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We utilize top polarization in the process eþe� ! t�t at the International Linear Collider (ILC) with

transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model

and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions

with realistic integrated luminosity are presented and are found to improve by an order of magnitude

compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few

times 10�3 TeV�2 for real and imaginary parts of both scalar and tensor couplings at
ffiffiffi
s

p ¼ 500 and

800 GeV with an integrated luminosity of 500 fb�1 and completely polarized beams are shown to be

possible. A powerful model-independent framework for inclusive measurements is employed to describe

the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
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I. INTRODUCTION

At the planned International Linear Collider (ILC) [1],
eþe� ! t�t is a process that will be studied at great preci-
sion to validate the standard model (SM) and to look for
deviations from it. The process is of continued current
interest, see e.g., Ref. [2] and references therein. The
availability of beam polarization will significantly enhance
the sensitivity to new physics (NP), provided the electron
and positron beams have transverse polarization (TP) or
longitudinal polarization, each complementing the other,
with distinct prospects of obtaining a very high degree of
polarization for both beams [3].

One fruitful approach is to undertake a model-
independent analysis which may be performed by intro-
ducing higher dimensional operators consistent with gauge
invariance. For an important early paper on the subject, see
Ref. [4]. In the context of top pair production, the relevant
higher dimensional operators are listed in Ref. [5] and
references therein. In this work, we will confine ourselves
to NP associated only with scalar and tensor type operators
which cannot be probed at linear order unless TP is avail-
able. They are parametrized in terms of operators denoted
by SRR and TRR in Ref. [5], which will hereafter be denoted
by S and T, respectively. In a recent work [6], it was shown
that in the presence of TP, if only cross sections were to be
measured, azimuthal asymmetries would involve the linear
combination given by

Sþ 2ctAc
e
V

ctVc
e
A

T; (1)

where cfV and cfA, f ¼ e, t are the vector and axial-vector

couplings of the Z to the electron and the top-quark,
respectively, and will be explicitly given later. Therefore,
it becomes important to pose the question of how these
operators can be disentangled. The aim of the present work
is to address this question and to demonstrate that

measurement of the top-quark spin can indeed allow one
to disentangle them. Indeed, this work is also motivated by
the fact that it may be possible now to measure the top spin
accurately, see, e.g., Ref. [7]. Also, it has been recently
pointed out that top polarization can be measured reliably
from decay charged-lepton angular distributions without
errors arising from the tbW couplings [8].
To meet the ends described above, we have evaluated the

beam-polarization dependent differential cross sections,
and examined the polarization of t or �t. We have checked
our ab initio evaluation of the cross sections with the
results from the explicit helicity amplitudes provided by
Grzadkowski [5] combined with the general framework for
inclusion of TP provided in Ref. [9]. We have also carried
out independent checks on the helicity amplitudes.
We will, finally, explore the reach of the ILC by defining

suitable observables and asymmetries. Turning to the nu-
merical implications of our work, we find surprisingly that
the top-spin resolution allows us to probe the NP at a level
an order of magnitude better than the reach reported in [6].
In spirit, therefore, this work is a natural completion of the
prior work on t�t production, and that of our work on
inclusive processes with only momentum structure func-
tions, thereby providing a systematic contribution to the
physics program at the ILC with polarized beams.
In order to understand the formal structure of the terms

in the distributions, we consider them in detail and isolate
the spin-independent and spin-dependent parts of the cross
section and present the results in a technical appendix. The
former have been interpreted in terms of momentum struc-
ture functions arising in the treatment of the inclusive
process framework of the type considered recently by us
in [10], which relies on an analysis of:

eþ þ e� ! hðpÞ þ X (2)

where h is the observed final state particle whose momen-
tum p is measured, and X here and elsewhere refers to
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an inclusive state. Furthermore, it was shown even an
exclusive process such as t�t production can be included
in the framework of the general inclusive process [10].
Also in Ref. [11], the two-particle inclusive process

eþ þ e� ! h1ðp1Þ þ h2ðp2Þ þ X (3)

where h1;2 are the observed final state particles whose

momenta p1;2 are measured, was considered. The above

can be generalized as in the work of [12] to

eþ þ e� ! hðp; sÞ þ X (4)

where p, s stand, respectively, for the momentum and spin
of the observed particle h in the final state. However, this
was not performed explicitly in [11]. The present work
gives us an opportunity to do so in the context of the
process at hand, thus providing a concrete illustration.
The C, P, and T properties of the operators will be con-
sidered, and those of the structure functions separately so
that the two frameworks can be related to one another.
Furthermore, one may obtain insights into discrete sym-
metries of NP contributions from the nature of spin-
momentum correlations. Important insights based on gen-
eral inclusive processes have enriched the analysis of
processes such as Z� production [13–15], and Zh produc-
tion [16,17].

The scheme of this paper is as follows: In Sec. II, wewill
recall the main features of the framework where NP is
introduced in terms of effective four-Fermi interactions. In
Sec. III, we will consider the cross sections for eþe� ! t�t
in the presence of four-Fermi NP interactions. In Sec. IV,
we consider applications using realistic luminosity and
degrees of polarization at typical ILC energies of 500
and 800 GeV and obtain the 90% confidence level (CL)
limits that can be placed on the NP operators by construct-
ing suitable asymmetries. We note here that this is in an
idealized situation, where a realistic measurement would
produce somewhat weaker conclusions which we have not
attempted to assess here. In Sec. V, we turn to the important
question of realizing the proposal in terms of an actual
experimental measurement. In Sec. VI, we provide a thor-
ough discussion of the various features emerging from our
investigations and present our conclusions. In the
Appendix, we interpret the results obtained in the preced-
ing section in terms of momentum and spin structure
functions. The corresponding properties under the discrete
symmetries C, P, and T are discussed.

II. EFFECTIVE OPERATORS AND FOUR-FERMI
INTERACTION

The theoretical framework that we consider is one of the
SM augmented with four-Fermi interaction that captures
the effect of all the NP. In particular, for the process
eþe� ! t�t, the tree level operators which will contribute
are (see Ref. [6] and references therein).

Oð1Þ
‘q ¼ 1

2 ð �‘��‘Þð �q��qÞ;
Oð3Þ

‘q ¼ 1
2 ð �‘���

I‘Þð �q���IqÞ;
Oeu ¼ 1

2 ð �e��eÞð �u��uÞ;
O‘u ¼ ð �‘uÞð �u‘Þ;
Oqe ¼ ð �qeÞð �eqÞ;
O‘q ¼ ð �‘eÞ�ð �quÞ;
O‘q0 ¼ ð �‘uÞ�ð �qeÞ;

(5)

where l, q denote, respectively, the left-handed electro-
weak SUð2Þ lepton and quark doublets, and e and u denote
SUð2Þ singlet charged-lepton and up-quark right-handed
fields. �I ðI ¼ 1; 2; 3Þ are the Pauli matrices, and � is the
2� 2 antisymmetric matrix, �12 ¼ ��21 ¼ 1, and genera-
tion indices are suppressed. Given the above operators, the
Lagrangian which we will use is:

L ¼ LSM þ 1

�2

X
i

ð�iOi þ H:c:Þ; (6)

where �’s are the coefficients which parametrize nonstan-
dard interactions. The NP four-Fermi operators contained
in the Lagrangian after Fierz transformation takes the form

L 4F ¼ X
i;j¼L;R

�
Sijð �ePieÞð�tPjtÞ þ Tij

�
�e
���ffiffiffi
2

p Pie

�

�
�
�t
���ffiffiffi
2

p Pjt

��
(7)

with the coefficients satisfying the following constraints:

S � SRR ¼ S�LL; SLR ¼ SRL ¼ 0;

T � TRR ¼ T�
LL; TLR ¼ TRL ¼ 0:

(8)

In (7), PL;R are, respectively, the left- and right-chirality

projection matrices and the correspondence between the �i

and the SðTÞij may be read off from [5]. It may be recalled

here that a significant discussion was provided in Ref. [6]
on the scale of the operators that can arise from consid-
erations of naturalness as well as constraints arising from
such considerations as the electron electric and magnetic
dipole moments.

III. DISTRIBUTIONS IN THE PRESENCE OF
POLARIZATION

We consider the process eþe� ! t�t for the cases when
the spin of the top quark is measured, and the spins of the �t
are summed over, and vice-versa. We wish to examine the
CP-violating as well as conserving contributions in the
interference of the SM amplitude with the scalar and tensor
four-Fermi amplitudes. We will take the electron TP to be
100% and along the positive or negative x axis, and the
positron polarization to be 100%, parallel or antiparallel to
the electron polarization. The z axis is chosen along the
direction of the e�. The differential cross sections for
eþe� ! t�t, with the superscripts denoting the respective
signs of the e� and eþ TP retaining the new couplings to
linear order only, are:
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d���

d�
¼ d���

SM

d�
� h��

	s2

�
s3=2

2
mt sin


�
ReT cos�� 1

2
z0ðImS� 2�ImT cos
Þ sin�

��

� ��

4	sðs�M2
z Þ
�
�3h�mtc

t
Ac

e
A cos
 sin
 cos�s3=2ReT þ 3

2
mts

3=2 sin
fð�ceActVReSþ 2ceVð�ctA � hctVÞReTÞ

� cos�þ z0hceVctVðImS� 2�ImT cos
Þ sin�g
�

(9)

and

d���

d�
¼ d���

SM

d�
� h��

	s2

�
s3=2

2
mt sin


�
ImT sin�� 1

2
z0ðReS� 2�ReT cos
Þ cos�

��

� ��

4	sðs�M2
z Þ
�
3h�mtc

t
Ac

e
A cos
 sin
 sin�s3=2ImT � 3

2
mts

3=2 sin
fð�ceActVImSþ 2ceVð�ctA � hctVÞImTÞ sin�

þ z0hceVctVðReS� 2�ReT cos
Þ cos�g
�

(10)

where

d�þ�
SM

d�
¼d���

SM

d�
¼3�2�

4s

�
4

9

�
1

2
ð1þcos2
Þþ2m2

t

s
sin2
�1

2
�2sin2
cos2�

�

� s

s�M2
Z

4

3

�
1

2
ceVðctV�h�ctAÞð1þcos2
Þþ2m2

t

s
ceVc

t
Vsin

2
þceAð�ctA�hctVÞcos


�1

2
�ceVð�ctV�hctAÞsin2
cos2�

�
þ s2

ðs�M2
ZÞ2

�
1

2
ðce2A þce

2

V Þ
�
ðctV�h�ctAÞ2ð1þcos2
Þþ4m2

t

s
ct

2

V sin
2


�

�2hceAc
e
Vðct2V þ�2ct

2

A Þcos
þ4�cos
ceAc
e
Vc

t
Ac

t
V�

1

2
ðce2V �ce

2

A Þð�2ðct2A þct
2

V Þ�2h�ctAc
t
VÞsin2
cos2�

��
(11)

with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t =s
p

, and ciV , c
i
A as the couplings of Z to

e�eþ and t�t. Explicitly, the couplings are:

ceV ¼ 1

2 sin
W cos
W

�
� 1

2
þ 2sin2
W

�
;

ceA ¼ � 1

4 sin
W cos
W
;

ctV ¼ 1

2 sin
W cos
W

�
1

2
� 4

3
sin2
W

�
;

ctA ¼ 1

4 sin
W cos
W
:

(12)

In the above, h stands for the helicity of the top quark when
the spin of the �t is summed over, and for the negative of the
helicity of the �t when the spin of the top quark is summed
over. The following may be noted: (a) the part of the
distribution independent of the final state helicity was al-
ready given in Ref. [6] and that a sign error in the NP
contributions therein is corrected here; and, (b) z0 appears
only in the NP contributions and is þ1 for the top quark,
and �1 for �t.

In order to render these expressions useful for ILC
applications, and to disentangle the separate NP effects,
we will define asymmetries that will isolate their individual
contributions. These will be employed to obtain 90% con-
fidence level limits on the NP couplings with realistic

integrated luminosities in the absence of any signal at the
ILC.
The explicit expressions in terms of the laboratory ob-

servables such as the momenta, polar, and azimuthal an-
gles, accompanying the helicity independent and helicity
dependent parts require a detailed discussion. Since the
expressions above are quite involved, in order to get a
better insight into the nature of the spin-momentum corre-
lations and spin-spin correlations, in the Appendix we will
consider a general framework first developed for a general
inclusive process. This will enable us to interpret the
angular correlations in terms of the vectorial quantities
that define the process. Furthermore, it will also enable
us to obtain insights into the symmetry properties of the
correlations under the discrete symmetries C, P, and T and
study the consequences of the CPT theorem.

IV. EXTRACTION OF NEW PHYSICS

In this section, we now address the question of isolating
the contributions from the NP by constructing suitable
asymmetries. Clever choices can lead to asymmetries re-
ceiving contributions from only one of them, while the
others cancel out due to integrations over polar as well
as azimuthal angles. Whereas in the helicity independent
case it was impossible to disentangle the scalar and
tensor contributions, now the rich structure of the helicity
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dependent parts allows us to meet the objective that we
have set out.

One may also ask to what extent this can be achieved if
only one electron and positron spin configuration is avail-
able. Even in this case, it is possible to isolate the NP
contribution term by term. Finally, we explore the situation
when all spin configurations are available.

In this section, we have isolated the contributions com-
ing from NP using different asymmetries. A thorough
numerical analysis has been done to place constraints on
the anomalous couplings.

A. Integrated asymmetries

For the case of angular distribution with transversely
polarized beams, there is a dependence on the azimuthal
angle. Compared to the unpolarized case, there are various
terms with combinations such as sin
 cos�, sin
 sin�,
sin
 cos
 sin�, sin
 cos
 cos�. We define below different
azimuthal asymmetries which are used to isolate the cou-
plings. The generic forms of the asymmetries, for the mo-
ment suppressing the beam polarizations, are:

A1ð
Þ ¼ 1

�SMð
Þ
�Z 	

0

d�NP

d�
d��

Z 2	

	

d�NP

d�
d�

�
(13)

A2ð
Þ ¼ 1

�SMð
Þ
�Z ð	=2Þ

0

d�NP

d�
d��

Z ð3	=2Þ
	
2

d�NP

d�
d�

þ
Z 2	

ð3	=2Þ
d�NP

d�
d�

�
(14)

where

d�NP

d�
¼ d�

d�

��������h¼1
� d�

d�

��������h¼�1
(15)

and

�SMð
Þ ¼
�Z 2	

0

d�SM

d�
d�

�
: (16)

The above asymmetries amount to correlations between
the spin direction of the top quark and its production angle.
Expressed in a different language, they are azimuthal
asymmetries calculated for the top polarization dependent
part of the differential cross section.

Case 1 :

8>>><
>>>:
Aþ�
1 ð
Þ ¼ 1

�SMð
Þ
2mt�� sin


	
ffiffi
s

p
�
�2þ 3s

s�M2
Z

ðceVctV þ �ceAc
t
A cos
Þ

�
ImT

Aþ�
2 ð
Þ ¼ 1

�SMð
Þ
2mt�� sin


	
ffiffi
s

p
�
�1þ 3s

2ðs�M2
ZÞ
ceVc

t
V

�
ð2ReT� cos
� ReSÞ

(17)

Case 2 :

8>>><
>>>:
Aþþ
1 ð
Þ ¼ 1

�SMð
Þ
2mt�� sin


	
ffiffi
s

p
�
�1þ 3s

2ðs�M2
ZÞ
ceVc

t
V

�
ðImS� 2ImT� cos
Þ

Aþþ
2 ð
Þ ¼ 1

�SMð
Þ
2mt�� sin


	
ffiffi
s

p
�
2� 3s

s�M2
Z

ðceVctV þ �ceAc
t
A cos
Þ

�
ReT

(18)

The choice of our asymmetries can be justified by taking
a close look at the expressions above. Confining ourselves
to Case 1, it is seen that Aþ�

1 ð
Þ depends solely on ImT,
whereas Aþ�

2 ð
Þ is proportional to both ReT and ReS.
Similarly, for Case 2 the coupling ReT can be isolated
from Aþþ

2 ð
Þ, whereas Aþþ
1 ð
Þ is proportional to both ImS

and ImT. Before proceeding further, we would like to point
out that, when the final state helicity is summed over, only
one asymmetry is nonzero for each beam-polarization
combination [6]:

Case 1: Âþ�
1 ð
Þ¼� 1

�SMð
Þ
2mt��sin


	
ffiffiffi
s

p

�
�
3

2

s

s�m2
Z

ceAc
t
V�Im

�
Sþ2ctAc

e
V

ctVc
e
A

T

��

(19)

Case 2: Âþþ
2 ð
Þ¼ 1

�SMð
Þ
2mt��sin


	
ffiffiffi
s

p

�
�
3

2

s

s�m2
Z

ceAc
t
V�Re

�
Sþ2ctAc

e
V

ctVc
e
A

T

��

(20)

where

Âþ�
1 ð
Þ ¼ 1

�SMð
Þ
�Z 	

0

d�þ�
tot

d�
d��

Z 2	

	

d�þ�
tot

d�
d�

�

(21)

Âþþ
2 ð
Þ ¼ 1

�SMð
Þ
�Z ð	=2Þ

0

d�þþ
tot

d�
d�

�
Z ð3	=2Þ

ð	=2Þ
d�þþ

tot

d�
d�þ

Z 2	

ð3	=2Þ
d�þþ

tot

d�
d�

�

(22)
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and

d�þ�
tot

d�
¼ d�þ�

d�

��������h¼1
þ d�þ�

d�

��������h¼�1
(23)

The 
-integrated version of the asymmetries in Eqs. (13)
and (14) is:

A1ð
0Þ¼ 1

��SMð
0Þ
�Z cos
0

�cos
0

�
�Z 	

0

d�NP

d�
d��

Z 2	

	

d�NP

d�
d�

�
dcos


�
(24)

where

��SMð
0Þ ¼
�Z cos
0

� cos
0

�Z 2	

0

d�SM

d�
d�

�
d cos


�
(25)

is independent of the transverse beam polarizations. A2ð
0Þ
can be defined analogously to A1ð
0Þ above. A cutoff on 

has been introduced above, for a practical reason to stay
away from the beam pipe. The asymmetries with the given
limit on 
, 
0 < 
< 	� 
0, can be easily obtained. After
the introduction of cutoff, the terms proportional to cos

vanish. Limiting ourselves to Case 1 we see that Aþ�

1 ð
0Þ
depends on ImT, and Aþ�

2 ð
0Þ depends on ReS. It is seen
that the coefficient of ImT in Aþ�

1 ð
0Þ is twice that of ReS
in Aþ�

2 ð
0Þ.
Continuing our analysis further, we note that we can

determine only two of the four couplings, using eitherþþ
or þ� polarizations. For the determination of all of them,
both polarization combinations have to be used. Restricting
ourselves to the possibility that only one polarization com-
bination is available, we can consider an additional asym-
metry which combines a forward-backward asymmetry
with an additional asymmetry in �:

AFB
1 ð
0Þ¼ 1

��SMð
0Þ
�Z cos
0

0
dcos


�Z 	

0

d�NP

d�
d�

�
Z 2	

	

d�NP

d�
d�

�
�
Z 0

�cos
0

dcos


�Z 	

0

d�NP

d�
d�

�
Z 2	

	

d�NP

d�
d�

��
(26)

AFB
2 ð
0Þ can be defined in an analogous way. These are

easily evaluated for the þ� case:

AFB
1 ð
0Þ ¼ 1

��SMð
0Þ
4mt��

	
ffiffiffi
s

p
�

s

s�M2
Z

�ceAc
t
A

�

� ð1� sin3
0ÞImT (27)

AFB
2 ð
0Þ ¼ 1

��SMð
0Þ
4mt��

2

3	
ffiffiffi
s

p
�
�2þ 3

s

s�M2
Z

ceVc
t
V

�

� ð1� sin3
0ÞReT (28)

The above expressions show AFB
1 ð
0Þ depends on ImT, and

AFB
1 ð
0Þ is proportional to ReT. Thus all the couplings

available for a single polarization combination can be
isolated using the above asymmetries.
We have done a thorough numerical analysis in the next

subsection for þ� case. The þþ case can be treated
analogously.

B. Numerical results

We have calculated the asymmetries under the ideal
condition of 100% beam polarization for e�, as well as
eþ at

ffiffiffi
s

p ¼ 500 GeV and 800 GeV, respectively, for an
integrated luminosity of 500 fb�1. An explicit calculation
has been done for the ðþ�Þ case.
We first plot Aþ�

1 ð
Þ and Aþ�
2 ð
Þ in Fig. 1 and 2 as a

function of 
 for different center-of-mass (c.m.) energies.
In Fig. 1, Aþ�

1 ð
Þ is plotted for ImT ¼ 0:01 TeV�2.

Figure 2 shows Aþ�
2 ð
Þ which is a function of the anoma-

lous couplingsReT andReS, plotted as a function of 
with
one coupling taken to be nonzero at a time. All the asym-
metries here not only vanish for 0� and 180� because they
are proportional to sin
,, but Aþ�

2 ð
Þ for ReT also vanishes

for 90� as it is additionally proportional to cos
. The
asymmetry Aþ�

1 ð
Þ can be as high as 9% in the future

colliders for
ffiffiffi
s

p ¼ 800 GeV, whereas Aþ�
2 ð
Þ can attain a

maximum of 8% for ReT and 6% for ReS at the same c.m.
energy, for the chosen values of the parameters as
0:01 TeV�2 each.
Figure 3 shows the 
 integrated version of the asymme-

tries plotted as a function of the cutoff angle 
0 forffiffiffi
s

p ¼ 500 GeV and 800 GeV. Considering the þ� case,
we find that Aþ�

1 ð
0Þ depends only on ImT and Aþ�
2 ð
0Þ

depends only on ReS. For a value of 0:01 TeV�2 of the
anomalous couplings, the asymmetries increase with the

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

degrees

A
1

FIG. 1 (color online). Aþ�
1 ð
Þ as a function of 
 for a value of

ImT ¼ 0:01 TeV�2 at
ffiffiffi
s

p ¼ 500 GeV [Red-Solid line] andffiffiffi
s

p ¼ 800 GeV [Blue-Dashed line].
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cutoff in both cases. This is due to the SM cross section in
the denominator �SMð
0Þ which decreases faster than the
numerator. As is clear from Fig. 3, the asymmetries are
sensitive to the c.m. energy even in the 
-integrated case.

Since we are trying to utilize a single beam-polarization
combination for the isolation of the couplings as far as
possible, wemove to the next
 integrated forward-backward
asymmetry AFB

1 ð
0Þ and AFB
2 ð
0Þ for the þ� case. AFB

1 ð
0Þ
depends on ImT as in Aþ�

1 ð
0Þ. Figure 4(a) shows AFB
1 ð
0Þ

plotted as a function of cutoff for ImT ¼ 0:01 TeV�2. The
asymmetry here ismuch smaller thanFig. 3(a) for samevalue
of ImT. This is due to the presence of the term�ceAc

t
A before

ImT in AFB
1 ð
0Þ, which is much smaller than the term ac-

companying ImT in A1ð
0Þ. The term in the later case is
ð�2þ 3ceVc

t
Vs=ðs�M2

ZÞÞ. Figure 4(b) shows AFB
2 ð
0Þ

plotted for ReT ¼ 0:01 TeV�2. Both the asymmetries here

vanish for 
 ¼ 90� due to the ð1� sin3
0Þ term in the
numerator.
We have used the asymmetries to calculate 90% CL

limits that can be obtained with ILC, with an integrated
luminosity L of 500 fb�1, and

ffiffiffi
s

p ¼ 500 GeV and
800 GeV. The sensitivity of the given coupling denoted
by Climit is related to the value A of the asymmetry by:

C limit ¼ 1:64

jAj ffiffiffiffiffiffiffiffiffi
NSM

p (29)

where NSM is the number of SM events. The coefficient
1.64 may be obtained from statistical tables for hypothesis
testing with one estimator.
Figure 5 shows the 90% CL limits obtained on ImT and

ReS from Aþ�
1 ð
0Þ and Aþ�

2 ð
0Þ, respectively. It is seen
from the figures that the limits are relatively insensitive to
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FIG. 2 (color online). Aþ�
2 ð
Þ as a function of 
 for [a] ReT ¼ 0:01 TeV�2, ReS ¼ 0, [b] ReS ¼ 0:01 TeV�2, ReT ¼ 0 atffiffiffi

s
p ¼ 500 GeV [Red-Solid line] and

ffiffiffi
s

p ¼ 800 GeV [Blue-Dashed line].
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FIG. 3 (color online). The asymmetries as a function of 
0 for
ffiffiffi
s

p ¼ 500 GeV [Red-Solid line] and
ffiffiffi
s

p ¼ 800 GeV [Blue-Dashed
line] for [a] ImT ¼ 0:01 TeV�2 of Aþ�

1 ð
0Þ [b] ReS ¼ 0:01 TeV�2 of Aþ�
2 ð
0Þ.
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the cutoff at very small values of 
0. The best limit is
obtained for about 
0 ¼ 40�, though any nearby value of

0 will give similar results. The sensitivity corresponding
to ImT is 1� 10�3 TeV�2 (from Aþ�

1 ð
0Þ), and that cor-

responding to ReS is 2� 10�3 TeV�2 (from Aþ�
2 ð
0Þ) atffiffiffi

s
p ¼ 800 GeV, after which it increases rapidly. The re-
sults for the other couplings can be obtained in a straight-
forward manner. Considering þþ and comparing it with
þ� , for Aþ�

1 ð
0Þ and Aþ�
2 ð
0Þ, see Eqs. (17) and (18), the

above sensitivities can be readily translated into sensitiv-
ities of other couplings. Comparing, we see ImS shares the
same coefficient as ReS; furthermore, ReT and ImT also
have the same coefficients. Therefore, the sensitivities in
this case are the same as before; i.e. ImT $ ReT and
ReS $ ImS, which are obtained by suitably interchanging
the asymmetries A1ð
0Þ $ A2ð
0Þ.

Again, returning to the fact that onlyþ� case is utilized,
then AFB

2 ð
0Þ can be used to put a limit on ReT. Figure 6

shows the behavior pattern is the same as before. Here, the
limit obtained is about ReT � 3:5� 10�3 TeV�2.
Compared to the above results, the limit obtained in this
case is worse. Similarly AFB

1 ð
0Þ will give a limit on ImT �
7� 10�3 TeV�2, which is worse than the previous limit
obtained from Aþ�

1 ð
0Þ. The limits obtained on the various

couplings is summarized in Table I.
We point out that, when the top spin is not considered,

the 90% CL limit on the imaginary part of Eq. (1) is
1:6� 10�2 TeV�2, from [6]. In Eq. (1), keeping the value
of S and T to be nonzero one at a time, the limit on ImS is
1:6� 10�2 TeV�2 and that on ImT is 4:4� 10�2 TeV�2

at
ffiffiffi
s

p ¼ 500 GeV, for an integrated luminosity of
500 fb�1. Comparing this result with the one obtained
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FIG. 5 (color online). 90% CL limit obtained on [a] ImT from Aþ�
1 ð
0Þ [b] ReS from Aþ�

2 ð
0Þ with an integrated luminosity of
500 fb�1 at

ffiffiffi
s

p ¼ 500 GeV [Red-Solid line] and
ffiffiffi
s

p ¼ 800 GeV [Blue-Dashed line] plotted as a function of 
0.
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FIG. 4 (color online). The asymmetries as a function of 
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for
ffiffiffi
s

p ¼ 500 GeV, considering the top spin, the sensitiv-
ities obtained are ImS� 2:3� 10�3 TeV�2 and ImT �
1:2� 10�3 TeV�2 from Aþþ

1 ð
0Þ and Aþ�
1 ð
0Þ,

respectively. The limits in this case are an order of magni-
tude better than the previous one [6].

V. SELECTING A SAMPLE OF POLARIZED
TOP QUARKS

In the above, we implicitly assume that it would be
possible to isolate a sample of events where the top (and
antitop) has a definite helicity. However, in practice, this is
not possible as one can only measure polarization at a
statistical level. Unlike an incoming beam of particles,
which can be prepared in a pure spin state, an outgoing
particle is not available in a pure state, but only a mixed
state, yielding only an average polarization. In order to be
able to make use of the definitions of various asymmetries

which we discuss, we propose a practical method which
would serve to provide a sample with predominantly posi-
tive or negative top helicities. This would of course lead to
a depletion of the efficiency, but would be able to achieve
the main objective. In the rest frame of the top, the angular
distribution of a given decay product is given by,

1

�

d�

d cos�
¼ 1

2
ð1þ Pt� cos�Þ (30)

where � is the angle between the momentum of the decay
product and top-spin quantization axis, which is also the
direction of the top momentum before a boost to the rest
frame, Pt is the top polarization (longitudinal), and � is the
analyzing power for that decay channel. For a charged-
lepton, � is 1, giving the maximum analyzing power. Thus,
if the top rest frame is constructed event by event, and the
event then classified depending on whether cos� is posi-
tive or negative, we would have two event samples, one
with dominantly positive helicity tops, and the other with
dominantly negative helicity tops. The relative sizes of the
two samples will depend on the actual polarization for that
particular top (i.e. the top emitted at definite angles �t, �t

in the lab frame). The observables which we use are
defined with respect to d�NP=d�, and the number of
events in the difference of these two samples for a particu-
lar �t and �t (of the top) would be proportional to this
d�NP=d�, though not its actual value.
To use this method completely, one has to actually

generate events including top decay, use our formulas to
make predictions, and then compare the expected number
of events for a given set of anomalous couplings with
experiment and hence put a limit. Such a procedure would
give limits which are less stringent than obtained in our
analysis. Strictly speaking we should include full spin
density matrices for t (or �t) production as well as decay
into a certain final state, and consider asymmetries con-
structed out of the momenta of the decay products.
However, we expect that the procedure described here

TABLE I. 90% CL limit obtained on the coupling along with the relevant asymmetries given for the cases of þ� and þþ case.

ffiffiffi
s

p
Case Coupling Individual limit from asymmetries

A1ð
0Þ A2ð
0Þ AFB
1 ð
0Þ AFB

2 ð
0Þ
ReS 2:3� 10�3 TeV�2

þ� ReT 5:2� 10�3 TeV�2

500 GeV ImT 1:2� 10�3 TeV�2 1:0� 10�2 TeV�2

ImS 2:3� 10�3 TeV�2

þþ ReT 1:2� 10�3 TeV�2 1:0� 10�2 TeV�2

ImT 5:2� 10�3 TeV�2

ReS 2:0� 10�3 TeV�2

þ� ReT 3:5� 10�3 TeV�2

800 GeV ImT 1:0� 10�3 TeV�2 7� 10�3 TeV�2

ImS 2:0� 10�3 TeV�2

þþ ReT 1:0� 10�3 TeV�2 7� 10�3 TeV�2

ImT 3:5� 10�3 TeV�2
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FIG. 6 (color online). 90 % CL limit obtained on ReT from
AFB
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0Þ for þ� case with an integrated luminosity of 500 fb�1
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s

p ¼ 500 GeV [Red-Solid line] and
ffiffiffi
s
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Dashed line] plotted as a function of 
0.

ANANTHANARAYAN, PATRA, AND RINDANI PHYSICAL REVIEW D 83, 016010 (2011)

016010-8



will approximate such a complete description, with some
reduction of efficiency.

A full analysis including top decay entails a more com-
plicated analysis with a different final state, and is beyond
the scope of this work.

A similar procedure has been described in the context of
� polarization [18], where a suggestion is made for apply-
ing a cut on the energy fraction of the decay product of � as
a filter for � polarization. The same technique of applying
cuts on the energy fraction of a top decay product would be
equivalent to that of applying a cut on cos� that we have
suggested above.

VI. DISCUSSION AND CONCLUSIONS

To conclude, in this paper we have considered the pro-
cess t�t in the presence of NP contributions due to scalar and
tensor interactions, accounting for these at leading order
only. Because of chirality conservation due to the near
masslessness of the electron, these can be manifested
only in the presence of TP. In contrast to earlier studies
of this process, we have explicitly looked at the analysis of
this process due to top-quark spin. The immediate advan-
tage of this even when the spin of the �t is summed over is
that it now becomes possible to disentangle the contribu-
tions of S and T, which was not possible when no final state
spin was measured. We have explicitly presented the dif-
ferential cross sections, in as compact a manner as pos-
sible, where it is possible also to interchange the role of the
spins of the t and �t.

In principle, it is also possible to consider the cases
where the helicities of the top as well as the antitop are
also explicitly resolved. It may be possible to carry out a
study based on this, but is beyond the scope of the present
work, as the features that we wish to study are already
apparent when we sum over the helicity of one of the other.
Furthermore, measuring both spins would lead to a loss in
statistics thereby making this option less attractive.

We have then carried out an extensive numerical analy-
sis based on these cross sections by defining suitable
integrated asymmetries. By employing realistic integrated
luminosity we have obtained 90% CL limits that can be
placed on the NP couplings. With an integrated luminosity
of 500 fb�1 and realistic beam polarizations, the limits on
real and imaginary parts for T and S are of order
10�3 TeV�2 at

ffiffiffi
s

p ¼ 500 and 800 GeV. These limits are
found to be better by an order of magnitude compared to
the previous case. These thus fare better than the corre-
sponding analysis based on only momentummeasurements
when the spins of both final state particles are summed
over. It is also of interest to compare these numbers with
the naturalness constraints Oð10�3Þ TeV�2 on ReT from
the g� 2 of the electron, which is the most stringent one,
whereas weaker constraints exist on the corresponding
imaginary part from the electron electric dipole moment,
see Ref. [6].

We have assumed in this work perfect beam polariza-
tion. If we were to take as in Ref. [6] Pe ¼ 0:8 and
P �e ¼ �0:7, then once again we would lose a factor of
	 0:7 in the asymmetry with a corresponding lowering
of sensitivity. It must, however, be mentioned that one
cannot directly isolate events with top helicities of þ1 or
�1. Hence to measure the asymmetries we discuss, one
would have to carry out a subtraction of events in two
kinematic regions of the decay products corresponding
to positive and negative polarizations of the top. Doing
so would entail a loss of efficiency to a certain extent. We
have not taken this into account.
In order to understand the nature of the spin-momentum

and spin-spin correlations, we have made contact with the
general inclusive formalism developed in refs. [10,11].
This has required us to explicitly spell out the spin vector
for the top quark and to identify the spin structure func-
tions. Interestingly, ReS induces only one type of spin
structure function, while ReT induces three types of spin
structure functions. Analogous statements hold for the
imaginary parts as well. The advantage of this formalism
is that one is able to explicitly study the properties of the
correlations under the discrete symmetries C, P, and T.
Our discussion is more explicit than the discussion in the
context of the inclusive process in Ref. [12]. It must be
emphasized that to comprehend the structure of the spin-
momentum correlations and the discrete symmetry prop-
erties of each of the terms in the distributions without this
framework would be nearly impossible. This discussion is
presented in the Appendix.
Finally, it must also be mentioned here that the process

under consideration is of interest in the context of electro-
weak Sudakov processes with TP, see e.g. Ref. [19]. It
would be interesting to actually carry out a study to see
how these effects could mimic effects arising from NP of
this type. This could be the topic of a future study.
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APPENDIX: INTERPRETATION IN THEGENERAL
INCLUSIVE FRAMEWORK

As mentioned in the Introduction, one of the main
reasons for considering TP for at least one of the beams
is that NP of the S and T type will not otherwise appear in
distributions at linear order. This feature, a result of chi-
rality conservation in the limit of massless electrons, is also
the cornerstone of the analysis for a general inclusive
process recently considered in the context of the ILC in
refs. [10,11]. In spirit, this approach of retaining NP at
linear order follows the one proposed in the context of
neutral currents by Dass and Ross (DR) [12,20].
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The outcome of this approach is that the spin-
momentum correlations involving the incoming particles
and the momentum of the observed particle, or the mo-
menta of the two observed particles uniquely fingerprints
the Lorentz structure of the NP. The approach here is
fruitful in many ways. For instance, it was concluded that
no CP violating couplings of the type Vand Awould show
up in the inclusive process eþe� ! hðpÞX via spin-
momentum correlations if NP amplitude were to interfere
with QED contribution to the SM amplitude. This conclu-
sion also remained true for the Z� contribution to the SM
amplitude as well, which was explicitly demonstrated in
Ref. [10]. In processes such as the above, the physics
would be described entirely in terms of ‘‘momentum struc-
ture functions’’. Note that whereas in Ref. [12], the spin
and momentum of one observed particle was also consid-
ered, this has not been done in the context of ILC physics.
The general inclusive framework is described in terms of
‘‘structure functions’’ associated with the inclusive final
state, one for each type of interaction as well as for the
various vectors from which Lorentz invariant amplitudes
were constructed, when contracted with the leptonic tensor
built out of the interference of the SM and NP diagrams,
essential features of which will be recalled below.

Here we provide a concrete illustration for the case of
the observed particle being the top quark, viz. a spin-1=2
particle, with the task at hand now being the identification
of what will be called the ‘‘spin structure functions’’. The
objective now is to relate the general inclusive framework
to that of the computed distributions for the explicit t�t final
state, which explicitly receive contributions that are spin-
independent and those that are not, and the latter expressed
in a straightforward manner on h.

The correspondence to the framework for the helicity
independent part of the correlations that appears in the
process represented by Eq. (2) has already been done and
presented in [10]. This correspondence was straightfor-
ward and no detailed discussion was presented. For the
helicity dependent part, however, the correspondence is
more involved and it is worth presenting a detailed
discussion.

1. Formalism for the spin-momentum correlations

To begin the discussion, we begin by observing that the
spin-momentum correlations amongst those of the incom-
ing particles and the outgoing particles will arise from the
interference between the SM currents with the NP ‘‘cur-
rents’’ which requires us to consider the trace:

Tr½ð1� �5hþ þ �5sþÞpþ��ðgeV � geA�5Þ
� ð1þ �5h� þ �5s�Þp��i
Hi�: (A1)

following the notation of Refs. [10,11], where i now is a
generic index that denotes the scalar, pseudoscalar and
tensor interactions, h� are the degrees of longitudinal

polarization, and s� represent the transverse polarizations
of the positron and electron. In terms of the scalar, pseu-
doscalar and tensor couplings gS, gP, and gT of the elec-
tron, and structure functions describing the inclusive
process given by Fr, Frut

1 , Fr
2, PF

rut
1 and PFr

2, we may
express the vertices �i and Hi� as

� ¼ gs þ igp�5 (A2)

and

HS
� ¼

�
r� � q�

r � q
q2

�
Fr; (A3)

where r is pt, st or nðn� � �����p
�
t s

�
t q

�Þ, for S and P

type NP interactions, and

�
� ¼ gT�
�: (A4)

HT
�
� ¼ ðr
u� � r�u
Þt�Frut

1 þ ðg
�r� � g��r
ÞFr
2

þ �
���r
�u�t�PF

rut
1 þ �
���r

�PFr
2 (A5)

where r is q, pt, or st. Similarly u is chosen to be one of q,
pt, st, or n and t being pt, st, or n respectively for T type
interactions. 1 One may then evaluate the spin-momentum
correlations due to the various structure functions in a
straightforward manner. For ease of comparison, one
may also compare against spin-momentum correlations
that are tabulated in the appropriate tables in Ref. [11].
In terms of the kinematic quantities suitable to the process,

which are ~K � ð ~p� � ~pþÞ=2 ¼ Eẑ, q � p� þ pþ with
q0 ¼ 2E and ~q ¼ 0. The analysis may be readily extended
to the case of spin-momentum and spin-spin (helicity)
correlations, where the latter is that of the observed final
state particle.
In order to achieve this end, we first require an explicit

representation for the vector describing the spin of the
observed particle, st. In the helicity eigenbasis, the com-
ponents of the spin vector st are (see, e.g., Eq. (3.155) in
Ref. [21])

ðj ~ptj=mt; E ~pt=ðmtj ~ptjÞÞ: (A6)

This representation for the spin vector in the helicity basis
follows from considering free spinors for the quark and
antiquark, first in their respective rest frames and then
boosting them to the laboratory frame. By considering
covariant generalization of the appropriate Pauli matrices
to define the spin and introducing spin projection operator
and choosing the spin direction to be that of the momen-
tum, which is the appropriate choice for the helicity basis

1The structure functions for the case of the process given by
Eq. (2) appear with no superscripts as there is only one vector p,
the momentum of the observed particle, on hand. By straightfor-
ward inspection it was inferred in Ref. [10] that a correspon-
dence between the inclusive process and t�t production could be
inferred: the correspondence was given as the structure functions
ReðgPFÞ and ReðgTF2Þ as arising from ImSRR and ImTRR.
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we obtain the desired expression. With this explicit repre-
sentation and with the identification of the vector ~r as ~st,
one may now turn to the appropriate tables in Ref. [11].

Consider now the case of þþ (we introduce a notation
ij, i, j ¼ þ,� to denote the sense of the polarization of the
electron (i) and positron (j), respectively). We may now
compute the correlation directly, or we need simply to look
at the correlation due to the structure function ImðgsFstÞ
which from Table 1 of Ref. [11] reads:

2EgeV ~K � ð~sþ þ ~s�Þ � ~st: (A7)

The above evaluates in terms of the kinematics of the
reaction at hand to

2E3

mt

geV sin
 sin�: (A8)

Now looking into the explicit expression for the distribu-
tion for t�t production, Eq. (9), one may readily see that the
same angular dependence of this correlation is the one that
accompanies ImS. Stated differently, the four-fermion con-
tact interaction due to ImS induces the structure function
ImðgsFstÞ. This completes the first correspondence that we
are after.

This analysis may now be extended to the four-fermion
contact interactions due to T. This interaction induces more
than one kind of structure function, which can be explicitly
obtained. It turns out that there are three such structure
functions, which are presented with the respective correla-
tions read off from Table 3 of Ref. [11], and the correspond-
ing expressions in terms of the present kinematics as well

as the four-fermion interactions which are responsible for
inducing the relevant structure functions are shown in
Table II.
Turning to the case of þ� , we now consider the

analogous correlations. In case of the scalar, the structure
function ImðgpfstÞ generates (see Table 1 of Ref. [11])

the correlations

� 2E2ð ~sþ � ~s�Þ � ~st (A9)

which evaluates to

� 2E3

mt

geV sin
 cos�: (A10)

It may be readily seen by inspecting Eq. (10), this structure
function is generated by the four-fermion interaction due to
ReS.
The tensor part gives rise to three structure functions

which are presented in Table III. The corresponding corre-
lations are read off from Table 3 of Ref. [11], and the
explicit representation in terms of the kinematics of the
present process are also tabulated, as well as the NP terms
that induce these structure functions.
In summary, we have presented here in detail the gen-

eralization of the result in Ref. [10] for the momentum
structure function to the spin structure functions induced
by the four-Fermi interactions. These results are helpful in
understanding the C (charge conjugation), P (parity), and
T (time-reversal) properties of the correlations which is the
subject of the forthcoming subsection.

TABLE II. Structure functions along with the correlation in vector and polar form for the þþ case and coupling which give rise to
the structure functions.

Structure function Correlation Coupling

Vector form Polar form

ReðgTPFst
2 Þ 4E2 ~st � ð~sþ þ ~s�Þ 4E3

mt
geV sin
 cos� ReT

ReðgTFptqst
1 Þ 4EðE½p0

t ð ~q� ~sTt Þ � q0ð ~pt � ~sTt 
� 8E4

mt
j ~ptjgeV sin
 cos
 sin� ImT

ð~sþ þ ~s�Þ þ ½ð ~pt � ~qÞ � ~pþ
~st � ð~sþ � ~s�ÞÞ
ImðgTFptqst

1 Þ 4E2ð½ð ~pT
t � ~sTt Þ ~q� ð ~qT � ~sTt Þ ~pt
� 8E4

mt
j ~ptjgeA sin
 cos
 cos� ReT

ð~sþ � ~s�Þ þ ðq0p3
t � q3p0

t Þ~st � ð~sþ � ~s�ÞÞ

TABLE III. Structure functions along with the correlation in vector and polar form for the þ� case and coupling which give rise to
the structure functions.

Structure function Correlation Coupling

Vector form Polar form

ReðgTFst
2 Þ �4Eð~sþ � ~s�Þ � ~K � ~st � 4E3

mt
geV sin
 sin� ImT

ReðgTPFptqst
1 Þ 4E2ð½ð ~pT

t � ~sTt Þ ~q� ð ~qT � ~sTt Þ ~pt
� � 8E4

mt
j ~ptjgeV sin
 cos
 cos� ReT

ð~sþ þ ~s�Þ þ ðq3p0
t � q0p3

t Þ~st � ð~sþ � ~s�ÞÞ
ImðgTPFptqst

1 Þ 4EðE½p0
t ð ~q� ~sTt Þ � q0ð ~pt � ~sTt 
� 8E4

mt
j ~ptjgeA sin
 cos
 sin� ImT

ð~sþ � ~s�Þ � ½ð ~q� ~ptÞ � ~pþ
~st � ð~sþ þ ~s�ÞÞ
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2. Properties under C, P, and T

A discussion on the properties of the correlations under
the discrete symmetries of C, P, and T appearing in the
distribution is the subject of this subsection. We note here
that T will represent naı̈ve time reversal, i.e. reversal of all
spins and momenta, without interchange of initial and final
states. We will see that the helicity dependent part of the
correlations are substantially richer in structure compared
to their helicity independent counterparts.

We begin by noting that the differential cross sections
corresponding to antiparallel or parallel e� and eþ polar-
ization have both CP-odd as well as CP-even quantities
compared to the helicity independent parts. The additional
features arise from the h and z0 dependent quantities.

Let us keep in mind that at the level of the effective
Lagrangian, if the projection operators are expanded out
completely, and if the real and imaginary parts of S and T
are separated, it can be checked that terms occurring with
ReS and ReT are CP even, whereas the ones with ImS and
ImT areCP odd. The question one may then ask is how this
can be seen in the individual terms appearing in the
distributions.

In order to achieve this end, the terms in the cross sections
for the various spin configurations of the electron and
positron spins have to be written in terms of the momentum
and spin correlations which are explicitly even or odd. The
requisite combinations are presented in Table IV.

The entries in Table IV enable us to decipher the CP
properties in the following manner. Let us first note that the
quantities h and hz0 may be defined in the followingmanner:

h ¼ ð ~st þ ~s�tÞ � ð ~pt � ~p�tÞ
j ~pt � ~p�tj ; (A11)

hz0 ¼ ð~st � ~s�tÞ � ð ~pt � ~p�tÞ
j ~pt � ~p�tj : (A12)

Thus we may explicitly see that CPðhÞ ¼ þ, TðhÞ ¼ þ,
and CPðhz0Þ ¼ �, Tðhz0Þ ¼ þ. From the expressions for
the distributions, it can be checked considering the CP and
T properties from the table, that the terms coming withReS
andReT and those coming with ImS and ImT are both CPT
even. This is due to the fact that the effective Lagrangian is
Hermitian. As there are no non-Hermitian terms, there are
no CPT odd terms, see Ref. [22].
Let us now consider the implications of this for the

entries in Table IV with an explicit example. Consider
the correlation in the distribution for the þþ case accom-
panying ImS, which appears in the combination
hz0 sin
 sin�, see Eq. (9). It may now be readily seen
from Table IV that the term sin
 sin� is CP even and T
odd, whereas hz0 is CP odd and T even, and, as a result the
entire term, is CP odd and CPT even. Analogous exercises
may be carried for all the correlations appearing in the
explicit differential cross sections.
Let us again emphasize that the top-helicity analysis

allows us to isolate the T and S contributions for the
following reasons: the four-Fermi interaction due to T gives
rise to three different spin structure functions each with its
characteristic spin-momentum correlation, whereas the one
due toS gives rise to only one spin structure function. This is
in contrast to the measurement with no top-spin analysis,
where both T and S give rise to only one momentum
structure function each, and also give rise to the same
spin-momentum correlation, which is why we are unable
to disentangle the contribution in this case. This gives to us
an explicit understanding of these spin-momentum corre-
lations, which one could not have obtained by merely
inspecting the distributions. Secondly, without the present
considerations we would not have been able to discuss the
C, P, and T properties of the correlations.
Thus the general inclusive framework and the structure

of the spin-momentum and spin-spin correlations provide a
useful guide for understanding the properties of the corre-
lations obtained in our exclusive process.

TABLE IV. CP and T properties of different correlations appearing in the cross section for the reaction e�ðp�; s�Þ þ eþðpþ; sþÞ !
tðpt; stÞ þ �tðp�t; s�tÞ.
Case NP Term Correlation CP T

Polar form Vector form

þþ =�� ReT sin
 cos� ð ~sþþ~s�Þ�ð ~pt� ~p�tÞ
j ~pt� ~p�tj þ þ

ImS sin
 sin� ð ~p�� ~pþÞ�ðð~sþþ~s�Þ�ð ~pt� ~p�tÞÞ
j ~p�� ~pþjj ~pt� ~p�tj þ �

þ� =�þ ReS sin
 cos� ð ~sþ�~s�Þ�ð ~pt� ~p�tÞ
j ~pt� ~p�tj � þ

ImT sin
 sin� ð ~p�� ~pþÞ�ðð~sþ�~s�Þ�ð ~pt� ~p�tÞÞ
j ~p�� ~pþjj ~pt� ~p�tj � �
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