
2
0 þ�ch

2
0Þ=h20 has been used. In order to directly

compare and combine with the Fisher matrix of GW
method, we marginalize the new nine-parameter Fisher
matrix to the one with five parameters
ðw0; wa;�m;�k; h0Þ. The results are shown in Table III.

The errors of the parameters are given by �pi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFCMBÞ�1

ii

q
. By using the Fisher matrix in Table III, we

obtain
�w0 ¼ 0:411;

�wa ¼ 0:517;

��m ¼ 8:88� 10�2;

��k ¼ 2:27� 10�3;

�h0 ¼ 0:115:

(41)

This result shows that Planck alone can give quite tight
constraints on �m and �k, which is just complementary
with the GW method. However, CMB observations alone
cannot constrain the parameters w0 and wa, which is
because that the CMB power spectra are only sensitive to
the physics in the early Universe at z� 1100, where dark
energy is totally subdominant.
We now investigate the combination of CMB and GW

methods. In order to do this, we define a new Fisher matrix,
which is the sum of FGW

ij and FCMB
ij . By using this new

Fisher matrix, we obtain

�w0 ¼ 0:079;

�wa ¼ 0:261;

��m ¼ 5:14� 10�3;

��k ¼ 6:66� 10�4;

�h0 ¼ 5:96� 10�3;

(42)

TABLE III. CMB Fisher matrix.

w0 wa �m �k h0

w0 0:414 303� 105 0:115 085� 105 0:287 229� 106 �0:678 690� 106 0:339 923� 106

wa 0:115 085� 105 0:320 204� 104 0:797 415� 105 �0:190 373� 106 0:943 498� 105

�m 0:287 229� 106 0:797 415� 105 0:219 854� 107 �0:465 663� 107 0:251 813� 107

�k �0:678 690� 106 �0:190 373� 106 �0:465 663� 107 0:136 912� 108 �0:548 091� 107

h0 0:339 923� 106 0:943 498� 105 0:251 813� 107 �0:548 091� 107 0:291 587� 107
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for the uniform distribution case. We find that the values of
�w0 and �wa are fairly close to those in Eq. (35), where
we have only considered the GWobservations but assumed
the backgrounds parameters �m, �k and h0 are fixed.
These results show that taking the CMB observation as a
prior is nearly equivalent to fixing the parameters �m, �k

and h0. The two-dimensional uncertainty contour of the
parametersw0 andwa is shown in Fig. 3 (red lines, i.e., line
3, in the left panel and the middle panel). We can also
calculate the best pivot redshift zp and the value of �wp,

which are

zp ¼ 0:401; �wp ¼ 0:025: (43)

By the same method, we also obtain the results in the
nonuniform distribution case. The two-dimensional uncer-
tainty contour of w0 and wa is shown in Fig. 4 (upper-right
panel). In this case, the results are

�w0 ¼ 0:099;

�wa ¼ 0:302;

��m ¼ 7:30� 10�3;

��k ¼ 6:70� 10�4;

�h0 ¼ 8:99� 10�3:

(44)

The best pivot redshift zp and the uncertainty �wp are

zp ¼ 0:454; �wp ¼ 0:030: (45)

Again as expected, we find that the values are larger than
the corresponding values in the uniform distribution case.

III. DETECTION OF DARK ENERGY BY BAO AND
SNIA OBSERVATIONS, AND THE COMPARISON

WITH ET-GW OBSERVATIONS

In the above we found that by combining the potential
Planck CMB observation with ET-GW observations, one
can get fairly tight constraints on the dark energy parame-
ters w0 and wa. In this section we discuss the detection
abilities of the other two probes: BAO and SNIa. Currently
these two methods play the crucial role for the determi-
nation of the dark energy component. In the near future, the
detection abilities of these two methods are expected to be
significantly improved; in this section a detailed discussion
is given. All three probes, BAO, SNIa and GW, constrain
the EOS of dark energy by probing the large-scale back-
ground geometry of the Universe (different from the weak
gravitational lensing method [40]), so a fair comparison
can be made, as we shall do here.

A. Detection of dark energy by potential
BAO observations

The BAO method relies on the distribution of
baryonic matter to infer the redshift-distance relation.

The characteristic scale length of structure which can be
accurately determined from the CMB is used as a standard
rod. By measuring the angular size of this characteristic
scale-length as a function of redshift, the effect of dark
energy can be inferred. The BAO method can constrain the
dark energy by two observable quantities lnðHðzÞÞ and
lnðdAðzÞÞ, where HðzÞ is the binned Hubble parameter
and dAðzÞ is comoving angular diameter distance, which
is related to the luminosity distance by dA ¼ dL=ð1þ zÞ.
Similar to the quantity dL, these two observables only
depend on the cosmological parameters w0, wa, �m, �k

and h0, which will be considered as the parameters deter-
mined by the observations.
In order to investigate the constraints on the cosmologi-

cal parameters, we build the following Fisher information
matrix [6]:

FBAO
ij ¼ X

k

@ lnðHðzkÞÞ
@pi

@ lnðHðzkÞÞ
@pj

�
1

�lnðHðziÞÞ

�
2

þ @ lnðdAðzkÞÞ
@pi

@ lnðdAðzkÞÞ
@pj

�
1

�lnðdAðziÞÞ

�
2
: (46)

Again the index k denotes the observables, which are
binned into several redshift bins. pi denotes the cosmo-
logical parameters. �lnðHðzÞÞ and �lnðdAðzÞÞ are the errors

(including the observational errors and the systematic er-
rors) of the observables lnðHðzÞÞ and lnðdAðzÞÞ, respec-
tively. In order to study the detection ability of the BAO
method, we shall consider the potential observations of a
typical project, the final JDEM (Joint Dark Energy
Mission) project [6], which is expected to survey
10 000deg2 in the redshift range z 2 ð0:5; 2Þ. In the calcu-
lation, we bin the observables lnðHðzÞÞ and lnðdAðzÞÞ into
10 redshift bins, i.e., �z ¼ 0:15 for each bin. The calcu-
lation of the theoretical values of these quantities are
straightforward. For the errors of these observable data,
we use the fitting formulae derived in [41] [see also
Eq. (4.8) in [6]].
The results of the Fisher information matrix are shown

in Table IV. To begin with we consider a simple case with
only two free parameters (w0, wa). We assume that the
other parameters (�m, �k, h0) are fixed to their fiducial
values. By using the Fisher matrix in Table IV, we obtain
the uncertainties of the free parameters:

�w0 ¼ 0:087; �wa ¼ 0:346; zp ¼ 0:323;

�wp ¼ 0:023: (47)

However, if we try to constrain all five parameters by
BAO observations, the uncertainties of the parameters
will become fairly large. For instance, the uncertainties
of w0 and wa become �w0 ¼ 0:850 and �wa ¼ 3:611,
respectively, which are much larger than those in (47).
Similarly to the discussion in Sec. II D, we can consider
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the combination of the BAO observation and the Planck
CMB prior. By analogous steps we obtain the results

�w0 ¼ 0:176;

�wa ¼ 0:415;

��m ¼ 2:01� 10�2;

��k ¼ 6:40� 10�4;

�h0 ¼ 2:57� 10�2:

(48)

The best pivot redshift and the value of �wp are

zp ¼ 0:664; �wp ¼ 0:059: (49)

B. Detection of dark energy by potential SNIa
observations

Now, let us turn to discuss the detection of dark energy
parameters by the SNIa probe. Type Ia supernovae serve as
a standard candle of (approximately) known luminosity.
The redshift of supernova can be obtained by studying its
spectral lines. Thus the redshift-distance relation can be
gotten from SNIa surveys. Now, SNIa observed from vari-
ous experiments have been used successfully to deduce the
acceleration of the Universe after z ¼ 1 [1,42]. In the near
future, observations of SNIa are expected to be signifi-
cantly improved, so that they will continue to serve as one
of the most important methods for the determination of
dark energy.

The observables for SNIa data are the apparent magni-
tudes m, which can be corrected to behave as standard
candles with absolute magnitude M with m ¼ Mþ�ðzÞ.
The function �ðzÞ for the measured redshift is

�ðzÞ ¼ 5log10ðdLðzÞÞ þ 25; (50)

where dL is the luminosity distance. In this paper, we shall
consider SNIa observations by the future SNAP
(Supernova/Acceleration Probe) project [43]. As suggested
by the SNAP group, we consider 300 low redshift super-
novae, uniformly distributed over z 2 ð0:03; 0:08Þ. The
error bar on the magnitude is assumed to be �m ¼ 0:15
mag. In addition, 2000 high redshift supernovae in the
range z 2 ð0:1; 1:7Þ are considered. The expected redshift
distribution of these sources can be found in the SNAP
white book (the middle red curve in Fig. 9 of [43]). We
bin these 2000 sources into 10 redshift bins in the range
z 2 ð0:1; 1:7Þ. The total errors of the observables �ðzÞ can
be estimated as follows [43,44]:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2

q
; (51)

where �1 ¼ 0:15mag=
ffiffiffiffi
N

p
(N is the total number of super-

novae in each bin) is the intrinsic random Gaussian error,
and �2 ¼ 0:02magð1þ zÞ=2:7 is the error due to the as-
trophysical systematics.
Thus, we can build a Fisher information matrix, which is

FSN
ij ¼ X

k

@�ðzkÞ
@pi

@�ðzkÞ
@pj

�
1

�ðzkÞ
�
2
: (52)

The results are shown in Table V. The errors of the cos-

mological parameters are estimated by �pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFSNÞ�1

ii

q
.

Similar to Sec. III A, we first discuss the simplest case with
two free parameters (w0, wa). The results are

�w0 ¼ 0:054; �wa ¼ 0:302; zp ¼ 0:211;

�wp ¼ 0:012: (53)

To constrain all five cosmological parameters, we consider
the combination of SNIa and the Planck CMB prior to

TABLE IV. BAO Fisher matrix.

w0 wa �m �k h0

w0 0:193 253� 104 0:471 352� 103 0:865 506� 104 0:288 000� 104 0:125 880� 105

wa 0:471 352� 103 0:123 299� 103 0:234 243� 104 0:788 613� 103 0:309 758� 104

�m 0:865 506� 104 0:234 243� 104 0:457 760� 105 0:153 244� 105 0:579 934� 105

�k 0:288 000� 104 0:788 613� 103 0:153 244� 105 0:541 597� 104 0:190 452� 105

h0 0:125 880� 105 0:309 758� 104 0:579 934� 105 0:190 452� 105 0:834 616� 105

TABLE V. SNIa Fisher matrix.

w0 wa �m �k h0

w0 0:703 955� 104 0:122 773� 104 0:207 309� 105 0:669 019� 104 0:522 067� 105

wa 0:122 773� 104 0:225 085� 103 0:377 761� 104 0:115 185� 104 0:849 589� 104

�m 0:207 309� 105 0:377 761� 104 0:636 028� 105 0:194 262� 105 0:146 902� 106

�k 0:669 019� 104 0:115 185� 104 0:194 262� 105 0:639 862� 104 0:498 026� 105

h0 0:522 067� 105 0:849 589� 104 0:146 902� 106 0:498 026� 105 0:491 151� 106
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decouple the degeneracy between (w0, wa) and the other
parameters. The errors of the parameters are

�w0 ¼ 0:051;

�wa ¼ 0:201;

��m ¼ 3:49� 10�3;

��k ¼ 6:52� 10�4;

�h0 ¼ 3:39� 10�3:

(54)

We find that the values of�w0 and�wa in (54) are close to
those in (53). The best pivot redshift and the value of �wp

are also obtained

zp ¼ 0:313; �wp ¼ 0:019: (55)

C. Comparison with the ET-GW observations

Now let us compare the detection abilities of various
probes: GW, BAO and SNIa. First we consider the simplest
case, where only dark energy parameters (w0, wa) are
considered. The errors of the parameters are given in (47)
for BAO, and in (53) for SNIa. We find that the values of
�w0, �wa and �wp are all smaller for the SNIa probe.

This shows that, comparing with the JDEM BAO project,
the SNAP SNIa project is expected to give a tighter con-
straint on the dark energy. For the ET-GW project, in
Sec. II C, we have considered two cases. For the uniform
distribution case, the results are given in (35) and (36). On
the other hand, if the nonuniform distribution case is
considered, the results are shown in (38) and (39).
Comparing with these results, we conclude that, in both
cases, the detection ability of ET-GW method is stronger
than that of the JDEMBAO project, but weaker than that of
the SNAP SNIa project. This is mainly because the number
of the GW standard sirens (� 1000 as we have assumed) is
smaller than that of the SNIa standard candles (� 2000 at
high redshift). In order to clearly show this, let us consider
another case for ET-GW method, where we assume that
2000 sources with nonuniform distribution will be ob-
served. We then obtain �w0 ¼ 0:054, �wa ¼ 0:315 and
�wp ¼ 0:014, which comes close to the projected uncer-

tainties of the SNAP SNIa project given by (53). We note
that the relative error bars of the SNIa in Eq. (51) are larger
than those of GW sources in (32), especially at low red-
shifts. However, we find that this disadvantage of the SNIa
method is overcome by the assumed 300 low redshift SNIa
in z 2 ð0:03; 0:08Þ.

We can also compare the results of these three probes,
when considering the full 5 cosmological parameters and
adopting the Planck CMB prior. In Fig. 3 (middle panel),
we plot the two-dimensional uncertainty contours of the
parameters (w0, wa), where for the ET-GW method we
have considered the case with uniform distribution.
Similarly, we find that the red curve (GWþ CMB) is

only a little looser than the green one (SNIaþ CMB),
but much tighter than the black one (BAOþ CMB). In
Fig. 3 (right panel), we plot the results of the two-
dimensional uncertainty contours for the four combina-
tions (CMBþ BAOþ SNIa, CMBþ GWþ BAO,
CMBþ GWþ SNIa, GWþ SNIaþ BAO). We find that
the first three combinations have similar results. However,
the constraint on the dark energy parameters is much looser
for combination of GWþ SNIaþ BAO, where the Planck
CMB probe is absent. This panel shows that the CMB prior
indeed plays a crucial role in the detection of dark energy.
Let us now combine all the four probes to constrain the

cosmological parameters, including the dark energy pa-
rameters. If we consider the uniform distribution for the
GW sources, we obtain the constraints on the dark energy
parameters

�w0 ¼ 0:044; �wa ¼ 0:171;

zp ¼ 0:308; �wp ¼ 0:017: (56)

This is the best constraint what we could expect to obtain.
If we consider the case with nonuniform distribution for the
GW sources, the constraints slightly loosen to

�w0 ¼ 0:045; �wa ¼ 0:174;

zp ¼ 0:313; �wp ¼ 0:017: (57)

In Fig. 4 (lower-right panel), we plot the two-dimensional
uncertainty contours of the parameters (w0, wa) for both
cases. We find that the two curves are very close to each
other; the relative weight of the GW probe is not very high
for the combined methods.
Finally, we would like to know how much the ET-GW

probe can contribute in constraining all the five cosmo-
logical parameters (w0, wa,�m,�k, h0). In order to do so,
we first calculate the constraints on the parameters by the
combination of CMBþ BAOþ SNIa. We obtain

�w0 ¼ 0:048; �wa ¼ 0:184;

��m ¼ 3:46� 10�3; ��k ¼ 5:91� 10�4;

�h0 ¼ 3:36� 10�3: (58)

If we then add the contribution of the ET-GW probe with
nonuniform distribution (the uniform distribution case
gives the very close results), the results become

�w0 ¼ 0:045; �wa ¼ 0:174;

��m ¼ 3:39� 10�3; ��k ¼ 5:83� 10�4;

�h0 ¼ 3:20� 10�3: (59)

In this case we find that, due to the contribution of ET-GW
probe, �w0 is decreased by a 6.3% and �wa by 5.5%. In
Fig. 5 we plot the two-dimensional uncertainty contours of
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the free parameters (w0, wa, �m, �k, h0) for both
combinations.

IV. CONCLUSION

If short-hard �-ray bursts are produced by the mergers of
neutron star binaries, the luminosity distances dL of the
sources can be determined by the Einstein Telescope
gravitational-wave detector in the redshift range z < 2.
The redshifts z of the sources can be determined with great
accuracy through their electromagnetic counterparts. Thus
it will be possible to use shGRBs as ‘‘standard sirens’’ to
study the dark energy component in the Universe by de-
termining the EOS and its time evolution.

When calculating the uncertainties in the determination
of dL by the ET observations, we assumed that the �-ray

emission is confined to a cone with an opening angle
as large as 40� [33], corresponding to inclination angles

 < 20�. In order to study the effect of the redshift distri-
bution of the sources, we considered two different kinds of
distributions: one in which sources are distributed uni-
formly in comoving volume, and a nonuniform distribution
as in [36]. We found that, by taking into account the Planck
CMB prior, the errors on the dark energy parameters are
expected to be �w0 ¼ 0:079 and �wa ¼ 0:261 in the
uniform distribution case, which is close to the detection
ability of the SNAP Type Ia Supernovae project. Even in
the ‘‘pessimistic’’ case with nonuniform distribution of the
sources, the errors are �w0 ¼ 0:099 and �wa ¼ 0:302,
which is weaker than the detection ability of the SNAP
Type Ia Supernova project, but stronger than that of the
JDEM baryon acoustic oscillation project. We also found

FIG. 5 (color online). The two-dimensional uncertainty contours of the cosmological parameters. The black (larger) curves denote
the results of CMBþ BAOþ SNIa, and the red (smaller) curves denote the results of CMBþ BAOþ SNIaþ GW. Here, we have
assumed the GW with nonuniform distribution (The case with uniform distribution gives the nearly overlapped results).
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that, with the combination of the future CMBðPlanckÞ þ
BAOðJDEMÞ þ SNIaðSNAPÞ projects, the contribution of
these kinds of standard sirens can decrease the error of w0

by �6:3% and that of wa by �5:5%. Thus, the kinds of
self-calibrating GW standard sirens accessible to the
Einstein Telescope would provide an excellent probe of
the dark energy component.

Finally, it is important to mention that, in addition to
GW, CMB, BAO, and SNIa methods, there are a number of
other probes, including cosmic weak lensing, galaxy clus-
tering, and so on, which can also be used to detect the dark
energy component in the Universe (see [6,45] for details).
In practice, one should combine all the probes. However, in
this paper, we have emphasized that using shGRBs as

‘‘standard sirens’’ constitutes an important complement
to the general electromagnetic methods.
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