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Departamento de Fı́sica Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain

L. S. Geng

School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
and Physik Department, Technische Universität München, D-85747 Garching, Germany

J. Nieves

Instituto de Fı́sica Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia,
Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia, Spain

L. L. Salcedo

Departamento de Fı́sica Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain
(Received 6 May 2010; published 20 January 2011)

Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction

involving members of the � nonet and of the � octet is introduced, and its predictions are analyzed.

The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6)

symmetry-breaking terms are then included to account for the physical meson masses and decay constants

in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving

the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible

Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group

meson resonances, especially in the JP ¼ 0þ and 1þ sectors, can be classified according to multiplets of

SU(6). The f0ð1500Þ, f1ð1420Þ, and some 0þð2þþÞ resonances cannot be accommodated within this

scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the

existence of five exotic resonances (I � 3=2 and/or jYj ¼ 2) with masses in the range of 1.4–1.6 GeV,

which would complete the 271, 103, and 10�3 multiplets of SUð3Þ � SUð2Þ.
DOI: 10.1103/PhysRevD.83.016007 PACS numbers: 11.10.St, 13.25.�k, 13.75.Lb, 14.40.�n

I. INTRODUCTION

Chiral perturbation theory (ChPT), a systematic imple-
mentation of chiral symmetry and of its pattern of sponta-
neous and explicit breaking, provides a model independent
scheme where multitudes of low-energy nonperturbative
strong-interaction phenomena can be understood. It has
been successfully applied to study different processes,
both in the meson-meson and in the meson-baryon sectors,
involving light (u and d) or strange (s) quarks [1–10].

However, by construction, ChPT is only valid at low
energies, and it cannot describe the nature of hadron
resonances. In recent years, it has been shown that by
unitarizing the ChPT amplitudes, one can greatly extend
the region of application of ChPT.1 This approach, com-
monly referred to as Unitary Chiral Perturbation Theory
(UChPT), has received much attention and provided many

interesting results [11–46]. In particular, many meson-
meson and meson-baryon resonances and bound states
appear naturally within UChPT. These states are then
interpreted as having a ‘‘dynamical nature.’’ In other
words, they are not genuine q �q or qqq states, but are
mainly built out of their meson-meson or meson-baryon
components. One way to distinguish these two pictures is
to study the dependence on NC of the resonance masses
and widths [47–54].
Some examples are the low-lying scalar mesons,

f0ð600Þ, f0ð980Þ, a0ð980Þ, and K�
0ð800Þ, which naturally

appear as resonant states of two mesons of the pion octet
[15,18–22,24,27,30]; the low-lying JP ¼ 1=2� baryonic
resonances, Nð1535Þ, Nð1650Þ, �ð1405Þ, and �ð1670Þ,
which are found after unitarizing the ChPT amplitudes
for the scattering of � pseudoscalar octet mesons off
baryons belonging to the nucleon octet [14,17,28,31–
34,36,38,41,42]; the low-lying JP ¼ 3=2� baryonic reso-
nances (e.g., the �ð1520Þ) found in the interaction of
mesons of the pion octet with baryons of the � decuplet
[35,40,46]; and finally, the low-lying axial-vector mesons,
a1ð1260Þ, b1ð1235Þ, h1ð1170Þ, f1ð1285Þ, and K1ð1270Þ
that can be described as resonant states of a �-octet meson
and a �-vector nonet meson [37,43].

1Several frameworks have been proposed to unitarize the
amplitudes, although the most common and successful are the
inverse amplitude method and the solution of the Bethe-Salpeter
(BS) equation. In this latter case, several renormalization
schemes have been also employed, differing mostly in the treat-
ment of the off-shell effects. In general, the different methods
give similar results for the lowest-lying resonances.

PHYSICAL REVIEW D 83, 016007 (2011)

1550-7998=2011=83(1)=016007(30) 016007-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.016007


These ideas have also been extended to study three-body
meson resonances [55,56] and systems including a heavy
quark, which have allowed to describe also meson [57–60]
and baryon [61–66] charmed resonances. In these latter
cases, of course, one cannot invoke chiral dynamics to
construct the tree-level amplitudes that later on will be
unitarized. Thus, for instance, in Refs. [61–64], the uni-
versal vector-meson coupling hypothesis is exploited to
break the SU(4) symmetry in a convenient and well-
defined manner. This is done by a t-channel exchange of
vector mesons between pseudoscalar mesons and baryons,
in such a way that chiral symmetry is preserved in the
light-meson sector, while the interaction is still of the
Weinberg-Tomozawa (WT) type [67,68]. A serious limita-
tion of this approach is that it is not consistent with heavy-
quark–spin symmetry, which is a proper QCD symmetry
that appears when the quark masses become much larger
than the typical confinement scale, �QCD. The recent work

of Refs. [65,66] develops a scheme consistent with both
chiral and heavy-quark–spin symmetry by starting from a
larger SU(8) spin-flavor symmetry group and conveniently
breaking the spin (in the light u, d, and s sectors) and flavor
symmetries. In both schemes, coupled-channel unitarity
plays a major role.

Coupled-channel unitarity has been also the essential
ingredient in other recent works, where the vector-meson–-
vector-meson [69,70] and vector-meson–octet-baryon and
vector-meson–decuplet-baryon interactions [71–73] in the
light sector have been studied. In these cases, the formal-
ism of the hidden gauge interaction for vector
mesons of [74,75] is adopted, and it has led to very
successful results from a phenomenological point of
view [76–78].

The approach taken in Refs. [41,44], where SU(6) spin-

flavor symmetry is invoked, allows to assign the vector

mesons of the � nonet and the pseudoscalar mesons of the

� octet in the same 35 SU(6) multiplet, while the baryons

of the nucleon octet and the � decuplet are placed in the

totally symmetric 56 SU(6) representation. The scheme is

completely constrained by the requirement that its restric-

tion to the �� N octet sector should reproduce the SU(3)

s-wave WT Lagrangian, leading order (LO) of the chiral

expansion in this case. Finally, the SU(6) symmetry is

broken by using physical masses and decay constants.

The corresponding Bethe-Salpeter (BS) amplitudes suc-

cessfully reproduce the previous SU(3)-flavor WT results

for the lowest-lying s- and d-wave odd-parity baryon

resonances obtained from the scattering of the mesons of

the pion octet off baryons of the nucleon octet and the �
decuplet [44].2 The extension of the scheme to the charm

sector [65,66] naturally accommodates heavy-quark–spin

symmetry, as mentioned above, since it encodes spin

symmetry in the charm sector, while this is not the case
for those models based on vector-meson exchanges.
In this work, we present the extension of the meson-

baryon scheme derived in Ref. [41] to the meson-meson
sector. The basis of our approach is rooted in the ideas of
Caldi and Pagels [79,80]. These authors identify vector
mesons of the nonet as ‘‘dormant’’ Nambu-Goldstone
bosons of an extended chiral symmetry SUð6ÞL�
SUð6ÞR. This symmetry is intrinsically an approximate
one, and the vector mesons acquire mass through relativ-
istic corrections. Such a scheme naturally solves a number
of puzzles involving the nature and classification of vector
mesons and makes predictions in remarkable agreement
with the experiment [79,80]. The low-energy theorems
derived from partial conservation of the tensor current
have been obtained in [81]. The Skyrmion of the SUð6ÞL �
SUð6ÞR has been studied in [82]. The validity of the
dormant Nambu-Goldstone boson description has been
verified in the lattice [83].
Even if, for illustration purposes, SU(3)-flavor symme-

try is assumed to be exact, and the pseudoscalar mesons
are assumed to be massless (these simplifying assumptions
are not essential and can be lifted), the breaking of SU(6)
down to SU(3) (due to the vector mesons’ masses being
nonvanishing) implies a breaking of SUð6ÞL � SUð6ÞR
down to SUð3ÞL � SUð3ÞR. One of the contributions
of the present work is the construction of suitable
Lagrangian mass terms achieving such a pattern of sym-
metry breaking. Therefore, the approximate spin-flavor
symmetry scheme provides a unified framework to deal
with lowest-lying mesons, implementing the required
symmetry-breaking patterns and, in particular, fulfilling
low-energy theorems derived from chiral symmetry. In
addition, when the present scheme is extended to include
heavier quark flavors, the QCD heavy-quark–spin symme-
try can also be naturally accommodated in the spin-flavor
approach through a suitable flavor-breaking pattern.
Although the predictions so obtained are not so reliable
as those derived for pseudoscalar mesons assuming only
the standard chiral symmetry-breaking pattern of QCD, the
fact is that vector mesons do exist, and they are known to
play a relevant role in hadronic physics. Inescapably, they
will interact among themselves and with other pseudosca-
lar mesons and will certainly influence the properties of
the known mesons’ resonances. However, not so many
approaches to deal with vector mesons are available, and
the existing ones, e.g., the hidden gauge approach [74,75],
are also subject to a certain amount of modeling not
directly rooted in QCD. The theoretically founded models
to deal with vector mesons being scarce, we regard the
spin-flavor symmetric scenario (suitably broken) as a rea-
sonable alternative approach, and we believe it makes
sense to work out the predictions of such a model.
Moreover, we remarkably find that most of the low-lying
even-parity Particle Data Group (PDG) meson resonances

2The predictions of this scheme for the vector-meson nonet-
baryon decuplet sector have not been derived yet.
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can be classified according to multiplets of the spin-flavor

symmetry group SU(6).
We will study the s-wave interaction of two members of

the 35 (� octetþ � nonet) SU(6) multiplet by means of an

enlarged WT-meson Lagrangian to accommodate vector
mesons, which guarantees that chiral symmetry is recov-
ered when interactions between pseudoscalar Nambu-
Goldstone bosons are being examined. We will pay a

TABLE I. Tentative SU(6) classification of the poles found in this work, together with their possible PDG counterparts [84]. JP, Y,
and IG stand for the spin-parity, hypercharge, isospin and G parity, respectively [for nonstrange states, charge conjugation is given by
G ¼ ð�1ÞI]. Those resonances marked with y need to be confirmed, while a (*) symbol indicates that the resonance does not appear in
the PDG. Finally, a question mark symbol expresses our reservations on the assignment. Mixing between states with the same JPIGY
quantum numbers but belonging to different SU(6) and/or SU(3) multiplets have not been considered.

JP ¼ 0þ
SU(6) Irrep SUð3Þ � SUð2Þ Irrep Y IG

ffiffiffi
s

p
[MeV] (this work) PDG [84]

1 11 0 0þ ð635;�202Þ f0ð600Þ
35s 81 �1 1=2 ð830;�170Þ K�

0ð800Þy
0 1� ð991;�46Þ a0ð980Þ
0 0þ (969, 0) f0ð980Þ

189 271 �2 1 ð1564;�66Þ (*)

�1 3=2 ð1433;�70Þ (*)

�1 1=2 ð1428;�24Þ K�
0ð1430Þ

0 0þ ð1350;�62Þ f0ð1370Þ
0 1� ð1442;�5Þ a0ð1450Þ
0 2þ ð1419;�54Þ Xð1420Þy

81 �1 1=2 ð1787;�37Þ K�
0ð1950Þy

0 1� ð1760;�12Þ a0ð2020Þy ?

0 0þ ð1723;�52Þ f0ð1710Þ
11 0 0þ � � �

JP ¼ 1þ
SU(6) Irrep SUð3Þ � SUð2Þ Irrep Y IG

ffiffiffi
s

p
[MeV] (this work) PDG [84]

35s 83 �1 1=2 ð1188;�64Þ K1ð1270Þ
0 1þ ð1234;�57Þ b1ð1235Þ
0 0� ð1373;�17Þ h1ð1380Þy

13 0 0� ð1006;�85Þ h1ð1170Þ
189 103 & 10�3 �2 0 ð1608;�114Þ (*)

�1 3=2 ð1499;�127Þ (*)

�1 1=2 ð1414;�66Þ K1ð1400Þ ?
0 1þ ð1642;�139Þ b1ð1960Þy ?

0 1� ð1568;�145Þ a1ð1640Þy
8a3 �1 1=2 ð1250;�31Þ K1ð. . .Þ (*)

0 1� ð1021;�251Þ a1ð1260Þ
0 0þ (1286, 0) f1ð1285Þ

8s3 �1 1=2 ð1665;�95Þ K1ð1650Þy ?

0 1þ � � �
0 0� ð1600;�67Þ h1ð1595Þy

JP ¼ 2þ
SU(6) Irrep SUð3Þ � SUð2Þ Irrep Y IG

ffiffiffi
s

p
[MeV] (this work) PDG [84]

189 & Contact VV 85 �1 1=2 ð1708;�156Þ K�
2ð1430Þ ?

0 1� ð1775;�6Þ a2ð1700Þy
0 0þ ð1783;�19Þ f2ð1640Þy ?

15 0 0þ (1289, 0) f2ð1270Þ
Contact VV 85 �1 1=2 � � �

0 1� (1228, 0) a2ð1320Þ
0 0þ � � �

15 0 0þ � � �
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special attention to the novel pseudoscalar-vector (PV)
and vector-vector (VV) channels, where we will compare
our predictions with previous recent results [43,69,70]
obtained within the formalism of the hidden gauge inter-
action for vector mesons. In the PV ! PV sector, chiral
symmetry constrains the interactions, and our model and
that developed in Ref. [43] totally agree at LO in the chiral
expansion, despite their apparently different structure and
origin. As a result of this work, we show that most of
the low-lying even-parity meson resonances, especially
in the JP ¼ 0þ and 1þ sectors, can be classified according
to multiplets of the spin-flavor symmetry group SU(6).
This can be seen in Table I, which summarizes the set of
dynamically generated resonances obtained in this work.
The remaining firmly established positive-parity PDG me-
son states below 2 GeV, which cannot be accommodated
within SU(6) multiplets, are clear candidates to be glue-
balls or hybrids. This is the case of the f0ð1500Þ, f1ð1420Þ,
and some 0þð2þþÞ resonances. On the other hand, we
predict the existence of five exotic resonances (I � 3=2
and/or jYj ¼ 2) with masses in the region of 1.4–1.6 GeV,
which would complete the 271, 103, and 10�3 SUð3Þ �
SUð2Þ multiplets.

The extension of the model presented here to the charm
sector would naturally accommodate heavy-quark–spin
symmetry. On the contrary, this latter QCD requirement
will not be easily met for models [57–60] based on the
formalism of the hidden gauge interaction for vector me-
sons, since those would not treat the pseudoscalar (D) and
vector (D�) charmed mesons in a way consistent with
heavy-quark–spin symmetry.

This paper is organized as follows: In Sec. II, we start
from the chiral Lagrangian for pseudoscalar-pseudoscalar
interactions (Subsec. II A) and extend it to calculate the
interaction vertices between two pseudoscalars, one pseu-
doscalar and one vector, and between two vector mesons in
terms of SU(6) projectors and the corresponding eigenval-
ues (Subsec. II B). Also in this subsection, we show how
to obtain three relations connecting these eigenvalues by
matching our amplitudes to the LO ChPT ones for two-
pseudoscalar scattering, and how finally all eigenvalues
can be fixed. Next, in Subsec. II D, we discuss the nature
of the SU(6) symmetry-breaking terms needed to account
for the physical meson decay constant and masses, without
spoiling partial conservation of the axial current in the
light-pseudoscalar sector. Sec. III deals with the BS equa-
tion and with issues related to its renormalization. In
Sec. IV, we present results in terms of the unitarized
amplitudes and search for poles on the complex plane.
We discuss the results sector-by-sector, trying to identify
the obtained resonances or bound states with their experi-
mental counterparts [84], and compare our results with
earlier studies. A brief summary and some conclusions
follow in Sec. V. In Appendix A, the various potential
matrices are compiled for the different hypercharge,

isospin, and spin sectors. In Appendix B, details are
given on the computation of the eigenvalues of various
operators.

II. SU(6) DESCRIPTION OF
VECTOR-PSEUDOSCALAR AND

VECTOR-VECTOR INTERACTIONS

A. SU(3) and chiral symmetry

The lowest-order chiral Lagrangian describing the inter-
action of pseudoscalar Nambu-Goldstone bosons is [3]

L ¼ f2

4
Tr½@�Uy@�UþMðUþUy � 2Þ�; (1)

where f� 90 MeV is the chiral-limit pion decay constant,

U ¼ ei
ffiffi
2

p
�=f is the SU(3) representation of the meson

fields, with

� ¼
1ffiffi
6

p �þ 1ffiffi
2

p �0 �þ Kþ

�� 1ffiffi
6

p �� 1ffiffi
2

p �0 K0

K� �K0 �
ffiffi
2
3

q
�

0
BBB@

1
CCCA; (2)

and the matrix M ¼ diagðm2
�;m

2
�; 2m

2
K �m2

�Þ is deter-
mined by the pion and kaon meson masses. Expanding up
to four meson fields, one finds

L int ¼ 1

12f2
Trð½�; @���½�; @��� þM�4Þ: (3)

Taking a common mass, m, for all the (pseudo) Nambu-
Goldstone mesons and projecting into s wave, the above
Lagrangian leads to an interaction Hamiltonian (on-shell)

H ¼ 3s� 4m2

6f2
Ĥ1 � m2

3f2
Ĥ2; (4)

where
ffiffiffi
s

p
is the total energy of the meson pair in the center-

of-mass system, and Ĥ1 and Ĥ2 are coupled-channel ma-
trices; they are IY block-diagonal, with I and Y as the total
isospin and hypercharge (strangeness) of either the initial
or final meson pair. The normalization can be unambigu-
ously fixed, thanks to the relation of the diagonal matrix
elements of H ðsÞ, with the s-wave scattering amplitude
F ðsÞ, the phase shifts �ðsÞ, and inelasticities �ðsÞ,
H iiðsÞ ¼ �8�

ffiffiffi
s

p
F iiðsÞ; 2ipF ¼ �e2i� � 1; (5)

where p is the momentum in the center-of-mass frame of
the two mesons.

The operators Ĥ1 and Ĥ2 are linear combinations of
orthogonal projectors, P�, onto the SU(3) � representa-

tions that appear in the reduction of the product of repre-
sentations 8 � 8. Namely,

Ĥ 1 ¼ �3P1 � 3
2P8s þ P27; Ĥ2 ¼ 5P1 þ P8s þ P27:

(6)
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Note that only representations which are symmetric
under the permutation of the two octets appear. This is a
consequence of s-wave Bose statistics, once we have as-
signed a common mass for all pseudoscalar mesons.

On the other hand, by imposing just SU(3)-flavor sym-
metry, the interaction Hamiltonian would be of the form

H ðsÞ ¼ X
�

F�ðsÞP�; (7)

with the SU(3) representation� running over the 1, 8s, and
27 irreducible symmetric representations that appear in
the reduction of 8 � 8, and F� arbitrary functions of the

Mandelstam variable s. The approximate chiral symmetry
of QCD, which is much more restrictive than just flavor
symmetry, and its pattern of spontaneous and explicit
symmetry breaking fixes this enormous freedom and
allows to determine the chiral expansion of the functions
F�ðsÞ. At LO, the functions F� can be easily read off from

Eqs. (4) and (6).
The first contribution inLint of Eq. (3) is the WT term in

this �� case. There is a WT term for the interaction of
Nambu-Goldstone bosons off any target. Its form follows
entirely from chiral symmetry (and its pattern of symmetry
breaking) [67,68] and fully accounts for the interaction
near the threshold. Specifically, assuming exact chiral
symmetry (and so, massless Nambu-Goldstone bosons),
for the s wave, H ðsÞ vanishes at the threshold. Moreover,

dH ðsÞ
ds

��������threshold
¼ �

1

2f2
ĤWT; (8)

where � is the symmetry factor, namely, 1=2 if the target is
another Nambu-Goldstone boson and 1 if it is not, and

Ĥ WT ¼ X
�

��P�; (9)

where � runs over the allowed SU(3) representations.
Note that H ðsÞ acts on different spaces depending
on the target, e.g., ð8 � 8Þsym for ��, 8 � 8 for ��, and

8 � 1 for �!1. For two flavors, the WT interaction comes
as the scalar product of the Nambu-Goldstone boson and
target isospin operators [85] (and so it depends only on the
isospin target). For any number NF of (massless) flavors,

one has instead
PN2

F�1

a¼1 JaNGJ
a
target, and this fixes the eigen-

values (see, e.g., [86]):

�� ¼ C2ð�Þ � C2ð�NGÞ � C2ð�targetÞ; (10)

where C2ð�Þ refers to the value of the quadratic Casimir
of the irreducible representation (irrep) � in SUðNFÞ
(with normalization C2ðadjÞ ¼ NF), and �NG is the adjoint
representation.

This gives, for �� scattering, the eigenvalues quoted in
(6) forNF ¼ 3, and new ones for�� and�!1 [!1 refers to
the SU(3) singlet]:

��
1 ¼ �

�
1 ¼ �6; ��

8s
¼ �

�
8s
¼ �

�
8a
¼ �3;

��
27 ¼ ��

27 ¼ 2; ��
10 ¼ ��

10� ¼ 0; �!1

8 ¼ 0:
(11)

Exact SU(3) symmetry has been assumed throughout in
this discussion, so � refers to the full � octet, and so on.
Note that no configuration mixing (e.g., j��; 8si !
j��; 8ai) takes place within the WT interaction. These
results will be used next.

B. Spin-flavor and chiral symmetries

With the inclusion of spin, there are 36 quark-antiquark
(q �q) states, and the SU(6) group representation reduction
(denoting the SU(6) multiplets by their dimensionality and
an SU(3) multiplet � of spin J by �2Jþ1) reads

6 � 6� ¼ 35 	 1 ¼ 81 	 83 	 13|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
35

	 11|{z}
1

(12)

The lowest bound q �q state is expected to be an s state,
and, the relative parity of a fermion-antifermion pair being
odd, the octet of pseudoscalar mesons ðK;�; �; �KÞ and the
nonet of vector mesons ðK�; �;!; �K�; �Þ are commonly
placed in the 35 representation [87–89].
Strong interaction conserves total spin (J), hypercharge

(Y), and isospin (I) (assuming equal masses for the up and
down quarks). Furthermore, since we consider only s-wave
states, the total spin of the meson-meson states is simply
the sum of their individual spins. Therefore, on account of
the SU(6) group reduction

35 � 35 ¼ 1 	 35s 	 35a 	 189 	 280 	 280� 	 405;

(13)

a meson-meson state written in terms of the SU(6) basis
takes the form

jM1M2;YIJi

¼ X
�;	;R

�M1
�M2

�

IM1
YM1

IM2
YM2

IY

 !


 35 35 R

�M1
JM1

�M2
JM2

�J	

 !
jR;�	

2Jþ1IYi; (14)

where Y ¼ YM1
þ YM2

, jIM1
� IM2

j � I � IM1
þ IM2

,

jJM1
� JM2

j � J � JM1
þ JM2

, and � and R denote ge-

neric SU(3) and SU(6) representations, respectively. IM1;2
,

YM1;2
, and JM1;2

are the isospin, hypercharge, and spin of the

two mesons. In the above equation, R ¼ 1, 189, 35s, 405,
35a, 280, and 280�; � ¼ 1, 8s, 8a, 27, 10, and 10�; and 	
accounts for the multiplicity of each of the �2Jþ1SUð3Þ
multiplets of spin J. In Eq. (14), the two coefficients multi-
plying each element of the SU(6) basis, jR ; �	

2Jþ1IYi, are
the SU(3) isoscalar factors [90] and the SU(6) Clebsch-
Gordan coefficients [91], respectively.
At this point, one can ask how SU(6) symmetry

goes along with chiral symmetry. Certainly, because chiral
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symmetry must be present in any reliable approach, this is
a central point in this work. To clarify this issue, we will
consider the following exercise—namely, whether it is
possible for an SU(6)-invariant interaction to reproduce
the low-energy theorems quoted in Eq. (8) with the correct
eigenvalues in Eq. (11). (Again, we assume exact chiral
symmetry and s wave.) As it turns out, this is indeed
possible. Such solutions correspond to operators

H SUð6ÞðsÞ acting on the spin-flavor space 35 � 35 of the
form

H SUð6ÞðsÞ ¼ 1

2f2

X
R

FRðsÞ�RPR; (15)

where R runs over the seven SU(6) irreps in Eq. (13), and
PR are the corresponding projectors. The functions FRðsÞ
vanish at the threshold, and are normalized by the condi-
tion dFRðsÞ=dsjthreshold ¼ 1, e.g., FRðsÞ ¼ s� 1

2

P
4
i¼1 q

2
i .

Therefore,

dH SUð6ÞðsÞ
ds

��������threshold
¼ 1

2f2
ĤSUð6Þ

WT ; (16)

with

Ĥ SUð6Þ
WT ¼ X

R

�RPR: (17)

Finally, the eigenvalues �R reproducing those in (11) are3

�1 ¼�12; �35s ¼ �35a ¼�6; �189 ¼�2;

�405 ¼ 2; �280 ¼ �280� ¼ 0:
(19)

Several comments are pertinent here. i) The functions
FRðsÞ depend on the concrete model. Chiral symmetry

fixes the derivative of H SUð6ÞðsÞ with respect to s at the
threshold. (A detailed model is developed below.) ii) The

eigenvalues �R are unique and are such that ĤSUð6Þ
WT , when

restricted to the ��, ��, and �!1 subspaces, yields the
correct SU(3) eigenvalues of Subsec. II A. iii) The projec-
tors on antisymmetric representations vanish on PP
states. However, for the more general case involving vector
mesons, both symmetric and antisymmetric representa-
tions (e.g., 35s and 35a) are required even in the s wave.
Although the� octet and the � nonet fall in the same SU(6)
representation, they are kinematically distinguishable
through their mass. To give mass to the vector mesons
certainly requires breaking SU(6) in the Lagrangian (not
only through mass terms but also by interaction terms, due

to chiral symmetry). This simply means that H SUð6ÞðsÞ is
not the full H ðsÞ acting on the space 35 � 35. Besides

H SUð6ÞðsÞ, there are further terms, �H ðsÞ, which do not
have a contribution to H ðsthresholdÞ nor dH ðsÞ=dsjthreshold
when they are restricted to the subspaces PP ! PP or
PV ! PV. (Once again, we refer to the model below,

which fulfills these requirements.) iv) ĤSUð6Þ
WT can be

regarded as an extension from WT in flavor SU(3) to a
WT-like term in spin-flavor SU(6). The eigenvalues �R in
Eq. (19) obey the general WT rule in Eq. (10), applied to
SU(6) instead of SU(3). Actually, there is an extra factor
of 2 in Eq. (16), since the symmetry factor is � ¼ 1=2 for
35
 35. However, this is not related to the validity of
Eq. (10) in the SU(6)-extended version of WT, but to the

fact that f6 ¼ f=
ffiffiffi
2

p
applies instead of f in this extended

version. [The same factor 2 appears in Eq. (18).] No such
factors appear when SUðNFÞ is extended to SUðN0

FÞ
(a larger number or flavors). This is because the embedding
of SUðNFÞ into SUðN0

FÞ is different from the embedding
of SUðNFÞ into spin-flavor SUð2NFÞ. (See below.) As will
be obvious from what follows, the same exercise can be
repeated, successfully, for any number of flavors, and not
only for meson-meson scattering but also for meson-
baryon [41,49].
The previous discussion suggests that chiral symmetry,

SUð3ÞL � SUð3ÞR, is compatible with spin-flavor symme-
try, SU(6). (Note that ten couplings, ��, have been repro-

duced using only seven unknowns, �R, and a similar
overdetermination exists for more flavors as well as for
the meson-baryon case.) In fact, such compatibility was
exposed by Caldi and Pagels in [79,80] by the simple
method of extending SUð3ÞL to SUð6ÞL and SUð3ÞR to
SUð6ÞR, where SU(6) refers to spin-flavor. This produces
a larger symmetry group, SUð6ÞL � SUð6ÞR, which in-
cludes chiral and spin-flavor groups as subgroups.
Specifically, the usual spin-flavor SU(6) corresponds to
the subgroup of diagonal transformations (i.e., the same
SU(6) transformation in L and R sectors) similar to SUð3ÞV
(flavor group) in SUð3ÞL � SUð3ÞR.
The spin-flavor–extended chiral group SUð6ÞL � SUð6ÞR

is a realization of the Feynman–Gell-Mann–Zweig algebra
[92] and was introduced in [79,80] precisely to solve an
apparent inconsistency. Namely, on the one hand, the
phenomenological successful spin-flavor symmetry in the
quark model puts � and � in the same SU(6) multiplet.
On the other, the pion is a collective state, the Nambu-
Goldstone boson from spontaneous breaking of chiral
symmetry. In the scenario of [79,80], one would find that
in an exactly SU(6)-symmetric world, the� octet and the �
nonet are the Nambu-Goldstone bosons of the spontaneous
breaking of SUð6ÞL � SUð6ÞR down to SU(6). Spin-flavor
symmetry is an approximated one, and so the �-nonet
mesons are regarded as dormant Nambu-Goldstone
bosons. As it is known, spin-flavor symmetries cannot be
exact, as they cannot be accommodated with full Poincare
invariance [93]. Still, one can consider a static limit
enjoying SUð6ÞL � SUð6ÞR symmetry. In the Caldi-Pagels

3For �M scattering, the relation between SU(3) and SU(6)
eigenvalues is

�M
�2Jþ1	 ¼ 2

X
R

�R
35 35 R
81 �M

2Jþ1 �2Jþ1	

� �
2

: (18)
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scenario, relativistic (and so SU(6)-breaking) corrections
give mass to the vector mesons, while pions are still
protected by the usual SU(3) chiral symmetry.

The scenario just described solves a number of puzzles
involving vector mesons, while maintaining vector-meson
dominance, KSFR relations, and so on [79,80]. Here, we
comment only on two issues—namely, the consequences
regarding the chiral and Lorentz transformations of vector
mesons. Because the pion falls in the ð3; 3�Þ þ ð3�; 3Þ
representation of the chiral group, spin-flavor symmetry
requires the � to fall in the same representation [and both
in ð6; 6�Þ þ ð6�; 6Þ of SUð6ÞL � SUð6ÞR]. This is different
from vector and axial currents, which transform instead
as ð8; 1Þ þ ð1; 8Þ under the chiral group. At first, the fact
that the � meson and the vector current transform differ-
ently seems to be in conflict with vector-meson dominance.
As shown in [79,80], this is not so, due to the spontaneous
breaking of chiral symmetry, for the same reason that
partially conserved axial current relates pion and axial
current, also in different chiral representations.

Related to the chiral representation is the nature of
vector mesons under Lorentz transformations. This is
most easily exposed by coupling the meson fields to quark
bilinears (alternatively, the quark bilinear can be regarded
as a representation or interpolating field of the meson, as in
Nambu–Jona-Lasinio models). Let us, for this discussion,
consider just two flavors (NF ¼ 2) and use a linear sigma
model representation (as opposed to the nonlinear one),
as there it is simpler to expose the chiral transformation
properties of the fields. The pion and 
 mesons couple
to �qi�5 ~�q and �qq. Of course, this is just of the form
�qLMqR þ �qRMyqL, corresponding to the chiral repre-
sentation ð1=2; 1=2Þ. The coupling can be extended to
include vector mesons, while preserving spin-flavor

M ¼ 
þ i�a�a þ i�ai�a
i þ � � � : (20)

[Let us remark that these are the linear sigma-model
mesons fields and will be used only in this subsection.
Elsewhere in this paper, the nonlinear meson fields are
used. Also note that this M is unrelated to the mass term
in Eq. (1).] The dots represent further meson fields to
complete a general 2NF 
 2NF complex matrix. The space
spanned by such matricesM carries a representation of the

group SUð2NFÞL � SUð2NFÞR, acting as M ! �y
LM�R,

with �L;R 2 SUð2NFÞ. This SUð2NFÞ � SUðNFÞ � SUð2Þ
is generated by �a, 
i, and �a
i. In particular, the 
 and �
fields mix under transformations generated by �a, with
�L � �R. These are the usual chiral transformations. On
the other hand, � mixes with � (and other mesons) under
spin-flavor transformations (�L ¼ �R). Using the chiral
representation of the Dirac gammas, one immediately
obtains the coupling

�qLMqR þ �qRMyqL
¼ �qð
þ i�a�a�5 þ �ai�a


0i þ � � �Þq: (21)

The LRþ RL structure (i.e., ð3; 3�Þ þ ð3�; 3Þ) requires
quark bilinears constructed with 1, �5, or 
�, which

commute with �5; while �� or ���5 produce LLþ RR

[i.e., ð1; 8Þ þ ð8; 1Þ]. This implies that the spin-flavor
approach favors an antisymmetric tensor representation
of vector mesons [2]. The antisymmetric tensor V� con-

tains 3 spurious degrees of freedom, and one can choose to
take V0i as the dynamical fields [94]. This is the choice in
Eq. (21), with �ai � �q�a


0iq. The description of vector
mesons using antisymmetric tensors has been shown to be
consistent with all expected properties of vector mesons
[85,94,95]. (See, e.g., [96] for the use of �q
�q as an

interpolating field of the vector meson in the context of
the Nambu–Jona-Lasinio models.)
Conversely, the quark bilinear construction naturally

favors a ð3; 3�Þ þ ð3�; 3Þ representation instead of ð1; 8Þ þ
ð8; 1Þ for vector mesons, if they are considered as antisym-
metric tensors. In principle, one would expect that the
chiral representation under which the meson transforms
would reflect itself on the observable properties of the
meson. However, this is not at all obvious. In the context
of effective chiral Lagrangians, for mesons a very conve-
nient treatment is that based on the nonlinear realization of
chiral symmetry [97]. (Let us remark that only the linear
realization is used in this work.) In this approach, a field u
is constructed out ofM such that under chiral transforma-

tions, u ! �y
Luh ¼ hyu�R (where u and h are unitary

matrices) [85]. A field of the type LL, such as the chiral

current V
�
L , transforms as �y

LV
�
L�L and so belongs to the

chiral representation (8,1). This field is represented in
the nonlinear realization by the new field ~V�

L ¼ uyV�
L u,

which transforms instead as hy ~V�
Lh. Likewise, the fieldM

of the type LR, will be represented by ~M ¼ uyMuy. This
new field transforms as hy ~Mh—that is, exactly in the
same way as the chiral currents or the vector or axial
currents, etc. That was precisely the point of the nonlinear
realization—namely, all fields in the same representation
with respect to SUðNFÞV will be represented by fields
transforming in the same way under general chiral trans-
formations, regardless of their detailed chiral representa-
tion. Therefore, such detailed chiral representation does
not reflect on the properties of the meson, at least to the
extent that effective chiral Lagrangians are sufficient to
describe them. This should not be surprising, as it was
already noted before that, e.g., the WT term is only sen-
sible to the isospin (or more generally, flavor) of the target.

C. The model: SU(6)-invariant part

In view of the previous remarks, we introduce now a
model for meson interaction, including the � octet and the
� nonet, with simultaneous chiral symmetry and spin-
flavor symmetry, suitably broken.
The natural SU(6) extension of Eq. (1) from SU(3)

to SU(6) is
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LSUð6Þ ¼ f26
4

Tr½@�Uy
6@

�U6 þM6ðU6 þUy
6 � 2Þ�;

U6 ¼ ei
ffiffi
2

p
�6=f6 : (22)

U6 is a unitary 6
 6 matrix that transforms under the
linear realization of SUð6ÞL � SUð6ÞR. The Hermitian ma-
trix �6 is the meson field in the 35 irreducible representa-

tion of SU(6), and f6 ¼ f=
ffiffiffi
2

p
, as shown in Appendix B of

Ref. [49]. The first term inLSUð6Þ preserves both chiral and
spin-flavor symmetry. The second term breaks chiral sym-
metry and possibly flavor symmetry. This is not the most
general breaking, and this issue will be discussed in the
next subsection. For the time being, this term will be kept
for illustration purposes asM6 ¼ m6I6
6, with m6 a com-
mon mass for all mesons belonging to the SU(6) 35 irre-
ducible representation.

Expanding the previous Lagrangian up to Oð�4
6Þ gives

the interaction Lagrangian,

L int
SUð6Þ ¼

1

12f26
Trð½�6;@��6�½�6;@

��6�þm6�
4
6Þ: (23)

The restriction of this Lagrangian to the SU(3) pseudosca-
lar 8 � 8 sector reproduces that given in Eq. (3) (with a
common mass for all pseudoscalars). The kinetic term in
Eq. (23) amounts to a coupling of the type ½ð35 � 35Þ35a �ð35 � 35Þ35a�1 in the t channel. That is, each meson pair,

respecting Bose statistics, is coupled to the antisymmetric
SU(6)-adjoint representation (35a) and the two resulting
35a’s couple into the singlet one to build up an SU(6)-
invariant interaction. This mechanism is completely analo-
gous to that in Eq. (3) for SU(3), and so it is a natural
extension of the WT chiral Lagrangian.

�6 is a dimension-six matrix made of full meson fields,
which depend on the space-time coordinates. A suitable
choice for the �6 field is4

�6 ¼ Pa

�affiffiffi
2

p � I2
2ffiffiffi
2

p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�P

þ Rak

�affiffiffi
2

p � 
kffiffiffi
2

p þWk

�0ffiffiffi
2

p � 
kffiffiffi
2

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�V

;

a ¼ 1; . . . ; 8; k ¼ 1; 2; 3; (24)

with �a the Gell-Mann and ~
 the Pauli spin matrices,

respectively, and �0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
I3
3 (In
n denotes the identity

matrix in the n-dimensional space). Pa are the �, K, and �
fields, while Rak andWk stand for the �-vector nonet fields,
considering explicitly the spin degrees of freedom. The
annihilation part of the meson matrix ½�6�ij is determined

by the operatorsMi
j. RegardingM as a matrix with respect

to i and j, the convention is that the upper/lower index acts
as the first/second index of the matrix. M is traceless and
transforms under SU(6) in the same way as the quark
operators

qi �qj � 1

2NF

qm �qm�
i
j; i; j ¼ 1; . . . 2NF; (25)

where NF is the number of flavors, three in this work.
We have denoted the contravariant and covariant spin-

flavor quark and antiquark components

qi ¼

u "
d "
s "
u #
d #
s #

0
BBBBBBBB@

1
CCCCCCCCA
; �qi ¼ ð �u #;� �d #;��s #;� �u "; �d "; �s "Þ; (26)

where qi ( �qi) annihilates
5 a quark (antiquark) with the spin-

flavor i. For instance, �u # annihilates an antiquark with
flavor �u and Sz ¼ �1=2. The corresponding Wick’s con-
tractions of these operators read

For the process depicted in Fig. 1, the Lagrangian of

Eq. (23) provides the following amplitudes (H SUð6Þ):

H SUð6Þ ¼ H SUð6Þ
þ þH SUð6Þ� ; (28)

with

H SUð6Þ
þ ¼ 1

12f26

�
3s�X4

i¼1

q2i

�
h0jMi0

j0M
k0
l0 ĜþM

yi
j Myk

l j0i

� m2
6

12f26
h0jMi0

j0M
k0
l0 ĜMMyi

j Myk
l j0i; (29)

H SUð6Þ� ¼ u� t

4f26
ðGd � GcÞ; (30)

where

Ĝ þ ¼: 1
2 Trð½My;M�2Þ :; ĜM ¼: Tr½ðMþMyÞ4� :;

(31)

and

 Gd þ Gc: (33)

4Matrices, Ai
j, in the dimension-six space are constructed as a

direct product of flavor and spin matrices. Thus, an SU(6) index i
should be understood as i  ð	;
Þ, with 	 ¼ 1; 2; 3 and 
 ¼
1; 2 running over the (fundamental) flavor- and spin-quark
degrees of freedom, respectively.

5Our convention is such that ð �d�uÞ is a standard basis of

SU(2)—that is, �d ¼ j1=2; 1=2i and �u ¼ j1=2;�1=2i. Thus,

�u, �d, �s is a standard basis of the 3� representation of SU(3)

with the Swart’s convention [90].
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In these expressions, s ¼ ðq1 þ q2Þ2, t ¼ ðq1 � q3Þ2, u ¼
ðq1 � q4Þ2, j0i is the hadron vacuum state, and : � � � :
denotes the normal product.

For a fully SU(6)-symmetric theory, and because of
Bose statistics, the interaction must be symmetric under
the simultaneous exchange ði; jÞ $ ðk; lÞ and q1 $ q2 or
ði0; j0Þ $ ðk0; l0Þ and q3 $ q4. This can be realized in two
different manners: i) being both symmetric in flavor and
momentum spaces, or ii) being both antisymmetric in
flavor and momentum spaces. This corresponds to the

decomposition H SUð6Þ ¼ H SUð6Þ
þ þH SUð6Þ� . The first of

the amplitudes turns out to be purely s-wave, whileH SUð6Þ�
describes p-wave scattering when mesons are degenerate
in mass.

In terms of SU(6) projectors, the above amplitudes read
(see Appendix B for details):

H SUð6Þ
þ ¼ 1

6f2

�
3s�X4

i¼1

q2i

�
ð�12P1 � 6P35s

� 2P189 þ 2P405Þ � m2
6

3f2
ð23P1 þ 10P35s

� 2P189 þ 2P405Þ; (34)

H SUð6Þ� ¼ 3
u� t

f2
P35a : (35)

We will not discuss in this work the p-wave part, and
we will focus here on the s-wave amplitude. However,

H SUð6Þ� will lead to a nonvanishing s-wave contribution
for pseudoscalar-vector-meson scattering when SU(6)
symmetry-breaking mass terms are considered, since in
that case u� t provides a nonzero projection into the s
wave. We return to this point below.

D. SU(6) spin-flavor symmetry-breaking effects

The SU(6) spin-flavor symmetry is severely broken in
nature. Certainly, it is mandatory to take into account mass-
breaking effects by using different pseudoscalar and vector
mesons’ masses. However, this cannot be done by just

using these masses in the kinematics of the amplitudes
derived in the previous subsection, as this would lead
to flagrant violations of the soft pion theorems in the
PV ! PV sector due to the large vector-meson masses.
Instead, the proper mass terms have to be added to the
Lagrangian to give different mass to pseudoscalar and
vector mesons while preserving, or softly breaking, chiral
symmetry. In addition, SUð2Þspin invariance must also be

maintained, since in the s-wave sector it is equivalent to
angular momentum conservation.
To this end, we consider the following mass term [which

replaces that in Eq. (22)]:

LðmÞ
SUð6Þ ¼

f26
4

Tr½MðU6 þUy
6 � 2Þ�

þ f26
32

Tr½M0ð ~
U6 ~
U
y
6 þ ~
Uy

6 ~
U6 � 6Þ�: (36)

Here, the matrixM acts only in flavor space and is to be
understood as M � I2
2, and similarly for M0, so that
SUð2Þspin invariance is preserved. Besides, these matrices

should be diagonal in the isospin basis of Eq. (2) so that
charge is conserved. Also, ~
 stands for I3
3 � ~
.

The first term in LðmÞ
SUð6Þ is fairly standard. It preserves

spin-flavor symmetry when M is proportional to the iden-
tity matrix and introduces a soft breaking of chiral sym-
metry when M is small. As it is shown below, this term
gives the same mass to pseudoscalar and vector mesons’
multiplets. Note that terms of this type are sufficient to give
different mass to pseudoscalars (e.g., � and K) when
SUðNFÞ is embedded into SUðN0

FÞ (a larger number of
flavors). They are not sufficient, however, to tailor different
P and V masses when SUðNFÞ is embedded into SUð2NFÞ
(spin-flavor).

The second term in LðmÞ
SUð6Þ only gives mass to the vector

mesons: indeed, if one would retain in U6 only the pseu-

doscalar mesons, U6 would cancel with Uy
6 (since these

matrices would commute with ~
), resulting in a cancella-
tion of the whole term. This implies that this term does not
contain contributions of the form PP (pseudoscalar mass
terms) or PPPP (purely pseudoscalar interaction). In ad-
dition, whenM0 is proportional to the identity matrix (i.e.,
exact flavor symmetry) chiral symmetry is also exactly
maintained, because the chiral rotations of U6 commute
with ~
. This guarantees that this term will produce the
correct PV ! PV contributions to ensure the fulfillment of
the soft-pion WT theorem [67,68] even when the vector
mesons’ masses are not themselves small.6

FIG. 1. Diagrammatic representation of four-meson scattering
in SU(6).

6Under a chiral transformation, the vector-meson mass term
(m2

VTrð�2
VÞ) will give rise to a PVV term that can only get

canceled by the corresponding variation of the PPVV contact
term [recall �P�Oð1Þ and �V �OðPV; VVÞ] to ensure that the
whole Lagrangian is invariant. Thus, the contact PPVV piece is
fixed by chiral symmetry.
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Expanding to order�2
6 to isolate the genuine mass terms

involved, we find

Tr½MðU6þUy
6 �2Þ�¼� 2

f26
TrðM�2

6ÞþOð�4
6Þ

¼� 2

f26
Tr½Mð�2

Pþ�2
VÞ�þOð�4

6Þ;

Tr½M0ð ~
U6 ~
U
y
6 �3Þ�¼ 1

f26
TrðM0½ ~
;�6�½ ~
;�6�Þ

þOð�3
6Þ

¼� 8

f26
TrðM0�2

VÞþOð�3
6Þ: (37)

Therefore,

L ðmÞ
SUð6Þ ¼ �1

2TrðM�2
PÞ� 1

2Tr½ðMþM0Þ�2
V�þOð�4

6Þ:
(38)

As advertised, M is the only source of mass for the
pseudoscalars, and soM ¼ diagðm2

�;m
2
�; 2m

2
K �m2

�ÞI2
2

is the usual SU(3) mass-breaking matrix. On the other
hand, vector mesons pick up a contribution to their mass
from both M and M0.

For simplicity, in this exploratory work we will neglect
the chiral breaking mass term (M ¼ 0) and take a com-
mon mass,mV , for all vector mesons (M0 ¼ m2

VI3
3I2
2).
We use a vector-meson nonet averaged mass value
mV ¼ 856 MeV. Let us stress that the simplifying choice,
M ¼ 0, M0 ¼ m2

V , refers only to the interaction terms

derived from the Lagrangian LðmÞ
SUð6Þ. For the evaluation of

the kinematical thresholds of different channels, we use
physical meson masses.

With the abovementioned choice, picking up the terms

of Oð�4
6Þ in LðmÞ

SUð6Þ yields the following four-meson inter-

action terms:

L ðm;intÞ
SUð6Þ ¼ m2

V

8f2
Tr

�
�4

6 þ ~
�2
6 ~
�

2
6 �

4

3
~
�6 ~
�

3
6

�
: (39)

As noted above, this Lagrangian contains only PPVV
and VVVV interactions and no PPPP ones. In addition, the
PPVV terms are consistent with soft-pion (or soft Nambu-
Goldstone boson) theorems.

Altogether, after s-wave projection, for massless pseu-
doscalar mesons and equal mass vector mesons, the am-
plitude of the process depicted in Fig. 1 takes the form

H ¼ ðH SUð6Þ
þ þ �H SUð6Þ

þ þH SUð6Þ� ÞM¼0;M0¼m2
V

¼ 1

6f2

�
3s�X4

i¼1

q2i

�
Dkin þ m2

V

8f2
Dm þ 1

2f2
m4

V

s
Da:

(40)

Here, Dkin ¼ �12P1 � 6P35s � 2P189 þ 2P405. It ac-

counts for the first (kinetic) term in Eq. (34), which reduces

to the chirally invariant interaction proportional to Ĥ1 in

Eq. (4). Dm is a matrix in spin-flavor space determined by

the interaction Lðm;intÞ
SUð6Þ of Eq. (39). This matrix is identi-

cally zero in the PP ! PP subspace, and it cannot be

expressed as a sum of SU(6) projectors, since Lðm;intÞ
SUð6Þ

breaks spin-flavor symmetry, although it is of course YIJ
block-diagonal.
The last matrix,Da, is just 6P35a in the PV ! PV sector

and zero otherwise. H SUð6Þ� of Eq. (35) has now a
nonvanishing contribution and, once again, neglecting
these terms would introduce a large violation of chiral
symmetry, proportional to the vector-meson mass. This
comes about because u� t gives rise to nonzero s-wave
contributions for PV ! PV scattering, once pseudoscalar-
vector mass breaking is taken into account. Indeed, in the
limit of massless Nambu-Goldstone bosons and mass-
degenerated vector mesons, one finds for the PV sector
(assuming that legs 1 and 3 in Fig. 1 are of type P and 2 and
4 of type V)

hu� til¼0 ¼ m4
V

s
ðPV ! PVÞ: (41)

The same average vanishes for PP or VV sectors, since
there Bose symmetry still applies.
Regarding the fulfillment of the relations Eqs. (15)–(19)

in Subsec. II B, we can see that H of Eq. (40) reduces to

H PP!PP ¼ s

2f2
Dkin (42)

in the PP sector. On the other hand, in the PV sector, the
relation

1
3Dkin þ 1

4Dm þDa ¼ 0 ðPV ! PV sectorÞ (43)

guarantees that H ðsÞ vanishes at the threshold in this
sector, and moreover,

H PV!PV ¼ ðs�m2
VÞ

2f2

�
Dkin �m2

V

s
Da

�
: (44)

These expressions fulfill the relations Eqs. (15)–(19) by
taking FRðsÞ ¼ s� 1

2

P
4
i¼1 q

2
i for the symmetric represen-

tations and FRðsÞ ¼ ðs� 1
2

P
4
i¼1 q

2
i Þm2

V=s for the antisym-

metric ones.
We have also considered spin-flavor symmetry-breaking

effects due to the difference between pseudoscalar- and
vector-meson decay constants. The pseudoscalar-meson
decay constants, fP, are defined by

h0j �q1���5q2ð0ÞjPðpÞi ¼ �i
ffiffiffi
2

p
fPp

� (45)

and the vector-meson decay constants, fV , by

h0j �q1��q2ð0ÞjVðp; �Þi ¼
ffiffiffi
2

p
mVfV�

�; (46)

where �q1 and q2 are the quark fields, �� is the polarization

vector of the meson, and mV its mass. With the above
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definitions, in the limit where either the quark or the
antiquark that forms the meson becomes infinitely heavy
and thus spin symmetry turns out to be exact, QCD predicts
fP ¼ fV [98]. This guarantees that the normalizations of
the coupling constants in Eqs. (45) and (46) are consistent.
For light mesons, there exist sizable corrections to the
heavy-quark symmetry-type relation fP ¼ fV . For in-
stance, the ratio f�=f� is of the order of 1.7. To take this

into account, in Eq. (40) we apply the prescription

1

f2
! 1

ðf1f2f3f4Þ1=2
; (47)

where the labels 1, 2, 3, and 4 refer to the four interacting
mesons.

The meson decay constants (taken from Ref. [65]) and
masses used throughout this work to compute the kine-
matical thresholds and loop functions are compiled in
Table II, while the coupled-channel matrices Dkin, Dm,
andDa can be found in the tables provided in Appendix A.
We assume an ideal mixing in the vector-meson sector—

namely, ! ¼
ffiffi
2
3

q
!1 þ 1ffiffi

3
p !8 and � ¼

ffiffi
2
3

q
!8 � 1ffiffi

3
p !1. The

conventions of [90] are used throughout. Note that for the
Y ¼ 0 channels, G parity is conserved,7 and that all Y ¼ 0
states have well-defined G parity except the �K�K and K� �K
states, but the combinations ð �KK� � K �K�Þ= ffiffiffi

2
p

are actually
G-parity eigenstates with eigenvalues of �1. These states
will be denoted as ð �KK�ÞS and ð �KK�ÞA, respectively.

A final remark is in order here. The new model intro-

duced in this work is given byLkin
SUð6Þ þLðmÞ

SUð6Þ [namely, the

first term in Eq. (22) and that in Eq. (36)]. It implements
the approximate spin-flavor chiral symmetry (as opposed
to the standard flavor chiral symmetry) advocated by
Caldi and Pagels [79,80]. In their approach, vector
mesons are identified as dormant Nambu-Goldstone
bosons. Lkin

SUð6Þ displays such extended chiral symmetry,

while LðmÞ
SUð6Þ models the pattern of symmetry breaking.

Regarding this latter term, it should be noted that there is
a large ambiguity in choosing it. Being a contact term, it
cannot contain PPPP contributions, due to chiral symme-
try, and for the same reason, the terms PPVV are also
fixed, as already noted. However, VVVV terms are not
so constrained. One can easily propose alternative forms

for LðmÞ
SUð6Þ, which would still be acceptable from general

requirements but would yield different VVVV inter-
actions. For instance, any term of the form

TrðM ~
U6 ~
U
y
6 ~
U6 ~
U

y
6 � � �Þ, with the indices of the ~


matrices contracted in any order, could be present in

LðmÞ
SUð6Þ. Our choice in Eq. (36) is just the simplest or

minimal one.8 Of course, such minimal choices are also
present in any other model, often tied to some expansion
parameter. We have not yet identified a hierarchy to choose
among the various available operators. Ultimately, the
ambiguity should be fixed by requiring consistency with
the asymptotic behavior of QCD [95]. In what follows, we
will present results obtained with the interaction H given
in Eq. (40).

III. BS MESON-MESON
SCATTERING AMPLITUDE

To describe the dynamics of resonances, one needs to
have exact elastic coupled-channel unitarity. For that pur-
pose, we solve the coupled-channel BS equation and use
the SU(6) broken potential defined above to construct
its interaction kernel. In this way, in any YIJ sector, the
solution for the coupled-channel s-wave scattering
amplitude, TYIJ, satisfies exact coupled-channel unitarity.
In the so called on-shell scheme [23,24,28,36], TYIJ is
given by

TYIJðsÞ ¼ 1

1� VYIJðsÞGYIJðsÞV
YIJðsÞ: (48)

VYIJðsÞ (a matrix in coupled-channel space) stands for the
projection of the scattering amplitude, H , in the YIJ
sector. GYIJðsÞ is the loop function and is diagonal in the
coupled-channel space. Suppressing the indices, it is writ-
ten for each channel as

GðsÞ ¼ i
Z d4q

ð2�Þ4
1

q2 �m2
1 þ i�

1

ðP� qÞ2 �m2
2 þ i�

;

(49)

wherem1 andm2 are the masses of the mesons correspond-
ing to the channel, for which we take physical values,
and P� is the total four-momentum (P2 ¼ s). The loop
function involves a logarithmic ultraviolet divergence
which needs to be dealt with. Extracting a suitable infinite
constant, one can write

TABLE II. Values for the meson masses and decay constants
used in the numerical calculations. All units are in MeV. Besides,
we use mV ¼ 856 MeV as a parameter of the Lagrangian.

m� 138.0 f� 92.4

mK 495.7 fK 113.0

m� 547.5 f� 110.9

m� 775.5 f� 153

mK� 893.8 fK� 153

m! 782.7 f! 153

m� 1019.5 f� 163

7Recall that the G-parity operation can be defined through its
action on an YII3 eigenstate as GjYII3i ¼ �ð�1ÞY=2þIj � YII3i,
with � as the charge conjugation of a neutral nonstrange member
of the SU(3) family.

8As it turns out, the same term has been proposed by Caldi
[99] as a Lorentz symmetry restoration correction.
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GðsÞ ¼ �GðsÞ þG½ðm1 þm2Þ2�: (50)

The finite function �GðsÞ can be found in Eq. (A9) of
Ref. [32], and it displays the unitarity right-hand cut
of the amplitude. On the other hand, the constant
G½ðm1 þm2Þ2� contains the logarithmic divergence.
After renormalizing using the dimensional regularization
scheme, one finds

G½s ¼ ðm1 þm2Þ2�

¼ 1

16�2

�
að�Þ þ 1

m1 þm2

�
m1 ln

m2
1

�2
þm2 ln

m2
2

�2

�	
;

(51)

where � is the scale of the dimensional regularization.
Changes in the scale are reabsorbed in the subtraction
constant að�Þ, so that the results remain scale independent.

We fix the renormalization scheme (RS) used in this
work as follows. We adopt a reasonable scale � ¼ 1 GeV,
and we allow að�Þ to vary around the value �2 to best
describe the known phenomenology in each YIJ sector.9

Results, of course, have some dependence on the adopted
RS, as they also depend on the assumed SU(6)-breaking

pattern of the couplings (1=f2 ! 1=ðf1f2f3f4Þ1=2).
Indeed, both choices are not independent from each other.
That is the reason why we do not mind to scale, for
instance, the �� ! �� channel by 1=ðf�f�Þ instead of

by 1=f2�, as one will naturally expect from chiral symmetry
[97], since a change in the renormalization scale or in the
subtraction constant for this channel would easily cover the
differences among these two choices for the couplings.

Since fV is significantly higher than fP, the adopted
breaking pattern for the couplings guarantees that
low-lying JP ¼ 0þ resonances, such as the f0ð980Þ or the
f0ð600Þ, described previously by unitarizing pseudoscalar-
pseudoscalar meson amplitudes [18,19,22,30], are not
much affected by the inclusion of vector-vector meson
channels. It will be shown below that the adopted RS
successfully describes the main features of these positive-
parity scalar resonances.

Other on-shell renormalization schemes can be also
adopted. For instance, one can take a certain scale, �,
such that Gð�2Þ ¼ 0 and the TYIJ amplitude reduces

to the two-particle irreducible amplitude VYIJ, i.e.,
TYIJð�2Þ ¼ VYIJð�2Þ. This fixes the value of the subtrac-
tion constant G½ðm1 þm2Þ2�. This approach has been
adopted in [36,41,44,46,65] for meson-baryon s-wave
scattering. The use of one RS or another is part of the
uncertainties of the present approach, although they
are smaller than those associated to our incomplete knowl-
edge of the two-particle irreducible amplitude VYIJ. We do
not expect large differences in the gross features of the
picture that emerges, although the exact position of the
poles can, of course, be affected by modifying the RS. In
the present work, the use of the RS based on dimensional
regularization, as outlined above, is preferable, because
the same RS has been adopted in previous studies of
vector-meson–vector-meson (VV) and pseudoscalar-
meson–vector-meson (PV) scattering within the hidden
gauge unitary approach [43,69,70]. This makes it easier
to compare our results with those obtained in these
references.

IV. RESULTS AND DISCUSSION

In this section, we show the results obtained using the
approach described above and compare them with those
obtained earlier within different schemes and to data, when
possible.
The mass and widths of the dynamically generated

resonances in each YIJ sector are determined from the
positions of the poles, sR, in the second Riemann sheet
(SRS) of the corresponding scattering amplitudes—
namely, sR ¼ M2

R � iMR�R. For narrow resonances
(�R � MR),

ffiffiffiffiffi
sR

p �MR � i�R=2 constitutes a good

approximation. In some cases, we also find real poles in
the first Riemann sheet (FRS) of the amplitudes that cor-
respond to bound states.
The coupling constants of each resonance to the various

meson-meson states are obtained from the residues at the
pole, by matching the amplitudes to the expression

TYIJ
ij ðsÞ ¼ gigj

ðs� sRÞ (53)

for energy values s close to the pole. The couplings, gi, are
complex in general.
Since our starting point is the chiral dynamics governing

the interaction among Nambu-Goldstone bosons, low-
energy results should be similar to those previously
obtained by unitarizing one-loop ChPT amplitudes
[18,19,30]. Because of the inclusion of vector-meson de-
grees of freedom, the scalar sector has an enlarged
coupled-channel space in our case. However, we expect
small effects from these new degrees of freedom on the
low-lying scalar resonances, since vector-meson–vector-
meson thresholds are relatively far away from the low-
energy region, where the pseudoscalar-pseudoscalar inter-
action dominates.

9One can instead use an ultraviolet hard cutoff � to renor-
malize the loop function. The relation between the subtraction
constant að�Þ, at the scale � and � is

að�Þ ¼ � 2

m1 þm2

�
m1 ln

��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

1

q
�

	

þm2 ln

��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

2

q
�

	�
: (52)

For � ¼ 0:7–1 GeV, and assuming a cutoff of the same order of
magnitude, �2 turns out to be a natural choice for the subtrac-
tion constant að�Þ.
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To facilitate the discussion of our results, let us point out
the main differences between the approach advocated in
the present work and the approaches followed in Ref. [43]
for the pseudoscalar-vector sector and in Refs. [69,70] for
the vector-vector one. These latter works are based10 on the
formalism of the hidden gauge interaction for vector me-
sons [74,75]. The main differences are:

(1) Previous works [43,69,70] treat separately
pseudoscalar-pseudoscalar, pseudoscalar-vector
and vector-vector meson sectors. However, for in-
stance, vector-vector channels could modify the
properties of some axial-vector resonances, gener-
ated in Ref. [43], where only pseudoscalar-vector-
meson interactions are considered. Within the for-
malism of the hidden gauge interaction for vector
mesons, there exist no s-wave PV ! VV transition
potentials at tree level, and thus it is difficult to
overcome this limitation in that scheme.

(2) Pseudoscalar-vector channels [43]: Although, in a
first view, the two-particle irreducible amplitude
(VYIJ) employed here and that used in [43] might
look quite different, this is not really the case, and

they just differ at order Oðm2; ~k2Þ (with m and k�,
the mass and the momentum of the Nambu-
Goldstone boson) in the chiral expansion, which is
not fixed by the LO WT theorem [67,68] that both
approaches satisfy. Thus, in both schemes, the po-
tentials VYIJ totally agree at LO Oðk�Þ and take the
common value

VYIJ ¼ CYIJmVk
0=f2; (54)

where the CYIJ coupled-channel matrices are given
in [43]. The PV ! PV amplitudes vanish in the soft
Nambu-Goldstone boson limit k0 ! 0, as required
by the LO WT theorem (see discussion in [85] for
some more details).
As a consequence, and apart from the influence
of the vector-meson–vector-meson channels (see
point below), of the use here of massless Nambu-
Goldstone bosons and physical decay constants in
the computation of VYIJ, we expect a rather good
agreement with the results of Ref. [43] for the
lowest-lying axial resonances, which will not be
much affected by higher orders of the chiral
expansion.

(3) Vector-vector channels [69,70]: In Refs. [69,70],
contact, box, and t- and u-exchange contributions
were considered, within a scheme based on the

hidden gauge interaction for vector mesons. In that
approach, the exchange and contact terms are the
dominant mechanisms. The exchange mechanism
is closely related to the kinetic interaction derived
within our SU(6)-symmetric scheme (Dkin). Indeed,
one finds that by symmetrizing the interaction in
the �� channel in Table I of Ref. [69] and adding a
factor 4=3, our SU(6)-symmetric �� interaction is
reproduced (Dkin can be looked up in Appendix A).
Note that in the �� channel, SU(6) symmetry im-
plies having symmetric interactions under the ex-
change I $ J.
As we commented above, the kinetic interaction
of our model is of the form ½ð35 � 35Þ35a � ð35 �
35Þ35a�1 in the t channel. This can be regarded as the
zero-range t-channel exchange of a full 35 irreduc-
ible representation, carried by an octet of spin 0
and a nonet of spin 1 mesons of even parity. In
Refs. [69,70], these kinetic terms are originated
by the t exchange of the time component of vector
mesons, which has certain resemblance with our
zero-range exchange of 0þ mesons. Parity and
angular momentum conservation also allow the ex-
change of 1þ and 2þ mesons. The latter exchange is
missing in both approaches, and the former one is
included within our scheme, as required by SU(6)
symmetry, while it is not present in the hidden gauge
formalism adopted in Refs. [69,70]. We do not see
a priori any compelling reason to favor either of the
two approaches.
The contact terms in both approaches seem to be
totally unrelated. We remind here of the ambiguities
mentioned above associated to this term and that,
presumably, its actual nature can only be fixed by
the asymptotic behavior of QCD.

(4) We use fV � fP for those channels which involve
vector mesons, while a universal 1=f2 coupling is
assumed for all channels in the previous works.
As commented above, this is somehow related
with the RS.

In what follows, we show results for the different YIJ
sectors, considering only nonnegative hypercharge values.

A. Hypercharge 0, isospin 0, and spin 0

There are eight coupled channels, i.e.,��, �KK, ��, ��,
!!, !�, �K�K�, and ��. In all cases, the G parity is
positive. Four poles are found on the complex plane of
the SRS. These are compiled in Table III, where the moduli
of the couplings to the different channels [see Eq. (53)] are
also given. The lowest two poles can be easily identified
with the f0ð600Þ and f0ð980Þ resonances. There are some
differences with other works [22,30], mainly because we
have neglected the pseudoscalar-meson mass terms and
have incorporated vector-meson–vector-meson channels.

10Strictly speaking, the study of axial-vector resonances carried
out in Ref. [43] does not use the hidden gauge formalism. There,
a contact WT-type Lagrangian is employed. However, the tree-
level amplitudes so obtained coincide with those deduced within
the hidden gauge formalism, neglecting q2=m2

V in the t-exchange
contributions [100] and considering only the propagation of the
time component of the virtual vector mesons.
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On the other hand, the identification of the other two poles
is not so direct, although it is tempting to associate them to
the f0ð1370Þ and f0ð1710Þ resonances. Thus, in our model,
the f0ð1370Þ resonance has a sizeable coupling to the ��
channel, which would lead to a four-pion decay mode. For
the decay of the resonance, the �� channel is more relevant
than the other ones (for instance, the !! or �K�K�), thanks
to the large width of the � meson, which enhances the
decay of the resonance to the decay products of the �� pair.
Indeed, the width of these f0 resonances will be enhanced
when new mechanisms constructed out of VPP p-wave
couplings are considered (see, for example, Fig. 2) [70].
For instance, since the pole that we have associated to the
f0ð1370Þ is placed below the two-�-meson threshold, it can
decay neither to this channel nor to those which are even
heavier. Thus, the width of around 124 MeV that can be
read off from Table III accounts only for the decay of the
resonance into the open channels (��, �KK,��). However,
the resonance can decay into two virtual � mesons, and
each of them subsequently will decay into two pions,
giving rise to four- and two-pion decay modes through
processes like those sketched in Fig. 2. These decays will
increase the width of the resonance [70]. Obvious modifi-
cations to these mechanisms should be considered, taking
into account the specific details of the dominant decays
of the corresponding vector mesons, for other channels.
For instance, since the!meson decays predominantly into
three pions, the coupling of a resonance to two ! mesons
will produce six- or four-pion decays.

Following the findings of Ref. [70], a substantial in-

crease of both the f0ð1370Þ and f0ð1710Þ widths with

respect to those deduced from the pole position is to be

expected. On the other hand, the above mechanisms could

explain a large K �K decay mode of the f0ð1710Þ resonance
that, in our model, couples strongly to the K� �K� and

the �� channels. This also supports the picture of

Ref. [101], where it is guessed that the f0ð1710Þ is domi-

nantly s�s. Besides, we predict a sizeable decay of this

resonance into ��.
The experimental f0ð1500Þ, on the other hand, has

a mass of 1505� 6 MeV, and it is relatively narrow (� ¼
109� 7 MeV), with dominant decays into two- and four-

pion channels. Owing to the above discussion, it would be

difficult to assign it to our lowest pole, and thus it is a clear

candidate to have a dominant glueball structure [102,103].

This is also in agreement with the recent claims of

Albaladejo and Oller [104], although it looks more difficult

to reconcile the picture that emerges from our analysis with

this latter work in the case of the f0ð1710Þ resonance. This
is because in Ref. [104], the f0ð1710Þ resonance is identi-
fied as an unmixed glueball with a large �0�0 coupling, and
this latter channel is not included in our scheme. In

Ref. [70], only the f0ð1370Þ and f0ð1710Þ resonances are
found as well, and in agreement with our findings, there the

f0ð1500Þ is not dynamically generated either. However,

there appear some differences with our results, since in

this latter reference the f0ð1370Þ is mainly ��, and the

f0ð1710Þ is mostly K� �K�. Such a distinction is not so clear
in our scheme, where !!, !�, and �� channels play a

more significant role than in the hidden gauge unitarity

approach advocated in [70].
In previous studies of pseudoscalar-pseudoscalar and

vector-vector interactions, the first three channels and the

last five channels in Table III were considered separately

(see, for instance, Refs. [18,19,70], respectively). It is

interesting to check how the results change if they are

also considered separately—that is, if all couplings that

connect the pseudoscalar-pseudoscalar and vector-vector

meson sectors are set to zero. Comparing the results of

Tables III and IV, we observe that, although the number of

resonances is the same in both cases (four), their positions

and the relative strengths of couplings to different channels

have changed. The inclusion of the three pseudoscalar-

pseudoscalar channels has a large impact on the two poles

of higher energy.

B. Hypercharge 0, isospin 0, and spin 1

In this sector (see Table V), there are two sets of quan-

tum numbers: IGðJPCÞ equals 0�ð1þ�Þ and 0þð1þþÞ,
corresponding to those of the h1 and f1 resonances,

respectively. Interactions turn out to be block-diagonal,

since strong interactions conserve G parity and charge

conjugation.

FIG. 2. Resonance (R) decay to two (left) or four (right)
pseudoscalar mesons (P, P0, P00, P000) through its s-wave (hexa-
gon) coupling to two vector mesons (V, V0) and the p-wave
coupling (ovals) of these latter mesons to two pseudoscalar
mesons.

TABLE III. Pole positions and moduli of the couplings jgj
(MeV units) in the ðY; I; JÞ ¼ ð0; 0; 0Þ sector. IGðJPCÞ ¼
0þð0þþÞ. The subtraction constant has been set to its default
value, a ¼ �2. Possible PDG counterparts: f0ð600Þ, f0ð980Þ,
f0ð1370Þ, and f0ð1710Þ.ffiffiffiffiffi
sR

p
�� �KK �� �� !! !� �K�K� ��

ð635;�202Þ 3516 432 333 7592 7909 117 7306 1850

(969, 0) 28 2983 2477 3393 2401 1627 4305 3831

ð1350;�62Þ 553 3257 840 1336 2841 7074 10697 10647

ð1723;�52Þ 43 853 3154 318 408 3400 2470 13698

GARCÍA-RECIO et al. PHYSICAL REVIEW D 83, 016007 (2011)

016007-14



For 0�ð1þ�Þ, there are five coupled channels—namely,
��, �!, ��, ð �KK�ÞA ¼ 1ffiffi

2
p ð �KK� � K �K�Þ, and K� �K�.

Three poles are found in the complex plane, which can
be tentatively associated to the h1ð1170Þ, h1ð1380Þ, and
h1ð1595Þ. (These are the only three 0�ð1þ�Þ resonances
below 2 GeV quoted in the PDG [84].) Naturally, huge
couplings are found for the h1ð1170Þ, h1ð1380Þ, and
h1ð1595Þ resonances to the ��, ð �KK�ÞA, �!, and �K�K�
channels, respectively. While the two latter resonances are
omitted from the summary PDG table, and even the isospin
and G parity of the h1ð1380Þ is not quoted, the h1ð1170Þ is
firmly established experimentally. We predict for it a width
smaller than that quoted in the PDG, because within our
model it comes out lighter than the experimental one, and
thus the available phase space for �� decay is much
smaller.

The h1ð1170Þ and h1ð1380Þ obtained here are placed at
similar positions and have similar couplings and widths as
those obtained in Ref. [43]. This is not surprising since, as
already noted, at LO in the chiral expansion our coupled-
channel interaction for PV ! PV scattering coincides
with that used in Ref. [43].

Within our scheme, the vector-vector channel K� �K�
plays an important role in the dynamics of the pole placed
at ð1600;�67Þ MeV. Presumably, this is the reason why a
third h1 pole was not found in Ref. [43], which misses the
K� �K� channel. On the other hand, a K� �K� resonance is
found in Ref. [70], located almost at the threshold [

ffiffiffiffiffi
sR

p ¼
ð1802;�39Þ]. This pole was not identified in Ref. [70] with

the h1ð1595Þ because of the very different mass. It can be
conjectured that this pole corresponds to the one found in
our approach at ð1600;�67Þ. The latter is strongly modi-
fied by the inclusion of the !� channel in the dynamics.
If the picture presented by our model is correct, with the
pole at ð1600;�67Þ assigned to h1ð1595Þ, this resonance
cannot be generated just by !�, as attempted in Ref. [43].
Indeed, the diagonal !� potential is zero in this sector.
And also it cannot be described using only K� �K�, as in
[70], since the mass turns out to be too high, and further-
more, its dominant decay mode, !�, is ignored.
In the 0þð1þþÞ subsector, only one pole is found, at

ð1286; 0Þ, quite similar to that reported in Ref. [43]. The
PDG quotes three f1 resonances below 2 GeV: f1ð1285Þ,
f1ð1420Þ, and f1ð1510Þ. The f1ð1285Þ has a mass of
1281:8� 0:6 MeV and a width of 24:3� 1:1 MeV; the
f1ð1420Þ has a mass of 1426:4� 0:9 MeV and a width of
54:9� 2:6 MeV; and the f1ð1510Þ has a mass of 1518�
5 MeV and a width of 73� 25 MeV. The decay modes of
f1ð1420Þ and f1ð1510Þ are dominated by the ðK �K�ÞS mode.
On the other hand, because the f1ð1285Þ is below the �KK�
threshold, it cannot decay through this channel, although
the branching fraction into �KK� is about 10% and it
might hint at a non-negligible �KK� component in its
wave function.
Because of the position of the pole at (1286, 0), it makes

sense to assign this pole to the f1ð1285Þ resonance, as it
was done in Ref. [43]. The reason why no width is found
for this resonance, while the PDG quotes 24 MeV for it, is
that there are other decay channels different to VP that are
obviously not considered in our scheme [like 4� (33%),
��� (52%), or K �K� (10%)11]. Nevertheless, the assign-
ment of the pole to the f1ð1420Þ resonance, whose domi-
nant decay is ðK �K�ÞS and is also placed close to the
threshold, cannot be completely discarded either.

C. Hypercharge 0, isospin 0, and spin 2

In this sector, there are five coupled channels: ��, !!,
!�, K� �K�, and ��, and we find two poles (see Table VI)
in the SRS/FRS of our amplitudes. Experimentally,
many f2 resonances below 2 GeV have been reported,
including f2ð1270Þ, f2ð1430Þ, f02ð1525Þ, f2ð1565Þ,
f2ð1640Þ, f2ð1810Þ, f2ð1910Þ, and f2ð1950Þ. Most of
them [f2ð1430Þ, f2ð1565Þ, f2ð1640Þ, f2ð1810Þ, and
f2ð1910Þ] have not been confirmed yet. It is tempting to
associate the two f2 poles found within our approach to
the two lowest-lying confirmed resonances, f2ð1270Þ and
f02ð1525Þ. In the first case, the mass agrees well with that

quoted in the PDG; however, experimentally, the f2ð1270Þ
resonance is quite broad (�� 185 MeV), while in our
case, it appears as a bound state (pole in the FRS) of
zero width. Contributions as those depicted in Fig. 2 might

TABLE V. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð0; 0; 1Þ sector. IGðJPCÞ ¼ 0�ð1þ�Þ [h0s]
and 0þð1þþÞ [f0s]. We have slightly moved away from the
choice a ¼ �2 for the subtraction constants [see Eq. (51)] and
have used a ¼ �1:3 and a ¼ �2:9 for the 0�ð1þ�Þ and
0þð1þþÞ subsectors, respectively. Possible PDG counterparts:
h1ð1170Þ, h1ð1380Þ, h1ð1595Þ, and f1ð1285Þ.ffiffiffiffiffi
sR

p
�� �! �� ð �KK�ÞA �K�K� !� ð �KK�ÞS G

ð1006;�85Þ 52 26 4362 1192 1029 �
ð1373;�17Þ 2957 2484 1273 5322 1779 �
ð1600;�67Þ 2414 3655 1006 1033 12869 �
(1286, 0) 4089 6790 þ

TABLE IV. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð0; 0; 0Þ sector when only block-diagonal
pseudoscalar-pseudoscalar and vector-vector meson interactions
are used. IGðJPCÞ ¼ 0þð0þþÞ. Possible PDG counterparts:
f0ð600Þ, f0ð980Þ, f0ð1370Þ, and f0ð1710Þ.ffiffiffiffiffi
sR

p
�� �KK �� �� !! !� �K�K� ��

ð485;�156Þ 2807 600 86

ð990;�6Þ 862 2746 2146

(1217, 0) 3637 3111 1378 12465 13130

ð1981;�110Þ 848 1896 4984 3708 10747

11This latter decay mode can be easily understood from the
decay of the resonance to a virtual �KK� pair.
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provide a sizeable width to this pole. Besides, there exist
other mechanisms like d-wave �� decays, which could
also be important in this case because of the large available
phase space. Those associated to the left diagram of Fig. 2
are considered in Refs. [69,70]. Regarding our identifica-
tion of the f02ð1525Þ resonance, we find dominant couplings
to the K� �K� and �� channels, which will naturally ac-
count for the experimental dominant decay mode into K �K
of this resonance [84] through loop mechanisms (Fig. 2).
However, the mass position disagrees much more in this
case, while its sizeable coupling in our approach to ��
seems difficult to reconcile with its experimental small
branching fractions into �� and ����. Thus, we have
some reservation with this identification, and perhaps it
could also be possible to identify the pole with the reso-
nances f2ð1565Þ or f2ð1640Þ, which are placed closer to
the pole and have decay modes involving an even number
of pions or an !! pair. Possibly, further ingredients, like
d-wave K �K pairs, would also be needed to correctly de-
scribe the dynamics of the f02ð1525Þ resonance.

In Ref. [70], two states are also generated in this channel
and are associated with the f2ð1270Þ and f02ð1525Þ. The
real part of both poles agrees remarkably well with the
masses of these two resonances. This was achieved by a
suitable fine-tuning of the subtraction constants. A similar
good agreement could not be achieved within our scheme
by fine-tuning of the subtraction constants. In [70], these
two resonances appear mostly as ��- and �K�K�-bound
states, respectively. In our case, these channels are still
dominant but with a substantial contribution from the
subdominant channels. The hidden gauge interaction for
the vector meson model used in [70] and our approach are
related for PV ! PV scattering, thanks to chiral symme-
try, but they are completely unrelated in the VV sector,
where we believe that the nature of the contact terms can
only be unraveled by requiring consistency with the QCD
asymptotic behavior at high energies [95]. Besides, the VV
interactions of our model are weaker than those deduced in
Ref. [70] due to the use of fV instead of the pion decay
constant.

D. Hypercharge 0, isospin 1, and spin 0

There are five coupled channels in this sector: ��, K �K,
�!, ��, and K� �K�, and our model produces three poles
in the SRS of the amplitudes. These are compiled in

Table VII. The lowest pole should correspond to the
a0ð980Þ, which has been obtained in all previous studies
considering only pseudoscalar-pseudoscalar channels. In
our model, its couplings to the �� and K �K are large, in
agreement with the results of earlier studies and with the
data, but it also presents large couplings to the heaviest
channels, �� and �K�K�.
The pole at

ffiffiffiffiffi
sR

p ¼ ð1442;�5Þ can be associated to the

a0ð1450Þ. Within our scheme, it can decay to �� and K �K,
which is in agreement with the data. Its huge coupling to
!� will give rise to a significant !�� decay mode and to
an important enhancement of its width, thanks to the broad
spectral function of the � resonance.
On the other hand, the PDG only reports two a0 reso-

nances below 2 GeV. Therefore, the third pole in this sector
at

ffiffiffiffiffi
sR

p ¼ ð1760;�12Þ cannot be associated, in principle, to
any known state. Nevertheless, it is interesting to note that
in Ref. [70], an a0-like pole was found located close to the
K� �K� threshold, with large couplings to K� �K� and ��. On
the other hand, a resonance a0ð2020Þ has been reported in
[105], with these quantum numbers around 2 GeV (2025�
30 MeV), but extremely wide (330� 75 MeV). The large
width of this state makes less meaningful the difference
between its mass and that of our pole, which might be then
associated to this resonance. Still, it should be noted that
the a0ð2020Þ resonance is not yet firmly established and
needs further confirmation [84].

E. Hypercharge 0, isospin 1, and spin 1

There are two sets of quantum numbers in this sector:
1þð1þ�Þ and 1�ð1þþÞ, corresponding to those of the b1
and a1 resonances. Our results for this channel are com-
piled in Table VIII.
In the 1þð1þ�Þ subsector, two poles are found in the

SRS: the lower one can be associated to the b1ð1235Þ.
The predicted mass, width, and decay modes agree well
with the data [!� (dominant), �� (seen), 4� (< 50%),
and K �K� (14%)]. This state has also been found in
Refs. [37,43], and this indicates that it mainly originates
from the pseudoscalar-vector interaction. The second b1
state is found at

ffiffiffiffiffi
sR

p ¼ ð1642;�139Þ. It couples strongly
to K� �K� and lacks a clear PDG counterpart. A b1 state is
also found in Ref. [70] at �1700 MeV. It is tempting to
associate our second pole with the resonance b1ð1960Þ,

TABLE VI. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð0; 0; 2Þ sector. IGðJPCÞ ¼ 0þð2þþÞ. In
this subsector, the value of �2:77 for the subtraction constant in
the �� channel and �2:5 for the other ones have been used.
Possible PDG counterparts: f2ð1270Þ and f2ð1640Þ.ffiffiffiffiffi
sR

p
�� !! !� �K�K� ��

(1289, 0) 22138 17793 3642 18385 5865

ð1783;�19Þ 2235 1541 2846 5201 2427

TABLE VII. Pole positions and moduli of the couplings in the
ðY; I; JÞ ¼ ð0; 1; 0Þ sector (MeV units). The subtraction constants
a ¼ �3:5 for the PP channels and a ¼ �1 for the three VV
ones have been used. IGðJPCÞ ¼ 1�ð0þþÞ. Possible PDG coun-
terparts: a0ð980Þ, a0ð1450Þ, and a0ð2020Þ.ffiffiffiffiffi
sR

p
�� �KK !� �� �K�K�

ð991;�46Þ 2906 3831 775 4185 5541

ð1442;�5Þ 907 285 10898 677 3117

ð1760;�12Þ 790 1241 667 5962 5753
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although this state is not firmly established yet [105].
The b1ð1960Þ turns out to be also quite wide (� ¼
230� 50), as was the case of the a0ð2020Þ resonance
above, which makes less important the large difference
existing between the masses. Moreover, the data suggests
that b1ð1960Þ has nonzero overlaps with the �! and ��!
channels [106]. This is compatible with the features of our
pole. (Note that the �� coupling could lead to a nonzero
contribution to the ��! decay mode.)

In the 1�ð1þþÞ subsector, also two poles are found in
the SRS. It is tempting to associate them to the a1ð1260Þ
and a1ð1640Þ, the only two a1 resonances below 2 GeV
reported in the PDG [84].

The mass and width of a1ð1260Þ suffer from large
uncertainties, being quoted in the PDG values of 1230�
40 MeV and 250–600 MeV, respectively. Its dominant
decay modes are 3� and ð �KK�ÞA. This is in total agreement
with the largest couplings of our lightest pole in this sector.
In addition, the main properties of this pole are similar to
those of the pole found in the approach of Ref. [43].

The resonance a1ð1640Þ is much less-established experi-
mentally, and it is not reported in the approach of Ref. [70].
Nevertheless, our second pole couples strongly to VV
channels, and its features fit well with those known for
the a1ð1640Þ resonance.

F. Hypercharge 0, isospin 1, and spin 2

There are three coupled channels in this sector: �K�K�,
!�, and ��, and we find two poles, one in the FRS and a
second one in the SRS of the amplitudes (see Table IX),
which might be associated to the a2ð1320Þ and a2ð1700Þ
resonances. In our model, the bound state strongly couples
to the !� channel, which would give rise to the observed
3� and !�� decay modes of the a2ð1320Þ, thanks to the

width of the virtual � meson. Furthermore, if the pole
position were closer to the experimental mass, the width
would also increase. Fine-tuning of the subtraction con-
stant did not work to achieve a better agreement in the mass
position.
Little is known about the a2ð1700Þ, but the assignment

of our second pole with it might get supported by the
decays of this resonance into !� and K �K pairs. Indeed,
this latter decay mode can be obtained from the decays of
the resonance to virtual �� or K� �K� pairs, through loop
mechanisms as those depicted in Fig. 2. The hidden gauge
interaction for the vector meson model used in [70] gives
rise only to one pole, whose features correspond to the
heaviest of the poles found here. As it is the case here,
although its mass is close to that quoted in the PDG for the
a2ð1700Þ resonance, it turns out to be much narrower than
this resonance. This could be an indication of the fact that
either the identification of this pole with the a2ð1700Þ
resonance is incorrect or that other mechanisms, such as
coupled-channel d-wave dynamics, might play an impor-
tant role in this case.

G. Hypercharge 1, isospin 1=2, and spin 0

In this sector, there are five coupled channels: �K, �K,
�K�, !K�, and �K�, and three poles are found in the SRS
of the amplitudes. The first one, at

ffiffiffiffiffi
sR

p ¼ ð830;�170Þ, can
be associated to the K�

0ð800Þ. There is still a controversy

about the existence and the origin [107] of this broad
resonance (�� 550 MeV), as K� is its dominant decay
mode. It is very similar to the f0ð600Þ, and hence it cannot
be interpreted as a Breit-Wigner narrow resonance.
We identify the second pole at

ffiffiffiffiffi
sR

p ¼ ð1428;�24Þ with
the K�

0ð1430Þ resonance, despite the latter one being much

wider than the pole found in our scheme. The K� branch-
ing fraction for this resonance is 93%� 10% [84]. The
pole generated in our scheme couples more than twice
as strongly to the K� channel than to the �K one, which
is also open. However, the coupling to the K�� channel
is 4 times bigger and does not contribute to the width
of 48 MeV quoted in Table X because it is not open.
Nevertheless, the resonance can decay into a virtual K��
pair, which will significantly enhance the K� decay proba-
bility, thanks to the broad � and K� widths and the fact

TABLE IX. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð0; 1; 2Þ sector. IGðJPCÞ ¼ 1�ð2þþÞ. The
subtraction constant has been set to a ¼ �3:4. Possible PDG
counterparts: a2ð1320Þ and a2ð1700Þ.ffiffiffiffiffi
sR

p
!� �� �K�K�

(1228, 0) 11287 2637 6281

ð1775;�6Þ 1454 3167 4362

TABLE VIII. Pole positions and moduli of the couplings (MeVunits) in the ðY; I; JÞ ¼ ð0; 1; 1Þ
sector. IGðJPCÞ ¼ 1þð1þ�Þ [b0s] and 1�ð1þþÞ [a0s]. A subtraction constant of a ¼ �1:57 has
been used for positiveG-parity states. Possible PDG counterparts: b1ð1235Þ, b1ð1960Þ, a1ð1260Þ,
and a1ð1640Þ.ffiffiffiffiffi
sR

p �K�K� �� �! �� �� ð �KK�ÞS �� !� ð �KK�ÞA �� G

ð1234;�57Þ 4516 438 3398 900 9025 3165 þ
ð1642;�139Þ 10433 4214 912 3321 965 523 þ
ð1021;�251Þ 7988 7580 5284 929 �
ð1568;�145Þ 679 1423 6314 9973 �
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that the pole is not placed too far from the threshold (see
left panel of Fig. 2).

In Ref. [70], where only VV channels are considered,
only one pole at ð1643;�24Þ with a strong �K� coupling
was found. The authors of [70] argue, although with
reservations, that it might correspond to the Kð1630Þ reso-
nance. We conjecture that with an adequate subtraction
constant, the pole found in that reference might be similar
to our second pole, and thus it would rather correspond to
the K�

0ð1430Þ resonance.
The situation of the third pole is less clear. It would be

tempting to associate this third pole at
ffiffiffiffiffi
sR

p ¼ ð1787;�37Þ
to the Kð1630Þ (with yet undetermined JP [84]). Our pole
is wider than theKð1630Þ resonance, whose reported width
is compatible with zero. This could be explained because
our pole is located above the K�! threshold, and experi-
mentally it is below this threshold, although close to it.
Note that this channel gives rise to a decay mode K��, as
reported in the PDG. Nevertheless, we believe that such
identification would probably be incorrect, since the big-
gest couplings of the pole found here are those of the �K
and K�� channels. The first of these two channels is open,
giving rise to a sizeable width difficult to reconcile with the
narrow width quoted in the PDG for the Kð1630Þ. Besides,
the huge K�� coupling will lead to a K� decay mode
through the loop mechanisms sketched in Fig. 2, while the
decay mode observed in the PDG is K��. Note that the
pole at

ffiffiffiffiffi
sR

p ¼ ð1787;�37Þ also couples to the K�� chan-

nel, and that it will also contribute to the K� decay mode.
This suggests to identify the pole found here with the wide
K�

0ð1950Þ resonance, for which the decay mode observed in

the PDG is K�. Moreover, its large width (201� 90 MeV
[84]) make less meaningful the difference between its mass
1945� 22 and that of our pole. However, it should be
pointed out that the K�

0ð1950Þ resonance is not firmly

established yet and needs further confirmation [84].

H. Hypercharge 1, isospin 1=2, and spin 1

In this sector, there are eight coupled channels: K��,
K�, K!, K��, K�, K��, K�!, and K��, and four poles
are found on the SRS.

In the PDG, there appear three resonances below
2 GeV with these quantum numbers—namely K1ð1270Þ,

K1ð1400Þ, and K1ð1650Þ—while here we found four
poles.
In Ref. [43], two poles (

ffiffiffiffiffi
sR

p ¼ ð1112;�64Þ MeV

and
ffiffiffiffiffi
sR

p ¼ ð1216;�4Þ MeV) were reported, using only

PV ! PV interaction. An additional pole was found atffiffiffiffiffi
sR

p ¼ ð1737;�82Þ MeV in Ref. [70], using only the

VV ! VV sector. The work of Roca et al. [43] was revis-
ited in Ref. [108]. In this latter reference, the double-pole
structure of the K1ð1270Þ, uncovered in [43], is further
confirmed. Let us summarize here some of the most rele-
vant findings of Ref. [108]. There, one pole is found
at �1200 MeV with a width of �250 MeV, and the other
is found at �1280 MeV with a width of �150 MeV.
The lower pole couples more to the K�� channel, and
the higher pole couples dominantly to the K� channel.
The peak in the K�� mass distribution in the WA3 ex-
periment data [109] onK�p ! K��þ��p is explained in
[108] as a superposition of two poles, but in the K��
channel, the lower pole dominates, and in the �K channel,
the higher pole gives the biggest contribution. Finally,
it is argued in [108] that different reaction mechanisms
may prefer different channels, and this would explain the
different invariant mass distributions seen in various
experiments.
The results compiled in Table XI show two poles around

1.2 GeV that correspond to those reported in Ref. [108],
although the couplings turn out to be somehow different.
This is partially due to the inclusion here of the VV
channels. When those channels are switched off, the agree-
ment improves, but there still remain some differences
between the couplings obtained in both approaches, espe-
cially on the strength of the K�� coupling for the lightest
resonance. This can be attributed, at this stage, to the
approximation mP ¼ 0 used here when computing the
potential. Our scheme implements an extra SU(6)
symmetry-breaking pattern induced by the use of different
pseudoscalar and vector decay constants (fP � fV); how-
ever, in Ref. [108], the WA3 K�p ! K��þ��p data was
successfully fitted with a value of f2 � ð115 MeVÞ2, which
numerically is rather similar to fPfV used here (see
Table II). On the other hand, taking into account the finite
� and K� widths in the intermediate loops will increase the
imaginary parts of the poles, especially that of the higher

TABLE XI. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð1; 1=2; 1Þ sector. IðJPÞ ¼ 1

2 ð1þÞ. The
subtraction constants have been set to a ¼ �2:5 for the PV
channels and to a ¼ �1:7 for the three VV ones. Possible PDG
counterparts: K1ð1270Þ, K1ð. . .Þ, K1ð1400Þ, and K1ð1650Þ.ffiffiffiffiffi
sR

p
�K� K� K! �K� K� K�� K�! K��

ð1188;�64Þ 5616 3703 1959 1988 1860 4405 2824 2669

ð1250;�31Þ 3910 5267 2516 3612 1665 3225 6311 2023

ð1414;�66Þ 798 3326 3030 1169 1668 9866 2225 4373

ð1665;�95Þ 1358 1166 922 3650 3799 2880 3017 10641

TABLE X. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð1; 1=2; 0Þ sector. IðJPÞ ¼ 1

2 ð0þÞ. The
subtraction constant has been set to a ¼ �1:5 for the VV
channels. Possible PDG counterparts: K�

0ð800Þ, K�
0ð1430Þ, and

K�
0ð1950Þ.ffiffiffiffiffi
sR

p
K� �K K�� K�! K��

ð830;�170Þ 4446 1879 5868 2029 1805

ð1428;�24Þ 1805 892 8007 10803 5556

ð1787;�37Þ 45 2662 657 1107 12181

GARCÍA-RECIO et al. PHYSICAL REVIEW D 83, 016007 (2011)

016007-18



pole, which has a large coupling to the �K channel. This
will then bring its width close to �150 MeV, as found in
Ref. [108]. Thus, our findings here reinforce the double-
pole picture for the K1ð1270Þ resonance predicted in
Refs. [43,108]. It is also noteworthy that Ref. [37] did
not find this double-pole structure.

We move now to the third of the poles found here
[
ffiffiffiffiffi
sR

p ¼ ð1414;�66Þ MeV], which has large K��, K�,

K!, K��, and especially K�� couplings. Given its mass
and width, it can be naturally associated to the K1ð1400Þ
resonance. However, in the PDG, branching fractions of
ð94� 6Þ%, ð3� 3Þ%, and ð1� 1Þ% for the K��, K�, and
K!modes, respectively, are quoted for this resonance. The
couplings shown in Table XI cannot be easily reconciled
with the above fractions. References [43,108] did not find
the K1ð1400Þ resonance, while in Ref. [37], a broad bump
in the speed plot was associated to it. In the VV work of
Ref. [70], a pole at

ffiffiffiffiffi
sR

p ¼ ð1737;�82Þ MeV is reported

with a dominant �K� coupling. Indeed, when the
PV � VV interferences are switched off, we find the
two K1ð1270Þ poles in the PV sector and a third pole in
the VV sector with a large �K� coupling, whose position
depends strongly on the value of the subtraction constant.
Our conjecture is that it is precisely this pole, which
manifests itself as a �K� bound or resonant state when
only VV interactions are considered, that moves down
to

ffiffiffiffiffi
sR

p ¼ ð1414;�66Þ when the PV channels are also

included.
Here, we envisage two different possibilities:
(i) To identify the

ffiffiffiffiffi
sR

p ¼ ð1414;�66Þ pole with the

K1ð1400Þ resonance, despite the PDG branching
fractions quoted above. It is worth stressing here
that the properties quoted in the PDG obtained
from the WA3 data analysis rely upon considering
only one pole for the K1ð1270Þ. The reanalysis of
the WA3 data carried out in [108], where the
double-K1ð1270Þ-pole structure is taken into account
and the totality of the PV channels studied here are
considered, is also inconsistent with the PDG
K1ð1400Þ branching fractions, as the K� mode is
almost comparable to the K�� one (see Fig. 7 of
Ref. [108]) and certainly is not around 30 times
smaller. On the other hand, there exists another in-
gredient which should be considered. Our state has a
huge K�� coupling, which will provide a K���
signature, and that of course will also contribute to
the inclusive WA3 K�p ! K��þ��p reaction.
This latter mechanism was considered neither in
the original analysis of Ref. [109] nor in the more
theoretically founded reanalysis of Ref. [108].
Within this scenario, the fourth pole at

ffiffiffiffiffi
sR

p ¼
ð1665;�95Þ, shown in Table XI, could be assigned
to the K1ð1650Þ with a mass of 1650� 50 MeV and
a width of 150� 50 [84]. The only decay channels
observed are K�� and K�, which could be easily

associated to the large K� coupling of the pole
together with its sizeable K�� and K� components
(see Table XI). This pole appears due to the interplay
between the K�� and K� channels, similarly as it
was discussed earlier in the case of the h1ð1595Þ, and
indeed it disappears when only the VV sector is
considered. In Ref. [70], the above mentionedffiffiffiffiffi
sR

p ¼ ð1737;�82Þ pole was tentatively assigned

to the K1ð1650Þ resonance despite the fact that its
large �K� coupling is difficult to accommodate with
the K1ð1650Þ known decays.
Nevertheless, this is still a questionable scenario,
since the couplings quoted in Table XI for the pole
at ð1414;�66Þ indicate that its K� decay mode is
much larger than the K��, and this is difficult to
reconcile even with the results of the reanalysis of
Ref. [108].

(ii) Alternatively, the subtraction constants could be
fine-tuned so that the third pole is pushed up in
energy, and thus it could be associated to the
K1ð1650Þ (see, for instance, Table XII). Properties
of the poles, other than the mass and width, are not
much affected by the fine-tuning, and one still gets
the two-pole structure for the K1ð1270Þ resonance.
In this scenario, no pole is assigned to the K1ð1400Þ,
which then will not be dynamically generated,
as advocated in the picture of Refs. [43,70,108].
However, the assignment of the third pole to the
K1ð1650Þ would suffer from the problems men-
tioned above in the case of the

ffiffiffiffiffi
sR

p ¼ ð1737;�82Þ
resonance found in Ref. [70]. In addition, a further
K1 above 1.8 GeVand not included in the PDG will
be predicted with a large K� decay mode.

I. Hypercharge 1, isospin 1=2, and spin 2

In this sector, a pole is found in the SRS of the ampli-
tudes. In the PDG, two K�

2 resonances below 2 GeV

[K�
2ð1430Þ and K�

2ð1980Þ] are reported, although only the

lightest one is firmly established. The K�
2ð1430Þ has a mass

of 1429� 1:4 MeV and a width of 104� 4 MeV, and the
second resonance has a mass of 1973� 26 MeV and a
width of 373� 70 MeV. It is not clear to which one to
associate the state we find. The subtraction constants

TABLE XII. Same as Table XI [IðJPÞ ¼ 1
2 ð1þÞ], but using

subtraction constants a ¼ �3:1 for the PV channels and a ¼
�1:0 for the three VV ones. Possible PDG counterparts:
K1ð1270Þ, K1ð. . .Þ, K1ð1650Þ, and K1ð. . .Þ.ffiffiffiffiffi
sR

p
�K� K� K! �K� K� K�� K�! K��

ð1169;�46Þ 4595 3643 1862 1873 1484 2468 2328 1418

ð1266;�44Þ 4539 5789 2797 4504 2870 1077 7956 1837

ð1576;�43Þ 888 1868 2508 796 682 9874 1364 3366

ð1823;�61Þ 474 154 221 2636 3105 770 1295 11756
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cannot be fine-tuned to achieve the mass of the pole to lie
much closer to 1.43 GeV than in Table XIII. Nevertheless,
we believe that the pole found here might correspond to the
K�

2ð1430Þ, and its nature is somehow related to those of the
f2ð1270Þ and f02ð1525Þ. In both cases, an important influ-
ence of d-wave interactions is to be expected. Indeed, in
the case of the K�

2ð1430Þ, the PDG branching fractions are
around 50%, 25%, 9%, and 3% for the d-wave modes K�,
K��, K�, and K!, respectively. In addition, the branching
fraction of the K��� channel is only about 13%. This
latter decay mode looks like the only one more-or-less
related to the dynamics included within our model, thanks
to the dominant coupling K�� of the pole displayed in
Table XIII. This would explain why our model does not
describe properly the mass and the width of the K�

2ð1430Þ.
From this point of view, what is somewhat more surprising
is the fact that our scheme was able to describe the mass of
the f2ð1270Þ at all. However, there is here a distinctive
feature: the possible influence of the d-wave pseudo-
scalar-vector-meson K�� channel, which lies closer to
the resonance mass than the pseudoscalar-pseudoscalar
channels. Notice that the equivalent channel in the case
of f2ð1270Þ would be ��, but it is not allowed by G-parity
conservation.

The approach of Ref. [70] for VV ! VV scattering
produces a resonance in this sector, with mass fine-tuned
to 1430 MeV, even if all type d-wave interactions are also
ignored.

J. Exotics

Exotics refers here to meson states with quantum num-
bers that cannot be formed by a q �q pair. Quantum numbers
with I � 3=2 or jYj ¼ 2 are exotic. Our model produces
five poles on the complex plane with the following quan-
tum numbers: 2þð0þþÞ with Y ¼ 0, 3=2ð0þÞ and 3=2ð1þÞ
with Y ¼ 1, and 0ð1þÞ and 1ð0þÞ with Y ¼ 2. Remarkably,
no exotic state was reported in Ref. [70]. This is a direct
consequence of the different dynamics implicit in both
approaches. Future experiments may be needed to distin-
guish between these two schemes.

1. Y ¼ 0, I ¼ 2, J ¼ 0

In this sector, a pole is found that, given its mass and
width, can be naturally associated to the Xð1420Þ reso-
nance (see Table XIV). This resonance needs further
confirmation, and its current evidence comes from a sta-
tistical indication [110] for a �þ�þ resonant state in the

�np ! �þ�þ�� annihilation reaction with data collected
by the OBELIX experiment. Within our scheme, the pole is
essentially a ��-bound state with a small coupling to the
�� channel that moves the pole to the SRS. The fact that
the strength of the coupling to �þ�þ is not large might
explain why the resonance distorts weakly the spectrum of
the outgoing pair of positive pions in the OBELIX data.
Within our scheme, the �� ! �� amplitude is symmetric
under an I $ J exchange. For Dkin, this comes as a result
of SU(6) symmetry. On the other hand, the interactionDm

is a contact term, and this ensures the invariance under
I $ J.12 As a consequence, our �� potential in this sector
(I ¼ 2, J ¼ 0) is the same as that in the I ¼ 0, J ¼ 2 one.
BS amplitudes in both sectors will become different be-
cause of coupled-channel and renormalization effects.
Nevertheless, we expect the Xð1420Þ to be the counterpart
of the f2ð1270Þ, which appeared mostly as a ��, J ¼ 2
isoscalar bound state. This situation is distinctively differ-
ent in the hidden gauge interaction model used in Ref. [70],
where near the threshold, the �� interaction in the I ¼ 2,
J ¼ 0 sector becomes repulsive and 5 times smaller, in
absolute value, than that in the I ¼ 0, J ¼ 2 sector [69].
Indeed, while in the latter sector, the �� interaction is
attractive and gives rise to the f2ð1270Þ resonance, the
model of Refs. [69,70] does not provide any (I ¼ 2,
J ¼ 0) resonance. However, in this latter work, a dip is
found in the �� amplitude. There, it is suggested that
such a dip in the �� amplitude might lead to a bump
in �þ�þ production.
The �� diagonal potential is repulsive in this sector;

however, the �� ! �� transition potential leads to an
interaction more attractive than that deduced from the
diagonal �� potential. Indeed, from Appendix A, one finds
eigenvalues �2 for Dkin and 8=3, �8 for Dm (the two
matrices entering in the kernel potential), while the ��
diagonal matrix elements are�1 and�16=3, respectively.
(Notice that our conventions are such that negative diago-
nal matrix elements, or eigenvalues, of Dkin, Dm, and Da

correspond to attractive interactions.)

2. Y ¼ 1, I ¼ 3=2, J ¼ 0 and Y ¼ 2, I ¼ 1, J ¼ 0

The matrices Dkin and Dm are the same in both sectors
and identical to those appearing in ðY; I; JÞ ¼ ð0; 2; 0Þ.

TABLE XIV. Poles positions and moduli of the couplings
(MeV units) in the ðY; I; JÞ ¼ ð0; 2; 0Þ sector. The subtraction
constant has been set to a ¼ �1:5. IGðJPCÞ ¼ 2þð0þþÞ.
Possible PDG counterpart: Xð1420Þ.ffiffiffiffiffi
sR

p
�� ��

ð1419;�54Þ 2719 10069

TABLE XIII. Pole positions and moduli of the couplings
(MeV units) in the ðY; I; JÞ ¼ ð1; 1=2; 2Þ sector. IðJPÞ ¼ 1

2 ð2þÞ.
Possible PDG counterpart: K�

2ð1430Þ.ffiffiffiffiffi
sR

p
K�� K�! K��

ð1708;�156Þ 7227 2834 2299

12Indeed, the most general contact interaction in the �� sector
is of the form Lint ¼ g1�ai�ai�bj�bj þ g2�ai�aj�bi�bj, which
is symmetric under exchange of spin and isospin labels.
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Thus, the two resonances displayed in Tables XVand XVI
belong to the same multiplet of scalars as the resonance
Xð1420Þ, and masses and widths are similar. We will come
back to this point below.

3. Y ¼ 1, I ¼ 3=2, J ¼ 1 and Y ¼ 2, I ¼ 0, J ¼ 1

We find one pole in each sector (see Tables XVII and
XVIII). The masses and widths of these two resonances are
quite similar, and we will argue below that they belong to
the same axial-vector multiplet.

4. Y ¼ 0, I ¼ 2, J ¼ 1; 2; Y ¼ 1, I ¼ 3=2, J ¼ 2;
and Y ¼ 2, I ¼ 1, J ¼ 1; 2

The interaction in these five sectors is repulsive, and
they present no poles.

V. SUMMARYAND CONCLUSIONS

Tables XIX and XX compile the different poles found
within the present approach. It must be observed that the
widths obtained are only a first approximation, and they
could receive substantial corrections in some cases. This is
because of the following reasons. First, the only decay
channels considered are PP, PV, and VV s-wave pairs.
Second, the widths of the vector mesons have been
neglected in their propagators in the loop functions. The

effect might be particularly important for the � and K�
resonances. It is to be expected that this mechanism will
enhance the width of the resonances with a very small
impact on the masses [43]. The same mechanism should
also introduce contributions of the type displayed in Fig. 2.
Such contributions have appeared repeatedly during the
discussion of our results.
The SU(6) symmetry of our approach has been explicitly

broken to account for physical masses and decay constants,
and also when the amplitudes have been renormalized.
Nevertheless, the underlying SU(6) symmetry is still
present and serves to organize the set of even-parity meson
resonances found in this work and compiled in Tables XIX
and XX.
Spin-flavor symmetry has been used to guide the con-

struction of the s-wave interactions among the members of
the SU(6) 35multiplet. The matrixDkin that appears in the
kinetic term of the amplitudes can be expressed as

D kin ¼ �12P1 � 6P35s � 2P189 þ 2P405: (55)

Therefore, this interaction is (moderately) repulsive in the
405 representation and attractive in the other representa-
tions. To the extent that Dkin is the dominant term, this
favors the existence of up to 225 (1þ 35þ 189) states.
(This counts all states of spin and isospin as different, not
only multiplets. In terms of JPIGY states, this number is
45.) The irreps of SU(6) can be reduced in terms of the
irreps of SUð3Þ � SUð2Þ. In this way, the content of the SU
(6) 1, 35s, and 189 irreps is as follows:

1 ¼ 11; 35¼ 81	 83	 13;

189¼ 271	 81	 11	 103	 10�3	 83	 83	 85	 15;
(56)

where the subindex refers to 2J þ 1 so, e.g., 10�3 stands for
the representation 10� of SU(3) with J ¼ 1. Further, the
ðY; IÞ content of the SU(3) irreps is as follows:

1 ¼ ð0; 0Þ; 8 ¼ ð�1; 1=2Þ; ð0; 1Þ; ð0; 0Þ;
10 	 10� ¼ ð�1; 3=2Þ; ð0; 1Þ; ð0; 1Þ; ð�1; 1=2Þ; ð�2; 0Þ;
27 ¼ ð�2; 1Þ; ð�1; 3=2Þ; ð�1; 1=2Þ; ð0; 2Þ; ð0; 1Þ; ð0; 0Þ:

(57)

The gross features of the states reported in Tables XIX
and XX follow the above decomposition based on SU(6)
multiplets. This picture is somewhat modified by the effect
of the terms added to the kinetic contribution of the
Hamiltonian [see Eq. (40)]—namely,Dm, which is mainly
attractive and Da, which is repulsive. As mentioned, the
use of different vector and pseudoscalar meson masses and
decay constants, and the used subtraction constants, which
in some cases have been fine-tuned to better reproduce the
experimental (PDG) resonances, produce also a deviation
from the SU(6) pattern.

TABLE XV. Pole positions and moduli of the couplings (MeV
units) in the ðY; I; JÞ ¼ ð1; 3=2; 0Þ sector. IGðJPÞ ¼ 3

2 ð0þÞ.ffiffiffiffiffi
sR

p
K� K��

ð1433;�70Þ 3242 10962

TABLE XVI. Pole positions and moduli of the couplings
(MeV units) in the ðY; I; JÞ ¼ ð2; 1; 0Þ sector. IðJPÞ ¼ 1ð0þÞ.ffiffiffiffiffi

sR
p

KK K�K�

ð1564;�66Þ 3484 11593

TABLE XVII. Pole positions and moduli of the couplings
(MeV units) in the ðY; I; JÞ ¼ ð1; 3=2; 1Þ sector. IðJPÞ ¼ 3

2 ð1þÞ.ffiffiffiffiffi
sR

p
�K� K� K��

ð1499;�127Þ 3791 3699 8513

TABLE XVIII. Pole positions and moduli of the couplings
(MeV units) in the ðY; I; JÞ ¼ ð2; 0; 1Þ sector. IðJPÞ ¼ 0ð1þÞ.ffiffiffiffiffi

sR
p

KK� K�K�

ð1608;�114Þ 5614 9303
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In Table I, the poles found in this work (Tables XIX and
XX) are classified in terms of the above SU(6) and SUð3Þ �
SUð2Þ irreps. Several comments are in order here. First, it
should be stressed that there will be mixing between states
with the same JPIGY quantum numbers but belonging to
different SU(6) and/or SU(3) multiplets, since these sym-
metries are broken both within our approach and in nature.
This mixing has not been considered when classifying the
states in Table I. Some comments are also pertinent regard-
ing each spin-parity sector:

(i) JP ¼ 0þ: As can be seen in Table I, the poles found
here closely follow the pattern determined by the
spin-flavor SU(6) symmetry, except for the absence
of the singlet state associated to the 189 SU(6) irrep.
The attractive interaction in this irrep is weak. We
have checked that if the SU(6) symmetry-breaking
contact term (Dm) is switched off, a new f0 reso-
nance (with a mass close to 1.9 GeV) would be
generated in our calculation, corresponding to this
11 missing state. On the other hand, the SU(6)
pattern is also accurate when describing the PDG
scalar resonances compiled in Table I. This fact has

two consequences. First, it increases the credibility
of our predictions on the existence of two exotic
states in the region of 1.4–1.6 GeV, belonging to
the SU(3) 27 irrep included in the SU(6) 189,
while giving further theoretical support on the
reliability of other resonances not yet firmly estab-
lished, as, for example, the a0ð2020Þ or the exotic
isotensor Xð1420Þ state. Second, by inspection of
the resonances with these quantum numbers re-
ported in the PDG and with masses below 2 GeV,
it can be noted that there exists just one well-
established resonance that does not fit within the
SU(6) classification pattern assumed in Table I.13

This is the f0ð1500Þ resonance, for which a glueball
picture has been suggested by several authors
[102,103]. Our result would then be in support of
such a picture.

(ii) JP ¼ 1þ: Here, the effects of the SU(6) breaking
terms Dm and Da turn out to be important. There

TABLE XIX. Poles having nonexotic quantum numbers found in this work and possible PDG counterparts. Units are given in MeV.
Those resonances marked with y need to be confirmed. A question mark symbol expresses our reservations on the assignment.

ðY; I; JÞ IGðJPCÞ This model PDG [84]

Pole position (
ffiffiffiffiffi
sR

p
) Name Mass Width

(0, 0, 0) 0þð0þþÞ ð635;�202Þ f0ð600Þ 400� 1200 600� 1000
0þð0þþÞ (969, 0) f0ð980Þ 980� 10 40� 100
0þð0þþÞ ð1350;�62Þ f0ð1370Þ 1200� 1500 200� 500
0þð0þþÞ ð1723;�52Þ f0ð1710Þ 1720� 6 135� 8

(0, 0, 1) 0�ð1þ�Þ ð1006;�85Þ h1ð1170Þ 1170� 20 360� 40
0�ð1þ�Þ ð1373;�17Þ h1ð1380Þy 1386� 19 91� 30
0�ð1þ�Þ ð1600;�67Þ h1ð1595Þy 1594þ18

�60 384þ90
�120

0þð1þþÞ (1286, 0) f1ð1285Þ 1281:8� 0:8 24:3� 1:1
(0, 0, 2) 0þð2þþÞ (1289, 0) f2ð1270Þ 1275:1� 1:2 185:1þ2:9

�2:4

0þð2þþÞ ð1783;�19Þ f2ð1640Þy or f02ð1525Þ
or f2ð1430Þy or f2ð1565Þy; � � �

1639� 6 99þ60
�40

(0, 1, 0) 1�ð0þþÞ ð991;�46Þ a0ð980Þ 980� 20 50� 100
1�ð0þþÞ ð1442;�5Þ a0ð1450Þ 1474� 19 265� 13
1�ð0þþÞ ð1760;�12Þ a0ð2020Þy ? 2025� 30 330� 75

(0, 1, 1) 1þð1þ�Þ ð1234;�57Þ b1ð1235Þ 1229:5� 3:2 142� 9
1þð1þ�Þ ð1642;�139Þ b1ð1960Þy ? 1960� 35 230� 50
1�ð1þþÞ ð1021;�251Þ a1ð1260Þ 1230� 40 250� 600
1�ð1þþÞ ð1568;�145Þ a1ð1640Þy 1647� 22 254� 27

(0, 1, 2) 1�ð2þþÞ (1228, 0) a2ð1320Þ 1318:3� 0:6 107� 5
1�ð2þþÞ ð1775;�6Þ a2ð1700Þy 1732� 16 194� 40

ð1; 1=2; 0Þ 1=2ð0þÞ ð830;�170Þ K�
0ð800Þy 672� 40 550� 34

1=2ð0þÞ ð1428;�24Þ K�
0ð1430Þ 1425� 50 270� 80

1=2ð0þÞ ð1787;�37Þ K�
0ð1950Þy 1945� 22 201� 90

ð1; 1=2; 1Þ 1=2ð1þÞ ð1188;�64Þ K1ð1270Þ 1272� 7 90� 20
1=2ð1þÞ ð1250;�31Þ K1ð. . .Þ
1=2ð1þÞ ð1414;�66Þ K1ð1400Þ ? 1403� 7 174� 13
1=2ð1þÞ ð1665;�95Þ K1ð1650Þy ? 1650� 50 150� 50

ð1; 1=2; 2Þ 1=2ð2þÞ ð1708;�156Þ K�
2ð1430Þ ? 1429� 1:4 104� 4

13We will omit here any reference to the Kð1630Þ resonance,
since its JP is undetermined yet [84].
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are two types of channels—namely, PV and VV
mesons coupled to total spin 1.
The PV ! PV amplitudes are constrained by the
LO WT theorem [see Eq. (54)] and give rise to the
states of the multiplets 83 and 13 of the SU(6) 35s
irrep and to those of a further SU(3) octet (8a3) of the
SU(6) 189. Note that the dynamics of the states of
this latter multiplet are strongly influenced by the
SU(6)-breaking terms mentioned above. Our results
for those multiplets are in good agreement with
those previously obtained in Ref. [43], which among
others include the prediction of the existence of a
second K1ð1270Þ resonance [108].
On the other hand, the simultaneous consideration
of PV and VV channels makes the present approach
different from that followed in Ref. [43] and
has allowed us to dynamically generate also the
h1ð1595Þ resonance. The interference PV ! VV
amplitudes turn out to play a crucial role in produc-
ing this state, and that is presumably the reason why
they are also not generated in the VV ! VV study
carried out in Ref. [70] using the formalism of
the hidden gauge interaction for vector mesons.
Possibly, the situation is similar for the K1ð1650Þ
state, and thus we end up with a clearer SU(6)
pattern, which is also followed to some extent in
nature.
In this sector, we also predict two exotic states
belonging to the 10 and 10� irreps. On the other
hand, we have verified that the missing b1 pole in
the symmetric octet of the SU(6) 189 would appear
if the SU(6) symmetry were restored.
To finish the discussion of this sector, we would like
to point out that below 2 GeV, there is only one
firmly established axial-vector resonance that does
not fit in the symmetry pattern sketched in Table I:
It is the f1ð1420Þ, and similarly to the previous
discussion for the f0ð1500Þ resonance, this might
hint at the possible existence of gluon components
in its wave function. Indeed, arguments favoring the
f1ð1420Þ being a hybrid q �qg meson have been put
forward by Ishida and collaborators [111].

(iii) JP ¼ 2þ: This sector is where the SU(6) pattern
least works. This is because the SU(6)-symmetry

kinetic term becomes less dominant when com-
pared to the VV-interaction contact term generated
as a result of giving mass to the vector mesons.
Moreover, we must stress here, once more, the little
control that we have over this term. Yet, the inter-
action in the SU(6) 189 irrep associated to Dkin

is relatively weak. Thus, all results displayed in
Table I for this sector must be understood by ac-
tively considering the interplay between Dkin and
Dm. The first remark is that if the contact term is
switched off, the pole associated to the f2ð1270Þ
moves up in mass by more than 200 MeV, and the
a2ð1320Þ resonance disappears. Actually, in each
YI subsector, Dm has two large and negative
(attractive) eigenvalues, which correspond to a
full nonet (singlet plus octet). The a2ð1320Þ would
be part of this nonet, and it might well be that the
actual K�

2ð1430Þ could also be a member of it. In

that scenario, the pole at ð1708;�156Þ obtained
here, and the fact that we cannot move down closer
to the mass of the K�

2ð1430Þ resonance, might

correspond to a further state, for which we do not
find an easy correspondence with any of those
reported in the PDG. On the other hand, by chang-
ing the subtraction constants, it is possible to gen-
erate some more 0þð2þþÞ poles within our scheme,
which might account for those states needed to fill
in completely the nonet mentioned above.
In this sector, and in contrast to the 0þ and 1þ
cases, there appear in the PDG several even-parity
resonances that cannot be accommodated within
our scheme. Some of them might be glueballs,
but we cannot be here as precise as we were in
the previous sectors. The hidden gauge formalism
for vector mesons used in Ref. [70] does not im-
prove on that, although its choice for the contact
VV term might provide a more robust description
of the f2ð1270Þ and K�

2ð1430Þ resonances than that

obtained here.
In summary, it has been shown that most of the low-

lying even-parity meson resonances, especially in the
JP ¼ 0þ and 1þ sectors, can be classified according to
multiplets of the spin-flavor symmetry group SU(6). The
f0ð1500Þ, f1ð1420Þ, and some 0þð2þþÞ resonances cannot

TABLE XX. Poles with exotic quantum numbers found in this work and possible PDG
counterparts. Units are given in MeV. Those resonances marked with y need to be confirmed.

ðY; I; JÞ IGðJPCÞ This model PDG [84]

Pole position (
ffiffiffiffiffi
sR

p
) Name Mass Width

(0, 2, 0) 2þð0þþÞ ð1419;�54Þ Xð1420Þy 1420� 20 160� 10
ð1; 3=2; 0Þ 3=2ð0þÞ ð1433;�70Þ
(2, 1, 0) 1ð0þÞ ð1564;�66Þ
ð1; 3=2; 1Þ 3=2ð1þÞ ð1499;�127Þ
(2, 0, 1) 0ð1þÞ ð1608;�114Þ
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be accommodated within SU(6) multiplets, and thus they
are clear candidates to be glueballs or hybrids. On the other
hand, we predict the existence of five exotic resonances
(I � 3=2 and/or jYj ¼ 2) with masses in the region of
1.4–1.6 GeV, which would complete the 271, 103, and
10�3 spin-flavor multiplets.
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APPENDIX A: COEFFICIENTS OF THE s-WAVE
TREE-LEVEL AMPLITUDES

This Appendix gives the Dkin, Dm, and Da matrices of
the s-wave tree-level meson-meson amplitudes in Eq. (40)
for the various YIJ sectors (Tables XXI, XXII, XXIII,
XXIV, XXV, XXVI, XXVII, XXVIII, XXIX, XXX,
XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI,
XXXVII, XXXVIII, XXXIX, XL, XLI, XLII, XLIII,
XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII,
LIII, LIV, LV, LVI, LVII, LVIII, LIX, LX, and LXI).

1. Kinetic term: Dkin

TABLE XXI. ðY; I; JÞ ¼ ð0; 0; 0Þ.
�� �KK �� �� !! !� �K�K� ��

�2
ffiffi
3

p
2 0 2

ffiffiffi
3

p
0 0 � 3

2 0ffiffi
3

p
2 � 3

2 � 3
2 � 3

2

ffiffi
3

p
2

ffiffiffi
3

p
3
ffiffi
3

p
2

ffiffiffi
3

p

0 � 3
2 0 0 0 0 3

ffiffi
3

p
2 0

2
ffiffiffi
3

p � 3
2 0 �4 2

ffiffiffi
3

p
0 3

ffiffi
3

p
2 0

0
ffiffi
3

p
2 0 2

ffiffiffi
3

p �2 0 � 3
2 0

0
ffiffiffi
3

p
0 0 0 0 1 0

� 3
2

3
ffiffi
3

p
2

3
ffiffi
3

p
2

3
ffiffi
3

p
2 � 3

2 1 � 9
2 �3

0
ffiffiffi
3

p
0 0 0 0 �3 �4

TABLE XXII. ðY; I; JÞ ¼ ð0; 0; 1Þ.
G �� �! �� ð �KK�ÞA �K�K� !� ð �KK�ÞS
� 0 0 0 � ffiffiffi

6
p � ffiffiffi

6
p

� 0 0 0 � ffiffiffi
3

p ffiffiffi
3

p
� 0 0 �4

ffiffiffi
3

p � ffiffiffi
3

p
� � ffiffiffi

6
p � ffiffiffi

3
p ffiffiffi

3
p �3 �1

� � ffiffiffi
6

p ffiffiffi
3

p � ffiffiffi
3

p �1 �3
þ 0 �2
þ �2 0

TABLE XXIII. ðY; I; JÞ ¼ ð0; 0; 2Þ.
�� !! !� �K�K� ��

�1 � ffiffiffi
3

p
0 0 0

� ffiffiffi
3

p
1 0 0 0

0 0 0 �2 0

0 0 �2 0 0

0 0 0 0 2

TABLE XXIV. ðY; I; JÞ ¼ ð0; 1; 0Þ.
�� �KK !� �� �K�K�

0
ffiffi
3
2

q
0 0 � 3ffiffi

2
pffiffi

3
2

q
� 1

2 �
ffiffi
3
2

q
� ffiffiffi

3
p ffiffi

3
p
2

0 �
ffiffi
3
2

q
�4 0 3ffiffi

2
p

0 � ffiffiffi
3

p
0 0 �1

� 3ffiffi
2

p
ffiffi
3

p
2

3ffiffi
2

p �1 � 3
2

TABLE XXV. ðY; I; JÞ ¼ ð0; 1; 1Þ.
G �� �! �� ð �KK�ÞS �� �K�K� �� ð �KK�ÞA !� ��

þ 0 0 0
ffiffiffi
2

p
0

ffiffiffi
2

p
þ 0 0 0 1 2

ffiffiffi
2

p �1
þ 0 0 0

ffiffiffi
3

p
0 � ffiffiffi

3
p

þ ffiffiffi
2

p
1

ffiffiffi
3

p �1 � ffiffiffi
2

p
1

þ 0 2
ffiffiffi
2

p
0 � ffiffiffi

2
p �2

ffiffiffi
2

p
þ ffiffiffi

2
p �1 � ffiffiffi

3
p

1
ffiffiffi
2

p �1
� 0 0 �2 0

� 0 0 0 �2
� �2 0 0 0

� 0 �2 0 0

TABLE XXVI. ðY; I; JÞ ¼ ð0; 1; 2Þ.
!� �� �K�K�

2 0 0

0 0 2

0 2 0
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TABLE XXVIII. ðY; I; JÞ ¼ ð0; 2; 1Þ.
��

2

TABLE XXIX. ðY; I; JÞ ¼ ð0; 2; 2Þ.
��

2

TABLE XXX. ðY; I; JÞ ¼ ð1; 1=2; 0Þ.
K� �K K�� K�! K��

� 5
4

3
4

5
ffiffi
3

p
4 � 3

4 � 3
2
ffiffi
2

p
3
4

3
4 � 3

ffiffi
3

p
4 � 3

4 � 3
2
ffiffi
2

p

5
ffiffi
3

p
4 � 3

ffiffi
3

p
4 � 7

4 � 5
ffiffi
3

p
4

3
ffiffiffiffiffiffi
3=2

p
2

� 3
4 � 3

4 � 5
ffiffi
3

p
4 � 5

4
3

2
ffiffi
2

p

� 3
2
ffiffi
2

p � 3
2
ffiffi
2

p 3
ffiffiffiffiffiffi
3=2

p
2

3
2
ffiffi
2

p � 5
2

TABLE XXXI. ðY; I; JÞ ¼ ð1; 1=2; 1Þ.
�K� K� K! �K� K� K�� K�! K��

� 5
4

5
4 �

ffiffi
3

p
4 � 3

4 �
ffiffiffiffiffiffi
3=2

p
2

� 5
2
ffiffi
2

p
ffiffiffiffiffiffi
3=2

p
2

�
ffiffi
3

p
2

5
4 � 5

4

ffiffi
3

p
4

3
4

ffiffiffiffiffiffi
3=2

p
2

1
2
ffiffi
2

p 3
ffiffiffiffiffiffi
3=2

p
2

ffiffi
3

p
2

�
ffiffi
3

p
4

ffiffi
3

p
4

1
4

ffiffi
3

p
4

1
2
ffiffi
2

p 3
ffiffiffiffiffiffi
3=2

p
2

3
2
ffiffi
2

p 1
2

� 3
4

3
4

ffiffi
3

p
4

3
4

ffiffiffiffiffiffi
3=2

p
2 � 3

2
ffiffi
2

p �
ffiffiffiffiffiffi
3=2

p
2

ffiffi
3

p
2

�
ffiffiffiffiffiffi
3=2

p
2

ffiffiffiffiffiffi
3=2

p
2

1
2
ffiffi
2

p
ffiffiffiffiffiffi
3=2

p
2

1
2 �

ffiffi
3

p
2 � 1

2 � 3ffiffi
2

p

� 5
2
ffiffi
2

p 1
2
ffiffi
2

p 3
ffiffiffiffiffiffi
3=2

p
2 � 3

2
ffiffi
2

p �
ffiffi
3

p
2 � 3

2 �
ffiffi
3

p
2 �

ffiffi
3
2

q
ffiffiffiffiffiffi
3=2

p
2

3
ffiffiffiffiffiffi
3=2

p
2

3
2
ffiffi
2

p �
ffiffiffiffiffiffi
3=2

p
2 � 1

2 �
ffiffi
3

p
2 � 1

2 � 1ffiffi
2

p

�
ffiffi
3

p
2

ffiffi
3

p
2

1
2

ffiffi
3

p
2 � 3ffiffi

2
p �

ffiffi
3
2

q
� 1ffiffi

2
p �1

TABLE XXXII. ðY; I; JÞ ¼ ð1; 1=2; 2Þ.
K�� K�! K��

�1
ffiffiffi
3

p
0ffiffiffi

3
p

1 0

0 0 2

TABLE XXXIV. ðY; I; JÞ ¼ ð1; 3=2; 1Þ.
�K� K� K��

1 1 � ffiffiffi
2

p
1 1

ffiffiffi
2

p
� ffiffiffi

2
p ffiffiffi

2
p

0

TABLE XXXV. ðY; I; JÞ ¼ ð1; 3=2; 2Þ.
K��

2

TABLE XXXVI. ðY; I; JÞ ¼ ð2; 0; 1Þ.
KK� K�K�

0 �2
�2 0

TABLE XXXVII. ðY; I; JÞ ¼ ð2; 1; 0Þ.
KK K�K�

1 � ffiffiffi
3

p
� ffiffiffi

3
p �1

TABLE XXXVIII. ðY; I; JÞ ¼ ð2; 1; 1Þ.
KK�

2

TABLE XXXIX. ðY; I; JÞ ¼ ð2; 1; 2Þ.
K�K�

2

TABLE XXVII. ðY; I; JÞ ¼ ð0; 2; 0Þ.
�� ��

1 � ffiffiffi
3

p
� ffiffiffi

3
p �1

TABLE XXXIII. ðY; I; JÞ ¼ ð1; 3=2; 0Þ.
K� K��

1 � ffiffiffi
3

p
� ffiffiffi

3
p �1
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2. Contact term: Dm

TABLE XLII. ðY; I; JÞ ¼ ð0; 0; 2Þ.
�� !! !� �K�K� ��

� 16
3

32ffiffi
3

p 0 4
ffiffiffi
3

p
0

32ffiffi
3

p � 32
3 0 �4 0

0 0 0 40
3 0

4
ffiffiffi
3

p �4 40
3 �12 �8

0 0 0 �8 � 64
3

TABLE XLIII. ðY; I; JÞ ¼ ð0; 1; 0Þ.
�� �KK !� �� �K�K�

0 0 0 0 �4
ffiffiffi
2

p

0 0 �4
ffiffi
2
3

q
� 8ffiffi

3
p 4ffiffi

3
p

0 �4
ffiffi
2
3

q
� 160

3 0 24
ffiffiffi
2

p

0 � 8ffiffi
3

p 0 0 � 16
3

�4
ffiffiffi
2

p
4ffiffi
3

p 24
ffiffiffi
2

p � 16
3 �24

TABLE XLV. ðY; I; JÞ ¼ ð0; 1; 2Þ.
!� �� �K�K�

� 64
3 0 4

ffiffiffi
2

p
0 0 � 40

3

4
ffiffiffi
2

p � 40
3 �4

TABLE XLVI. ðY; I; JÞ ¼ ð0; 2; 0Þ.
�� ��

0 � 8ffiffi
3

p

� 8ffiffi
3

p � 16
3

TABLE XLVII. ðY; I; JÞ ¼ ð0; 2; 1Þ.
��

� 8
3

TABLE XLVIII. ðY; I; JÞ ¼ ð0; 2; 2Þ.
��

� 40
3

TABLE XLIX. ðY; I; JÞ ¼ ð1; 1=2; 0Þ.
K� �K K�� K�! K��

0 0 10ffiffi
3

p �2 �2
ffiffiffi
2

p

0 0 �2
ffiffiffi
3

p �2 �2
ffiffiffi
2

p
10ffiffi
3

p �2
ffiffiffi
3

p � 100
3 � 44ffiffi

3
p 12

ffiffiffi
6

p

�2 �2 � 44ffiffi
3

p � 44
3 12

ffiffiffi
2

p

�2
ffiffiffi
2

p �2
ffiffiffi
2

p
12

ffiffiffi
6

p
12

ffiffiffi
2

p � 88
3

TABLE XL. ðY; I; JÞ ¼ ð0; 0; 0Þ.
�� �KK �� �� !! !� �K�K� ��

0 0 0 16ffiffi
3

p 0 0 �4 0

0 0 0 �4 4ffiffi
3

p 8ffiffi
3

p 4
ffiffiffi
3

p
8ffiffi
3

p

0 0 0 0 0 0 4
ffiffiffi
3

p
0

16ffiffi
3

p �4 0 � 208
3

80ffiffi
3

p 0 24
ffiffiffi
3

p
0

0 4ffiffi
3

p 0 80ffiffi
3

p � 80
3 0 �24 0

0 8ffiffi
3

p 0 0 0 0 16
3 0

�4 4
ffiffiffi
3

p
4

ffiffiffi
3

p
24

ffiffiffi
3

p �24 16
3 �72 �48

0 8ffiffi
3

p 0 0 0 0 �48 � 160
3

TABLE XLI. ðY; I; JÞ ¼ ð0; 0; 1Þ.
G �� �! �� ð �KK�ÞA �K�K� !� ð �KK�ÞS
� 0 0 0 4

ffiffi
2
3

q
0

� 0 0 0 4ffiffi
3

p 0

� 0 0 16
3 � 4ffiffi

3
p 0

� 4
ffiffi
2
3

q
4ffiffi
3

p � 4ffiffi
3

p 4 0

� 0 0 0 0 �28
þ 0 0

þ 0 �12

TABLE XLIV. ðY; I; JÞ ¼ ð0; 1; 1Þ.
G �� �! �� ð �KK�ÞS �� �K�K� �� ð �KK�ÞA !� ��

þ 0 0 0 � 4
ffiffi
2

p
3 0 0

þ 0 0 0 � 4
3 0 0

þ 0 0 0 � 4ffiffi
3

p 0 0

þ � 4
ffiffi
2

p
3 � 4

3 � 4ffiffi
3

p 4
3 0 0

þ 0 0 0 0 � 56
3

28
ffiffi
2

p
3

þ 0 0 0 0 28
ffiffi
2

p
3 � 28

3� �8 4
ffiffiffi
2

p
0 0

� 4
ffiffiffi
2

p �4 0 0

� 0 0 0 0

� 0 0 0 0
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3. u� t term: Da

The matrix elements corresponding toDa are displayed.
The ðY; I; JÞ or ðY; I; J; GÞ sectors with identically zero
matrices are omitted. PP and VV channels (for which the
matrix vanishes) are also omitted.

TABLE LI. ðY; I; JÞ ¼ ð1; 1=2; 2Þ.
K�� K�! K��

2
3 � 26ffiffi

3
p 2

ffiffiffi
6

p

� 26ffiffi
3

p � 26
3 2

ffiffiffi
2

p

2
ffiffiffi
6

p
2

ffiffiffi
2

p � 52
3

TABLE LII. ðY; I; JÞ ¼ ð1; 3=2; 0Þ.
K� K��

0 � 8ffiffi
3

p

� 8ffiffi
3

p � 16
3

TABLE LIII. ðY; I; JÞ ¼ ð1; 3=2; 1Þ.
�K� K� K��

� 4
3 � 4

3 0

� 4
3 � 4

3 0

0 0 0

TABLE LIV. ðY; I; JÞ ¼ ð1; 3=2; 2Þ.
K��

� 40
3

TABLE LV. ðY; I; JÞ ¼ ð2; 0; 1Þ.
KK� K�K�

0 0

0 0

TABLE LVI. ðY; I; JÞ ¼ ð2; 1; 0Þ.
KK K�K�

0 � 8ffiffi
3

p

� 8ffiffi
3

p � 16
3

TABLE L. ðY; I; JÞ ¼ ð1; 1=2; 1Þ.
�K� K� K! �K� K� K�� K�! K��

� 4
3 � 14

3 � 2ffiffi
3

p 4 �2
ffiffi
2
3

q
0 0 0

� 14
3 � 4

3 � 4ffiffi
3

p 2 �4
ffiffi
2
3

q
0 0 0

� 2ffiffi
3

p � 4ffiffi
3

p � 4
3

2ffiffi
3

p � 4
ffiffi
2

p
3 0 0 0

4 2 2ffiffi
3

p �4 2
ffiffi
2
3

q
0 0 0

�2
ffiffi
2
3

q
�4

ffiffi
2
3

q
� 4

ffiffi
2

p
3 2

ffiffi
2
3

q
� 8

3 0 0 0

0 0 0 0 0 �14 � 14ffiffi
3

p �14
ffiffi
2
3

q
0 0 0 0 0 � 14ffiffi

3
p � 14

3 � 14
ffiffi
2

p
3

0 0 0 0 0 �14
ffiffi
2
3

q
� 14

ffiffi
2

p
3 � 28

3

TABLE LVII. ðY; I; JÞ ¼ ð2; 1; 1Þ.
KK�

� 8
3

TABLE LVIII. ðY; I; JÞ ¼ ð2; 1; 2Þ.
K�K�

� 40
3

TABLE LX. ðY; I; J; GÞ ¼ ð0; 1; 1;�Þ.
�� ð �KK�ÞA
2 � ffiffiffi

2
p

� ffiffiffi
2

p
1

TABLE LIX. ðY; I; J; GÞ ¼ ð0; 0; 1;þÞ.
ð �KK�ÞS

3

TABLE LXI. ðY; I; JÞ ¼ ð1; 1=2; 1Þ.
�K� K� K! �K� K�

3
4

3
4

ffiffi
3

p
4 � 3

4

ffiffiffiffiffiffi
3=2

p
2

3
4

3
4

ffiffi
3

p
4 � 3

4

ffiffiffiffiffiffi
3=2

p
2ffiffi

3
p
4

ffiffi
3

p
4

1
4 �

ffiffi
3

p
4

1
2
ffiffi
2

p

� 3
4 � 3

4 �
ffiffi
3

p
4

3
4 �

ffiffiffiffiffiffi
3=2

p
2ffiffiffiffiffiffi

3=2
p

2

ffiffiffiffiffiffi
3=2

p
2

1
2
ffiffi
2

p �
ffiffiffiffiffiffi
3=2

p
2

1
2
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APPENDIX B: COMPUTATION
OF THE EIGENVALUES

To get the eigenvalues associated to each of the SU(6)

projectors in Eqs. (34) and (35), we just let act H SUð6Þ
� on

one of the states of the vector space associated to each
representation. For instance, the vector space associated to
the singlet representation is generated by the state

j1i ¼ Mya
b Myb

a j0i; a; b ¼ 1; � � � 2NF: (B1)

This gives

and similarly for ĜM. For the remaining symmetric rep-
resentations, a convenient choice of states is

j2i ¼ My1
b Myb

2 j0i;
j3i ¼ ðMy1

2 My3
4 �My3

2 My1
4 Þj0i;

j4i ¼ My1
2 My1

2 j0i
(B3)

for the 35s, 189, and 405 representations, respectively.

The p-wave part Gd � Gc can be represented as the
matrix element of an operator in a fermion space

G d � Gc ¼ �h0jMi0
j0M

k0
l0 TrðMy2M2ÞMyi

j Myk
l j0i; (B4)

where now the Mi
j operators satisfy an anticommutation

relation

fMi
j;M

yk
l g ¼ �k

j�
i
l �

1

2NF

�i
j�

k
l (B5)

and Eq. (27) still holds. One can follow the same tech-

niques as those outlined above for the Ĝþ operators, using,
e.g., the states

j5i ¼ My1
b Myb

2 j0i;
j6i ¼ My1

3 My2
3 j0i;

j7i ¼ My3
1 My3

2 j0i
(B6)

for the 35a, 280, and 280� antisymmetric representations.
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