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The one-loop contribution of the excited Kaluza-Klein (KK) modes of the SULð2Þ gauge group on the

off-shell W�Wþ� and W�WþZ vertices is calculated in the context of a pure Yang-Mills theory in five

dimensions and its phenomenological implications discussed. The use of a gauge-fixing procedure for the

excited KK modes that is covariant under the standard gauge transformations of the SULð2Þ group is

stressed. A gauge-fixing term and the Faddeev-Popov ghost sector for the KK gauge modes that are

separately invariant under the standard gauge transformations of SULð2Þ are presented. It is shown that the
one-loop contributions of the KK modes to the off-shell W�Wþ� and W�WþZ vertices are free of

ultraviolet divergences and well-behaved at high energies. It is found that for a size of the fifth dimension

of R�1 � 1 TeV, the one-loop contribution of the KK modes to these vertices is about 1 order of

magnitude lower than the corresponding standard model radiative correction. This contribution is similar

to the one estimated for new gauge bosons contributions in other contexts. Tree-level effects on these

vertices induced by operators of higher canonical dimension are also investigated. It is found that these

effects are lower than those generated at the one-loop order by the KK gauge modes.
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I. INTRODUCTION

In the last decade, there has been considerable interest
in studying the phenomenological implications of extra
dimensions on low-energy observables, mainly since the
pioneering works by Antoniadis, Arkani-Hamed,
Dimopoulos, and Dvali [1–3], where large extra dimen-
sions were considered. In most scenarios, our observed
3-dimensional space is a 3-brane that is embedded in a
higher D-dimensional space-time, which is known as the
bulk. If the additional dimensions are small enough, the
standard model (SM) gauge and matter fields are phenom-
enologically allowed to propagate in the bulk; otherwise
they are stuck to the 3-brane. Of course, if there are extra
dimensions, they must be smaller than the smallest scale
which has been currently explored by experiments. So, the
extra dimensions are assumed to be suitably compactified
on some manifold of sufficiently small size. As a result of
the compactification, the fields propagating in the bulk
expand into series of states known as Kaluza-Klein (KK)
towers, with the individual KK excitations being labeled by
mode numbers. The collider signature for the existence of
additional dimensions is the observation of a KK tower of
states. While most of the studies have been restricted to
tree-level processes, the quantum loop effects of the theory
have received much less attention, as only some one-loop
processes, as electromagnetic dipoles [4], the b ! s� [5],
Z ! �bb [6,7], Bs;d ! �� [8], and Bd ! lþl� [9] decays,

including the contributions of virtual KK gravitons to the
oblique parameters [10], and B0 � �B0 mixing [7,11]
have been considered. It is clear that any program that

contemplates the calculation of radiative corrections of
excited KK gauge modes on SM low-energy observables
requires the introduction of a consistent quantization
scheme for the four dimensional KK theory. In a recent
publication by some of us, a consistent quantization
scheme for the excited KK gauge modes of a pure
SUðNÞ theory in five dimensions, with the fifth dimension
compactificated on the orbifold S1=Z2, was presented [12].
As it was stressed in that work, to quantize the gauge KK
modes it is necessary to identify the gauge transformations
to which is subject the four dimensional theory, since the
gauge parameters �aðx; yÞ (with y the fifth dimension)
propagate in the bulk and thus their corresponding excited
KK modes determine complicated nonstandard gauge
transformations of the gauge KK modes. The precise iden-
tification of these new type of gauge transformations is
crucial to quantize the theory on the basis of the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry [13]. In fact, the
modern approach to the quantization of gauge systems
based in the BRST symmetry requires us to incorporate
in the theory the gauge parameters as true degrees of free-
dom. As it was shown in Ref. [12], the four dimensional
theory satisfies simultaneously the standard gauge trans-
formations (SGT) and one additional type of complicated
gauge transformations, which we called nonstandard
gauge transformations (NSGT). As it is widely explained
in this reference, the Yang-Mills (YM) fields in five di-
mensions Aa

Mðx; yÞ satisfy the SGT with parameters
�aðx; yÞ. When the extra dimension is appropriately com-
pactified and integrated, the Fourier series for Aa

�ðx; yÞ,
Aa

5ðx; yÞ, and�aðx; yÞ lead to infinite towers of KKmodes.
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The zero modes of the fieldsAa
�ðx; yÞ, denoted by Að0Þa

� ðxÞ,
are the gauge fields associated with the SU4ðNÞ gauge
group, whereas the zero modes of the �aðx; yÞ parameters,

�ð0Þa, determine the SGTof SU4ðNÞ. On the other hand, the
variations defined by these zero-mode gauge parameters
for the excited KK modes associated with the Aa

�ðx; yÞ
fields, AðnÞa

� ðxÞ (n ¼ 1; 2; . . . ), as well as the ones arising

from Aa
5ðx; yÞ, AðnÞa

5 ðxÞ, are transformations in the adjoint

representation of SU4ðNÞ. It results that the excited KK

modes of the gauge parameters, �ðnÞaðxÞ, determine the

gauge transformations of the AðnÞa
� ðxÞ and AðnÞa

5 ðxÞ KK

modes. In contrast with the SGT, this new type of gauge
invariance cannot be easily identified. However, as it was
emphasized in Ref. [12], the precise identification of these
gauge transformations, as well as the covariant objects
needed to construct invariants, is a first indispensable
step in order to quantize the theory. The identification of
this new type of gauge transformations, the construction of
a classical action being invariant under both class of gauge
transformations and its quantization on the basis of the
BRST symmetry [13,14], as well as the introduction of a
novel gauge-fixing (GF) procedure for the excited KK
modes that is covariant under the SGT of SU4ðNÞ, are the
main results of this reference.

There are phenomenological and theoretical motivations
to quantize a gauge KK theory. If KK modes cannot be
produced directly in the Large Hadron Collider (LHC), it
would be possible to detect their virtual effects through
precision measurements as those planed to be realized in
the International Linear Collider (ILC) [15]. Electroweak
precision observables can play a role in various models.
In many physics scenarios they can provide information
about new physics scales that are too heavy to be detected
directly. Because of this, it is crucial to count on a con-
sistent quantum theory of the KK excitations that allows us
to make predictions at the one-loop or higher orders. In
particular, it is important to calculate the one-loop effects
of these new particles on SM observables that eventually
could be sensitive to new physics effects. Those processes
first generated at the one-loop level within the SM are the
best candidates, but the one-loop effects of KK modes on
the trilinear WW� and WWZ vertices will be of experi-
mental interest in the ILC. On the theoretical side, it is
interesting to investigate the behavior of the theory at the
one-loop level. For instance, it is very important to study
the UV structure of light Green functions, i.e., Green
functions consisting of zero modes only, due to one-loop
contributions of excited modes. In fact, this is an important
objective of this work.

The main goal of this work is to use the quantization
scheme of Ref. [12] within the context of the electroweak
theory. In particular, we are interested in calculating the
one-loop effects of the excited KK modes associated with
the SULð2Þ gauge group to the W�WþW3 vertex, with

W3 an off-shell � or Z gauge boson. Apart from its
phenomenological importance in the context of the ILC,
this calculation will allow us to illustrate our quantization
scheme for KK gauge modes [12], as we will show that the
one-loop amplitude for this vertex, with W3 off-shell, has
an UV structure identical to the one generated by the
radiative correction in the context of the SM. As it will
be clarified below, this does not mean that contributions
from two-loop or higher orders are well behaved at the UV
domain. We will consider the case where the SM matter
fields are rigidly fixed to the brane and do not feel the
effects of the additional dimensions, which will be as-
sumed flat. The simplest model of this class corresponds
to gauge fields propagating in only one extra dimension.
The gauge boson KK excitation masses are given by m2

n ¼
ðn=RÞ2 þm2

0, where n labels the KK level, R�1 is the

compactification scale, and m0 is the zero-mode mass,
which is obtained via spontaneous symmetry breaking
for the cases ofW and Z and vanishes for �. It is important
to notice that the KK excitations of all the gauge states are
highly degenerate, with a splitting too small to be observed
at the LHC. Such a splitting will be still less important in
radiative corrections, so it is feasible to assume that the KK
modes are degenerate, with masses given by n=R.
Gauge models in more than four dimensions are non-

renormalizable,1 so they must be recognized as effective
theories that become embedded in some other consistent
UV completion, such as string theories. The nonrenorma-
lizable nature of higher dimensional theories arises from
the fact that they have dimensionful constant couplings.
So, the effective theory must be cut off at some scale Ms,
above which the fundamental theory enters. To be specific,
we will center our discussion by considering only one extra
dimension. Although at the level of the four dimensional
theory the coupling constants are dimensionless, the non-
renormalizable character manifests itself through the infi-
nite multiplicity of the KK modes. Then, besides the Fermi
scale v � 246 GeV, the four dimensional effective theory
has two additional scales, namely, the compactification
scale R�1 and the cutoff Ms. The cutoff sensitivity of light
Green’s functions at the one-loop level depends on some
aspects intimately connected with the compactified dimen-
sion. To see this, it should be noticed that any infinite
dimension has associated, in the Fourier space, a continu-
ous momentum, but a discrete momentum k5 ¼ n=R cor-
responds to the compactified coordinate. This means that a
one-loop amplitude is determined by the usual continuous
sum together with additional discrete sums:

R
d4k

P1
m;n;... .

At the one-loop level, only one discrete sum exists if the
discrete momentum is conserved in each vertex. If this is
the case, the KK parity, ð�1Þn, is conserved, which means
that no couplings involving only one single KK mode can

1Aspects of nonperturbative renormalizability of gauge theo-
ries in more than four dimensions are analyzed in [16].
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arise. This, in turn, implies that no contributions to the
electroweak observables can arise at the tree level [17],
although tree-level effects from operators of canonical
dimension higher than Dð¼ 5Þ can arise. So, at the one-
loop level or higher orders two types of divergences can
arise. Previous studies have shown [6,17] that in the so-
called universal extra dimensional (UED) models, i.e.,
theories in which all the fields propagate in the extra
dimension, the one-loop amplitudes for light Green’s func-
tions are insensitive to the cutoffMs, as it remains only one
discrete sum and it is convergent. In this paper, we will
show that this is the case for the one-loop contributions of

the gauge KK modes WðmÞ to the WWW3 vertex. In this
context of UED, when more than one extra dimension is
introduced the one-loop effects of KK modes to light
Green’s functions cease to be independent on the cutoff
[17]. On the other hand, in nonuniversal extra dimensional
models, in which some fields are confined to the four
dimensional brane, some new effects arise, as in this case
the discrete momentum is not conserved in the brane but
only in the bulk [9]. In these models, vertices involving
only one KK excited mode can exist and divergences can
arise at the tree-level, although the involved propagators
are finite if only one extra dimension is considered [9].
However, even in the case of nonuniversal extra dimen-
sional models with only one extra dimension, one-loop
effects on light Green’s functions are cutoff dependent
[9]. In this work, besides to show that the one-loop effects
of the KK gauge modes on the WWW3 vertex are insensi-
tive to the cutoff, we will study the tree-level contribution
to this vertex that arises from an operator of canonical
dimension higher than 5. It has been pointed out [17] that
in UED models with only one extra dimension, the one-
loop contribution on electroweak observables dominates
[17]. We will see that this occurs in our case by showing
that contributions induced by higher dimensional operators
are lower than those induced by the KK modes at the one-
loop level.

The rest of the paper has been organized as follows.
Section II is devoted to calculating the one-loop contribu-
tions of the weak KKmodes to the off-shellWWW3 vertex.
The role of theoretical aspects as gauge-invariance and
gauge-independence at the level of Green functions is
discussed. The structure of the five dimensional SU5ð2Þ
theory and its compactification is presented. A gauge-
fixing procedure for the excited KKmodes that is covariant
under the SGT of the SULð2Þ group is introduced and the
corresponding Faddeev-Popov (FP) ghost term derived.
This section is concluded with the presentation of the
form factors characterizing the one-loop amplitude for
the W�WþW3 vertex. In Sec. III, numerical results for
the one-loop KK effects are discussed. Section IV is de-
voted to discuss tree-level contributions to the WWW3

vertex induced by operators of higher canonical dimen-
sion. The size of this contribution is compared with that

generated at the one-loop by the KK excitations. Finally, in
Sec. V the conclusions are presented.

II. ONE-LOOPEFFECTSOF SULð2ÞKKMODESON
THE WW� AND WWZ COUPLINGS

In this section, we apply the covariant gauge-fixing
procedure derived in Ref. [12] for investigating the one-
loop impact of the gauge KK modes associated with the
electroweak gauge bosons to the off-shellWW� andWWZ
vertices. As already commented in the Introduction, there
are two important motivations for studying these vertices in
the context of KK theories. In first place is their intrinsic
phenomenological interest in the context of precision mea-
surements in future colliders. On the theoretical side, the
study of radiative corrections to these vertices allows us to
illustrate how our quantization scheme [12] can be used in
practical loop calculations. In particular, these calculations
allow us to exemplify one of the main implications of this
quantization scheme, i.e., that it is possible to predict, in a
consistent way, one-loop effects of gauge KK modes on
light Green functions.

A. The off-shell W�WþW3 vertex: Gauge
invariance and gauge independence

The radiative corrections to theWWW3 vertex (W3 ¼ �,
Z) have been the subject of considerable interest in the
literature. Apart from its sensitivity to new physics effects,
this vertex has theoretical interest of its own as it may serve
as a probe of the gauge sector of the SM. In this context, the
one-loop contributions to the on-shellWW� vertex, which
defines the static electromagnetic properties of the W
boson, have been calculated in the SM [18] and most of
its extensions such as two-Higgs doublet models [19],
supersymmetric models [20], composite particles [21],
models with an extra Z0 boson [22], left-right symmetric
models [23], 331 models [24], the littlest Higgs model [25],
and in a model-independent way using an effective
Lagrangian approach [26,27]. Although the study of the
one-loop on-shellWW� vertex is important to quantify the
impact of new physics effects, they are the WW� and
WWZ vertices, with � and Z off-shell, the ones which
are of interest for investigating the one-loop effects of
new particles and thus to have indirect evidence of their
presence through precision measurements at high-energy
collisions, as those planed for the eþe� International
Linear Collider [28]. In the context of a CP conserving
theory, the one-loop radiative corrections to the WWW3

vertex can be parametrized by two form factors, ��W3 and
�W3 , which for the especial case ofW3 ¼ � on-shell define
the CP-even electromagnetic properties of the W gauge
boson, namely, the magnetic dipole moment and the elec-
tric quadrupole moment [18,29].
The calculation of radiative corrections to the WWW3

vertex arising from new gauge bosons, as the KK modes,
must be treated with some care when at least one of the
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three particles of this coupling is off-shell, as, under such
circumstances, this calculation is sensitive to the gauge-
fixing procedure used to define the propagators of the
gauge fields circulating in the loop. This contrasts with
the on-shellWW� vertex, which corresponds to a S-matrix
element and is, therefore, a gauge-independent quantity. It
is well known that the conventional gauge-fixing proce-
dures [30] give rise to ill-behaved off-shell Green functions
that may display inadequate properties such as a nontrivial
dependence on the gauge-fixing parameter, an increase
larger than the one observed in physical amplitudes at
high energies, and the appearance of unphysical thresh-
olds. It would be interesting if one were able to study the
sensitivity to radiative corrections of the WWW3 coupling
without invoking some particular S-matrix element.
Behind this are the concepts of gauge invariance and gauge
independence, which are essential ingredients of the gauge
systems. Although the former plays a fundamental role to
define the classical action, it does not survive to quantiza-
tion, as one must invariably invoke an appropriate gauge-
fixing procedure to define the quantum action. At the
quantum level, the theory is governed by the BRST sym-
metry [13,14], which generates Green functions satisfying
the Slavnov-Taylor identities instead of the simpler ones
that would exist if the quantum action was gauge invariant.
Fortunately, there are other gauge-fixing procedures that
allow us to construct well-behaved off-shell Green func-
tions. One of these nonconventional gauge-fixing proce-
dures is the background field method (BFM) [31], which
allows one to construct a quantum action satisfying a sort
of gauge invariance. The method consists in unfolding the

gauge fields, Aa
�, into quantum, Qa

�, and classical, Âa
�,

parts: Aa
� ! Âa

� þQa
�. While the effective quantum action

is defined through the path integral on the Qa
� fields, the

classical fields Âa
� play the role of sources with respect to

which the vertex functions are derived. Because of this, it is
only necessary to introduce a gauge-fixing procedure for
the quantum fields Qa

� and thus the resultant quantum

theory is invariant under gauge transformations of the

background fields Âa
�. The Green functions derived in

this context satisfy simple (QED-like) Ward identities,
which are well behaved because they contain less unphys-
ical information in comparison with those that arise from
the conventional quantization methods. However, it is
worth stressing that they are still dependent on the gauge
parameter �Q that characterizes the gauge-fixing scheme

used for the quantum fields, and so there is no gauge
independence. Although gauge dependent, one expects
that these Green functions provide us information quite
near to the physical reality. The BFM has proved to be
useful in many applications [32,33], simplifying both tech-
nically and conceptually the calculation of radiative
corrections. At the present, there is still no known mecha-
nism that allows one to construct a quantum action from
which can be derived both gauge-invariant and gauge-

independent Green functions, although there is already a
diagrammatic method meant for this purpose, the so-called
pinch technique (PT) [34–36]. This method consists in
constructing well-behaved Green functions of a given
number of points by combining some individual contribu-
tions from Green functions of equal and higher number of
points, whose Feynman rules are derived from a conven-
tional effective action or even from a nonconventional
scheme as the BFM [37]. The PT has been used success-
fully in pure Yang-Mills theories [34,36–38] as well as in
theories with spontaneous symmetry breaking [36]. An
important application has been the study of self-energies
[39] and trilinear vertices [40] involving the electroweak
gauge bosons. In particular, a complete calculation of the
one-loop WWW3 vertex in the context of the electroweak
theory showed that a simple Ward identity is satisfied by
this vertex and the W self-energy [41,42]. The gauge
independence of the WW� vertex for off-shell photon
and on-shell W bosons is discussed in Ref. [41]. There is
a remarkable connection between the PT and the BFM
which consists in the fact that the Green functions calcu-
lated via the BFM Feynman rules coincide with those
obtained through the PT for the specific value �Q ¼ 1.

This interesting property was first established at the one-
loop level [33], next confirmed at the two-loop level [43],
and more recently at any order of perturbation theory [44].
The reason for such a link remains a puzzle, though it is
worth noting that the Feynman-’t Hooft gauge yields no
unphysical thresholds.
Although in conventional quantization schemes the

quantum action of the theory is not gauge invariant, it is
still possible to introduce gauge invariance with respect to
a subgroup of such a theory. This scheme is particularly
useful to assess the virtual effects of heavy gauge bosons
lying beyond the Fermi scale on the SM Green functions in
a SULð2Þ �UYð1Þ-covariant manner, in which case it is
only necessary to introduce a quantization scheme for the
heavy fields since the SM fields would only appear as
external legs. A scheme of this class was proposed by
some of us some few years ago [45] to investigating the
loop effects of new heavy gauge bosons predicted by the
so-called 331 models [46] on the off-shell WWW3 vertex.
This model, which is based on the SUCð3Þ � SULð3Þ �
UXð1Þ gauge group, predicts the existence of five new
heavy gauge bosons, two doubly charged, two simply
charged, and a neutral Z0 [47]. These particles acquire their
masses in the first stage of spontaneous symmetry break-
ing, when the SULð3Þ �UXð1Þ group is broken down into
the usual electroweak group SULð2Þ �UYð1Þ. At this
scale, the charged gauge bosons arise in the fundamental
representation of SULð2Þ, i.e., they appear as the compo-
nents of the doublet Yy

� ¼ ðY��
� ; Y�

� Þ, which has hyper-

charge Y ¼ 3. In Ref. [45], a gauge-fixing procedure for
the Y� doublet of gauge bosons was introduced in a co-

variant way under the SULð2Þ �UYð1Þ group. Following
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the procedure used by Fujikawa, in the context of the SM
[48], to define the W propagator in a covariant way under
the electromagnetic Ueð1Þ group, nonlinear gauge-fixing
functions transforming in the same way that Y� does under

the electroweak group were introduced [45]. Well-behaved
amplitudes for theWW� andWWZ vertices, with � and Z
off-shell, were derived in a simple way as a consequence of
the high symmetry of the gauge-fixing procedure. This
gauge-fixing procedure is quite similar to the one presented
in Ref. [12] for the KKmodes, which is covariant under the
SGT of SU4ðNÞ. In the present work, we will use this

gauge-fixing procedure for the gauge KK modes WðnÞ�

and WðnÞ3 associated with the SULð2Þ group. Since we
are only interested in the one-loop effects of the KK modes
on the light Green function W�WþW3, we do not need to

fix the gauge for the zero KK modes Wð0Þ� � W� and

Wð0Þ3 � W3. This means that the gauge-fixed quantum
action is invariant under the SGT of the SULð2Þ group,
which in turn implies that the W�WþW3 coupling will
satisfy simple Ward identities. Although, as already com-
mented, the one-loop amplitudes are still gauge-dependent,
they are well-behaved if calculated in the Feynman-’t
Hooft gauge.

B. The SULð2Þ Yang-Mills sector in five dimensions

The structure of the four dimensional effective
Lagrangian for the SULð2Þ KK theory is identical to the
one given in Ref. [12] for the compactified theory based in
the SU4ðNÞ group. Because of this, wewill present only the
essential steps of its derivation. The five dimensional
theory is characterized by the following gauge invariant
action:

S ¼
Z

d4x
Z

dy

�
� 1

4
W a

MNðx; yÞWMN
a ðx; yÞ

�
; (1)

where the five dimensional strength tensor is given by

W a
MN ¼ @MW a

N � @NW a
M þ g5�

abcW b
MW

c
N: (2)

In the following, we will denote by x the usual four
coordinates and by y the fifth dimension. We will employ
a flat metric with signature diagð1;�1;�1;�1;�1Þ. In
addition, M ¼ 0, 1, 2, 3, 5 and a ¼ 1, 2, 3 stand for
Lorentz and gauge indices, respectively. The following
periodicity and parity properties of the gauge fields and
gauge parameters are assumed:

W a
MNðx; yþ 2�RÞ ¼ W a

MNðx; yÞ; (3)

W a
Mðx; yþ 2�RÞ ¼ W a

Mðx; yÞ; (4)

�aðx; yþ 2�RÞ ¼ �aðx; yÞ; (5)

W a
�	ðx;�yÞ ¼ W a

�	ðx; yÞ; (6)

W a
�5ðx;�yÞ ¼ �W a

�5ðx; yÞ (7)

W a
�ðx;�yÞ ¼ W a

�ðx; yÞ; (8)

W a
5ðx;�yÞ ¼ �W a

5ðx; yÞ (9)

�aðx;�yÞ ¼ �aðx; yÞ; (10)

where the Greek indices run, as usual, from 0 to 3. This
allows us to express the strength tensor, the gauge fields,
and the gauge parameters as Fourier series:

W a
�	ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2�R
p W ð0Þa

�	 ðxÞ

þ X1
m¼1

1ffiffiffiffiffiffiffi
�R

p W ðmÞa
�	 ðxÞ cos

�
my

R

�
; (11)

W a
�5ðx; yÞ ¼

X1
m¼1

1ffiffiffiffiffiffiffi
�R

p W ðmÞa
�5 ðxÞ sin

�
my

R

�
; (12)

W a
�ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2�R
p Wð0Þa

� ðxÞ

þ X1
m¼1

1ffiffiffiffiffiffiffi
�R

p WðmÞa
� ðxÞ cos

�
my

R

�
; (13)

W a
5ðx; yÞ ¼

X1
m¼1

1ffiffiffiffiffiffiffi
�R

p WðmÞa
5 ðxÞ sin

�
my

R

�
; (14)

�aðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p �ð0ÞaðxÞ þ X1
m¼1

1ffiffiffiffiffiffiffi
�R

p �ðmÞaðxÞ cos
�
my

R

�
:

(15)

To preserve gauge invariance, the fifth dimension must be
integrated in the action S by considering only covariant
objects [12], i.e., by expanding in Fourier series the
strength tensors instead of the gauge fields,

LSULð2Þ
4YM ¼ � 1

4

Z 2�R

0
½W a

�	ðx; yÞW �	
a ðx; yÞ

þW a
�5ðx; yÞW �5

a ðx; yÞ�

¼ � 1

4
ðW ð0Þa

�	 W ð0Þa�	 þW ðmÞa
�	 W ðmÞa�	Þ

þ 1

2
W ðmÞa

�5 W ðmÞa�
5; (16)

where sums over all types of repeated indices, including
the Fourier ones, are assumed. This convention will be
maintained through the paper. In the above expressions,

W ð0Þa
�	 ¼ Wð0Þa

�	 þ g�abcWðmÞb
� WðmÞc

	 ; (17)

W ðmÞa
�	 ¼ Dð0Þab

� WðmÞb
	 �Dð0Þab

	 WðmÞb
�

þ g�abc�mrnWðrÞb
� WðnÞc

	 ; (18)
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W ðmÞa
�5 ¼ Dð0Þab

� WðmÞb
5 þm

R
WðmÞa

�

þ g�abc�0mrnWðrÞb
� WðnÞc

5 ; (19)

where

Wð0Þa
�	 ¼ @�W

ð0Þa
	 � @	W

ð0Þa
� þ g�abcWð0Þb

� Wð0Þc
	 ; (20)

is the standard strength tensor of SULð2Þ and Dð0Þab
� ¼


ab@� � g�abcWð0Þc
� is the covariant derivative in the ad-

joint representation of this group. In addition,

�kmn ¼ 1ffiffiffi
2

p ð
k;mþn þ 
m;kþn þ 
n;kþmÞ; (21)

�0kmn ¼ 1ffiffiffi
2

p ð
k;mþn þ 
m;kþn � 
n;kþmÞ: (22)

The above four dimensional Lagrangian, Eq. (16), is in-

variant under the SGT of SULð2Þ [12], in which Wð0Þa
�

transforms as a gauge field, whereas the excited modes

WðmÞa
� and WðmÞa

5 transform as matter fields in the adjoint

representation of this group:


Wð0Þa
� ¼ Dð0Þab

� �ð0Þb; (23)


WðmÞa
� ¼ g�abcWðmÞb

� �ð0Þc; (24)


WðmÞa
5 ¼ g�abcWðmÞb

5 �ð0Þc: (25)

This symmetry is manifest in the LSULð2Þ
4YM Lagrangian.

Although less evident, this Lagrangian is also invariant
under the following NSGT [12],


Wð0Þa
� ¼ g�abcWðmÞb�ðmÞc; (26)


WðmÞa
� ¼ DðmnÞab

� �ðnÞb; (27)


WðmÞa
5 ¼ DðmnÞab

5 �ðnÞb; (28)

where

D ðmnÞab
� ¼ 
mnDð0Þab

� � g�abc�mrnWðrÞc
� ; (29)

DðmnÞab
5 ¼ �
mn
ab m

R
� g�abc�0mrnWðrÞc

5 : (30)

The strength tensors W ð0Þa
�	 , W ðmÞa

�	 , and W ðmÞa
�5 transform

in a well-defined way under both the SGT and the NSGT

[12] and thus LSULð2Þ
4YM is gauge invariant.

C. The gauge-fixing procedure

As already commented, it is very important from the
phenomenological point of view to investigate the one-
loop impact of the excited KK modes on light Green
functions because their sensitivity to these virtual effects
of new physics could in principle be confronted with

precision measurements that will be realized at future
linear colliders. To calculate such virtual effects, a
gauge-fixing procedure that allows us to define the propa-
gators of the excited KK modes must be implemented. In
Ref. [12], a gauge-fixing procedure for the excited KK
modes based on the BRST symmetry, and which is cova-
riant under the SGT of SU4ðNÞ, was introduced and the
corresponding ghost sector derived. In this work, we only
present the main ingredients of such a quantization
scheme. The degeneration of the theory due to the presence
of the NSGT is removed via the following gauge-fixing
functions:

fðmÞa ¼ Dð0Þab
� WðmÞb� � �

m

R
WðmÞa

5 : (31)

Notice that these functions transform in the adjoint repre-
sentation of SULð2Þ, and therefore they lead to a quantized
theory that preserves gauge invariance with respect to the
SGT of SULð2Þ. It is worth emphasizing that our gauge-
fixing approach permits one to fix the gauge for the zero
modes and for the excited ones, independently of each
other. Indeed, the fixation for the zero modes can be
performed as in the standard four dimensional Yang-
Mills theory. Since we are only interested in quantifying
the one-loop effects of the excited KK modes on light
Green functions, we do not need to introduce a gauge-

fixing procedure for the zero modes Wð0Þa
� and thus, at this

stage, the SGT are preserved at the quantum level. The
corresponding gauge-fixing Lagrangian is given by

L GF ¼ � 1

2�
ðDð0Þab

� WðmÞb�ÞðDð0Þac
	 WðmÞc	Þ

þmmW
ðmÞa
5 ðDð0Þab

� WðmÞb�Þ � 1

2
�m2

mW
ðmÞa
5 WðmÞa

5 ;

(32)

where mm ¼ ðm=RÞ is the mass of the excited KK mode

WðmÞ
� and

ffiffiffi
�

p
mm the mass of the associated pseudo-

Goldstone boson WðmÞa
5 . This gauge-fixing procedure al-

lows us to cancel the bilinear and trilinear nonphysical

couplings WðmÞa
� WðmÞb

5 and Wð0Þa
� WðmÞb

	 WðmÞc
5 that are

present in the LSULð2Þ
4YM Lagrangian through a total deriva-

tive:

LGFþ1
2W

ðmÞa
�5 W ðmÞa�

5

¼mm½WðmÞa
5 ðDð0Þab

� WðmÞb�ÞþWðmÞa�ðDð0Þab
� WðmÞb

5 Þ�þ���
¼mm@�ðWðmÞa

5 WðmÞa�Þþ��� (33)

On the other hand, the ghost sector induced by this
gauge-fixing procedure can be written as the sum of two
terms [12],

L FP ¼ L1
FP þL2

FP; (34)
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where

L 1
FP ¼ �CðmÞcðDð0Þac

� DðmnÞab� þ �mmD
ðmnÞcb
5 ÞCðnÞb

� �g�abc�mrnfðmÞa �CðrÞbCðnÞc: (35)

The termL2
FP is not relevant for our purposes, as it involves

only quartic interactions among ghost and antighost fields
[12] and we do not present it here. It is important to notice
that the Lagrangian L1

FP is invariant under the SGT of
SULð2Þ.

It is worth presenting the pieces of the four dimensional
theory that can contribute, at the one-loop order, to light
Green functions:

� 1
4W

ð0Þa
�	 W ð0Þa�	 ! �1

2g�
abcWð0Þa

�	 WðnÞb�WðnÞc	; (36)

�1
4W

ðnÞa
�	 W ðnÞa�	 ! 1

4ðDð0Þab
� WðnÞb

	 �Dð0Þab
	 WðnÞb

� Þ
� ðDð0Þac�WðnÞc	 �Dð0Þac	WðnÞc�Þ;

(37)

1
2W

ðnÞa
�5 W ðnÞa�

5 ! 1
2ðDð0Þab

� WðnÞb
5 ÞðDð0Þac�WðnÞc

5 Þ
þ 1

2m
2
nW

ðnÞa
� WðnÞa�; (38)

L GF ! � 1

2�
ðDð0Þab

� WðnÞb�ÞðDð0Þac
	 WðnÞc	Þ

� 1

2
�m2

nW
ðnÞa
5 WðnÞa

5 ; (39)

L 1
FP ! �CðnÞbDð0Þab

� Dð0Þac�CðnÞc � �m2
n
�CðnÞaCðnÞa: (40)

D. Feynman rules

We now turn to list the vertices needed to calculate the
contribution of the excited KK modes to the off-shell
W�WþW3 vertex. To do this, we introduce the physical
basis:

W�
� ¼ 1ffiffiffi

2
p ðW1

� 	 iW2
�Þ; (41)

WðnÞ�
� ¼ 1ffiffiffi

2
p ðWðnÞ1

� 	 iWðnÞ2
� Þ: (42)

There are trilinear and quartic vertices that can contribute
at the one-loop level to the W�WþW3 coupling. The tri-
linear gauge couplings are given by

LW3WðnÞ�WðnÞþ

¼ �ig

�
ðWðnÞþ

�	 WðnÞ�	 �WðnÞ�
�	 WðnÞþ	ÞW3�

þW3
�	W

ðnÞ��WðnÞþ	 � 1

�
W3

�ðWðnÞþ�@	W
ðnÞ�	

�WðnÞ��@	W
ðnÞþ	Þ

�
; (43)

LWþWðnÞ�WðnÞ3

¼ �ig

�
ðWðnÞ�

�	 WðnÞ3	 �WðnÞ3
�	 WðnÞ�	ÞWþ�

þWþ
�	W

ðnÞ3�WðnÞ�	 � 1

�
Wþ

� ðWðnÞ��@	W
ðnÞ3	

�WðnÞ3�@	WðnÞ�	Þ
�
; (44)

LW�WðnÞþWðnÞ3

¼ ig

�
ðWðnÞþ

�	 WðnÞ3	 �WðnÞ3
�	 WðnÞþ	ÞW��

þW�
�	W

ðnÞ3�WðnÞþ	 � 1

�
W�

� ðWðnÞþ�@	W
ðnÞ3	

�WðnÞ3�@	WðnÞþ	Þ
�
; (45)

where V�	 ¼ @�V	 � @	V�, with V standing for W�,
WðnÞ�, W3, and WðnÞ3. On the other hand, the quartic
vertices that can contribute to light Green functions, at
the one-loop level, are

LW3W3WðnÞ�WðnÞþ

¼ �g2
�
W3

�W
ðnÞþ
	 ðW3�WðnÞ�	 �W3	WðnÞ��Þ

þ 1

�
W3

�W
3
	W

ðnÞþ�WðnÞ�	

�
; (46)

LW3WþWðnÞ3WðnÞ�

¼ �g2
�
W3

�W
ðnÞ�
	 ðWðnÞ3�Wþ	 �WðnÞ3	Wþ�Þ

þWðnÞ3�WðnÞ�	ðW3
�W

þ
	 �W3

	W
þ
� Þ

� 1

�
WðnÞ3�W3

	W
ðnÞ�	Wþ

�

�
; (47)

LW3W�WðnÞ3WðnÞþ

¼ �g2
�
W3

�W
ðnÞþ
	 ðWðnÞ3�W�	 �WðnÞ3	W��Þ

þWðnÞ3�WðnÞþ	ðW3
�W

�
	 �W3

	W
�
� Þ

� 1

�
WðnÞ3�W3

	W
ðnÞþ	W�

�

�
: (48)

LW�WþWðnÞ3WðnÞ3

¼ �g2
�
WðnÞ3

� Wþ
	 ðWðnÞ3�W�	 �WðnÞ3	W��Þ

þ 1

�
W�

�W
þ
	 W

ðnÞ3�WðnÞ3	
�
; (49)
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LW�WþWðnÞ�WðnÞþ

¼ g2
�
Wþ

�W
ðnÞ�
	 ðW�	WðnÞþ� �W��WðnÞþ	Þ

þWðnÞ�
� WðnÞþ

	 ðW��Wþ	 �W�	Wþ�Þ
� 1

�
Wþ

�W
�
	 W

ðnÞ��WðnÞþ	

�
; (50)

LWþWþWðnÞ�WðnÞ� ¼g2

2

�
Wþ

�W
þ�WðnÞ�

	 WðnÞ�	

�
�
1�1

�

�
Wþ

�W
þ
	 W

ðnÞ��WðnÞ�	

�
; (51)

LW�W�WðnÞþWðnÞþ ¼ g2

2

�
W�

�W
��WðnÞþ

	 WðnÞþ	

�
�
1� 1

�

�
W�

�W
�
	 W

ðnÞþ�WðnÞþ	

�
;

(52)

The trilinear and quartic couplings among pseudo-
Goldstone bosons and gauge fields that can contribute, at
the one-loop level, to light Green functions are given by

L
W3WðnÞ�

5
WðnÞþ

5

¼ igW3
�ðWðnÞ�

5 @�WðnÞþ
5 �WðnÞþ

5 @�WðnÞ�
5 Þ;
(53)

L
WþWðnÞ�

5
WðnÞ3

5

¼ igWþ
� ðWðnÞ3

5 @�WðnÞ�
5 �WðnÞ�

5 @�WðnÞ3
5 Þ;
(54)

L
W�WðnÞþ

5
WðnÞ3

5

¼ �igW�
� ðWðnÞ3

5 @�WðnÞþ
5 �WðnÞþ

5 @�WðnÞ3
5 Þ; (55)

L
W3W3WðnÞ�

5
WðnÞþ

5

¼ g2W3
�W

3�WðnÞ�
5 WðnÞþ

5 ; (56)

L
W�WþWðnÞ�

5
WðnÞþ

5

¼ g2W�
�W

þ�WðnÞ�
5 WðnÞþ

5 ; (57)

LW3WþWðnÞ�WðnÞ3 ¼ �g2W3
�W

þ�WðnÞ�
5 WðnÞ3

5 ; (58)

LW3W�WðnÞþWðnÞ3 ¼ �g2W3
�W

��WðnÞþ
5 WðnÞ3

5 : (59)

Finally, the part of the ghost sector that can contribute, at
the one-loop level, to light Green functions can be written
as follows:

LWC �C¼�ig½W3
�ðCðnÞþ@� �CðnÞ��@�CðnÞþ �CðnÞ��CðnÞ�@� �CðnÞþþ@�CðnÞ� �CðnÞþÞ�Wþ

� ðCðnÞ3@� �CðnÞ��@�CðnÞ3 �CðnÞ�

þ@�CðnÞ� �CðnÞ3�CðnÞ�@� �CðnÞ3ÞþW�
� ðCðnÞ3@� �CðnÞþ�@�CðnÞ3 �CðnÞþþ@�CðnÞþ �CðnÞ3�CðnÞþ@� �CðnÞ3Þ�; (60)

LWWC �C ¼ g2½W�
�W

þ�ðCðnÞþ �CðnÞ� þ CðnÞ� �CðnÞþ

þ 2CðnÞ3 �CðnÞ3Þ �Wþ
�W

þ�CðnÞ� �CðnÞ�

�W�
�W

��CðnÞþ �CðnÞþ �W3
�W

3�CðnÞ3 �CðnÞ3

�W3
�ðWþ�ðCðnÞ� �CðnÞ3 þ CðnÞ3 �CðnÞ�Þ

þW��ðCðnÞþ �CðnÞ3 þ CðnÞ3 �CðnÞþÞÞ�; (61)

where we have introduced the definitions

CðnÞ� ¼ 1ffiffiffi
2

p ðCðnÞ1 	 iCðnÞ2Þ; (62)

�C ðnÞ� ¼ 1ffiffiffi
2

p ð �CðnÞ1 	 i �CðnÞ2Þ: (63)

The Feynman rules needed to calculate the one-loop
amplitude for the W�WþW3 vertex can easily be derived
from the above Lagrangians. The vertex functions that can
contribute to theW�WþW3 vertex at the one-loop level are
shown in Fig. 1. The couplings of zero KK gauge modes
with excited modes of ghost-antighost fields are not shown,
but they are identical to those with pseudo-Goldstone

bosons, which arise as a consequence of the invariance of
the ghost sector under SGT. Also, due to such gauge
invariance of the theory, the Lorentz tensor structure of

the vertices characterizing the couplings W3WðnÞ�WðnÞþ,
WþWðnÞ�WðnÞ3, and W�WðnÞþWðnÞ3 is the same. The ver-
tex functions appearing in Fig. 1 are given by

����ðk; k1; k2Þ ¼ �ðk1 � k2Þ�g�� þ
�
k� k2 � 1

�
k1

�
�
g��

�
�
k� k1 � 1

�
k2

�
�
g��; (64)

��	�� ¼ 2g��g�	 � g�	g�� �
�
1þ 1

�

�
g��g�	; (65)

��ðk1; k2Þ ¼ ðk1 � k2Þ�: (66)

Notice that as a consequence of gauge invariance, the
trilinear gauge vertex satisfies the simple Ward identity

k�����ðk; k1; k2Þ ¼ ���ðk1Þ � ���ðk2Þ; (67)

where
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���ðkÞ ¼ ðk2 �m2
nÞg�� �

�
1� 1

�

�
k�k�: (68)

E. One-loop form factors of the W�WþW3 vertex

The vertex function for the W�WþW3 coupling, with
W3 off-shell, can be parametrized in terms of three form
factors as follows:

�W3

��� ¼ �igW3

�
A½2p�g�� þ 4ðq�g�� � q�g��Þ�

þ 2��W3ðq�g�� � q�g��Þ
þ 4�QW3

m2
W

�
p�q�q� � 1

2
q2p�g��

��
; (69)

where gW3 ¼ gsW for W3 ¼ � and gW3 ¼ gcW for
W3 ¼ Z. We have introduced the short-hand notation sW
and cW for the sine and cosine of the weak angle, respec-
tively.We have dropped theCP-odd terms since they do not
arise at the one-loop level in the context of the theory that
we are considering. Our notation and conventions are
shown in Fig. 2. In the SM, the tree-level values are
A ¼ 1, ��W3 ¼ 0, and �QW3 ¼ 0. Within the context of
a renormalizable theory, it is expected that the one-loop
radiative corrections give divergent contributions to A, but
finite ones to ��W3 and �QW3 . The A form factor is asso-
ciated with the interaction

LWWW3 ¼ �ig½ðW�
�	W

þ	�Wþ
�	W

�	ÞW3�

�W3
�	W

��Wþ	�; (70)

which is already present at the level of the classical action
and must be, therefore, renormalized. Although the
��W3 form factor is associated with the interaction
W3

�	W
��Wþ	, which is renormalizable, it arises as an

anomalous contribution to the magnetic dipole and electric
quadrupole moments of the W� gauge boson, similar to
the one encountered for the case of spin 1=2 charged parti-
cles. This contribution is always finite in a renormalizable
theory. The form factor �QW3 is associated with the
dimension-six interaction W

��
� Wþ

�W
3�, which neces-

sarily arises at one-loop in a renormalizable theory, being
therefore a finite prediction of the theory under considera-
tion. Although theories in more than four dimensions are

FIG. 1. Feynman rules for the vertices contributing to the W�WþW3 coupling.

FIG. 2. The trilinear W�WþW3 vertex. The large black disc
denotes loop contributions.
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nonrenormalizable, we will show below that the one-loop
contributions of the KK modes to these form factors re-
semble those of a renormalizable theory.

The Feynman diagrams that can contribute to the
W�WþW3 Green function are shown in Fig. 3. As it has
been emphasized, our treatment of this coupling is invariant
under the SGTof SULð2Þ, although gauge dependent, which
also occurs, for example, when the BFM is applied. In other
words, gauge-invariant quantum actions render gauge-
invariant but not gauge-independent Green functions.
However, motivated by the link between the BFM and the
PT, as well as the previous analysis presented in Refs. [45],

we will present our results in the Feynman-’t Hooft gauge.
The calculation in this class of nonlinear gauge is simple
indeed. In particular, we found that this coupling only
receives contributions from triangle diagrams, as the bubble
diagrams contributions are, each one, identically zero. In
addition, in this nonlinear gauge, the contribution of the
ghost-antighost sector is exactly minus twice the pseudo-
Goldstone boson contribution. Thus, the net contribution is

equal to the contribution of the excited WðnÞ modes minus
the pseudo-Goldstone boson one. Such a contribution can
be written as follows:

A ¼ g2

96�2ð4xW � 1Þ3
X
n¼1

ð�24xnð1� 4xWÞ2B0ð1Þ þ 48xW½5ðxW � 1ÞxW þ 4xnð4xW � 1Þ�B0ð2Þ

� 6½�4xWð6x2W � 2xW þ 3Þ þ xnð64x2W � 4Þ þ 1�B0ð3Þ þ 36Q2xW½�4x3W þ 2x2W þ xW

þ 4xnðxW � 1Þð4xW � 1Þ�C0 � 4f1� 2xW½xWð20xW � 33Þ þ 9�gÞ; (71)

��W3 ¼ g2

96�2ð4xW � 1Þ3
X
n¼1

f48xn½B0ð1Þ � B0ð2Þ� þ 12xWð26xW þ 1Þ½B0ð2Þ � B0ð3Þ�

� 384xnxW½B0ð1Þ � 2B0ð2Þ þ B0ð3Þ� þ 768xnx
2
W½B0ð1Þ � 3B0ð2Þ þ 2B0ð3Þ�

� 72Q2xWðx2W � 12xnxW þ xW þ 3xnÞC0 þ 12xWð4xW � 1Þð8xW þ 3Þg; (72)

�QW3 ¼ g2

96�2ð4xW � 1Þ3
X
n¼1

f�1536xnx
3
W½B0ð1Þ � B0ð3Þ� þ 96ðxW � 1Þx2Wð6xW þ 1Þ½B0ð2Þ � B0ð3Þ�

þ 768xnx
2
W½B0ð1Þ þ B0ð2Þ � 2B0ð3Þ� � 96xnxW½B0ð1Þ þ 2B0ð2Þ � 3B0ð3Þ�

þ 144Q2xW½4x4W � 4ð4xn þ 1Þx3W þ 2ð6xn þ 1Þx2W � 6xnxW þ xn�C0

� 24xWð4xW � 1Þ½2xWð6xW � 1Þ þ 1�g; (73)

where we have introduced the definitions Q � 2q, xW �
m2

W=Q
2, and xn � m2

n=Q
2, with mn ¼ n=R, n ¼ 1; 2; . . . .

In addition, we have introduced the following short-hand
notation for the Passarino-Veltman scalar functions:
B0ð1Þ � B0ð0; m2

n;m
2
nÞ, B0ð2Þ � B0ðm2

W;m
2
n; m

2
nÞ, B0ð3Þ �

B0ðQ2; m2
n; m

2
nÞ, and C0 � C0ðm2

W;m
2
W;Q

2; m2
n; m

2
n; m

2
nÞ.

Notice that the form factor A is divergent, but the ��W3

and �QW3 ones are free of ultraviolet divergences. As far

as the discrete sum is concerned, we will show in the next
section that it is convergent for the case of the ��W3 and
�QW3 form factors. The same is true for the divergent form
factor A. In this case, effects of heavy KKmodes disappear,
as they can be absorbed by the parameters of the light
theory [49]. It is worth mentioning the fact that the excited
KK modes together with their associated pseudo-
Goldstone bosons and ghosts separately lead to finite and

FIG. 3. Feynman diagrams contributing to the W�WþW3 coupling. Identical diagrams for the contributions of pseudo-Goldstone
bosons and ghost fields have not been displayed.
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gauge-invariant results, which is a peculiarity of this class
of gauge-fixing procedures [45]. To conclude this part, let
us comment on an important aspect concerning gauge
invariance. It has been shown above that the amplitude
for the W�WþW3 coupling can be written as

�W3

��� ¼ �gW3I���; (74)

with I��� the loop amplitude, which is the same for both
theWW� and theWWZ couplings. The important point to
be emphasized here is the fact that the Green functions for
these vertices differ only by the factor gW3 , just as it occurs
at the level of the classical action, which means that the
SULð2Þ symmetry is preserved at the one-loop level. For
on-shell W bosons, this Green function satisfies the Ward
identity

q��W3

��� ¼ 0: (75)

III. DISCUSSION

Before presenting our numerical results, let us to com-
ment the importance of theW�Wþ� andW�WþZ vertices
in collider physics. Within this respect, diverse studies [15]
point out that the sensitivity of LHC is of Oð10�2Þ for
��W3 and of up to Oð10�3Þ for �QW3 . A higher sensitivity
is expected at the ILC. The most stringent bounds are
obtained from angular distributions in W pair production,
which lead to bounds ofOð10�4Þ for both��W3 and �QW3

[15]. Although the LHC will be capable of producing new
particles in a real way due its high center-of-mass energy,
the ILC machine offers important advantages for precision
studies. An important advantage of this collider is the fact
that the energy of the colliding beams is exactly known.
Variable tuning of the beam energy together with the
control over its polarization would provide valuable infor-
mation concerning the presence of new physics. Because
of this, precision studies on the trilinear W�WþW3 vertex
that eventually reveal the presence of new particles will be
more accessible to ILC. In this context, the reaction
eþe� ! WþW�, with the Z and the photon gauge bosons
highly off-shell, will play a decisive role in future re-
searches at this collider, as it will provide relevant infor-
mation for our knowledge of the SM such as a more precise
determination of the W mass and its width decays, and it
will also open up the possibility for detecting new physics
effects via the distinctive s-channel contribution from the
W�WþW3 vertex. Radiative corrections to the eþe� !
WþW� processes have been calculated in the context of
the SM both for on-shell [50] and off-shell [51] W gauge
bosons. Beyond the SM, this reaction has been studied in
the context of supersymmetric theories [52], technicolor
models [53], and also in a model-independent way using
the effective Lagrangian approach [26].

As already mentioned in the Introduction, the radiative
corrections to the W�WþW3 vertex with the two W gauge

bosons on-shell and the W3 one off-shell, have received
considerable attention from both the phenomenological
and theoretical points of view. In the SM, the one-loop
amplitudes were calculated using the conventional linear
gauge along with the Feynman-’t Hooft gauge [54]. As
emphasized in that work, the resultant amplitudes are not
gauge-invariant, which is evident from the presence of
infrared divergences and the bad high-energy behavior of
the ��W3 form factor. In contrast, it was found that �QW3

is well behaved [54]. Subsequently, these vertices were
revisited by Papavassiliou and Philippides [41] in a
gauge-invariant way via the PT, finding that the form factor
��W3 disagrees from that presented in [54], though there is
agreement for �QW3 . It was found that for energies in the
range 200 GeV<Q< 1000 GeV,��� goes from 10�3 to

10�4, whereas �Q� ranges from 10�4 to 6� 10�5 in the

same range of energies [41,54]. Although the presence of
new physics may improve these values, it is not the case
however of supersymmetry, which predicts similar or
smaller contributions than the SM ones [55]. More re-
cently, the radiative corrections to these vertices due to
new gauge bosons were studied in Ref. [45], within
the context of the so-called 331 models, using a
SULð2Þ-covariant gauge-fixing procedure which, as we al-
ready emphasized, is quite similar to the one used in this
work. Well-behaved amplitudes were encountered at high
energies. In particular, the new physics effects decouple in
the large mass limit. It was found that for relatively light
new gauge bosons, with masses in the range 2mW <mY <
8mW and energies varying in the domain 200 GeV<Q<
1000 GeV, both ��W3 and �QW3 go from 10�4 to 10�5.
These results are of the same order of magnitude than those
predicted by the SM. These form factors are of the order
of 10�6 for the same range of energies and heavier gauge
bosons [45].
We now turn to present and discuss our numerical

results. In Fig. 4, the behavior of the real (left graphic)
and imaginary (right graphic) parts of the ��2 form factor
are shown as functions of the energy Q. The same is
shown in Fig. 5 but for the �Q form factor. The value of
R�1 ¼ 1 TeV for the compactification scale has been
taken. The sum of the KK modes’ contributions has
been considered. In these figures five cases have been
taken into account, namely, the contribution of only one
KK mode n ¼ 1, the sum of the contributions of the first
two excited modes n ¼ 2, the sum of the contributions of
the first three excited modes n ¼ 3, etc. For this value of
the new physics scale, the contributions of excited modes
beyond n ¼ 5 are indeed insignificant. It is interesting to
study the behavior of these form factors for several values
of the scale R. In Figs. 6 and 7, the behavior of the real
and imaginary parts of �� and �Q are shown for some

2From now on, the form factors ��W3 and �QW3 will be
denoted simply by �� and �Q, respectively.
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FIG. 4. The behavior of real (left graphic) and imaginary (right graphic) parts of �� as a function of the energy for R�1 ¼ 1 TeV.
The contributions of up to five excited KK modes were considered.
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FIG. 5. The same as in Fig. 4 but now for �Q.
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FIG. 6. The same as in Fig. 4 but now for several values of R�1. The sum of the first 10 excited KK modes was considered.
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FIG. 7. The same as in Fig. 6 but now for �Q.
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energy Q. The contribution of the first 10 excited KK modes was considered.
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FIG. 9. The same as in Fig. 8 but now for �Q.

ONE-LOOP EFFECTS OF EXTRA DIMENSIONS ON THE . . . PHYSICAL REVIEW D 83, 016011 (2011)

016011-13



values of the scale R, where the contribution of the first
10 excited KK modes has been taken into account. From
these figures, it can be appreciated that for 0:5 TeV<
R�1 < 1 TeV, both �� and �Q range from approxi-
mately 10�5 to 10�6, at the best. These results are of
the same order of magnitude than those arising from the
new gauge bosons appearing in the 331 model [45],
which, however, should be compared with those obtained
from the one-loop radiative correction in the context of
the SM, which are �� � 4� 10�3 and �Q � 4� 10�5

[56]. Finally, we would like to comment on the decou-
pling character of the KK modes’ contributions to light
Green functions. In Figs. 8 and 9, the behavior of �� and
�Q as functions of the scale R�1 is shown for some
values of the energy Q. From these figures, it can be
appreciated the decoupling nature of this type of new
physics, as for fixed energy Q these contributions quickly
disappear. We would like to stress that this well behavior
of the �� and �Q form factors at high energies and their
decoupling nature for large R�1 show in essence that our
quantum treatment of KK modes is correct and that it can
be used to predict one-loop effects of extra dimensions on
light Green functions.

IV. EFFECTS OF HIGHER
DIMENSIONAL OPERATORS

As commented in the Introduction, gauge theories in
more than four dimensions are not renormalizable under
the power counting Dyson’s criterion. They are not funda-
mental in this sense. Consequently, there is no criterion to
limit the number of Lorentz and gauge invariants that can be
present in the theory. In previous sections, the one-loop
radiative correction of the KK modes to theWWW3 vertex
was studied. We now proceed to study the tree-level effects
on this vertex induced by operators of canonical dimension
higher than 5. The lower dimensional operator that can
contribute to both ��W3 and �W3 form factors at the tree
level has a canonical dimension 15=2, which is given by

g5�W

M2
s

�abc

3!
W a

��W
b�	W c

	
�; (76)

where 3! is a symmetry factor and �W is an unknown
dimensionless parameter which depends on the details of
the underlying physics. Notice that the presence of the
g5=M

2
s factor is needed to correct dimensions. This means

that after integrating the compactified coordinate the effects
induced by this operator will be suppressed by a factor of
M2

s with respect to those induced by the dimension-five
Yang-Mills theory studied previously.

Once integrated the fifth dimension and conserving up to
terms involving only the zero mode, one obtains


LSUð2Þ
YM ¼ g�W

M2
s

OW; (77)

where OW is a dimension-six operator given by

OW ¼ �abc

3!
Wa

��W
b�	Wc

	
�: (78)

This operator is well-known in other contexts of new
physics [57]. After some algebra, one obtains the following
Lagrangian for the W�WþW3 vertex:

L tree
WWW3 ¼ igW3�

m2
W

W�
��W

þ�
	 W3	�; (79)

where

� ¼ �W

�
mW

Ms

�
2
: (80)

From the above Lagrangian, it is easy to derive the tree-
level contributions to the �� and �Q form factors, which
are given by

��tree ¼ ��; (81)

�Qtree ¼ 2�: (82)

For theories with only one extra dimension,Ms is estimated
to be of about 102R�1 [6,17], so � ¼ 10�4�WðRmWÞ2.
Assuming that �W �Oð1Þ, we find that j��treej (�Qtree)
ranges from 2:6� 10�6 to 0:76� 10�6 (from 5:2� 10�6

to 1:3� 10�6) for 0:5 TeV<R�1 < 1:0 TeV. It is inter-
esting to compare these results with those induced at the

one-loop level by the KKmodes. In a scenario with
ffiffiffiffiffiffi
Q2

p ¼
0:5 TeV, j��1-loopj (j�Q1-loopj) ranges from 1:12� 10�5

to 2:58� 10�6 (from 2:17� 10�5 to 5:12� 10�6) for

0:5 TeV<R�1 < 1:0 TeV. In a scenario with
ffiffiffiffiffiffi
Q2

p ¼
1:0 TeV, there is a light variation, namely, j��1-loopj
(j�Q1-loopj) ranges from 2:16� 10�5 to 2:81� 10�6

(from 3:4� 10�5 to 5:42� 10�6) for 0:5 TeV<R�1 <
1:0 TeV. This shows that the one-loop effect of the KK
modes is about 1 order of magnitude larger than that gen-
erated at the tree level. This behavior is in agreement with
previous results [17], which claim that in UEDmodels with
only one extra dimension the one-loop effects dominate
over the tree-level ones.
It has been pointed out [17] that UED models do not

impact the electroweak observables at the tree level, which
allows the existence of a relatively large compactification
radius that can be of order of R�1 
 300 GeV [17]. In
this scenario, j��treej ¼ 0:72� 10�5 and �Qtree ¼
1:44� 10�5, whereas j��1-loopj ¼ 0:47� 10�4 and

j�Q1-loopj ¼ 0:73� 10�4 for
ffiffiffiffiffiffi
Q2

p ¼ 0:5 TeV. Since the
expected sensitivity to these form factors in the ILC is of
Oð10�4Þ [15], we conclude that only a compactification
scale R�1 � v will be at the reach of this collider.

V. CONCLUSIONS

Many well-motivated standard model extensions predict
the existence of new gauge bosons. Such new particles
would arise by direct production if there is enough energy
available, or through their virtual effects on some observ-
ables. The last scenario seems to be the most promising if
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the new particles have masses much larger than the
Fermi scale. In this case, high precision measurements
are needed in order to detect any deviation from the
SM predictions. In this paper, we have examined the one-
loop effects of extra dimensions on the W�Wþ� and
W�WþZ vertices, with the � and the Z gauge bosons
off-shell. The study of these vertices through the reaction
eþe� ! W3 ! WþW� will be the subject of important
experimental attention at the future ILC. Our study was
focused on the one-loop effects of the excited KK gauge
modes that arise after compactification of a five dimen-
sional SULð2Þ Yang-Mills theory. Some details about the
compactification scheme were discussed. Especial empha-
sis was put on the fact that the four dimensional theory
satisfies two types of gauge transformations, namely, the
standard gauge transformations of SULð2Þ and a more
complicated type of nonstandard gauge transformations.
While the former is the usual gauge transformation to
which are subject the zero KK modes of the four dimen-
sional theory, the latter determines in a nontrivial way the
gauge nature of the excited KK modes. A gauge-fixing
procedure for the nonstandard gauge transformations that
is covariant under the standard gauge transformations was
introduced and the corresponding ghost sector derived. The
essential pieces of the quantized excited sector of the four
dimensional theory that determine the one-loop effects on
light Green functions were presented. The corresponding
Feynman rules were presented and used to calculate the
Green function associated with the off-shell W�WþW3

vertex. Motivated by the fact that the pinch technique
predictions coincide, at any order of perturbation theory,
with those of the background field method for the especial
value �Q ¼ 1 of the gauge parameter, we have presented

our results using our gauge-fixing procedure in the
Feynman-’t Hooft gauge. It was found that the one-loop

form factors associated with theW�WþW3 vertex are free
of ultraviolet divergences and well behaved at high ener-
gies. In particular, it is shown that the new physics effects
decouple in the limit of a small compactification scale R.
Our numerical analysis for the �� and �Q form factors
shows that for energies as those planed in the ILC and a
new physics scale of R�1 � 1 TeV, the contribution of the
excited KK gauge modes to these observables are sup-
pressed with respect to the SM radiative correction by up
to 2 orders of magnitude in the case of ��, but it is of the
same order of magnitude in the case of �Q. However, the
one-loop KK contributions are of the same order of mag-
nitude as those generated by new gauge bosons in other
contexts of physics beyond the SM. The contribution of an
operator of higher canonical dimension to these form
factors also was studied. It was found that this contribution
is 1 order of magnitude lower than that induced at the one-
loop level by the KK modes, which is in agreement with
previous results that point out this type of behavior in
universal extra dimensional models with only one extra
dimension. In general terms, for a compactification scale in
the range 0:5 TeV<R�1 < 1:0 TeV, the tree-level con-
tribution to the �� and �Q form factors is of about 10�6,
whereas the one-loop effect of the KK modes is of order of
10�5. These values are out of the sensitivity of the ILC,
which expected to be of Oð10�4Þ. However, if the
compactification scale is of the order of the Fermi scale
(� 300 GeV), effects of one extra dimension may be at the
reach of this collider.
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