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In almost all of plasma theories for astrophysical objects, we have assumed the charge quasineutrality

of unmagnetized plasmas in global scales. This assumption has been justified because if there is a charged

plasma, it induces the electric field which attracts the opposite charge, and this opposite charge reduces the

charge separation. Here, we report a newly discovered instability which causes a charge separation in a

rotating plasma inside of an innermost stable circular orbit (ISCO) around a black hole. The growth rate of

the instability is smaller than that of the disk instability even in the unstable disk region and is forbidden in

the stable disk region outside of the ISCO. However, this growth rate becomes comparable to that of the

disk instability when the plasma density is much lower than a critical density inside of the ISCO. In such

case, the charge separation instability would become apparent and cause the charged accretion into the

black hole, thus charge the hole.
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I. INTRODUCTION

In a scale larger than several Debye lengths, unmagne-
tized plasmas in the Universe have been assumed to be
quasineutral in charge. This is because even a small charge
imbalance would result in very large electric fields which
would cause the very small time scale electrostatic oscil-
lation called plasma oscillation, and the damping or aver-
aging of the oscillation over the mesoscopic time scale
restores neutrality [e.g., [1,2]]. On the other hand, if we
assume the ideal MHD condition on a magnetized, relativ-
istically moving plasma, the charge density becomes sig-
nificant, and this charge density is called the Goldreich-
Julian density, �GJ [3]. It is noted the Goldreich-Julian
density is required so that the electric field induced by
the charge density vanishes in the comoving frame of the
plasma. In such case, it seems that we cannot assume
the charge quasineutrality. However, we point out here
that the difference between the net charge density of the
magnetized plasma �e and the Goldreich-Julian density,
��e ¼ �e � �GJ, plays the same role as the charge in the
unmagnetized plasma. In this paper, we call the difference
��e the ‘‘free charge density’’, which induces the electric
field observed by the comoving frame of the plasma. In the
scale larger than several Debye lengths, the free charge
density should tend to vanish because of the same reason
for the charge quasineutrality of the unmagnetized plasma.
This can be regarded as the generalization of the concept of
charge quasineutrality to the magnetized, relativistic
plasma.We call this concept ‘‘free charge quasineutrality’’.
When the magnetic field is so strong and the thin plasma
rotates so fast as assumed in a pulsar magnetosphere that
the number density of the plasma particles is smaller
than the Goldreich-Julian density divided by the elemen-
tary electric charge e, the free charge density becomes

significant and the electric field observed by the comoving
frame of the plasma remains. The parallel component of
this electric field to the magnetic field accelerates plasma
particles directly. In the region of the remaining one-
direction electric field component along the magnetic field,
plasma is swept by the electric field and the vacuum called
‘‘outer gap’’ appears [4,5]. Even in such vacuum, when
plasma enters into it, the plasma is separated into positively
and negatively charged fluids and the two fluids move to
the opposite directions along the magnetic field to decrease
the electric field component. Thus, in a strongly magne-
tized, relativistic plasma, the free charge tends to be can-
celed to keep the free charge neutrality.
According to the above consideration, in a scale larger

than several Debye lengths, it has been assumed that the
charged components of plasma move so that the electric
field accelerating the charged components decreases so as
to restore the free charge quasineutrality. Here, we report a
charge separation instability in an unmagnetized plasma
rotating around a black hole, which will induce the free
charge density and electric field exponentially. To inves-
tigate the charge separation of plasmas around the black
holes, we use generalized GRMHD equations derived by
Koide [6]. We present the linear analysis of the charge
separation of plasmas near Kerr black holes. We found the
well-known plasma oscillation in the stable disk region
outside of an innermost stable circular orbit (ISCO) around
a black hole. On the other hand, in a circularly rotating
plasma inside of the ISCO, we found an instability of the
charge separation. The charge separation instability does
not happen in the stable disk region outside of the ISCO.
Furthermore, even in the unstable disk inside of the ISCO,
the growth rate of the charge separation is smaller than that
of the disk instability. However, when the plasma density is
much lower than the critical density (the very low plasma
density case), the growth rates of the two instabilities
become comparable and the charge separation instability*koidesin@sci.kumamoto-u.ac.jp
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becomes apparent. That is, due to the charge separation
instability, the unstable disk falling into the black hole can
be charged.

In Sec. II, we present a linear analysis of charge sepa-
ration in a stationary rotating disk plasma around a Kerr
black hole with a brief summary of the generalized
GRMHD equations. The analysis shows an instability of
charge separation in the plasma inside of the ISCO around
a black hole. In Sec. III, we summarize the results and
discuss briefly the astrophysical meanings of the charge
separation instability.

II. CHARGE SEPARATION IN PLASMA DISK
AROUND BLACK HOLE

We investigate the simplest process of charge separation
in an unmagnetized disk rotating around a Kerr black hole.

A. Brief summary of generalized GRMHD equations

In this subsection, we briefly summarize the generalized
GRMHD equations; see Koide [6] in more detail. We
investigate a charge separation using the generalized
GRMHD equations of plasmas in the space-time, x� ¼
ðt; x1; x2; x3Þ around a black hole where a line element ds is
given by ds2 ¼ g��dx

�dx� (Equations (18), (24), and (59)

with Equations (25) and (58) of Koide [6]). Throughout
this paper, except for a paragraph in Sec. III, we use the
unit system where light speed is unity and the energy
densities of electric field E and magnetic field B are given
by E2=2 and B2=2 in the Minkowski space-time,
respectively.

First of all, we summarize the generalized GRMHD
equations for a general case briefly as follows:

r�ð�U�Þ ¼ 0; (1)

r�T
�� ¼ 0; (2)

1

ne
r�

�
�hy

ne
Q��

�
¼U�F�

���ðJ���0
eU

�Þ

þ 1

2ne
r�ð��p��pÞ���

ne
J�F�

�

þ��0
e�U�; (3)

and Maxwell equations

r�
�F�� ¼ 0; (4)

r�F
�� ¼ J�; (5)

where the energy-momentum tensor T�� and ‘‘charge-
current density tensor’’ Q�� are given by

T�� � pg�� þ hyU�U� þ �hz

ðneÞ2 J
�J�

þ 2��hy

ne
ðU�J� þ J�U�Þ

þ F�
�F

�� � 1

4
g��F��F��; (6)

Q�� � en

�hy
K�� ¼ en

hy

�
hz

ne
ðU�J� þ J�U�Þ

þ 2�hyU�U� � �h]

ðneÞ2 J
�J�

�
: (7)

Equation (3) presents the general relativistic generalized
Ohm’s law. In Eq. (3), the left-hand side expresses the
inertia effect and transport of kinetic energy and momen-
tum of the current, the first two terms of the right-hand side
correspond to all terms of the ‘‘standard’’ Ohm’s law with
resistivity �, the third term represents the thermo-
electromotive force, the fourth term expresses the Hall
effect, and the last term comes from the equipartition of
the thermalized energy due to the friction force between
the two fluids. Here, �0

e ¼ �J�J� is the charge density
observed by the local rest frame of the plasma and� is the
rate of equipartition with respect to the thermalized energy
due to friction (for details, see Appendix A of Koide [7]).
We follow the notations used by Koide [6] with respect to
physical variables except that we use Q�� instead of K��.
Here, we used the two-fluid model, where we assumed the
plasma consists of positively charged particles with charge
e and mass mþ and negatively charged particles with
charge �e and mass m� (Appendix A). We used the
typical mass of a plasma particle m � mþ þm�, normal-
ized reduced mass � � mþm�=m2, and normalized mass
difference �� � ðmþ �m�Þ=m. The variables �, hy, p,
n � �=m, �p, and �hy are the mass density, enthalpy
density, pressure, number density, pressure difference of
two fluids, and difference of two-fluid enthalpy density.
Furthermore, r�, U

�, and J� are the covariant derivative,

4-velocity, and 4-current densities, respectively, and F�� is

the electromagnetic strength tensor and �F�� is the dual

tensor of F��. Here, the electric field is given by Ei ¼ Fi0

and the magnetic field is Fij ¼
P

k�ijkBk (�ijk is the Levi-

Civita symbol), where the alphabetic index (i, j, k) runs
from 1 to 3. We also use the variables related to the
enthalpy density,

hz � hy � ���hy;

�h] � ��hy � 1� 3�

2�
�hy:

(8)

It is noted that Eq. (5) yields the equation of continuity
with respect to the current,

r�J
� ¼ 0: (9)
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We assume that off-diagonal spatial elements of the
metric g�� vanish: gij ¼ 0ði � jÞ. Writing the nonzero

components by g00 ¼ �h20, gii ¼ h2i , gi0 ¼ g0i ¼ �h2i !i,

we have ds2 ¼ g��dx
�dx� ¼ �h20dt

2 þP3
i¼1½h2i ðdxiÞ2 �

2h2i !idtdx
i�. Whenwe define the lapse function	 and shift

vector 
i by 	 ¼ ½h20 þ
P3

i¼1ðhi!iÞ2�1=2, 
i ¼ hi!i

	 , the

line element ds is written by ds2 ¼ �	2dt2 þP
3
i¼1ðhidxi � 	
idtÞ2. We also have g ¼ �ð	h1h2h3Þ2.

Using the ‘‘zero-angular-momentum observer (ZAMO)
frame’’ x̂�, where the line element ds is given by ds2 ¼
�dt̂2 þP

iðx̂iÞ2 ¼ ���dx̂
�dx̂�, we have the 3þ 1 formal-

ism of the generalizedGRMHDand theMaxwell equations.
As for equations including only derivatives of contravariant
vectors A� or antisymmetric 2nd rank tensors A��, we
obtain their 3þ 1 formalism easily using Equations
r�A

� ¼ 1ffiffiffiffiffi�g
p @ð ffiffiffiffiffiffiffi�g

p
A�Þ or r�A

�� ¼ 1ffiffiffiffiffi�g
p @ð ffiffiffiffiffiffiffi�g

p
A��Þ.

With respect to any equation including a term of derivative
of the symmetric 2nd rank tensor,

r�S
�� ¼ H�; (10)

the 3þ 1 formalism is given by

@

@t
Ŝ00 þ 1

h1h2h3

X
j

@

@xj

�
	h1h2h3

hj

�
Ŝ0j þ 
jŜ00

��

þX
j

1

hj

@	

@xj
Ŝj0 þX

j;k

	
kðGkjŜ
kj �GjkŜ

jjÞ

þX
j;k

�jkŜ
jk ¼ 	Ĥ0; (11)

@

@t
Ŝi0þ 1

h1h2h3

X
j

@

@xj

�
	h1h2h3

hj

�
Ŝijþ
jŜi0

��

þ 1

hi

@	

@xi
Ŝ00�X

j

	

�
GijŜ

ij�GjiŜ
jjþ
jðGijŜ

0i�GjiŜ
0jÞ

�

þX
j

�jiŜ
0j¼	Ĥi; (12)

where Gij � � 1
hihj

@hi
@xj

and �ij � 1
hj

@
@xj

ð	
iÞ.

B. Linear analysis of charge separation
in stationary disk

For simplicity, we consider a plasma of a stationary thin
disk rotating around a Kerr black hole with zero pressure
(p ¼ �p ¼ 0). The space-time x� ¼ ðt; r; �;�Þ around
the Kerr black hole with a mass M and rotation parameter

a is given by the metrics, h0 ¼ ð1� 2rgr=�Þ1=2, h1 ¼ffiffiffiffiffiffiffiffiffiffi
�=�

p
, h2 ¼

ffiffiffiffi
�

p
, h3 ¼

ffiffiffiffiffiffiffiffiffiffi
A=�

p
sin�, !3 ¼ 2r2gar=A,

and !i ¼ 0 (i ¼ 1, 2). Here, rg ¼ GM is the gravitational

radius (G is the gravitational constant), � ¼ r2 � 2rgrþ
ðargÞ2, � ¼ r2 þ ðargÞ2cos2�, and A ¼ fr2 þ ðargÞ2g2 �
�ðargÞ2sin2�. In this metric, the lapse function is

	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=A

p
. The Schwarzschild radius of the black

hole is given by rS ¼ 2rg. The 3-velocity of the circularly

rotating disk observed by the ZAMO frame, called the
Kepler velocity, VK, is given by the quadratic equation

	G31V
2
K þ ð	
3G31 þ �31ÞVK þ 1

h1

@	

@r
¼ 0: (13)

In investigating linear behavior of charge separation in the
stationary disk, we assume charge separation is weak,
j�0

ej ¼ j � J�J�j � en. Then, we can use an approxima-
tion of the enthalpy density and enthalpy difference
density as

hy � mn; (14)

�hy � �m

2e
�0
e; (15)

hz � mnþ 2�m��

e
�0
e; (16)

�h] � mn��þ 1� 3�

e
m�0

e; (17)

because of n� � n� m�
em �0

e. The generalized GRMHD

equations reduce to

r�ð�U�Þ ¼ 0; (18)

mnr�

�
U�U� þ �

ðneÞ2
�
1þ 2����0

e

en

�
J�J�

� ��0
e

ðneÞ2 ðU
�J� þ J�U�Þ

�
¼ J�F�

�; (19)

1

!2
p
r�Q

��¼
�
U����

ne
J�
�
F�

���½J���0
eð1þ�ÞU��;

(20)

where !p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðneÞ2=ð��Þp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ne2=ð�mÞp
is the plasma

frequency, and Q�� is approximated by

Q�� � U�J� þ J�U� � �0
eU

�U�: (21)

To perform the linear analysis of the charge separation in
the hydrostatic equilibrium plasma rotating around the
Kerr black hole, we consider only the perturbation with
respect to the static electric field,

Ĵ � ¼ ~J�; �̂e ¼ ~�e (22)

F̂ i0 ¼ ~Ei; F̂ij ¼ 0; (23)
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where the tildes indicate the infinitesimally small varia-
bles, and we do not consider perturbation to the hydrostatic
equilibrium,

� ¼ ��; n ¼ �n; Û� ¼ �U�: (24)

In the ZAMO frame, the 4-velocity is given by �U0 ¼ 
K ¼
ð1� V2

KÞ�1=2, �U1 ¼ �U2 ¼ 0, Û3 ¼ 
KVK. The linear
analysis requires the Ohm’s law (Eq. (3)), the equation of
continuity about current (Eq. (9)), and the Gauss law of
electrostatics (temporal component of Eq. (5)),

1

!2
P

r�
~Q�� ¼ �U� ~F

�
� � �½~J� � ð�0

e þ �0
e�Þ �U��; (25)

r�
~J� ¼ 0; (26)

r�
~F0� ¼ ~J0: (27)

Using Eqs. (25)–(27) and (12), we obtain the 3þ 1 formal-
ism of the Ohm’s law, equation of continuity about current,
and Gauss’s law for the electric field (see also
Equations (63) and (67) of Koide [6]),

@

@t
~Qi0 ¼ �

�
1

h1h2h3

X
j

@

@xj

�
	h1h2h3

hj
ð ~Qij þ 
j ~Qi0Þ

�

þ 1

hi

@	

@xi
~Q00 �X

j

	fGij
~Qij �Gji

~Qjj

þ 
jðGij
~Q0i �Gji

~Qj0Þg
�

þ 	!2
P

�
�U� ~Fi

� � �½~Ji � ð�0
e þ �0

e�Þ �Ui�
�
; (28)

@

@t
~�e ¼ � 1

h1h2h3

X
j

@

@xj

�
h1h2h3
hj

~Jj
�
; (29)

~� e ¼
X
j

1

h1h2h3

@

@xj

�
h1h2h3
hj

~Ej

�
: (30)

Here, we used the following approximation:

~Q 00 � 
Kð2~�e � 
K ~�
0
eÞ; (31)

~Q i0 ¼ ~Q0i � 
K
~Ji þ ð~�e � 
K ~�

0
eÞ �Ui; (32)

~Q ij � UK½�3i~Jj þ �3j~Ji �UK�
i3�j3ð
K ~�e �UK

~J3Þ�;
(33)

where ~Q00 can be regarded as modified charge density and
~Qi0 corresponds to the modified current density. When we
use the relation

�0
e ¼ J�U� ¼ 
�e � J 	 U � 
K ~�e � �U 	 ~J;

where J � ðJ1; J2; J3Þ and U � ðU1; U2; U3Þ are the
3-current density and 3-velocity, respectively, we have

Q̂ 00 � 
K½ð1�U2
KÞ~�e þ 
KUK

~J3�; (34)

Q̂ i0 � 
K½~Ji þU2
K�

i3 ~J3 �U3
K�

i3 ~�e�: (35)

Because in the present linear analysis, we can assume the
quasicharge neutrality, thus we have an approximation of
�0
e� as,

�0
e� � ��

2ne
jJ0j2; (36)

where jJ0j2 ¼ ð
� 1Þ�2
e � 2
�eU 	 Jþ jJj2 þ ðU 	 JÞ2

[6]. Then, when J0 is infinitesimally small, we have
�0
e� � 0.
Here, we assume the perturbation is symmetric with

respect to the polar axis and the equatorial plane, @=@xi ¼
�1i@=@x1. Then, the equations with respect to the pertur-
bation of the charge separation at the equatorial plane are
as follows:

@

@t
~J1 ¼ ½	G31ð2VK þ 
3Þ þ �31�ðVK ~�e � ~J3Þ

þ 	!2
P


K

ð
K
~E1 � �~J1Þ; (37)

@

@t
ð~J3 � V̂3

K ~�eÞ ¼ � 1

h1h2h
2
3


3
K

@

@r
ð	h2h23ÛK

~J1Þ (38)

þ!2
p

	


2
K

�
~E3 � �

�

K

~J3 �UK ~�e

��
; (39)

@~�e

@t
¼ � 1

h1h2h3

@

@r
ð	h2h3 ~J1Þ; (40)

~� e ¼ 1

h1h2h3

@

@r
ðh2h3 ~E1Þ: (41)

To derive Eq. (37), we used Eq. (13). For simplicity, we
assume the wave length of the perturbation is much smaller
than the characteristic scale length of the metrics and the
Keplerian rotation around the black hole, 
rS, and we put
the perturbation is proportional to expðikr� i!tÞ. Here,
we note that we have to consider the relation between the
derivatives

1

	UKh1h2h
2
3

@

@r
ð	h2h23UK

~J1Þ � 1

	h1h2h3

@

@r
ð	h2h23 ~J1Þ

¼ ~J1

LK

@LK

@r
; (42)
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where LK ¼ h3UK is the specific angular momentum of the
Keplerian disk. Finally, we obtain the dispersion relation of
the charge separation in the plasma disk rotating circularly
around the Kerr black hole,

�
!

	

�
3þ 2i�0

�
!

	

�
2�½�02þ!2

p� 2gK�K�!	� i�0!2
p ¼ 0;

(43)

where �0 ¼ !2
p�=
K,

gK ¼ VK

2	
½	G31ð2VK þ 
3Þ þ �31�

¼ � 1

h1

@

@r
log	� VK

2	
ð	G31


3 þ �31Þ; (44)

�K ¼ 1

h1

2
KLK

@LK

@r
: (45)

Here, it is noted that the stability condition of the accretion
disk is given by @LK=@r > 0 (�K > 0), and the condition
@LK=@r ¼ 0 (�K ¼ 0) yields the radial coordinate of the
ISCO, r ¼ rISCO.

In the case of zero resistivity (� ¼ 0), Eq. (43) yields the
dispersion relation of the charge separation in the plasma
disk as

!2 ¼ 	2ð!2
p � 2gK�KÞ � !2

0: (46)

In the region inside of the ISCO, when

!p <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gK�K

p
; (47)

the charge separation becomes unstable. However, it is

noted that the disk is unstable with the growth rate 
disk ¼
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gK�K

p
, which is larger than the growth rate of the

charge separation instability. In the very low plasma den-
sity case (!p � 
disk), the growth rate of the disk insta-

bility and the charge separation instability become
comparable. Then, in this situation, the charge separation
instability may appear in the disk falling into the black hole
and may make the black hole charged. On the other hand,
in the other usual plasma density case, the charge separa-
tion instability is forbidden or inhibited behind the disk
instability.

To investigate the effect of resistivity, we consider a
solution for a very weak resistivity limit, 	�0 � !0. In
this approach, we treat the difference �! ¼ !�!0 is an
infinitesimal variable which is comparable to ð	�0=!2

0Þ!0.

The dispersion relation (43) yields

2!2
0�!þ i�0½2!2

0 � 	2!2
p� ¼ 0; (48)

and we have the solution

! ¼ !0 � i
	2�0

2!2
0

ð!2
p � 4gK�KÞ

¼ 	ð!2
p � 2gK�KÞ1=2 � i

	2�0ð!2
p � 4gK�KÞ

!2
p � 2gK�K

: (49)

It is noted that even in the case of !2
0 > 0 (stable state in

the zero resistivity case), !2
p � 4gK�K can become nega-

tive in the unstable region (�K < 0), which means the
resistivity induces the charge separation instability, while
in the outside of the ISCO, r > rISCO, the instability is
forbidden. On the other hand, in the case of !2

0 < 0, the
resistivity stabilizes the charge separation instability as
shown by the last term of the right-hand side of Eq. (49).

III. DISCUSSION

We have shown the charge separation instability of the
circularly rotating plasma inside the ISCO (r � rISCO)
around the Kerr black hole. This instability is forbidden
in the stable disk outside of the ISCO. Furthermore, even in
the unstable disk region inside of the ISCO, the growth rate
of the charge separation instability is smaller than that of
the disk instability. However, when the plasma density is
much lower than the critical density, growth rates of the
charge separation and disk instabilities become compa-
rable and the charge separation instability becomes appar-
ent. Then, the charge separation instability makes the disk
plasma falling into the black hole charged and may even-
tually charge the hole. The critical plasma density is
expressed as

ncrit � 2�m

e2
gK�K; (50)

where the critical density ncrit is given by Eq. (47) with
!2

p ¼ ncrite
2=ð�mÞ in the zero resistivity case. With re-

spect to the resistive case, Eq. (49) indicates that the weak
resistivity makes the charge separation instability happen
easier in the stable region of the charge separation insta-
bility inside of the ISCO, while in the unstable region of the
ideal MHD situation, the resistivity stabilizes the instabil-
ity. In a case with resistivity, the growth rate of the charge
separation instability is also smaller than that of the disk
instability inside of the ISCO. Then, unless the plasma
density n is much less than the critical density ncrit so
that the growth rate of the charge separation instability is
comparable to that of the disk instability, the charge sepa-
ration instability is hidden behind the disk instability inside
of the ISCO and is also forbidden in the stable disk around
the astrophysical black holes. However, we emphasize
again that when the plasma density is much less than the
critical density, n � ncrit, the charge separation instability
may be apparent as the charged disk falling into the black
hole.
The mechanism of the charge separation instability is

explained by the following schematic picture. Consider
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that the accretion disk is composed of two disks of posi-
tively charged particles (þ disk) and of negatively charged
particles (� disk) (Fig. 1). Both of the purely charged disks
(� disks) are unstable in the region r < rISCO. However,
even in the unstable region, when one disk (� disk) falls
and the other disk (� disk) shifts outward, the electric field
is induced and tends to suppress the charge separation.
When the electric field is strong enough, it causes plasma
oscillation. On the other hand, when the electric field can
not become so strong (in the case of n � ncrit), the sup-
pression is not strong (effective) enough and the charged
disks separate each other increasingly so that the charge
separation is induced exponentially. In the outer region of
the ISCO, r > rISCO, the plasma oscillation is always in-
duced by the charge separation because of the stability of
the � disks. Using this intuitive picture of the charge
separation instability, we suggest that the charge separation
instability with small wave number k is also possible in
the unstable disk around the rotating black hole, when the
plasma oscillation frequency !p is small enough and the

plasma density is sufficiently small. This picture also
suggests that in a magnetized plasma disk, the similar
instability of charge separation would be caused to break
the free charge quasineutrality when the purely charged
disk is gravitationally unstable and the plasma density is
low enough. This charge separation grows exponentially
until the nonlinear effects begin to suppress the instability.
For example, the disk charged by the charge separation
instability falls into the black hole and charges the black
hole. The electric field of the charged black hole will
suppress the fall of the charged disk and induce the fall
of the oppositely charged plasma around the black hole.

The charge separation instability may also happen in the
pulsar magnetosphere when the radius of the ISCO is larger
than the central star radius. However, when the magnetic

field is extremely strong, the free charge due to the charge
separation instability would not be induced because the
magnetic field suppresses the gravitational instability of
the disk. Plasma dynamics of the pulsar magnetosphere
outside of the relativistic star were investigated with the
Schwarzschild metric by Henriksen and Rayburn [8]. They
discussed the net charge separation and the instability,
while they did not perform the linear analysis of the charge
separation in bulk plasma. They considered the large-scale
net charge separation within the free charge quasineutrality
and the charge separation instability produced by the cur-
rent driven plasma turbulence which leads charge fluctua-
tion on small scales less than the Debye length.
Here, we estimate the critical density of the charge

separation instability (Eq. (50)) for an individual astro-
physical object. For a rough estimation of the instability
condition, we consider the cases of the Schwarzschild
black holes with the mass MBH (a ¼ 0). The critical den-
sity of the instability is expressed in the MKSA system of
units (SI unit) by

ncrit ¼ �mrS
2�0e

2

3rS � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5ðr� rSÞ3

q ; (51)

where �0 is the magnetic permeability in vacuum. We
estimate it at r ¼ 2rS to get

n�crit ¼
�m

me

me

27=2�0e
2r2S

¼ 2:5� 1012ðrS½m�Þ�2 �m

me

½m�3�

¼ 2:8� 105
�
MBH

M


��2 �m

me

; (52)

where me is the electron mass. If we assume the electron-
proton and electron-positron plasmas, we have�m=me ¼ 1
and �m=me ¼ 1=2, respectively. In this paragraph, we set
�m=me ¼ 1. We use values of the typical density n of
accretion disks around black holes of individual objects
listed by Koide [6]. When we consider the active galactic
nucleus (AGN) of M87 whose central black hole mass is
MBH ¼ 3� 109M
 (rS ¼ 9� 1012 m) [9], the critical den-
sity of the charge separation instability is estimated as
n�crit ¼ 3� 10�14 ½m�3�. This value is extremely small

compared not only to the estimated value at the accretion
disk around the black hole of n ¼ 8� 1021 ½m�3�, but also
to the averaged particle number density in the extragalactic
region, nU 
 10 ½m�3� [10]. In the case of Sgr A*, a super-
massive black hole in the Galaxy, whose central black hole
mass is MBH ¼ 4:4� 106M
 (rS ¼ 1:3� 1010 m) [11],
the critical density is n�crit ¼ 1:4� 10�8 ½m�3�. This is

also extremely small compared to the value at the accretion
disk, n ¼ 9� 1023 ½m�3�. As we estimated above, the
charge separation instability hardly happens around the
supermassive black holes. In the case of black hole X-ray
binaries, for example, the micro-quasar, GRS1915þ 105,

FIG. 1. Schematic picture of the charge separation instability
of the plasma in an unstable region around a black hole (r <
rISCO). The neutral disk consists of positively/negatively charged
disks (þ =� disks); when the electric field due to the charge
separation is not strong enough to suppress the charge separa-
tion, for example, the positive disk shifts outward and the
negative disk falls into the black hole exponentially in the
unstable disk region. The reverse is also true. This shift and
falling cause the exponential charge separation.
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whose central black hole mass is MBH ¼ 14M
 (rS ¼
4:2� 104 m) [12], the critical density is n�crit ¼
1:4� 103 ½m�3�. This density is much smaller than the
density at the accretion disk around the black hole, n ¼
4� 1027 ½m�3�. However, a density smaller than the critical
density may be realized in a low density disk around a single
stellar-mass black hole, for example. In the case of a very
low density disk, the charge separation instability may be
caused, while it would be difficult to observe because of its
low activity of the thin disk.

The charge instability causes the falling of the charged
plasma into the black hole and will charge the black hole.
Here, we estimate the influence of the electric field of the
charged black hole to the ambient plasma in the following
case. We assume that the one-component charged fluid
with the height H 
 rS, the inner radius rinner 
 2rS, the
outer radius router 
 2rS þ L, and the density n
 n�crit falls
due to the charge separation instability and is swallowed by
the black hole. The charge contained in the one-component
fluid is Q
 8�r2SLn

�
crite. The electric and gravitational

forces which act on a charged particle with the mass m�
and the charge �e located at r ¼ r are FE 
 1

4��0

eQ
r2

and

Fgrav 
GmMBH

r2
, respectively. We estimate the disk scale L

where the electric and gravitational forces become compa-

rable: FE 
 Fgrav. It yields L
 �0m�c2
4e2n�

crit
rS
. Using Eq. (52), we

have the simple expression

L

rS

 23=2

m

mþ

 2:8; (53)

where the ratio does not depend on the black hole mass,
MBH. This suggests that the small disk with the scale of the
Schwarzschild radius supplies so much charge to the black
hole through the charge separation instability within short
time scale of the instability that the charged black hole
influences the plasma dynamics around it. This electric
field will suppress the further charging of the black hole.

It is true that the charge separation instability is caused
only in the unstable disk region. However, the current
induced by the instability may reach the stable disk region
because of the inertia of the current. The current supplies
the net charge in the stable disk around the black hole.
Thus, the charge separation due to the instability may
induce a distinctive drastic phenomena in the plasma of
the stable disk regions around black holes, while the net
charge may be canceled by the charge supply from the
outer disk. For example, the gravitational magnetic recon-
nection can be induced by the charge separation [6]. If the
charge separation is significant, it also causes a strong
electric field. This strong electric field may accelerate
particles which can explain high energy cosmic rays
as well as in the ‘‘outer gap’’ of the pulsar magnetosphere
[4,5]. The cause of these distinctive phenomena of
plasma around black holes will be clarified with more
detailed analysis of the generalized GRMHD equations

and numerical simulations. The numerical simulations of
the generalized GRMHD beyond the ideal GRMHD [e.g.,
[13,14]] and the resistive relativistic MHDwith the acausal
relativistic Ohm’s law [15] would provide a useful and
essential tool for such analysis. This is our next subject.
In the last paragraph of this paper, we suggest a radiation

process associated with the charge separation instability.
The charge separation instability does not depend on the
wave number k in the zero resistivity case as shown by
Eq. (43). Thus, a very strong electric field with a very large
wave number can be caused through the instability. When a
high energy charged particle passes through the strong
electric field, the particle is accelerated and decelerated
reciprocally, and emits strong radiation. This radiation
should be detected around the inner edge of disks of black
holes.
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APPENDIX: BASIS OF GENERALIZED
GRMHD EQUATIONS

The generalized GRMHD equations are derived from
the general relativistic two-fluid equations of plasma,
which is composed of positively charged particles with
charge e and mass mþ and negatively charged particles
with charge e and mass m� [6]. The variables of the
generalized GRMHD equations are defined by the average
and difference of the variables of the two-fluid equations.
We note a variable of fluid composed by the positively
charged particles with a subscript ‘‘þ’’ and that of negative
fluid with ‘‘�’’. We write the variables of two fluids as: n�
is the number density, 
0� is the Lorentz factor observed by
the center of mass frame of the charged fluids, p� is
pressure, h� is the enthalpy density, U

�
� is 4-velocity.

The variables of the generalized GRMHD equations are
based as follows:

� ¼ mþnþ
0þ þm�n�
0�; (A1)

n ¼ �

m
; (A2)

p ¼ pþ þ p�; (A3)

�p ¼ pþ � p�; (A4)

U� ¼ 1

�
ðmþnþU

�
þ þm�n�U��Þ; (A5)
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J� ¼ eðnþU�
þ � n�U��Þ; (A6)

hy ¼ n2
�
hþ
n2þ

þ h�
n2�

�
; (A7)

�hy ¼ mn2

2

�
hþ

mþn2þ
� h�

m�n2�

�
: (A8)

We also use the variables with respect to the enthalpy
density:

hz ¼ n2

4�

�
hþ
n2þ

�
2m�
m

�
2 þ h�

n2�

�
2mþ
m

�
2
�
¼ hy ����hy;

(A9)

�h] ¼ � n2

8�

�
hþ
n2þ

�
2m�
m

�
3 � h�

n2�

�
2mþ
m

�
3
�

¼ ��hy � 1� 3�

2�
�hy: (A10)

Incidentally, we sometimes assume the plasma consists of
two perfect fluids with the equal specific heat ratio, �. The
equations of states are

hy ¼ n2
�
mþ
nþ

þm�
n�

þ �

2ð�� 1Þ
��

1

n2þ
þ 1

n2�

�
p

þ
�
1

n2þ
� 1

n2�

�
�p

��
; (A11)

�hy ¼ 2�mn2
�
1

nþ
� 1

n�
þ �

2ð�� 1Þ
��

1

mþn2þ
� 1

m�n2�

�
p

þ
�

1

mþn2þ
þ 1

m�n2�

�
�p

��
; (A12)

where

n� �
�
n2 � 2m�n

em
U�J� �

�
m�
em

�
2
J�J�

�
1=2

; (A13)

corresponds to the particle number density of each charged
fluid (see Equations (74)–(78) of Koide [6]).1

The energy-momentum tensors T�� and the charge-
current density tensor Q�� are given by

T�� ¼ T
��
þ þ T��� þ T

��
EM; (A14)

Q�� ¼ en

hy

�
1

mþ
T��
þ � 1

m�
T���

�
; (A15)

where T��
� ¼ g��p� þ h�U

�
�U�� are the energy-

momentum tensor of the two fluids and T��
EM ¼ F�

�F
�� �

1
4g

��F��F�� is the Maxwell stress tensor.

The relativistic two-fluid equations come from the con-
tinuity equations of particle number and conservation law
of energy and momentum:

r�ðn�U��Þ ¼ 0; (A16)

r�ðh�U�
�U��Þ ¼ �r�p� � en�U

�
�� � R�; (A17)

where R� is the frictional 4-force density between the two
fluids. It connected with the resistivity and current as

R� ¼ ��ne½J� � �0
eð1þ�ÞU��: (A18)
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