
Mixing angle of hadrons in QCD: A new view

T.M. Aliev,1,*,† A. Ozpineci,1,‡ and V. Zamiralov2,x
1Middle East Technical University, Ankara, Turkey

2Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
(Received 7 September 2010; published 19 January 2011)

A new method for calculation of the mixing angle between the hadrons within QCD sum rules is

proposed. In this method, the mixing is expressed in terms of quark and gluon degrees of freedom. As an

application, the detailed calculation of the mixing angle between heavy cascade baryons �Q and �0
Q,

Q ¼ c, b is presented and it is found that the mixing angle between �b (�c) and �0
b (�0

c) is given by

�b ¼ 6:4� � 1:8� (�c ¼ 5:5� � 1:8�).

DOI: 10.1103/PhysRevD.83.016008 PACS numbers: 11.55.Hx, 14.20.Lq, 14.20.Mr

I. INTRODUCTION

During the last years, many new and unexpected experi-
mental data appeared on heavy hadron spectroscopy [1].
The study of spectroscopy and decays of heavy hadrons
can give essential information on the quark structure of
these hadrons, in particular, of the properties of the cascade
baryons.

The impressive progress on the experimental physics
stimulated comprehensive theoretical studies for under-
standing dynamics of heavy flavored hadrons at the had-
ronic scale. This scale belongs to the nonperturbative
sector of QCD and therefore for the calculations of
different characteristics of the baryons, a nonperturbative
approach is needed. Among existing nonperturbative meth-
ods, the QCD sum rules method [2] is one of the most
predictive in studying properties of hadrons. The main
ingredient of the QCD sum rules method is the choice of
the interpolating currents which is directly related to the
quark content of the corresponding baryons.

Approximate flavor symmetries are useful tools in clas-
sifying hadrons. Breaking of these symmetries might lead
to mixing of hadrons which differ only in the flavor quan-
tum numbers. For example, two baryons that mix due to
flavor symmetry violation are �Q and �0

Q baryons, both

of which are made up of q (q ¼ u, d), s and Q (Q ¼ b, c)
quarks. This mixing of charmed �c baryons has been
calculated using the quark model in [3,4] and using heavy
quark effective theory with 1=mQ corrections, in [5]. (More

about the mixing problem in the meson sector can be found
in [6].) In [7], it was shown that this mixing can be
important in determining properties of these baryons and
a framework has been proposed to calculate this mixing
within the QCD sum rules method. In the present work, we
demonstrate the new approach for the calculation of the
mixing angle between hadrons in the QCD sum rules

framework and an application of the proposed method to
study the mixing angle between the �Q and �0

Q baryons

carried out. The central assumption of this work is that
the physical states are related to the ‘‘pure’’ states by an
orthogonal transformation and hence are also orthogonal.
As will be shown below, considering the nondiagonal
correlation function, one can obtain the mixing angle in
terms of the quark and gluon degrees of freedom.

II. MIXINGOF THE INTERPOLATING CURRENTS

Approximate SUð3Þf flavor symmetry of QCD allows us

to identify the observed hadrons with a multiplet of the
SUð3Þf group. If this symmetry were exact, the observed

hadrons all would have definite flavor quantum numbers
under this flavor symmetry. The mass differences between
the light u, d and s quarks, breaks this symmetry explicitly
and hence the mass eigenstates need not be definite eigen-
states of the SUð3Þf symmetry, i.e. definite flavor eigen-

states can mix to form the physically observed particles
(unless there is another symmetry which prevents this
mixing).
The mass sum rules can be obtained by considering the

following two-point correlation function (for more infor-
mation about the mass sum rules for baryons, see e.g. [8])

� ¼ i
Z

d4xeipxh0jT �HðxÞ ��Hj0i (1)

where T is the time ordering operator and �H is an
operator that can create the hadron H from the vacuum.
If the pure H0

1 and H0
2 states mix, then the physical states,

i.e. states that have definite mass, should be represented as
a linear combination of these states. In such a case, currents
corresponding to physical states should also be written as a
superposition of the pure operators:

�H1
¼ cos��H0

1
þ sin��H0

2

�H2
¼ � sin��H0

1
þ cos��H0

2

(2)

where � is the mixing angle between H1 and H2.
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Consider the following two-point correlation function:

�H1H2
ðpÞ ¼ i

Z
d4xeipxh0jT f�H1

ðxÞ ��H2
ð0Þgj0i: (3)

It is natural to expect that if�H1ð2Þ creates onlyH1ð2Þ and not
the other one, this correlation function should be zero.
Hence, the angle � should be chosen in such a way as to
give �H1H2

¼ 0. That is, the eventual mixing mass sum

rules should vanish.
The general form of the correlation function can be

written as

�H1H2
ðpÞ ¼ p�1ðp2Þ þ�2ðp2Þ (4)

where p ¼ ��p
�, and �iðp2Þ, (i ¼ 1 or i ¼ 2), are some

Lorenz invariant functions. Generally speaking, any of the
functions �i (i ¼ 1, 2) can be used for the sum rules
analysis. In this work, the coefficient of the p structure
has been chosen to obtain a prediction for the mixing angle.

Using the notation

�0
HiHj

¼ i
Z

d4xeipxh0jT f�H0
i
ðxÞ ��H0

j
ð0Þgj0i; (5)

it is straightforward to show that the angle � that makes
�H1H2

¼ 0 can be expressed as:

tan2� ¼ �ac� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2 � c2

p

�bc� a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2 � c2

p (6)

where a ¼ 1
2 ð�0

H2H2
��0

H1H1
Þ, b ¼ 1

2 ð�0
H1H2

þ�0
H2H1

Þ
and c ¼ 1

2 ð�0
H1H2

��0
H2H1

Þ. This expression can be sim-

plified further by noting that, as explicit calculation has
shown, �0

H2H1
¼ �0

H1H2
, i.e. c ¼ 0, which yields

tan2� ¼ �b

a
¼ 2�0

H2H1

�0
H1H1

��0
H2H2

(7)

Note that, Eq. (7) has two solutions for 0� < �< 180� that
differ by 90�. In this work, we present the solution that is
close to 0�. The other solution corresponds to exchanging
the identification of the dominant part of H1ð2Þ with H0

2ð1Þ.
Further studies of other properties of H1ð2Þ baryons is

necessary to remove this ambiguity.
After setting up the framework for the study of the

mixing angle between the hadrons, let us concentrate on
this mixing angle of the heavy cascade baryons. In SUð3Þf
classification, baryons containing two light and one heavy
quarks can be grouped into an antitriplet and a sextet
representation. It is well known that the dominant compo-
nents of �Q and �0

Q belong to the antitriplet and sextet

representations of SUð3Þf respectively, i.e. �Qð�0
QÞ is

approximately antisymmetric (symmetric) under the ex-
change of light quarks. The reason why they are not exactly
(anti)symmetric is the mixing between the SUð3Þf repre-

sentations. Note that, in the infinite heavy quark mass limit,
there is an additional conserved quantity: the total angular

momentum of the light degrees of freedom, sl. Since �0
Q

and�00
Q correspond to different values of sl, this additional

symmetry prevents the mixing of these two states.
As we have already noted, the unmixed �Q and �0

Q

belong to the antitriplet and the sextet representations of
SUð3Þf respectively. Therefore, corresponding interpolat-

ing currents should be antisymmetric and symmetric. For
this reason the interpolating currents for the unmixed states
can be chosen as:

�0
�Q

¼ 1ffiffiffi
6

p �abc½2ðsTaCqbÞ�5Qc þ 2tðsTaC�5qbÞQc

þ ðsTaCQbÞ�5qc þ tðsTaC�5QbÞqc
� ðqTaCQbÞ�5sc � tðqTaC�5QbÞsc�

�0
�0

Q
¼ 1ffiffiffi

2
p �abc½ðsTaCQbÞ�5qc þ tðsTaC�5QbÞqc
þ ðqTaCQbÞ�5sc þ tðqTaC�5QbÞsc� (8)

Here a, b and c are the color indices, q ¼ u or d and t is an
arbitrary auxiliary parameter. Note that the general form of
the interpolating currents for the octet baryons were intro-
duced first in [9]. The t ¼ �1 case, corresponds to the
Ioffe current. The notation �0 is used to denote that these
operators are pure �3 or 6 operators.
The correlation function, Eq. (1), can be calculated in

terms of quark and gluon degrees of freedom in the deep
Euclidean region, p2 � 0, using operator product expan-
sion. The analytical results for the corresponding correla-
tors are presented in the appendix.

III. NUMERICAL ANALYSIS

In this section, we present the numerical analysis of our
results. The numerical values for the input parameters are

h �qqi ¼ ð�0:243 GeVÞ3, h �ssi
h �qqi ¼ 0:8, hg2sG2i ¼ 0:47 GeV4,

m2
0 ¼ 0:8 GeV2, mb ¼ 4:8 GeV, mc ¼ 1:4 GeV and

ms ¼ 0:14 GeV.
The sum rules results depend on three auxiliary parame-

ters: the continuum threshold s0, the Borel parameter M2

and the arbitrary parameter t in the interpolating current.
The continuum threshold should be close to the first
excited state that can couple to the current. In our analysis,
it is chosen to be near s0 ¼ ðmB þ 0:5Þ2, where mB ¼
2:5 GeV for the �ð0Þ

c baryons and mB ¼ 5:8 GeV for the

�ð0Þ
b baryons. The lower limit of the working region of the

Borel parameter can be found by requiring that the con-
tribution of the highest dimensional operator is less than
20% of the perturbative term. Its upper limit is determined
in such a way that the contribution of the higher states and
the continuum is less than the contribution of the first pole.
In Figs. 1 and 2, the dependence of �b (�c) on the Borel

parameter is plotted, at t ¼ �3. For �b, the continuum
threshold is chosen to be s0 ¼ 40 GeV2, and 42 GeV2, and
for �c, it is chosen to be s0 ¼ 9 GeV2 and 10 GeV2. It is
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seen that although the Borel parameter is allowed to
change in a wide range of values, there is practically no
dependence of the predictions of the sum rules on the value
of the Borel parameter.

In Figs. 3 and 4, the mixing angle �b (�c) is plotted as the
function of cos�, where � is defined through t ¼ tan� at
M2 ¼ 10 GeV2 and 15 GeV2 (M2 ¼ 5 and 8 GeV2). It is
seen that in both graphs, the mixing angle takes very large
values at certain values of cos�. This enhancement can be
understood by noting that the tangent of the mixing angle,
Eq. (7), is a ratio of two sum rules. In principal, both the
numerator and the denominator should become zero at the
same value of t. But due to approximations in the sum
rules, their zeros are shifted. Hence, when the denominator
becomes zero, and the numerator is nonzero (although
small), tan� diverges. Near these points the sum rules are
not reliable, hence in obtaining a prediction for the mixing
angle, one should keep away from these points. From the
figures, it is seen that, sum rule predictions on the mixing
angle are almost independent of the value of t chosen.

Finally, the predictions on the mixing angle between�Q

and �0
Q baryons of QCD sum rules are:

�b ¼ 6:4� � 1:8� (9)

for the �b ��0
b mixing and

�c ¼ 5:5� � 1:8� (10)

for the �c ��0
c mixing. In these predictions, the uncer-

tainties are due to the neglected higher dimensional opera-
tors and the uncertainties in the auxiliary parameters of the
sum rules. The largest source of uncertainty is the varia-
tions in the continuum threshold s0. In Table I, sum rules
predictions and the predictions of [3–5] are presented. It is
seen that, within errors, the predictions for �c are in
agreement, whereas, our prediction on �b is in disagree-
ment with the prediction of [4].
As also mentioned previously, in the heavy quark limit,

the mixing angle should be zero. The heavy quark limit of
the sum rules can be obtained by taking the mQ ! 1 limit
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FIG. 2. The same as Fig. 1, but for �c.
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FIG. 1. The dependence of �b on the Borel parameter for
t ¼ �3 and for two different values of the continuum
threshold s0.
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FIG. 4. The same as Fig. 3, but for �c.
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FIG. 3. The dependence of �b on cos�, where t ¼ tan�, for
two different values of the continuum threshold, s0 and the Borel
parameter M2.

TABLE I. The predictions of QCD sum rules on the mixing
angle along with the prediction of quark model [3,4] and heavy
quark effective theory [5].

�Q This Work [3] [4] [5]

�c 5:5� � 1:8� 3.8� 3.8� 14� � 14�
�b 6:4� � 1:8� - 1.0� -
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after setting M2 ! m2
Q þ 2mQT, s ! m2

Q þ 2mQ� and

s0 ! m2
Q þ 2mQ�0, where T is the new Borel parameter,

� is the four velocity of the heavy baryon, and �0 is the
threshold in the heavy quark limit. Using the expressions in
the Appendix, it can be shown that, in the heavy quark limit
tan�Q / 1

m2
Q

. But the numeric results for the b and c quarks

show that the suppression of the mixing angle in the heavy
quark limit is not realized at the physical b quark mass. The
suppression starts at much larger values of the heavy quark
mass.

In conclusion, a new method is presented for the deter-
mination of the mixing angle between the hadrons in

QCD sum rules. This method is applied to the calculation
of the mixing angle between the heavy cascade hyperons
�Q and �0

Q.
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APPENDIX: ANALYTICAL RESULTS

In this appendix, we present the explicit expression for
the coefficient of the p structure in the correlation function

�0
��

¼ � 1

288M4
e�ðm2

Q
=M2Þm2

0h �qqih�ssimQðmsð�1þ tÞ2 þ 2mQð�13þ 2tþ 11t2ÞÞ

þ 1

144M2
e�ðm2

Q
=M2ÞmsmQh �qqih�ssið1þ 4t� 5t2Þ

�
1� 5

12

m2
Qm

2
0

M4

�

þ 1

288M2
e�ðm2

Q
=M2Þm2

0h �qqih�ssið25� 2t� 23t2Þ � 1

72
e�ðm2

Q
=M2Þh �qqih�ssið13� 2t� 11t2Þ

þ 1

768�2
e�ðm2

Q
=M2Þmsm

2
0ð3h�ssið1þ tÞ2 þ 2h �qqið�13þ 2tþ 11t2ÞÞ þ

Z 1

m2
Q

dse�ðs=M2Þ	11ðsÞ (A1)

where

	11ðsÞ ¼
3m4

Q

512�4
ð5þ 2tþ 5t2Þ lnð1þ ŝÞ þ 3m3

Q

384�2
ŝ
ð2þ ŝÞ
ð1þ ŝÞ2

�
mQ

16�2
ð�6� 6ŝþ ŝ2Þ þ ms

m3
Q

h �ssi
�
ð5þ 2tþ 5t2Þ

þ 1

1536�4
m3

Qmsð�1� 4tþ 5t2Þ
�
6 lnð1þ ŝÞ � ŝ

6þ 9ŝþ 2ŝ2

ð1þ ŝÞ2
�
� 1

192�2
mQðh �qqi

þ h�ssiÞ ŝ2

ð1þ ŝÞ2 ð�1� 4tþ 5t2Þ � 1

192�2
msŝ

2þ ŝ

ð1þ ŝÞ2 h �qqið�13þ 2tþ 11t2Þ � 1

768mQ�
2
m2

0ðh �qqi

þ h�ssiÞ 1

ð1þ ŝÞ2 ð�1þ tÞð�1� 5tþ 6ŝð1þ tÞÞ þ 1

768m2
Q�

2
msm

2
0ðh �qqi þ h�ssiÞ 1

ð1þ ŝÞ2 ð�1þ tÞ2

þ 1

16m2
Q�

2
msm

2
0h �qqi

1

ð1þ ŝÞ3 ð1� t2Þ lnŝ� 1

32�2M2
msm

2
0h �qqið�1þ t2Þ

�
ln
m2

Q

�2
þ

�
1þ 1

ð1þ ŝÞ2
�
lnŝ

�
(A2)

�0
�0�0 ¼ � 1

48M4
e�ðm2

Q
=M2Þm2

0h �qqih�ssimQð�1þ tÞðmsð1þ tÞ þmQð�1þ tÞÞ

þ 1

16M2
e�ðm2

Q
=M2ÞmsmQh �qqih�ssið1� t2Þ

�
1� 5

12

m2
Qm

2
0

M4

�
� 1

96M2
e�ðm2

Q
=M2Þm2

0h �qqih�ssið�1þ tÞ2

þ 1

24
e�ðm2

Q
=M2Þh �qqih�ssið�1þ tÞ2 þ 1

768�2
e�ðm2

Q
=M2Þmsm

2
0ð�h�ssið13þ 10tþ 13t2Þ

þ 6h �qqið�1þ tÞ2ÞÞ þ
Z 1

m2
Q

dse�ðs=M2Þ	22ðsÞ (A3)

where
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	22ðsÞ ¼
3m4

Q

512�4
ð5þ 2tþ 5t2Þ lnð1þ ŝÞ þ m3

Q

128�2
ŝ
ð2þ ŝÞ
ð1þ ŝÞ2

�
mQ

16�2
ð�6� 6ŝþ ŝ2Þ þ ms

m3
Q

h �ssi
�
ð5þ 2tþ 5t2Þ

þ 3

512�4
m3

Qmsð�1þ t2Þ
�
6 lnð1þ ŝÞ � ŝ

6þ 9ŝþ 2ŝ2

ð1þ ŝÞ2
�
� 3

64�2
mQðh �qqi þ h�ssiÞ ŝ2

ð1þ ŝÞ2 ð�1þ t2Þ

� 1

64�2
msŝ

2þ ŝ

ð1þ ŝÞ2 h �qqið�1þ tÞ2 � 1

256mQ�
2
m2

0ðh �qqi þ h�ssiÞ 6ŝ� 7

ð1þ ŝÞ2 ð�1þ t2Þ

þ 1

256m2
Q�

2
msm

2
0

1

ð1þ ŝÞ2 ½�h �qqið�1þ tÞ2 þ h�ssið3þ 2tþ 3t2Þ� (A4)

ffiffiffi
3

p
�0

��0 ¼
ffiffiffi
3

p
�0

�0� ¼ � 1

192M4
e�ðm2

Q=M
2ÞmsmQm

2
0h �qqih�ssið�3þ 2tþ t2Þ

� 1

24M2
e�ðm2

Q=M
2ÞmsmQh �qqih�ssið�2þ tþ t2Þ

�
1� 5

12

m2
Qm

2
0

M4

�
þ

Z 1

m2
Q

dse�ðs=M2Þ	12ðsÞ (A5)

where

	12ðsÞ ¼ � 1

256�4
m3

Qmsð�2þ tþ t2Þ
�
6 lnð1þ ŝÞ � ŝ

6þ 9ŝþ 2ŝ2

ð1þ ŝÞ2
�
� 1

32�2
mQðh �qqi � h �ssiÞ ŝ2

ð1þ ŝÞ2 ð�2þ tþ t2Þ

� 1

128mQ�
2
m2

0ðh �qqi � h�ssiÞ 1

ð1þ ŝÞ2 ð�1þ tÞð�3� 2tþ 3ŝð1þ tÞÞ

� 1

128m2
Q�

2
msm

2
0

1

ð1þ ŝÞ2 ðh �qqið�1þ t2Þ þ 2h �ssið1þ tþ t2ÞÞ (A6)

where ŝ ¼ s
m2

Q

� 1.
The contribution of the higher states and the continuum is subtracted using quark hadron duality. It amounts to replacing

the upper limit of integration in s with s0, i.e. Z 1

m2
Q

ds !
Z s0

m2
Q

ds (A7)
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