
Techniques for n-particle irreducible effective theories

M.E. Carrington* and Yun Guo†

Department of Physics, Brandon University, Brandon, Manitoba, R7A 6A9 Canada
and Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba, Canada

(Received 18 October 2010; published 19 January 2011)

In this paper we show that the skeleton diagrams in the m-Loop nPI effective action correspond to an

infinite resummation of perturbative diagrams which is void of double counting at them-Loop level. We also

show that the variational equations of motion produced by the n-Loop nPI effective theory are equivalent to

the Schwinger-Dyson equations, up to the order at which they are consistent with the underlying symmetries

of the original theory. We use a diagrammatic technique to obtain the 5-Loop 5PI effective action for a scalar

theory with cubic and quartic interactions, and verify that the result satisfies these two statements.
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I. INTRODUCTION

The n-particle irreducible (nPI) effective action is the
set of skeleton diagrams produced by the nth Legendre
transform. It is a functional of the n-point functions of
the theory, which are treated as variational parameters. The
variational equations of motion (eom’s) are determined by
functionally differentiating the action with respect to its
arguments (and setting all sources to zero). In this paper
we show that (1) the skeleton diagrams in the m-Loop
nPI effective action correspond to an infinite resummation
of perturbative diagrams which is void of double counting
at the m-Loop level; and (2) the eom’s produced by
the n-Loop nPI effective theory are equivalent to the
Schwinger-Dyson (sd) equations, up to the order at which
they are consistent with the underlying symmetries of the
original theory.

We comment that although both the nPI eom’s and the
sd equations are sets of coupled nonlinear integral equa-
tions that contain nonperturbative physics, there are sig-
nificant differences between them. For an nPI effective
theory, the effective action is truncated, and the resulting
eom’s form a closed set. In contrast, the sd equations form
an infinite hierarchy of coupled equations which must be
truncated in order to do calculations. In addition, there are
fundamental differences in the basic structure of the two
sets of equations. In the sd equation, all graphs contain
one bare vertex and are not symmetric with respect to
permutations of external legs. The nPI eom’s are sym-
metric and (for n > 2) some graphs contain no bare
vertices. In light of these remarks, the statement (2) above
seems unlikely to be true. In fact, as we will show in a
fairly simple way, statement (2) is a direct consequence of
statement (1).

The derivation of the sd equations is tedious but straight-
forward. In Refs. [1,2], an analytic method is used to
produce the sd equations up to the level of the 4-point

function. In Ref. [3], an algorithm is implemented in a
downloadable MATHEMATICA package which produces the
sd equations to arbitrary order. In Figs. 30 and 31 we give
the results for the sd equations that we will use.
In principle, the calculation of a set of Legendre trans-

forms is also a well defined problem, but the computation
becomes extremely complicated beyond the lowest levels.
The 4PI effective action was introduced in Refs. [4,5]. It
was first discussed in the context of relativistic field theo-
ries in Ref. [6]. The 3-Loop 4PI effective action was
calculated in Refs. [4,5,7,8], and the 4-Loop 4PI effective
action was calculated in [9]. The effective action has not
previously been calculated beyond the level of the fourth
Legendre transform. In this paper we use a diagrammatic
technique to obtain the 5-Loop 5PI effective action for the
theory defined in Eq. (2.1). We verify that the result sat-
isfies both statements (1) and (2) from the first paragraph of
this introduction. We also find that the 5PI effective action
is not 5-particle irreducible: it contains diagrams that can
be divided into two pieces, each of which contains at least
one loop, by cutting five or fewer lines. The result suggests
that the n-Loop nPI effective action is n-particle irreduc-
ible for n � 4 only. Throughout this paper we will use
‘‘nPI effective action’’ to mean the effective action pro-
duced by taking n Legendre transforms. We stress that the
important point is that Legendre transforms produce an
effective action that does not double count at the level of
the truncation.
In this paper, consider a scalar theory that has both cubic

and quartic couplings. We study this theory because both
the sd equations and the nPI eom’s have the same structure
as the corresponding equations for QCD. All of the results
in this paper can be generalized to other theories in a
straightforward way.
This paper is organized as follows: In Sec. II we define

our notation and review some results for the 4-Loop 4PI
effective action. In Sec. III, we present our calculation of
the 5-Loop 5PI effective action. In Sec. IV we show that
the nPI effective action is void of double counting, and
that the eom’s are equivalent to the sd equations, at the

*carrington@brandonu.ca
†guoyun@brandonu.ca

PHYSICAL REVIEW D 83, 016006 (2011)

1550-7998=2011=83(1)=016006(30) 016006-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.016006


truncation order. In Sec. V we verify that the eom’s for the
2- and 3-point vertex functions satisfy the statements made
in Sec. IV, up to the level of the 5-Loop 5PI effective
action. In Sec. VI we present our conclusions. Some details
are left to the appendixes.

II. PRELIMINARIES

A. Notation

Throughout this paper we use L to indicate the loop
order in the skeleton expansion. We also use ‘‘n-Loop’’ to
mean terms in the skeleton expansion with L � n loops,
and ‘‘n-loop’’ to mean terms in the skeleton expansion with
L ¼ n loops.

We denote connected and proper vertices byV c andV ,
respectively. In addition, for the correlation functions with
up to 5 external legs we use

1-point function ¼: �
2-point function fconnected/self-energy/bare/

effective bareg ¼: fD;�; Doo;D0g
3-point function fconnected/proper/bare/

effective bareg ¼: fUc;U;Uoo;U0g
4-point function fconnected/proper/bareg ¼: fVc; V; V0g
5-point function fconnected/properg ¼: fWc;Wg

For example, V 3 ¼ U, V c
5 ¼ Wc, etc.

In coordinate space, each function has arguments that
correspond to the space-time coordinates of its legs. We
use a compactified notation in which the space-time coor-
dinates for a given leg are represented by a single numeri-
cal subscript. For example, the field expectation value is
written �i :¼ �ðxiÞ, the propagator is written Dij :¼
Dðxi; xjÞ, the bare 4-point vertex is written V0

ijkl
:¼

V0ðxi; xj; xk; xlÞ, etc. We also use an Einstein convention

in which a repeated index implies an integration over
space-time variables.
We define all propagators and vertices with factors

of i so that figures look as simple as possible: lines,
and intersections of lines, correspond directly to propaga-
tors and vertices, with no additional factors of plus or
minus i.
Using this notation we write the classical action

Scl½’� ¼ 1

2
’i½iðDoo

ij Þ�1�’j � i

3!
Uoo

ijk’i’j’k

� i

4!
V0
ijkl’i’j’k’l: (2.1)

The nPI effective action is obtained by taking the nth
Legendre transform of the generating functional which is
constructed by coupling the field to n source terms:

Z½J;R;Rð3Þ;Rð4Þ;Rð5Þ . . .� ¼
Z

d’Exp½iX�;

X¼ Scl½’�þ Ji’i þ 1

2
Rij’i’j þ 1

3!
Rð3Þ
ijk’i’j’kþ 1

4!
Rð4Þ
ijkl’i’j’k’l þ 1

5!
Rð5Þ
ijkln’i’j’k’l’n þ�� �

W ½J;R;Rð3Þ;Rð4Þ;Rð5Þ . . .� ¼�iLnZ½J;R;Rð3Þ;Rð4Þ;Rð5Þ . . .�;

�½�;D;U;V;W . . .� ¼W � Ji
�W
�Ji

�Rij

�W
�Rij

�Rð3Þ
ijk

�W

�Rð3Þ
ijk

�Rð4Þ
ijkl

�W

�Rð4Þ
ijkl

�Rð5Þ
ijkln

�W

�Rð5Þ
ijkln

��� � : (2.2)

We define connected green functions

V c
t1;t2;���tk ¼ h’t1’t2’t3 . . .’tkic ¼ �ð�iÞkþ1 �kW

�Jtk . . .�Jt3�Jt2�Jt1
; (2.3)

which allows us to write

�W
�Ji

¼ h’ii ¼�i;

2
�W
�Rij

¼ h’i’ji ¼Dij þ�i�j;

3!
�W

�Rð3Þ
ijk

¼ h’i’j’ki ¼Uc
ijk þDjk�i þDik�j þDij�k þ�i�j�k;

4!
�W

�Rð4Þ
ijkl

¼ h’i’j’k’li ¼ Vc
ijkl þ ðUc

ijk�l þ 3permsÞ þ ðDijDkl þ 2permsÞ þ ðDij�k�l þ 5permsÞ þ�i�j�k�l;

(2.4)

M. E. CARRINGTON AND YUN GUO PHYSICAL REVIEW D 83, 016006 (2011)

016006-2



where the notation ‘‘perms’’ indicates terms obtained by
permuting the indices of the previous term, without regard
for order. For example, ðUc

ijk�l þ 3 permsÞ ¼ Uc
ijk�l þ

Uc
ijl�k þUc

ikl�j þUc
jkl�i.

We define the effective bare propagator and 3-point
vertex1

ðD0
ijð�ÞÞ�1¼�i

�2Scl½��
��j��i

¼ðDoo
ij Þ�1�Uoo

ijk�k�1

2
V0
ijkl�k�l;

U0
ijkð�Þ¼ i

�3Scl½��
��k��j��i

¼��ðD0
ijð�ÞÞ�1

��k

¼Uoo
ijkþ�lV

0
ijkl: (2.5)

The nPI effective action depends on � only through the
effective bare propagator and effective bare 3-vertex. We
will suppress the argument and write D0

ijð�Þ as D0
ij and

U0
ijkð�Þ as U0

ijk.

We define proper vertices as derivatives of the 1PI
effective action:

�½�� ¼ W ½J� � Ji�i;

V t1;t2;���tk ¼ i
�k�½��

��tk . . .��t3��t2��t1

:
(2.6)

The 3- and 4-point connected and proper vertices satisfy

Uc
ijk ¼ Dit1Djt2Dkt3Ut1t2t3 ;

Vc
ijkl ¼ Dit1Djt2Dkt3Dlt4Vt1t2t3t4

þDit1Djt2Dkt3Dlt4Dt5t6Ut1t6t3Ut2t5t4

þDit1Djt2Dkt3Dlt4Dt6t5Ut1t2t6Ut3t5t4

þDit1Djt2Dkt3Dlt4Dt6t5Ut1t5t4Ut6t2t3 :

(2.7)

It is straightforward to obtain equations analogous to
Eqs. (2.4) and (2.7) at arbitrarily higher orders, but the
resulting expressions are tedious to write. To present these
equations in a more compact form, we introduce a simpli-
fied notation in which we suppress space-time indices: we
write V c

t1;t2;���ti as V c
i and V t1;t2;���ti as V i. We give an

example of this notation in Eq. (2.8):

ð3ÞD5U2 :¼ Dit1Djt2Dkt3Dlt4Dt5t6Ut1t6t3Ut2t5t4

þDit1Djt2Dkt3Dlt4Dt6t5Ut1t2t6Ut3t5t4

þDit1Djt2Dkt3Dlt4Dt6t5Ut1t5t4Ut6t2t3 : (2.8)

Note that when space-time indices are included, the three
terms that correspond to the three different 2 $ 2 channels
are all written separately, but when we suppress indices,
the distinction between these three channels is lost. We
indicate that all three channels are included in one term by

writing the factor (3) in front of the term on the left-hand
side (lhs) of Eq. (2.8).
Many of the equations we will write in this paper are

easier to understand as diagrams. In some cases, we will
give only the diagrammatic form of an equation. As an
illustration, in Fig. 1 we show the diagram2 that corre-
sponds to Eq. (2.8).
Using the notation that suppresses space-time indices,

Eq. (2.4) can be rewritten in a compact way. Including the

result for the derivative with respect to Rð5Þ we have

�W
�J

¼ �;

2
�W
�R

¼ Dþ�2;

3!
�W

�Rð3Þ ¼ Uc þ ð3ÞD�þ�3;

4!
�W

�Rð4Þ ¼ Vc þ ð4ÞUc�þ ð3ÞD2 þ ð6ÞD�2 þ�4;

5!
�W

�Rð5Þ ¼ Wc þ ð5ÞVc�þ ð10ÞUc�2 þ ð10ÞUcD

þ ð10ÞD�3 þ ð15ÞD2�þ�5: (2.9)

Similarly, we can rewrite Eq. (2.7). Including the result for
the connected 5-point vertex we have

Uc ¼ D3U; Vc ¼ D4V þ ð3ÞD5U2;

Wc ¼ D5W þ ð10ÞD6UV þ ð15ÞD7U3:
(2.10)

In Eqs. (2.8), (2.9), and (2.10) and Fig. 1, the bracketed
numerical coefficients indicate the number of permutations
of the external legs which have been combined by the
notation that suppresses space-time indices. We will use
this notation throughout this paper. These numerical coef-
ficients are easy to understand when they are written as
products of combinatoric factors. We give two examples
below. We use Cn

m :¼ m!=ðn!ðm� nÞ!Þ. The terms D7U3

and D6UV are shown in Fig. 2. For D7U3 there are 15
different permutations of the external legs. The factor 15 is
determined as follows. We need to assign 5 indices to the 5
external legs. First, we assign one index to the external leg
in the middle, which gives C1

5 different choices; then we

assign 2 of the remaining 4 indices to the 2 external legs on
the left side, which gives C2

4 different choices; finally, we

FIG. 1. Diagrammatic representation of Eq. (2.8).

1There is no vertex Voo in Eq. (2.1) since the effective bare
4-point vertex is identical to the bare 4-point vertex. We use U0

for the effective bare vertex since this vertex appears most often
in equations. 2Figures in this paper are drawn using JAXODRAW [10].
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assign the remaining 2 indices to the 2 legs on the right
side, which gives C2

2 different choices. Note that since
the 2 pairs of external legs on the left and right sides
are symmetric, we need to introduce a factor of 1=2 to
account for this symmetry. Combining we obtain a factor
C1
5C

2
4C

2
2=2 ¼ 15 for this diagram. Using the same method,

the factor for the term D6UV is C2
5C

3
3 ¼ 10 (note that

C2
5C

3
3 ¼ C3

5C
2
2, which means that one can work from either

side of the diagram and obtain the same result).

B. nPI effective action

The nPI effective action is obtained from the last line of
Eq. (2.2). The result can be written

�½�;D;U; V;W . . .�
¼ Scl½�� þ i

2
Tr LnD�1 þ i

2
Tr½ðD0Þ�1D�

� i�0½�;D;U; V� � i�int½D;U; V;W . . .� þ const:

(2.11)

The terms�0½�;D;U; V� and�int½D;U; V;W . . .� contain
all contributions to the effective action which have two or
more loops. For n � 4 the�0 piece includes all terms that
contain bare vertices, and therefore �int is �-independent.
We also define � ¼ �0 þ�int.

In general, we use n to indicate the order of the Legendre
transform, or equivalently, the highest variational correla-
tion function in the effective action, and m to denote
the order of the skeleton loop expansion. The nPI

effective action at m-Loop order is written3 �ðmÞ
n ½V i�; i 2

f1; 2; . . .ng. In Ref. [7] it is argued that at n-Loop order the
nPI effective action provides a complete self-consistent
description. In Appendix B we verify that this result holds
at the 4-Loop level. The conclusion is that we only need to
consider m � n. When m ¼ n we drop the superscript on
the effective action that indicates the Loop order. In some
cases, we write the functional arguments explicitly, and
drop the redundant subscript. For example, them-Loop 3PI

effective action is written �ðmÞ½�;D;U�, and the 5-Loop
5PI effective action is written �½�;D;U; V;W�.

The eom’s are obtained by functionally differentiating
the effective action with respect to the arguments (and
setting all sources to zero). For the nPI effective action
there are n eom’s given by

��ðmÞ
n ½V i�
�V j

¼ 0; fi; jg 2 f1; . . . ; ng: (2.12)

C. 4PI effective action

We give some results for the 4-Loop 4PI effective theory
[9]. We introduce the diagrammatic notation shown in
Fig. 3 for bare, effective bare, and proper vertices [see
Eqs. (2.1), (2.6), and (2.5)].
In Figs. 4 and 5 we show the results for �0 and �int,

respectively. Each contribution is given a name so that we
can refer to the diagrams individually. The result for �0 is
complete for n � 4.
The equations of motion are obtained from Eqs. (2.11)

and (2.12), and Figs. 4 and 5. The equations corresponding
to ��½�;D;U; V�=�D ¼ 0, ��½�;D;U; V�=�U ¼ 0,
and ��½�;D;U; V�=�V ¼ 0 are shown, respectively, in
Figs. 6–8. In each of these figures, the labels indicate the
diagram in the effective action that produced each graph.
In cases where one diagram in the effective action
produces two distinct topologies in an equation of motion,
we use subscripts 1, 2 . . . to distinguish them. For example,
the HAIR graph in the effective action produces the two
graphs labeled ½�HAIR�1 and ½�HAIR�2 in Fig. 6.

III. THE 5-LOOP 5PI EFFECTIVE ACTION

In this section, we derive the 5-Loop 5PI effective
action. We use the method of successive Legendre trans-
formations [4,7,8]. In order to use this method at the
5-Loop 5PI level, we introduce a bare 5-point vertex
(W0), for organizational purposes only. This point will be
explained in the first subsection below. We use a diagram-
matic technique that allows us to identify the classes of
graphs that cancel to remove reducible diagrams from
the final result.

A. Tilded effective action

We start by doing only the first two Legendre trans-
forms, and absorbing the last three terms in the second
line of Eq. (2.2) into a modified interaction by defining the
vertices

FIG. 2. Two terms from the second line in Eq. (2.10).

FIG. 3. Diagrammatic notation for some vertices.

3Note that from Eq. (2.6) we have V 2 ¼ D�1 and thus
�ðmÞ
n ½V i�; i 2 f1; 2; . . .ng really means �ðmÞ

n ½�;D�1; U; V; . . .�
and not �ðmÞ

n ½�;D;U; V; . . .�. We ignore this point to avoid
introducing unnecessary notation.

M. E. CARRINGTON AND YUN GUO PHYSICAL REVIEW D 83, 016006 (2011)

016006-4



i ~U :¼ iUoo � Rð3Þ; i ~V :¼ iV0 � Rð4Þ;

i ~W :¼ iW0 � Rð5Þ:
(3.1)

We will refer to these vertices as ‘‘tilde vertices’’ and we

write them collectively using the notation ~V i 2 f ~U; ~V; ~Wg.

The diagrammatic notation we will use for the tilde vertices
[and for the effective tilde vertices which will be defined in
Eq. (3.17)] is shown in Fig. 9.
The 5PI effective action is defined in the last line

of Eq. (2.2). We rewrite this expression using tilde
vertices as

FIG. 5. �int for 4-Loop 4PI.

FIG. 4. �0 for n � 4.

FIG. 6. Integral equation for the 2-point vertex from the 4-Loop 4PI effective action.

FIG. 7. Integral equation for the 3-point vertex from the 4-Loop 4PI effective action.

FIG. 8. Integral equation for the 4-point vertex from the 4-Loop 4PI effective action.
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�½�;D;U; V;W� ¼ W � J
�W
�J

� R
�W
�R

� Rð3Þ �W
�Rð3Þ

� Rð4Þ �W
�Rð4Þ � Rð5Þ �W

�Rð5Þ

¼ ~�½�;D� � Rð3Þ �W
�Rð3Þ

� Rð4Þ �W
�Rð4Þ � Rð5Þ �W

�Rð5Þ ; (3.2)

where we define

~�½�;D� ¼ W � �W
�J

J � �W
�R

R: (3.3)

In order to construct ~�½�;D�, we start with the set of
5-Loop 2PI diagrams4 that correspond to a theory with a
bare 3-point, 4-point, and 5-point interaction, and then we
replace the bare vertices by the tilde vertices. We will refer

to ~�½�;D� as the tilded 2PI effective action. In the rest
of this section, a tilde over a functional always indicates
that all bare vertices are replaced by tilde vertices.5

We can rewrite the dormant Legendre transforms in
Eq. (3.2) as functional derivatives of the tilded 2PI effective
action using the relations

�~�

�Rð3Þ ¼ �W

�Rð3Þ ;
�~�

�Rð4Þ ¼
�W

�Rð4Þ ;
�~�

�Rð5Þ ¼
�W

�Rð5Þ :

(3.4)

Using Eqs. (3.1) and (3.4), Eq. (3.2) becomes

�½�;D;U; V;W� ¼ ~�½�;D� � �~�½�;D�
� ~U

ð ~U�UooÞ

� �~�½�;D�
� ~V

ð ~V � V0Þ � �~�½�;D�
� ~W

~W

þ const: (3.5)

The next step is to rewrite ~�½�;D�. From Eq. (2.11) the
(untilded) 2PI effective action is

�½�;D� ¼ �1½�;D� � i�½�;D� þ const; (3.6)

where we have combined the tree and 1-loop terms by
introducing the notation

�1½�;D� :¼ Scl½�� þ i

2
Tr lnD�1 þ i

2
Tr½ðD0ð�ÞÞ�1D�:

(3.7)

Using Eq. (3.6) we rewrite the tilded 2PI effective action as

~�½�;D� ¼ ~�1½�;D� � i ~�½�;D� þ const

¼ �1½�;D� þ ��1½�;D� � i ~�½�;D� þ const;

(3.8)

where we have defined

��1½�;D� :¼ ~�1½�;D� � �1½�;D�: (3.9)

From Eqs. (2.1), (3.1), and (3.7) we obtain an explicit
expression for ��1½�;D�:

��1½�;D� ¼ � i

6
�3ðUoo � ~UÞ � i

24
�4ðV0 � ~VÞ

þ i

120
�5 ~W � i

2
Tr

�
�ðUoo � ~UÞ

þ 1

2
�2ðV0 � ~VÞ � 1

6
�3 ~W

�
D: (3.10)

In order to represent this equation diagrammatically,
we draw the � fields as arrows. This notation is illustrated
with two examples in Fig. 10. Equation (3.10) is shown
in Fig. 11.
Now we calculate the last three terms in Eq. (3.5).

We define

A :¼ i
�~�½�;D�

� ~U
ð ~U�UooÞ;

B :¼ i
�~�½�;D�

� ~V
ð ~V � V0Þ;

C :¼ i
�~�½�;D�

� ~W
~W: (3.11)

We can write the derivatives that appear in these terms
using Eqs. (2.9), (2.10), (3.1), and (3.4):

FIG. 9. Diagrammatic notation for the tilde vertices and effec-
tive tilde vertices defined in Eqs. (3.1) and (3.17), respectively.

FIG. 10. Notation used to draw � fields.

4We include some L � 6 loop tadpole diagrams that do not
change the result of the calculation. They are included for
organizational purposes only. This point is explained in more
detail in the discussion under Eq. (3.17).

5Note that the bare 5-point vertex W0 has disappeared at this
point in the calculation. Its only role is to produce diagrams in
~�½�;D� that contain the 5-point tilde vertex ~W.
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�~�½�;D�
� ~U

¼ � i

6
ðD3Uþ ð3ÞD�þ�3Þ;

�~�½�;D�
� ~V

¼ � i

24
ðD4V þ ð3ÞD5U2 þ ð4ÞD3U�þ ð3ÞD2

þ ð6ÞD�2 þ�4Þ;
�~�½�;D�

� ~W
¼ � i

120
ðD5W þ ð10ÞD6VUþ ð15ÞD7U3

þ ð5ÞD4V�þ ð15ÞD5U2�þ ð10ÞD3U�2

þ ð10ÞD4Uþ ð10ÞD�3 þ ð15ÞD2�þ�5Þ:
(3.12)

Substituting (3.12) into Eqs. (3.11) we obtain the result
shown in Fig. 12.

Using Eqs. (3.8) and (3.11) to rewrite Eq. (3.5) we obtain

�½�;D;U; V;W� ¼ �1½�;D� þ��1½�;D�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Fig: 11

� i ~�½�;D�

þ iðAþ Bþ CÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Fig: 12

þ const: (3.13)

The diagrams in Fig. 11 exactly cancel with the tree and
1-loop diagrams in Fig. 12 [this is the reason that we chose

to write the tilded 1-Loop effective action immediately in
terms of the variational vertices in Eq. (3.8)]. We obtain

�½�;D;U; V;W� ¼ �1½�;D� � i ~�½�;D�
þ iðA0 þ B0 þ C0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Fig: 12 L�2

þ const; (3.14)

where the primes indicate that the 1-Loop terms have been
removed.
We compare Eq. (3.14) with the expression for the 5PI

effective action obtained from Eqs. (2.11) and (3.7):

�½�;D;U; V;W� ¼ �1ð�;DÞ � i�0½�;D;U; V�
� i�int½D;U; V;W� þ const: (3.15)

Equating the right sides of Eqs. (3.14) and (3.15) we obtain

�0½�;D;U; V� þ�int½D;U; V;W�
¼ ~�½�;D� � ðA0 þ B0 þ C0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Fig: 12 L�2

: (3.16)

Note that Eq. (3.16) gives a formal result for �0½�;D;
U; V� and �int½D;U; V;W� as a functional of the tilde
vertices. In the next section, we show how to convert this
expression to a functional of variational proper vertices.

FIG. 11. Diagrammatic representation of Eq. (3.10).

FIG. 12. Diagrammatic representation of Eqs. (3.11) and (3.12).
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We can write the diagrams contained in the right-hand
side (rhs) of Eq. (3.16) in a compact way by introducing
‘‘effective tilde’’ vertices. The definitions we will use are

~U 0 :¼ ~Uþ� ~V þ 1

2
ð�2 ~W þD ~WÞ;

~V0 :¼ ~V þ� ~W; ~W 0 :¼ ~W:

(3.17)

We write these vertices collectively using the notation
~V 0

i 2 f ~U0; ~V 0; ~W 0g. The diagrammatic notation we will
use is shown in Fig. 9.

We make some comments about the structure of the
definitions of the effective tilde vertices. Recall that
the effective bare propagator and effective bare vertex
[see Eq. (2.5)] are constructed so that the explicit
�-dependence in the (untilded) � is absorbed into these

definitions. Similarly, for the tilded functional ~�½�;D�,
we could remove all the explicit �-dependence with the
definitions in Eq. (3.17), if we did not include the last term
in the definition of ~U0, which produces the tadpole-type
diagram in Fig. 13 (the last graph on the rhs).

This tadpole-type term is included because it absorbs all

of the tadpole graphs in the 5-Loop ~�½�;D�. An example
of this is shown in part (a) of Fig. 14. In order to understand
why all tadpole graphs are absorbed by this definition, we
note that, in the absence of the 5-point interaction, there are
no tadpole graphs in the 2PI effective action, at any loop
order [because they are 2-particle reducible (2PR)], and
therefore all possible tadpole graphs have the form of
bubbles attached to 5-point vertices, as in the last graph
in Fig. 13. We include some L � 6 loop tadpoles in
~�½�;D� so that the tadpole term in the definition of ~U0

absorbs all tadpole graphs (see footnote 4). An example
is shown in part (b) of Fig. 14. These higher loop tadpoles
are included for organizational purposes only, and allow us
to present the calculation in a more compact way. We have
checked that we get the same result for the 5PI effective
action if we drop the tadpole term in the definition of the
effective tilde U-vertex, and include only 5-Loop 2PI tad-

pole graphs in ~�½�;D� (which are then not absorbed into
the effective vertices).
We can use the vertices defined in Eq. (3.17) to rewrite

the two terms on the rhs of Eq. (3.16) in a compact way:
In the first term, all of the �-dependence is absorbed

into the effective tilde vertices and we write ~�½�;D� :¼
~�0½D�. The quantity ~�0½D� contains only effective tilde

vertices ( ~V
0
i) and no explicit �-dependence. There are

71 diagrams in the 5-Loop result for ~�0½D�:
(i) There are 9 diagrams with L � 4 loops which are

4PI. We get these diagrams from Figs. 4 and 5 by

replacing all vertices with tilde effective vertices ~V 0

[note that the two figures contain 11 diagrams, but
the (EGG, EGG0) and (BBALL, BBALL0) diagrams
combine, which leaves 9 diagrams].

(ii) There are 4 additional 4-loop diagrams that are 2PI
and 4PR, and depend on ~U0 and ~V 0 but not the
effective 5-vertex ~W 0. These diagrams are shown
in Fig. 15.

(iii) There are 35 5-loop 2PI diagrams that do not con-
tain the effective 5-vertex. These diagrams are
given in Ref. [2], in Eq. (59).

(iv) There are 23 4- and 5-loop diagrams that contain
the vertex ~W 0 which are given in Fig. 16.

The second term on the rhs of Eq. (3.16) is shown in
Fig. 12. It is straightforward to rewrite these diagrams
in terms of effective tilde vertices using Eq. (3.17). As an
example, we consider the six diagrams with the EGG
topology.6 The 2nd diagram in A and the 6th diagram in
B combine to give� 1

6UD3U0. Including the minus sign in

Eq. (3.16), this is the EGG0 graph in �0½�;D;U; V� (see
Fig. 4). The 1st diagram in A, the 5th diagram in B, and the
6th and 7th diagrams in C give 1

6UD3 ~U0. Including the

minus sign in Eq. (3.16), this is the 2nd graph in Fig. 17.
Combining all terms, we find that the L � 2 loop terms in

FIG. 13. The vertex ~U0 defined in Eq. (3.17).

FIG. 14. Examples of tadpole graphs that are included using
the definition of ~U0 in Eq. (3.17).

FIG. 15. 4-loop diagrams in ~�0½D� that are 2PI and 4PR.

6The six different graphs with the EGG topology differ from
each other by having different vertices and sometimes different
numerical coefficients. Throughout this section, all graphs with
the EGG topology will be referred to generically as EGG
diagrams, and similarly for all other topologies. The vertices
for a specific diagram are shown in the corresponding figure.
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Fig. 12 produce �0½�;D;U; V� and seven additional
diagrams.

Substituting these results into Eq. (3.16),�0½�;D;U; V�
cancels and we obtain the result shown in Fig. 17. The
EIGHT diagram in Fig. 17 cancels identically with the

EIGHT diagram in ~�0½D�. The remaining six diagrams

in Fig. 17 have partners in ~�0½D� which have the same
topology, but all vertices are effective tilde vertices. We
extract these diagrams and group the remaining terms into a

set of functionals which we call ~�0
i½D�, where the subscript

indicates loop order. These functionals include all of the
diagrams in the list under Fig. 14 except the EIGHT, EGG,
EGG0, BBALL, BBALL0, and HAIR graphs, and the three
4-loop graphs at the beginning of the first line of Fig. 16.
This rearranged version of Eq. 17 is shown in Fig. 18.

B. Vertex inversion

In this subsection, the goal is to obtain expressions that
will allow us to write the rhs of the equation represented in
Fig. 18 in terms of proper vertices. The end result in this
subsection is a set of expressions of the form

~U0 ¼Uþfð1ÞU ½V i�þfð2ÞU ½V i�þfð3ÞU ½V i�þ �� � ;
~V 0 ¼ Vþfð1ÞV ½V i�þfð2ÞV ½V i�þfð3ÞV ½V i�þ �� � ;
~W 0 ¼Wþfð1ÞW ½V i�þfð2ÞW ½V i�þfð3ÞW ½V i�þ �� � ;

(3.18)

where fU, fV , and fW are functionals of proper variational
vertices, and the superscripts indicate their loop orders.
These expressions will be substituted into Fig. 18 to pro-
duce the final result for the 5-Loop 5PI effective action, as
a functional of proper variational vertices.
The lowest order diagrams in Fig. 18 that contain the

3-vertex ~U0 are the EGG-type diagrams in the first set
of square brackets. Since these diagrams are themselves
2-loop, it appears that, in order to obtain the effective
action to 5-Loop order, we need to keep the 3-loop term

(of the form fð3ÞU ½V i�) in Eq. (3.18). The lowest order
diagrams that contain the 4-vertex ~V0 are the BBALL-
type diagrams in the second set of square brackets, which
are 3-loop, indicating that we need to keep the 2-loop term

(of the form fð2ÞV ½V i�) in the expansion of the 4-vertex ~V 0.
The lowest order diagrams that contain the 5-vertex ~W 0 are

FIG. 16. 4- and 5-loop diagrams in ~�0½D� that contain the vertex ~W 0.

FIG. 17. Diagrammatic representation of �int½D;U; V;W�.

FIG. 18. Rearranged version of Fig. 17.
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the 4-loop graphs in the fourth set of square brackets,
which indicates that we need to keep the 1-loop term (of

the form fð1ÞW ½V i�) in the expansion of the 5-vertex ~W 0.
From the argument above, we would conclude that in

order to obtain the 5-Loop 5PI effective action, we need to

keep terms Offð3ÞU ½V i�; fð2ÞV ½V i�; fð1ÞW ½V i�g in Eq. (3.18).
However, it is easy to show that these highest order terms
do not contribute. Consider the first set of square brackets
in Fig. 18 which contains the EGG-type diagrams.
Substituting the expansions in Eq. (3.18) and keeping

only the 5-loop contributions that contain fð3ÞU we obtain

1

2
ðfð3ÞU D3UþUD3fð3ÞU Þ �UD3fð3ÞU ¼ 0: (3.19)

It is easy to see that the 5-loop contributions which

contain fð2ÞV and fð1ÞW from the second and fourth terms
in square brackets also cancel. The result is that the
highest terms that we need to keep have the form

ffð2ÞU ½V i�; fð1ÞV ½V i�; fð0ÞW ½V i� ¼ Wg, which means that we
can use Eq. (3.18) in the form

~U0 ¼ Uþ fð1ÞU ½V i� þ fð2ÞU ½V i�;
~V 0 ¼ V þ fð1ÞV ½V i�;
~W 0 ¼ W:

(3.20)

Now we describe how to calculate the f functions in
Eq. (3.20). The first step is to rewrite the derivatives on the
lhs of Eq. (3.12). We start by using Eqs. (3.8), (3.9), and

(3.10) to separate the L � 1 and L � 2 pieces of ~�½�;D�:
�~�½�;D�

� ~U
¼ � i

6

�
�3 þ ð3ÞD�þ 6

� ~�½�;D�
� ~U

�
;

�~�½�;D�
� ~V

¼ � i

24

�
�4 þ ð6ÞD�2 þ 24

� ~�½�;D�
� ~V

�
;

�~�½�;D�
� ~W

¼ � i

120

�
�5 þ ð10ÞD�3 þ 120

� ~�½�;D�
� ~W

�
:

(3.21)

Equating the right sides of Eqs. (3.12) and (3.21) gives

D3U¼ 3!
� ~�½�;D�

� ~U
;

D4Vþ ð3ÞD5U2 þ ð4ÞD3U�þ ð3ÞD2 ¼ 4!
� ~�½�;D�

� ~V
;

D5Wþ ð10ÞD6VUþ ð15ÞD7U3 þ ð5ÞD4V�þ ð15ÞD5U2�

þ ð10ÞD3U�2 þ ð10ÞD4Uþ ð15ÞD2�¼ 5!
� ~�½�;D�

� ~W
:

(3.22)

As we have seen in the previous subsection, the quantity
~�½�;D� can be written in a compact way in terms of the

effective tilde vertices as ~�0½D�. In order to make use of

this result, we need to convert the functional derivatives
with respect to tilde vertices in Eq. (3.22) into derivatives
with respect to effective tilde vertices. Using Eq. (3.17) to
obtain � ~W 0=� ~V ¼ � ~W 0=� ~U ¼ � ~V0=� ~U ¼ 0 we have

� ~�½�;D�
� ~U

¼ � ~�0½D�
� ~U0 ;

� ~�½�;D�
� ~V

¼ � ~�0½D�
� ~U0

� ~U0

� ~V
þ � ~�0½D�

� ~V0 ;

� ~�½�;D�
� ~W

¼ � ~�0½D�
� ~U0

� ~U0

� ~W
þ � ~�0½D�

� ~V0
� ~V0

� ~W
þ � ~�0½D�

� ~W 0 :

(3.23)

Using Eq. (3.17) again, we can obtain explicit expressions
for � ~U0=� ~V ¼ � ~U0=� ~W ¼ � ~V 0=� ~W, and simultaneously
solve the set of equations in Eqs. (3.22) and (3.23), elim-
inating the functional derivatives with respect to the tilde
vertices. We obtain

D3U ¼ 6
� ~�0½D�
� ~U0 ;

D4V þ ð3ÞD5U2 þ ð3ÞD2 ¼ 24
� ~�0½D�
� ~V0 ;

D5W þ ð10ÞD6VUþ ð15ÞD7U3 ¼ 120
� ~�0½D�
� ~W 0 :

(3.24)

We note that the EIGHT diagram in ~�0½D� has the form
1
8D

2 ~V 0 and therefore the only contribution it makes to

Eq. (3.24) is to cancel the last term on the left side of the
second equation. In the future we will drop this term, and

remove the EIGHT diagram from ~�0½D�.
The next step is to calculate the derivatives in Eq. (3.24).

There are 71 diagrams in ~�0½D�, which are listed under
Fig. 14. However, for some terms, derivatives give contri-
butions that are beyond the order to which we are working
[see Eq. (3.20)]. In Sec. IVB we discuss in general
the relationship between the loop order of a diagram in
the effective action and the loop order of the functional
derivative of the diagram with respect to an i-point vertex.
The result is given in Eq. (4.6). Using this result we find
that, in Eq. (3.24), we only need to calculate derivatives of

the L � 4 loop terms in ~�0½D�. The results are shown in
Fig. 19. In accordance with Eq. (3.20), we keep L � 2 loop
terms in the expansion of U, L � 1 loop terms in the
expansion of V, and tree graphs in the expansion of W.

The result for the 2-loop terms fð2ÞU is not given because it
cancels exactly, as we will show below.
We can simplify the results shown in Fig. 19.

Substituting the first and second equations into the third,
it is clear that the equation for the 5-vertex can be rewritten
W ¼ ~W 0 þ . . . [where the dots indicate terms with one or
more loops which are beyond the order of Eq. (3.20)]. We
can also rewrite the equation for the 4-vertex. We iterate
the first line in the figure to obtain the result shown in
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Fig. 20 (dropping L � 2 loop terms). Multiplying this
equation by three and subtracting from the second line in
Fig. 19, we can write the equation for the proper 4-vertex
as shown in Fig. 21.

The final task is to invert these equations, which can be
done using a straightforward iterative process. The com-
plete set of inverted equations is shown in Fig. 22, where
we drop all terms that are beyond the order to which we
are working [see Eq. (3.20)].

C. Substitutions

In this subsection we discuss the substitution of the
results in Fig. 22 into the expression for the effective action
in Fig. 18.
First we consider the diagrams in square brackets in

Fig. 18. The results are shown in Fig. 23. We give an
example to show how this figure is obtained. The two
EGG-type graphs in the first set of square brackets in
Fig. 18 can be written

1

12
D3ð ~U0Þ2 � 1

6
D3U ~U0 ¼ 1

12
D3ðUþ fð1ÞU þ fð2ÞU Þ2 � 1

6
D3U ~U0 ¼ 1

12
D3ð2UðUþ fð1ÞU þ fð2ÞU Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

~U0

�U2

þ ðfð1ÞU Þ2 þ 2fð1ÞU fð2ÞU Þ � 1

6
D3U ~U0 ¼ 1

12
D3ð�U2 þ ðfð1ÞU Þ2 þ 2fð1ÞU fð2ÞU Þ:

(3.25)

Equation (3.25) corresponds to the first line in Fig. 23. The
last three terms in Eq. (3.25) are of loop order
(2, 4, 5), respectively.

Next we consider the MERCEDES diagram, which is

the only contribution to ~�0
3½D�. Using Fig. 22 we obtain

the result shown in Fig. 24. The graphs on the rhs of this
figure are of loop order (3, 4, 5, 5), respectively.

It is now straightforward to collect the 5-Loop terms in
�int½D;U; V;W�.
For L � 4 loops there are contributions from
(i) The L � 4 loop diagrams in Fig. 23.
(ii) The L � 4 loop diagrams in Fig. 24.

(iii) The 4-loop diagrams in ~�0
4½D� with the effective

tilde vertices replaced by the proper ones.

FIG. 19. Diagrammatic representation of Eq. (3.24).

FIG. 20. Iteration of the first line in Fig. 19.

FIG. 21. Rearrangement of the second line in Fig. 19.
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Collecting these terms we obtain the set of 4-Loop graphs
shown in the first two lines of Fig. 25. After inserting the
square blobs (see Fig. 22), we find that the 4PR diagrams
cancel and we are left with the 4PI terms in Fig. 5, and one
additional graph that contains an effective 5-point vertex,
which we call BBALL2. This result is shown in the third
line of Fig. 25.

For L � 5 loops there are additional contributions from
(i) The 5-loop diagrams in Fig. 23.
(ii) The 5-loop diagrams in Fig. 24.

(iii) The 4-loop diagrams in ~�0
4½D� with one effective

tilde vertex replaced by the corresponding grey
square blob in Fig. 22, and the other effective tilde
vertices replaced by proper vertices.

(iv) The 5-loop diagrams in ~�0
5½D� with all effective

tilde vertices replaced by proper vertices.
There are three 5-loop diagrams that contain the grey

triangle blob (fð2ÞU ). They are included in items 1 and 2 in

the list above (see Figs. 23 and 24). It is easy to show that
the sum of these three graphs is zero, by substituting in the

FIG. 22. Diagrammatic representation of Eq. (3.20). The grey square blobs denote the contributions to the 3- and 4-point vertices

at 1-loop order (fð1ÞU and fð1ÞV ), and the grey triangle blob denotes the contribution to the 3-point vertex at 2-loop order (fð2ÞU ). No result is

given for the triangle blob, since it cancels in the final result (see below).

FIG. 23. The result obtained from substituting Fig. 22 into Fig. 18.
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expression for the grey square blob in Fig. 22. As a con-
sequence of this cancellation, the explicit form of the

2-loop term fð2ÞU is not needed. Collecting all of the other
terms in the list above produces, at the end of a long
calculation, the diagrams shown in Fig. 26.

This result has several unexpected features. All of the
diagrams in the second line of the figure have negative
coefficients, and the coefficient for diagram 1A is twice the
factor that would be produced by the normal combinatoric
rules for calculating symmetry factors. These diagrams are
also 5PR, which means that the ‘‘5PI’’ effective action is
not 5-particle irreducible. This suggests that the n-Loop
nPI effective action is n-particle irreducible for n � 4 only.
We discuss the significance of this in the next section.

IV. STRUCTURE OF THE nPI EFFECTIVE
ACTION AND ITS EOM’S

In this section, we discuss the structure of the nPI
effective action, and the relationship between the nPI
eom’s and the sd equations. From this point on we set
� ¼ 0. We remind the reader that the effective bare
propagator and effective bare 3-vertex are equal to their

bare counterparts when � ¼ 0: Doo ¼ D0j�¼0 and

Uoo ¼ U0j�¼0 [see Eq. (2.5)].

A. Skeleton expansion of the effective action

In this subsection, we make some general statements
about the diagrams that can appear in the skeleton expan-
sion of the m-loop nPI effective action. We discuss which
diagrams are topologically allowed in the 2PI effective
action, and which ones survive the Legendre transforms.
Using I for the number of internal lines, E for the number
of external legs, and vk for the number of k-point vertices,
the standard topological relations are

m ¼ I�Xn
3

vk þ 1; 2I þ E ¼ Xn
3

kvk: (4.1)

Eliminating I and setting E ¼ 0 we get

m ¼ 1þ X
k¼3

�
1

2
k� 1

�
vk: (4.2)

Before looking at general solutions to Eq. (4.2), we
consider a special class of graphs that contribute to the

FIG. 24. Result obtained from substituting Fig. 22 into the MERCEDES diagram.

FIG. 25. The L � 4 loop diagrams contributing to �int½D;U; V;W�. The diagrams in �int½D;U; V� are shown in Fig. 5.

FIG. 26. 5-loop diagrams contributing to �int½D;U; V;W�.
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m-loop nPI effective action which we will call super-
BBALL and super-BBALL0 diagrams. In the next subsec-
tion, we will see that these diagrams play an important role
in the eom’s. For i � 2 loops, nontadpole graphs with two
V iþ1 vertices, and no other vertices, are super-BBALL
diagrams. Nontadpole graphs with one V iþ1 vertex and
oneV 0

iþ1 vertex, and no other vertices, are super-BBALL0

diagrams. For example, the i ¼ f2; 3; 4g super-BBALL
diagrams are fEGG;BBALL;BBALL2g, and the
super-BBALL0 diagrams are fEGG0;BBALL0g. In addi-
tion, the terms i=2Tr LnD�1 and i=2Tr½ðD0Þ�1D� in the
1-loop effective action will be called the 1-loop super-
BBALL and super-BBALL0, respectively.

For any loop number m, we define V kmax
as the largest

vertex (with kmax legs) that appears in the L ¼ m loop
effective action. We will argue below that for any m the
vertexV kmax

appears only in them-loop super-BBALL and

super-BBALL0 diagrams. From Eq. (4.2), using vkmax
¼ 2

and vk�kmax
¼ 0, it follows immediately that kmax ¼ mþ 1.

Now we consider general 2PI solutions to Eq. (4.2).
m ¼ 1: Eq. (4.2) gives vk ¼ 0 for k 2 f3; 4; . . . ng, and

therefore kmax ¼ 2. Since the 1-loop terms in the effective
action are the 1-loop super-BBALL and super-BBALL0

diagrams, we conclude that for m ¼ 1, the vertex
V kmax¼ðmþ1Þ appears only in the m-loop super-BBALL

and super-BBALL0 diagrams.
m ¼ 2: Eq. (4.2) gives v5 ¼ v6 ¼ v7 ¼ . . . ¼ 0.

The only 2-loop diagram that has a 4-point vertex is the
EIGHT diagram, which has a bare 4-point vertex. The
largest variational vertex that appears at the 2-loop level
is the 3-vertex in the EGG (and EGG0) diagram, which is
the 2-loop super-BBALL (and super-BBALL0) diagram.
The conclusion is that for m ¼ 2 we have the same result
as for the 1-loop case above: the vertex V kmax¼ðmþ1Þ
appears only in the m-loop super-BBALL and
super-BBALL0 diagrams.

We note that if the EIGHT diagram contained a varia-
tional 4-vertex, it would produce a nonconnected contri-
bution to the eom for the 4-point vertex.

m ¼ 3: Eq. (4.2) gives vi ¼ 0 for i 2 f7; 8; . . .ng. We
look at the solutions to Eq. (4.2) that have nonzero values
of vk for 4 � k � 6. The only possible solutions are

fv3 ¼ 0; v4 ¼ 0; v5 ¼ 0; v6 ¼ 1g ! tadpole 1;

fv3 ¼ 1; v4 ¼ 0; v5 ¼ 1; v6 ¼ 0g ! tadpole 2;

fv3 ¼ 2; v4 ¼ 1; v5 ¼ 0; v6 ¼ 0g ! HAIR;

fv3 ¼ 0; v4 ¼ 2; v5 ¼ 0; v6 ¼ 0g
! BBALL and BBALL0:

(4.3)

The first two solutions correspond to the tadpole graphs
shown in Fig. 27. It is easy to see that tadpole graphs with
all lines joining at a single vertex must cancel (in the same
way that the EIGHT graph that depends on the effective
tilde vertex cancels in Fig. 17). Therefore, the first diagram

in Fig. 27 does not appear in the effective action. Our
calculation of the 5-loop 5PI effective action shows that
the second tadpole graph in Fig. 27 also cancels. The third
solution in Eq. (4.3) corresponds to the HAIR diagram,
which has a bare 4-vertex. The fourth solution is the
BBALL (and BBALL0) diagram, which is the 3-loop
super-BBALL (and super-BBALL0) diagram. The conclu-
sion is that for m ¼ 3 we have the same result as for the
m � 2 cases above: the vertexV kmax¼ðmþ1Þ appears only in
the m-loop super-BBALL and super-BBALL0 diagrams.
We note that if the tadpole diagrams did not cancel, they

would give nonconnected contributions to the eom’s for the
5- and 6-point vertices. Also, if the HAIR graph contained
a variational 4-vertex, it would give a 1PR contribution to
the eom for the 4-point vertex.
m ¼ 4: Eq. (4.2) gives vi ¼ 0 for i 2 f9; 10; . . . ng. We

look at the solutions to Eq. (4.2) that have nonzero values
of vk for 6 � k � 8. Two examples of graphs that contain a
6-point vertex are shown in parts (a) and (b) of Fig. 28.
These graphs give disconnected contributions to the eom
for the vertex V 6, and therefore they should cancel in the
effective action. We expect that all graphs with vk � 0 for
6 � k � 8 would give disconnected contributions to
eom’s, and that they cancel from the effective action.
This means that the largest vertex that will appear at the
4-loop level is the 5-vertex. The solutions to Eq. (4.2) with
v5 � 0 and vk ¼ 0 for 6 � k � 8 are

fv3 ¼ 1; v4 ¼ 1; v5 ¼ 1; v6 ¼ v7 . . . ¼ 0g
! tadpole 3 and first diagram in Fig. 16,

fv3 ¼ 3; v4 ¼ 0; v5 ¼ 1; v6 ¼ v7 . . . ¼ 0g
! tadpole 4 and second diagram in Fig. 16,

fv3 ¼ 0; v4 ¼ 0; v5 ¼ 2; v6 ¼ v7 . . . ¼ 0g
! tadpole 5 and BBALL2.

(4.4)

The graphs labeled tadpole 3, tadpole 4, and tadpole 5 are
shown in Fig. 28, in parts (c), (d), and (e), respectively. Our
calculation of the 5-Loop 5PI effective action proves that
these graphs cancel. In addition, the calculation shows that
the first two diagrams in Fig. 16 cancel. The only surviving
4-loop diagram is BBALL2. The conclusion is that for
m ¼ 4 we have the same result as for the m � 3 cases
above: the vertex V kmax¼ðmþ1Þ appears only in the m-loop

super-BBALL diagram (there is no 4-loop super-BBALL0

diagram because W0 ¼ 0).

FIG. 27. 3-loop diagrams that do not contribute to the effective
action.
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We note that the first two graphs in Fig. 16 would
produce 1PR contributions to the eom for the 5-point
vertex.

We summarize below our results for m � 4:
(1) The only graph with V kmax

that survives the

Legendre transform is the m-loop super-BBALL
(and for m< 4 the m-loop super-BBALL0) dia-
gram, and kmax ¼ ðmþ 1Þ.

(2) The m-loop graphs that contain V kmax
and are not

super-BBALL (or super-BBALL0) cancel. If they
did not cancel, they would produce 1PR contribu-
tions to the eom for the vertex V kmax

.

(3) Tadpole graphs would produce disconnected contri-
butions to the eom of the vertex that joins the tad-
pole loop to the diagram. In the calculation of the
5-Loop 5PI effective action, there is one 3-loop
tadpole (the second graph in Fig. 27), three 4-loop
tadpoles (the last three graphs in Fig. 28), and 14
5-loop tadpoles. We have checked that all of these
graphs cancel. The EIGHT diagram depends only on
the bare vertex.

We expect that these results hold at higher orders. We
assume below that for any m, the only graph that contains
the vertexV kmax

is them-loop super-BBALL diagram (and

for m< 4 them-loop super-BBALL0 diagram). In order to
facilitate the discussion in the next section, we separate the
super-BBALL and super-BBALL0 terms from the effective
action by writing

�ðmÞ
n ¼ X

i

super-BBALLði-loopÞ þX
i

super-BBALL
ði-loopÞ
0

þ �̂ðmÞ
n ½V j�; (4.5)

where �̂ðmÞ
n ½V j� ¼ �i�̂ðmÞ

n ½V j� contains all terms in

the effective action that are not super-BBALL or
super-BBALL0. The vertex V i appears in the (i� 1)
loop super-BBALL (and super-BBALL0) diagram, and

diagrams with L > ði� 1Þ loops in �̂ðmÞ
n ½V j�.

B. Skeleton expansion of the eom’s

Now we consider the structure of the eom for the vertex
V i that will be produced from the effective action in
Eq. (4.5) using Eq. (2.12).

Taking the functional derivative of an m-loop graph in
the effective action with respect to the variational vertex
V i (2 � i � n) opens i� 1 loops. This means that an
m-loop graph in the effective action produces a diagram

withL½m; i� loops in the eom for the vertexV i, where we
have defined

L ½m; i� :¼ m� iþ 1: (4.6)

Note that the order of the original m-loop diagram in the
effective action corresponds to i ¼ 1.
According to our definition (see Sec. IVA), the super-

BBALL and super-BBALL0 diagrams have (i� 1) loops.
Equation (4.6) gives L½i� 1; i� ¼ 0, which means that
these graphs produce 0-loop (or tree) contributions to the
eom for the vertex V i. Derivatives of the super-BBALL
and super-BBALL0 diagrams give �ð1� 2�i2Þð1=i!Þ�
ðV i �V 0

i Þ. The factor (1� 2�i2) gives (1) for i � 3
and (� 1) for i ¼ 2. The sign difference for the 2-point
function occurs because of the fact that it is conventional to
write the effective action as a function of the propagator D
instead of the inverse propagator D�1 (see footnote 3).
We give several examples: In the eom for the 2-vertex,
the 1-loop contributions to the effective action produce
1
2 ðD�1 � ðD0Þ�1Þ. In the eom for the 3-vertex, the EGG

and EGG0 graphs produce � 1
6U and 1

6U
0, respectively. In

the eom for the 4-vertex, the BBALL and BBALL0 graphs
produce � 1

24V and 1
24V

0, respectively. In the eom for the

5-vertex, the BBALL2 graph produces � 1
120W, and the

absence of a bare 5-vertex corresponds to the absence of a
BBALL2-type graph with a bare vertex, and the absence of
a W0 term in the eom.
Equation (4.6) also tells us that functionally differentiat-

ing the L > ði� 1Þ loop terms in �̂ðmÞ
n ½V j� produces

contributions with L > 0 loops. Combining pieces we
can rewrite the eom:

V i ¼ V 0
i þ fcni½V j�;

fcni½V j� ¼ i!ð1� 2�i2Þ
��̂ðmÞ

n ½V j�
�V i

;

(4.7)

where the functional fcni½V j� is L � 1 loops in the skel-

eton expansion. To illustrate the notation we write out
Eq. (4.7) for i ¼ 2 and i ¼ 3:

��ðmÞ
n ½V j�
�D

¼0!D�1¼ðD0Þ�1�2!
��̂ðmÞ

n ½V j�
�D

¼ðD0Þ�1��½V j�;
��ðmÞ

n ½V j�
�U

¼0!U¼U0þ3!
��̂ðmÞ

n ½V j�
�U

¼U0þ fcn3½V j�:

(4.8)

FIG. 28. 4-loop diagrams that do not contribute to the effective action.
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C. Perturbative expansions

The nPI effective action represents a reorganization of
perturbation theory that can be thought of as corresponding
to an infinite resummation of some set of diagrams with
bare propagators and vertices. The nPI formalism is of
interest because it includes nonperturbative effects, and
the goal is not to expand, but to solve the nPI eom’s or
the sd equations self-consistently. However, we will show
in this section that we can obtain some interesting results
about the structure of the nonperturbative variational eom’s
by considering their perturbative expansions. In order to
see which diagrams are included in the perturbative expan-
sion of the effective action, or in any of the verticesV i, we
could expand the corresponding functional by substituting
repeatedly the eom’s. This procedure would replace varia-
tional propagators and vertices with bare ones, while gen-
erating higher and higher loop diagrams in the perturbative
expansion that correspond to propagator- and vertex-
corrected versions of the diagrams in the skeleton expan-
sion. In this subsection we consider the diagrams that
would be produced by this procedure. The goal is to
show that the m-Loop effective action produces all terms
in the perturbative expansions of the effective action, and
the vertices V i, up to Lpt ¼ L½m; i� loops. The signifi-

cance of this result is explained in Sec. IVD.
Throughout this paper, we use L to denote loop number

in the skeleton expansion. In this section we introduce the
notation Lpt to denote loop number in the perturbative

expansion.
We consider adding L ¼ ðmþ 1Þ loop terms to the

skeleton expansion of �̂ðmÞ
n ½V j�. We write these terms

�̂L¼ðmþ1Þ
n ½V j� where the superscript indicates only terms

with L ¼ ðmþ 1Þ loops are included (recall that �̂ðmÞ
n ½V j�

contains terms with L � m loops). These (mþ 1) loop
terms will produce new contributions to the skeleton and
perturbative expansions of the effective action, and each

vertex V i. We will show that all terms in �̂L¼ðmþ1Þ
n ½V j�

produce contributions to the perturbative expansion of the
effective action and the vertex V i at Lpt >L½m; i� loops.

There are two types of contributions:
(1) As explained in the previous subsection, taking the

functional derivative of �̂L¼ðmþ1Þ
n ½V j� with respect

toV i produces new terms in the skeleton expansion
of V i of order L½mþ 1; i�. It is clear that they
contribute at Lpt >L½m; i� loops to the perturbative
expansion, and give no contributions at Lpt �
L½m; i� loops.

(2) We also need to consider lower order (old) terms
in the skeleton expansion of order L½m0; i�, with
m0 � m, with an arbitrary internal variational vertex
V k replaced by a term in fcnk½V j� [see Eq. (4.7)]

which was produced by functional differentiation of

�̂L¼ðmþ1Þ
n ½V j�. For any k, the new contributions to

the vertex V k are of order L½mþ 1; k�. The sub-
stitution produces terms of order L ¼ L½m0; i� þ
L½mþ 1; k� in the skeleton expansion. From
Eq. (4.6) we have L½mþ 1; k� � L½mþ 1; kmax�
which means L � L½m0; i� þL½mþ 1; kmax�.
Using Eq. (4.6) with kmax ¼ m0 þ 1 (see
Sec. IVA) we obtain L >L½m; i�, and therefore
Lpt >L½m; i� loops.

We have shown that both types of contributions from

terms in �̂L¼ðmþ1Þ
n ½V j� contribute to the perturbative ex-

pansion of the effective action and the verticesV i at Lpt >

L½m; i� loops. We also know that without truncation the
expanded effective action and vertices V i exactly match
the perturbative expansion. These two statements together
allow us to conclude that the m-Loop effective action must
produce all terms in the perturbative expansions of the
effective action and the vertices V i up to Lpt ¼ L½m; i�
loops.

1. Structure of the effective action

It is usually said that the fact that the 2PI effective action
does not contain 2PR diagrams is evidence that double
counting does not occur at this level. One argues that any
2PR diagram in the effective action would correspond to a
propagator correction of a lower loop diagram, and thus
would appear twice in the expanded series, or equivalently,
it would appear with the wrong symmetry factor.
We can try to extend this argument beyond the 2PI level.

An nPR diagram can be defined to be a diagram that cannot
be divided into two pieces by cutting n or fewer lines such
that each piece contains at least one closed loop. We expect
that any diagram that could be cut in this way would
correspond to a vertex correction of a lower loop diagram.
To illustrate this point, we consider the 4-Loop 4PI effec-
tive action. The diagrams that survive the Legendre trans-
form are not 4PR (see Figs. 4 and 5). The 4-loop 4PR
diagrams that are canceled by the Legendre transform are
shown in Fig. 15. They can all be written as vertex-
corrected lower loop diagrams. This is shown in Fig. 29.
The fact that all nPR diagrams are removed by the

Legendre transforms does not guarantee that the expanded
effective action will agree with the perturbative expansion
to the truncation order, since it is not obvious that all
graphs would be produced with the correct symmetry
factors. In addition, the argument discussed above is not
valid for the 5-Loop 5PI effective action, since all of the
diagrams in the second line in Fig. 26 are 5PR. The fact
that the ‘‘5PI’’ effective action is not 5-particle irreducible
suggests that the n-Loop nPI effective action is n-particle
irreducible for n � 4 only (as discussed in the introduc-
tion, we use ‘‘nPI effective action’’ to mean the action
produced by taking n Legendre transforms).
From these results, the naive conclusion is that the

n-Loop nPI effective action does not make sense for
n � 5. However, we have shown in this section that the
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expanded L � m loop skeleton diagrams of the effective
action must match the perturbative expansion at Lpt �
L½m; 1� ¼ m loops. This is equivalent to proving that the
m-Loop nPI effective action is void of double counting at
m Loops. We conclude that the effective action produced
by the Legendre transforms does not double count at the
level of the truncation, but it is not necessarily n-particle
irreducible.

2. Structure of the eom’s

Since the m-Loop effective action matches the perturba-
tive expansions of the vertices V i up to Lpt ¼ L½m; i�
loops, we can rewrite Eq. (4.7) as

V i ¼ V 0
i þ fcni½V j�|fflfflfflfflffl{zfflfflfflfflffl}

L�L½m;i�jLpt�L½m;i�all

; fi; jg 2 f2; 3; . . .ng:

(4.9)

The subscript L � L½m; i�jLpt � L½m; i�all indicates that

V i contains only terms with L � L½m; i� loops in the
skeleton expansion, and all terms with Lpt � L½m; i� loops
in the perturbative expansion. The terms that are included

in the skeleton expansion depend on the result for �ðmÞ
n . The

terms in the perturbative expansion can be obtained in
the usual way from the m-Loop 1PI effective action [see
Eq. (2.6)], or by simply writing down all possible L½m; i�
Loop 1PI diagrams and calculating the symmetry factors
using a combinatoric formula.

3. Interpretation

We have shown above that the m-Loop effective action
must produce all terms in the perturbative expansions
of the effective action and the vertices V i up to Lpt ¼
L½m; i� loops. This result has important consequences
when we consider the role of symmetries in nonperturba-
tive calculations.
One of the very attractive features of nPI effective

theories is that the eom’s guarantee that linearly realized
global symmetries of the original theory are respected, and
that the conservation laws that follow from Noether’s
theorem are satisfied [11,12]. However, if the original
theory has a local symmetry, the variational i-point func-
tions will not obey standard Ward-like identities (see [13]
and references therein).
The issue is particularly important in the context of

gauge theories. When calculating physical observables,
we expect that gauge independence is encoded in the
Ward identities. For an nPI effective action, the vertex
functions that are defined as derivatives of the variational
extrema of the action will satisfy a set of symmetry iden-
tities that have the same structure as 1PI Ward identities
[14].7 These kinds of symmetry identities have been used
to prove the renormalizability of the 2PI effective action
for QED [15]. However, these symmetry constraints do not
directly address the question of the gauge invariance of
observables calculated from the nPI effective action. For
any diagram, the i-point functions that correspond to in-
ternal lines and vertices must be determined by a fully
self-consistent variational procedure, and will not satisfy
standard Ward identities. As a consequence, quantities
calculated with nPI techniques that are supposed to corre-
spond to physical observables can contain gauge depen-
dent contributions. We need to be able to quantify and
control this gauge dependence.
In this paper we are working with a scalar theory with

cubic and quartic couplings. The m-Loop nPI effective
action matches the perturbative expansion to m loops.
The vertex functions match the perturbative expansion to
L½m; i� loops, which means that they have the correct
crossing symmetry to this order. Symmetry breaking con-
tributions appear at order L½m; i� þ 1 ¼ L½mþ 1; i�
loops, which is the same order as terms that would be
produced by L ¼ ðmþ 1Þ loop terms in the effective ac-
tion which were dropped when we performed the trunca-
tion. We conclude that the variational vertex functions
respect crossing symmetry to the truncation order.
The toy model that we study in this paper has the same

basic diagrammatic structure as QED or QCD. It should be
straightforward to use the same method to show that the
m-Loop nPI effective action for these theories (and their
eom’s) matches the corresponding perturbative results to

FIG. 29. The left side of the figure shows 4-loop 4PR diagrams
that do not contribute to the 4PI effective action. The dotted lines
divide the diagrams into two pieces, each of which contains a
closed loop. The right side of the figure shows the corresponding
vertex-corrected lower loop diagram.

7In Ref. [14] the effective action is defined as a function of
connected vertices.
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order L½m; i�. Since the perturbative loop expansion is
gauge invariant at every loop order, we would conclude
that them-Loop nPI effective action is gauge invariant tom
loops (or to order g2m�2), which is the truncation order.

The same result has been obtained previously using a
completely different approach. In Ref. [16], the authors
look at the truncated effective action, evaluated at the
solutions obtained from the self-consistent eom’s. They
consider the behavior of this resummed effective action
under Becchi-Rouet-Stora-Tyutin transformations and
prove that it is gauge invariant to the truncation order.
In Ref. [17], the authors obtain the same result using the
Nielsen identities to study cancellations between the gauge
dependence of the effective action and the variational
solutions.

D. Comparison of the n-Loop nPI eom’s
and the Schwinger-Dyson equations

The Schwinger-Dyson equations form an infinite hier-
archy of coupled nonlinear integral equations for all the
n-point functions of the theory. Their derivation is tedious
but straightforward [1–3]. The i-point function, which we
write V sd

i , satisfies an integral equation that depends on
the vertices V sd

j with 2 � j � iþ 2 which has the form

V sd
i ¼ V 0

i þ fsdi ½V sd
j �; 2 � j � iþ 2: (4.10)

The sd equations for the 2- and 3-point functions are shown
in Figs. 30 and 31, respectively. We give the equation for
the 4-point function in Appendix C. In all diagrams that
correspond to sd equations, the numerical factors in brack-
ets refer to permutations of the legs on the rhs of the graph.

We can truncate the sd equations by setting V sd
pþ1 ¼

V 0
pþ1 for some value of p. We consider iterating the

resulting set of equations to obtain a series of perturbative

diagrams. For each i-point function, we want to determine
the order L½p; i� to which this series of diagrams matches
the perturbative expansion. The diagram in the sd equation
for the vertex Vsd

i that produces a term that fails to match at
the smallest Lpt is the 1-loop diagram that contains the

vertex Vsd
j¼iþ1. The graph is shown in Fig. 32. We start by

considering i ¼ p. Since we have set V sd
pþ1 ¼ V 0

pþ1 in

order to truncate the series, the graph that corresponds to a
1-loop insertion in the place of the vertex on the rhs of this
diagram will be missing. Since the diagram is itself 1-loop,
the expanded equation forV sd

p will be missing graphs with

Lpt ¼ 2, but will match the perturbative expansion to

Lpt ¼ 1. We write this L½p; p� ¼ 1. Now we look at the

same graph with i ¼ p� 1. We have just seen that theV sd
p

vertex on the rhs is missing 2-loop terms. This means that
the expansion of the vertex V sd

p�1 will be missing graphs

with Lpt ¼ 3, but will match the perturbative expansion to

Lpt ¼ 2. We write this L½p; p� 1� ¼ 2. Continuing in the

same way we get L½p; p� 2� ¼ 3, L½p; p� 3� ¼ 4 � � � .
The general expression corresponding to these results is

L ½p; i� ¼ p� iþ 1; (4.11)

FIG. 30. Schwinger-Dyson equation for the 2-point vertex.

FIG. 31. Schwinger-Dyson equation for the 3-point vertex.

FIG. 32. A term from the sd equation for the vertexV sd
i which

produces a term that fails to match the perturbative expansion at
the lowest loop order. The dots denote legs that are not drawn.
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where L½p; i� gives the order to which the vertexV sd
i will

match the perturbative expansion, if the sd hierarchy is
truncated by setting V sd

pþ1 ¼ 0.

Now we can compare the eom’s produced by the nPI
effective action and the sd equations. If neither the nPI
effective action nor the sd hierarchy is truncated, the two
sets of equations are equivalent. Calculations involve trun-
cation, so we should compare the truncated sets of equa-
tions. We consider the eom’s produced by the m-Loop nPI
effective action,8 and the sd hierarchy truncated by setting
V sd

pþ1 ¼ V 0
pþ1. At first glance, sd equations and nPI

eom’s do not appear to have the same structure at all. All
contributions to the eom from diagrams in�int will contain
only corrected vertices (no bare vertices), and are missing
from the sd equation. The contributions to the eom from
�0 contain bare vertices, but they are symmetric in permu-
tations of the external legs. In contrast, in the sd equation,
all graphs contain a bare vertex on the lhs. However, from
Eqs. (4.6) and (4.11), it is clear that the eom’s obtained
from them-Loop nPI effective action, and the sd equations
for p ¼ m, both match the perturbative expansion and
therefore each other (for 2 � i � n), to the same perturba-
tive loop order.

In the rest of this paper we will choose m ¼ n (see
Appendix B). From Eqs. (4.6) and (4.11) we find that, for
n ¼ m ¼ p, the nPI eom’s and the sd equations both match
the perturbative expansion, and therefore each other, to
Lpt ¼ L½n; i�. It is equivalent to say that Eq. (4.9) can be

rearranged in the form

V i ¼ V 0
i þ fsdi ½V j�jL�L½n;i� þ extra|{z}

Lpt�L½n;i�þ1

;

j 2 f2; . . . min½iþ 2; n�g; i 2 f2; . . .ng:
(4.12)

The expression fsdi ½V j� on the right side of Eq. (4.12)

represents a series of diagrams that have the same form
as the diagrams in the sd equation for the vertex V sd

i

[Eq. (4.10)], but taking only diagrams with L � L½n; i�
loops, and replacing the sd propagator and vertices V sd

j

with the variational propagator and vertices obtained from
the n-Loop nPI effective action for 2 � j � min½iþ 2; n�,
and bare vertices for j � min½iþ 2; n� þ 1. In Sec. V we
verify Eq. (4.12) for n � 5 and i 2 f2; 3g.

Before discussing the significance of Eq. (4.12), we look
at an example to illustrate the notation. We consider the
5-Loop 5PI effective action and look at the eom for the
3-point function. We have min½iþ 2; n� ¼ min½3þ
2; 5� ¼ 5 andL½n; i� ¼ L½5; 3� ¼ 3. Since the sd equation
contains only terms of L � 2<L½5; 3� ¼ 3 loops (see
Fig. 31), we can drop the subscript and write
fsd3 ½D;U; V;W�jL�3 ¼ fsd3 ½D;U; V;W� so that Eq. (4.12)

becomes

5-Loop 5PI: U ¼ U0 þ fsd3 ½D;U; V;W� þ extra|{z}
Lpt�4

: (4.13)

Equation (4.13) says that the variational eom for the
3-point function has the same form as the sd equation for
the 3-point function, with the sd propagator and vertices
replaced by the variational propagator and vertices, plus
some terms that are 4-loop or higher in the perturbative
expansion.
The term marked ‘‘extra’’ in Eq. (4.12) is of order

L½n; i� þ 1 ¼ L½nþ 1; i� loops, and is the same order as
terms that would be produced by L ¼ ðnþ 1Þ loop terms
in the effective action which were dropped when we per-
formed the truncation. An equivalent statement is that if we
do a calculation using an n-Loop nPI effective theory, and
replace the eom’s for the variational propagators and ver-
tices by the sd equations truncated with V nþ1 ¼ V 0

nþ1,
the error we make is of the same order as terms that would
come from contributions to the effective action that are
beyond the truncation order. For a gauge theory, these
terms correspond to potentially gauge dependent contribu-
tions, and have no physical interpretation. Note that
truncations of the sd equations also produce violations of
underlying symmetries. This has been discussed exten-
sively (see, for example, Refs. [18–20] and references
therein).

V. INTEGRAL EQUATIONS—EXPLICIT
CALCULATIONS

In this section we explicitly verify Eq. (4.12) for the
2- and 3-vertices to the level of the 5-Loop 5PI effective
action. The basic method is to rearrange the eom’s by
substituting them into themselves. We perform these sub-
stitutions by rewriting the variational eom’s in Eq. (4.9)
for 3 � i � 5 in the form

U ¼ U0 þ fcn3½V j�; (5.1a)

U0 ¼ U� fcn3½V j�; (5.1b)

V ¼ V0 þ fcn4½V j�; (5.1c)

V0 ¼ V � fcn4½V j�; (5.1d)

W ¼ fcn5½V j�: (5.1e)

We compare the rearranged eom’s with the sd equation,
with propagators and vertices replaced by the correspond-
ing variational ones. We show that the difference is a set
of skeleton diagrams that corresponds to terms in the
perturbative expansion with Lpt � L½m; i� þ 1 loops.

Throughout this section, when we refer to ‘‘the sd
equation,’’ we mean the sd equation as a functional of
variational propagators and vertices, as in Eq. (4.12).

A. Integral equation for the 2-point vertex

For the 2-point function, we will show that the structure
of the calculation is particularly simple, and the extra terms8From Appendix B, only m � n is possible.
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in Eq. (4.12) cancel cleanly. Equivalently, the eom for the
2-point function has, formally, exactly the same structure
as the sd equation.

1. eom for � for 2-Loop 2PI

We start with the 2-Loop 2PI effective theory. We
have min½iþ 2; n� ¼ min½2þ 2; 2� ¼ 2 and L½m; i� ¼
L½2; 2� ¼ 1. Equation (4.12) becomes

� ¼ �fsd2 ½D�jL�1 þ extra|{z}
Lpt�2

: (5.2)

The origin of the minus sign in front of the first term on the
rhs is discussed under Eq. (4.7).

We start by extracting the eom for the 2-point function
for 2-Loop 2PI from our previous results. The diagrams
that contribute to �0 and �int are the 2-Loop graphs in
Figs. 4 and 5 withU ¼ U0. These are the diagrams labeled
EIGHT, EGG, and EGG0 (the EGG0 and EGG diagrams
combine when U ¼ U0). The eom for � is obtained from
Fig. 6 by including the contributions from the 2-Loop
diagrams listed above, and setting U ¼ U0. This set of
diagrams is the lhs of Eq. (5.2). The rhs is the 1-loop terms
in the sd equation, with the 3-vertex replaced by the bare
one. From Figs. 6 and 30, it is easy to see that Eq. (5.2) is
satisfied. We also find that for this example the extra terms
in Eq. (5.2) are identically zero. We will show that this is a
general feature of the calculation for the 2-point function.

2. eom for � for 3-Loop 3PI

Now we consider the 3-Loop 3PI effective theory. We
have min½iþ 2; n� ¼ min½2þ 2; 3� ¼ 3 and L½m; i� ¼
L½3; 2� ¼ 2. Equation (4.12) becomes

� ¼ �fsd2 ½D;U� þ extra|{z}
Lpt�3

; (5.3)

where we have dropped the subscript L � 2 on the first
term on the rhs, since all terms in the sd equation have two
or fewer loops.

We start by extracting the eom for the 2-point function
for 3-Loop 3PI from our previous results. The diagrams
that contribute to �0 and �int are the 3-Loop graphs in
Figs. 4 and 5 with V ¼ V0. These are the diagrams labeled
EIGHT, EGG0, EGG, BBALL0, BBALL, HAIR, and
MERCEDES (the BBALL0 and BBALL diagrams com-
bine when V ¼ V0, but the EGG0 and EGG diagrams do
not, because we have U � U0). The eom for� is obtained
from Fig. 6 by including the contributions from the 3-Loop
diagrams listed above, and setting V ¼ V0.

We want to compare this eom with the corresponding sd
equation, with the 4-vertex replaced by the bare one.
Unlike the artificially simple 2-Loop 2PI example that
we discussed above, these two equations look very differ-
ent. For example, in Fig. 6, the second diagram labeled
½�HAIR�2 and the diagram labeled �MERCEDES do not

appear in the sd equation at all. In addition, the 1-loop
EGG-type topology contributes to both the eom and the sd
equation, but in the sd equation it only appears with a bare
vertex on the lhs, and in the eom there are also graphs with
a bare vertex on the rhs, and with two corrected vertices.
In spite of these apparent differences, we can show that

the variational eom and the sd equation have the same
form. We use Eq. (5.1a) to remove the variational vertex
on the rhs of the �EGG diagram in the eom. The result is
shown diagrammatically in the first line of Fig. 33 (the
diagrams in the second line correspond to contributions
from the 4-loop 4PI effective action which we will
need later). We use labels of the form fUEGG0

; UHAIR;

UMERCEDES . . .g to indicate which term in the U eom pro-
duced each graph. In addition, we label each graph �EGG,
to remind ourselves that the original graph from which
they were produced is the�EGG graph. For example, there
are two graphs that are produced by the substitution of
theUTARGET graphs in Fig. 7 into the�EGG diagram, which
are labeled ½�EGG½UTARGET��1 and ½�EGG½UTARGET��2
in Fig. 33.
The final result is obtained by combining the diagrams

in the first two lines in Fig. 6, with the �EGG diagram
replaced by the graphs in the rhs of the first line of Fig. 33.
We extract the diagrams that correspond to the sd equation
with V ¼ V0, and then show that the remaining diagrams
cancel.
In order to explain how this procedure works, we must

introduce some new notation. Throughout this paper, we
combine permutations of external legs in equations and
diagrams, whenever possible. In order to separate the sd
contributions from the rearranged eom’s, we need to
separate contributions that correspond to permutations of
external legs for some graphs. When external leg permu-
tations are separated, we indicate with a superscript (1p,
2p, . . .) how many permutations are included in a specific
term. For example we write

�EGG0
¼ �

1p
EGG0

þ�
1p
EGG0

;

UTARGET ¼ U
1p
TARGET þU

2p
TARGET:

(5.4)

We describe the content of these equations in words as
follows: The graph �EGG0

in Fig. 6, which contains 2

permutations of external legs, is split into two pieces,
each containing one permutation, and both of which are

labeled �1p
EGG0

. The graph UTARGET in Fig. 7, which con-

tains 3 permutations, is split into two pieces U
1p
TARGET and

U2p
TARGET which contain 1 and 2 permutations, respectively.

We note that the superscripts f1p; 2p; . . .g indicate the
number of permutations in a given term, but do not tell
us which ones. We use this abbreviated and incomplete
notation in order to make the equations readable. Each time
this notation is used, the specific permutation that is meant
will either be explained in words or be clear from the
corresponding figure.
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Using this notation we can now extract the terms that
correspond to the sd equation from the rearranged eom.
They are �EIGHT, the permutation of the �EGG0

diagram

with the bare vertex on the lhs, the permutation of the
½�HAIR�1 diagram with the bare vertex on the lhs, and
the sum of the �BBALL and �BBALL0

diagrams with

V ¼ V0, which we write f�EIGHT;�
1p
EGG0

; ½�HAIR�1p1 ;

�BBALL;�BBALL0
g.

It is straightforward to see that all of the remaining terms
cancel. We list the sets of terms that cancel symbolically
in Eq. (5.5). In this equation, the superscripts 1p indicate
the permutations with bare vertices on the rhs, which were
not included in the sd equation.

�
1p
EGG0

þ�EGG½UEGG0
� ¼ 0;

�MERCEDES þ�EGG½UMERCEDES� ¼ 0;

½�HAIR�2 þ ½�EGG½UHAIR��1 ¼ 0;

½�HAIR�1p1 þ ½�EGG½UHAIR��2 ¼ 0:

(5.5)

The content of this equation is described in words as
follows.

(1) �1p
EGG0

is the permutation of the �EGG0
diagram in

Fig. 6 with the bare vertex on the rhs. It cancels with
the diagram labeled �EGG½UEGG0

� in Fig. 33.

(2) The diagram marked �MERCEDES in Fig. 6 cancels
with the diagram marked �EGG½UMERCEDES� in
Fig. 33.

(3) The graph marked ½�HAIR�2 in Fig. 6 cancels with
the diagram marked �EGG½UHAIR�1 in Fig. 33.

(4) ½�HAIR�1p1 is the permutation of the ½�HAIR�1 dia-
gram in Fig. 6 with the bare vertex on the rhs. It
cancels with the diagram marked �EGG½UHAIR�2
in Fig. 33.

The result is that all graphs in the rhs of the first line of
Fig. 33 cancel, and the surviving diagrams in Fig. 6 have
exactly the same form as the sd equation in Fig. 30, with

V ¼ V0. Thus we have verified Eq. (5.3), and found again
that for the 2-point function the extra terms are exactly
zero.
We point out an interesting feature of the cancellations

listed above. If the contributions from the HAIR diagram
are grouped together, the cancellations in Eq. (5.5) have
the form

�I þ�EGG½UI � ¼ 0;

I 2 ff3PIgnsuper-BBALLg and � =2 �sd;
(5.6)

where the notation ‘‘I 2 ff3PIgnsuper-BBALLg and
� =2 �sd’’ means contributions to I from all diagrams
in the 3-Loop 3PI � except the super-BBALL diagrams
(the EGG diagram), but removing � terms that are in the
sd equation, which are not canceled. We will show below
that this pattern holds for the 4-Loop 4PI effective theory,
and the 5-Loop 5PI effective theory. Equation (5.6) can be
represented symbolically by the first two terms in Fig. 37.

3. eom for � for 4-Loop 4PI

For 4-Loop 4PI we have min½iþ 2; n� ¼ min½2þ
2; 4� ¼ 4 and L½m; i� ¼ L½4; 2� ¼ 3. Equation (4.12) be-
comes

� ¼ �fsd2 ½D;U; V� þ extra|{z}
Lpt�4

; (5.7)

where we have dropped the subscript L � 3 on the first
term on the rhs, since all terms in the sd equation have two
or fewer loops.
The eom for the 2-point function for 4-Loop 4PI is

shown in Fig. 6. We use Eq. (5.1a) to replace the variational
proper 3-vertex on the rhs of the �EGG diagram, and
Eq. (5.1c) to replace the variational proper 4-vertex on
the rhs of the �BBALL diagram. The results for the �EGG

and �BBALL diagrams are shown in Figs. 33 and 34. We
use labels of the form fVBBALL0

; VLOOPY; VEYEBALL . . .g to
indicate which term in the V eom produced each graph.

FIG. 33. Result from replacing the 3-vertex on the rhs of the �EGG diagram with the 3-vertex eom from the 4-Loop 4PI effective
action (Fig. 7). The graphs in the first line correspond to 3-Loop 3PI contributions in the effective action.

FIG. 34. Result from replacing the 4-vertex on the rhs of the �BBALL diagram with the corresponding eom from the 4-Loop 4PI
effective action (Fig. 8).
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The final result is obtained by combining the diagrams in
Fig. 6, with the �EGG diagram replaced by the graphs on
the rhs of Fig. 33, and the�BBALL diagram replaced by the
graphs on the rhs of Fig. 34. The terms that correspond to

the sd equation are f�EIGHT;�
1p
EGG0

; ½�HAIR�1p1 ;�1p
BBALL0

g,
where the superscripts 1p indicate the permutations with
bare vertices on the lhs. In Eq. (5.8) we list the sets of terms
that cancel, in addition to those in Eq. (5.5). In this equation
the superscripts 1p refer to permutations with bare vertices
on the rhs.

�1p
BBALL0

þ�BBALL½VBBALL0
�¼0;

�TWISTEDþ�EGG½UTWISTED�¼0;

�LOOPYþ�BBALL½VLOOPY�¼0;

½�TARGET�1þ½�EGG½UTARGET��1¼0;

½�TARGET�2þ�BBALL½VTARGET�þ½�EGG½UTARGET��2¼0;

½�EYEBALL�1þ½�EGG½UEYEBALL��1¼0;

½�EYEBALL�2þ½�BBALL½VEYEBALL��1¼0;

½�EYEBALL�3þ½�EGG½UEYEBALL��2
þ½�BBALL½VEYEBALL��2¼0: (5.8)

The result is that all graphs on the rhs of Figs. 33 and 34
cancel, and the surviving diagrams in Fig. 6 have exactly
the same form as the sd equation in Fig. 30. Thus we have
verified Eq. (5.7), and found again that for the 2-point
function the extra terms are exactly zero.

We note that Eq. (5.8) has the same structure as Eq. (5.5).
If the contributions from the �HAIR, �TARGET, and
�EYEBALL graphs are, respectively, grouped together, we
can rewrite Eqs. (5.5) and (5.8) as

�I þ�EGG½UI � þ�BBALL½VI � ¼ 0;

I 2 ff4PIgnsuper� BBALLg and � =2 �sd;
(5.9)

where the notation ‘‘ I 2 ff4PIgnsuper-BBALLg and
� =2 �sd’’ means contributions to I from all diagrams
in the 4-Loop 4PI � except the super-BBALL diagrams
(EGG and BBALL), but removing � terms that are in the
sd equation, which are not canceled. Equation (5.9) can be
represented symbolically by the first three terms in Fig. 37.

4. eom for � for 5-Loop 5PI

For 5-Loop 5PI we have min½iþ 2; n� ¼ min½2þ
2; 5� ¼ 4 and L½m; i� ¼ L½5; 2� ¼ 4. Equation (4.12) be-
comes

� ¼ �fsd2 ½D;U; V� þ extra|{z}
Lpt�5

; (5.10)

where we have dropped the subscript L � 4 on the first
term on the rhs, since all terms in the sd equation have two

or fewer loops. We remark that although Eqs. (5.7) and
(5.10) are identical in their structure, their content is differ-
ent, because their functional arguments are variational
propagators and vertices that are determined from different
equations of motion.
In order to verify Eq. (5.10), we follow the same strategy

as before. The new diagrams in the 5PI effective action are
the 5-loop diagrams in Fig. 26 and the BBALL2 diagram in
Fig. 25. It is straightforward to calculate the additional
contributions to the eom’s for the 2-, 3-, 4-, and 5-point
functions that are produced by these diagrams. The results
are shown in Appendix A. We use Eqs. (5.1a), (5.1c), and
(5.1e) to replace the variational proper vertices on the rhs
of the contributions to the � eom from the EGG, BBALL,
and BBALL2 diagrams, respectively. These substitutions
produce 58 different 4-loop topologies which cancel ex-
actly with the 58 topologies in Fig. 44. The final result is
that all contributions cancel, except for the graphs that
correspond to the sd equation for the 2-point function,
which verifies Eq. (5.10). Once again, the extra terms
cancel identically. As examples, in Eqs. (5.11) and (5.12)
we list the sets of graphs that cancel the diagrams labeled
�TARGET2 and �3D in Fig. 44:

½�TARGET2�1 þ ½�EGG½UTARGET2��1
þ�BBALL2½WTARGET2� ¼ 0;

½�TARGET2�2 þ ½�EGG½UTARGET2��2 ¼ 0; (5.11)

½�3D�1 þ ½�EGG½U3D��3 ¼ 0;

½�3D�2 þ ½�EGG½U3D��2 ¼ 0;

½�3D�3 þ ½�EGG½U3D��1 þ ½½�BBALL½V3D���2 ¼ 0;

½�3D�4 þ ½�BBALL½V3D��1 ¼ 0: (5.12)

The substitutions that produce the terms on the rhs of
Eqs. (5.11) and (5.12) are shown in Figs. 35 and 36
respectively.
All of the cancellations have the same structure as the

examples given in Eqs. (5.11) and (5.12), and we have the
same pattern of cancellation as in Eqs. (5.6) and (5.9):

FIG. 35. Contributions that cancel the graphs labeled
�TARGET2 in Fig. 44.
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�I þ�EGG½UI � þ�BBALL½VI � þ�BBALL2½WI � ¼ 0;

I 2 ff5PIgnsuper-BBALLg and � =2 �sd; (5.13)

where the notation ‘‘I 2 ff5PIgnsuper-BBALLg and
� =2 �sd’’ means contributions to I from all
diagrams in the 5-Loop 5PI � except the super-BBALL
diagrams (EGG, BBALL, and BBALL2), but removing
� terms that are in the sd equation, which are not
canceled. Equation (5.13) is represented symbolically in
Fig. 37.

5. eom for � for n-Loop nPI

We describe below a general method to rearrange the
eom for the 2-point function to show that it satisfies
Eq. (4.12). In the subsections above, we have demonstrated
that the method works for the n-Loop nPI effective theory,
for n � 5. We expect that it will work at higher orders. The
strategy is to perform substitutions on the diagrams in the
eom that were produced by the super-BBALLs. We rear-
range these terms by using Eqs. (5.1a) and (5.1c), . . . to
replace the variational proper vertex on the rhs. These
substitutions produce graphs that cancel the diagrams
that appear in the original eom, and not in the sd equation.
We have found that each diagram in the effective action,
except the super-BBALLs, produces contributions that
cancel among themselves, excluding the diagrams in the
eom that appear in the sd equation. This pattern of can-
cellation is depicted in Fig. 37 for 5-Loop 5PI. An equiva-
lent statement is that if we remove any set of diagrams
from �int (not including super-BBALL diagrams), the
pattern of cancellation would not be destroyed: we would
still find that the eom for the 2-point function has the same
form as the sd equation. The corresponding calculation
for the 3-point function is much more complicated. We
discuss this in the next section.

B. Integral equation for the 3-point vertex

1. eom for U for 3-Loop 3PI

We start with the 3-Loop 3PI effective action. We
have min½iþ 2; n� ¼ min½3þ 2; 3� ¼ 3 and L½n; i� ¼
L½3; 3� ¼ 1. Equation (4.12) becomes

3-loop 3PI: U ¼ U0 þ fsd3 ½D;U�jL�1 þ extra|{z}
Lpt�2

: (5.14)

This equation says that the variational eom for the 3-point
function has the same form as the 1-loop terms in the sd
equation for the 3-point function with V ¼ V0, plus some
terms that are 2-loop or higher in the perturbative
expansion.
This result is easy to see directly for the simple example

we are discussing in this subsection. We start by extracting
the eom for the 3-point function for 3-Loop 3PI from Fig. 7
by including the contributions from the EGG0, EGG,
EIGHT, BBALL0, BBALL, HAIR, and MERCEDES dia-
grams, and setting V ¼ V0. The first three diagrams on the
rhs of Fig. 7 give the lhs of Eq. (5.14). Note that these
diagrams are all L � 1 loop.
Now we look at the rhs of Eq. (5.14). The subscript

L � 1 indicates that we can ignore all 2-loop diagrams
in the sd equation. In addition, we can freely interchange
bare and variational proper vertices in 1-loop diagrams of
the sd equation (since the difference is always 2-loop or
higher in the perturbative expansion). In order to show that
the ‘‘extra’’ term is 2-loop or higher, we only have to
observe that the symmetry factors for the 1-loop diagrams
in Figs. 7 and 31 are the same.

2. eom for U for 4-Loop 4PI

Now we consider the 4-Loop 4PI effective theory.
We have min½iþ 2; n� ¼ min½3þ 2; 4� ¼ 4 and
L½m; i� ¼ L½4; 3� ¼ 2. Equation (4.12) becomes

FIG. 36. Contributions that cancel the graphs labeled �3D in Fig. 44.

FIG. 37. Contributions to � from the 5-Loop 5PI effective action that cancel.
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U ¼ U0 þ fsd3 ½D;U; V� þ extra|{z}
Lpt�3

: (5.15)

We drop the subscript L � 2 on the second term on the rhs,
since all terms in the sd equation have two or fewer loops.

The eom for the 4-Loop 4PI 3-point function is given in
Fig. 7. In order to prove Eq. (5.15), we need to rearrange
the eom for the 3-point function as follows:

(1) The diagram marked UMERCEDES in Fig. 7 is rear-
ranged by replacing the 3-vertex on the lhs using
Eq. (5.1a). We represent this rearrangement in equa-
tion form as

UMERCEDES ¼ UMERCEDES½UEGG0
�

þ Xn�2

k¼1

UMERCEDES½fcnðk-loopÞ3 �: (5.16)

In this subsection we are only interested in contri-
butions with L � 2 (all terms with L � 3 loops can
be lumped into the extra term). Since theUMERCEDES

diagram is itself 1-loop, we only need to consider
1-loop terms in fcn3, which means we can take
k ¼ 1 in Eq. (5.6). The result is shown in Fig. 38.9

(2) There are 3 permutations of the diagram marked
UHAIR in Fig. 7. We separate them by writing

UHAIR ¼ U
2p
HAIR þU

1p
HAIR: (5.17)

The two permutations a bare vertex on the lhs are

written U
2p
HAIR, and correspond to the diagrams

labeled (4,5) in the sd equation in Fig. 31. The third
permutation is shown on the lhs of Fig. 39 and

labeled U1p
HAIR. This graph has the same form as

diagram (3) in the sd equation, but with corrected

and bare vertices in the wrong places. We rearrange

the U
1p
HAIR diagram as follows. The first step is to

remove the bare 4-vertex using Eq. (5.1d). This
substitution is written as an equation:

U
1p
HAIR ¼ U

1p
HAIR½VBBALL� �

Xn�3

k¼1

U
1p
HAIR½fcnðk-loopÞ4 �:

(5.18)

As argued above, we can take k ¼ 1 since we are
working to 2-loop level, which gives the diagrams
shown in Fig. 39.
The second step is to extract the graph in Fig. 39

labeled U
1p
HAIR½VBBALL� and use Eq. (5.1a) to obtain

the bare 3-vertex that we need to reproduce the graph
in the sd equation that is labeled (3) in Fig. 31. This
substitution is represented in the equation

U
1p
HAIR½VBBALL� ¼ U

1p
HAIR½VBBALL½UEGG0

��

þ Xn�2

k¼1

U
1p
HAIR½VBBALL½fcnðk-loopÞ3 ��:

(5.19)

To 2-loop level, we only need the k ¼ 1 term in
Eq. (5.19). The result is shown diagrammatically in
Fig. 40.

Now we discuss how to combine all of these terms. The
graphs that have to be added together are as follows. From
the original eom (Fig. 7), we need the graphs that have not
been involved in the rearrangements above: the UEGG0

,

U2p
HAIR, UEYEBALL, UTARGET, and UTWISTED graphs. The

UMERCEDES graph is replaced by the set of graphs shown

in Fig. 38. TheU
1p
HAIR graph is replaced by the set of graphs

shown in Fig. 39, with the first graph in this figure replaced
in turn by the graphs in Fig. 40.
First we extract from this set of graphs the diagrams that

correspond to the sd equation.

FIG. 38. Rearrangement of the diagram labeled UMERCEDES in the eom for 3-vertex.

FIG. 39. Rearrangement of the U
1p
HAIR diagram in the eom for the 3-vertex.

9In Figs. 38, 39, 42, and 43, the bracketed numerical factors
indicate permutations of the external legs on the rhs of the graph
only.
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(i) In Fig. 7 the UEGG0
and U2p

HAIR graphs correspond,

respectively, to the diagrams labeled (1), (4,5) in the
sd equation (Fig. 31).

(ii) From Fig. 7 we take the permutations of the
UTARGET and UEYEBALL graphs which have the
same structure as (8) and (9,10) in the sd equation

(Fig. 31). We label these pieces U1p
TARGET and

U2p
EYEBALL (the permutations that have not been

accounted for are labeled U2p
TARGET and U1p

EYEBALL,

and will be considered later). Since the vertex on the

lhs of the U1p
TARGET and U2p

EYEBALL diagrams can be

replaced with bare vertices (because the difference
is 3-loop in the perturbative expansion), these
graphs correspond to the terms labeled (8) and
(9,10) in the sd equation.

(iii) The first and third graphs on the rhs of Fig. 38
correspond, respectively, to the graphs labeled (2)
and (6,7) in the sd equation.

(iv) The first and third graphs on the rhs of Fig. 40
correspond, respectively, to the graphs labeled (3)
and (11) in the sd equation.

(v) The graph labeled (12) in the sd equation is identi-
cally zero at the level of the 4PI effective theory,
because the 5-point vertex on the rhs reduces to
W ¼ W0 ¼ 0.

We have produced all of the terms in the sd equation, and
thus verified the first two terms on the rhs in Eq. (5.15).

It is straightforward to see that the remaining 2-loop
diagrams cancel, which verifies that the extra term in
Eq. (5.15) contains only terms of Lpt � 3 loops. We list

the contributions that cancel.
First, we give the sets of diagrams that cancel identi-

cally:

UMERCEDES½UMERCEDES� þ ½U1p
HAIR½VTARGET��1 ¼ 0;

UTWISTED þ ½U1p
HAIR½VTARGET��2 ¼ 0;

U1p
HAIR½VBBALL½UMERCEDES�� þ ½U1p

HAIR½VEYEBALL��2 ¼ 0;

U
1p
EYEBALL þ ½U1p

HAIR½VLOOPY��2 ¼ 0;

U2p
TARGET þ ½U1p

HAIR½VEYEBALL��3 ¼ 0: (5.20)

In addition, there are two pairs of diagrams which have
the same form, except that one contains a bare vertex V0

and the partner diagram contains a variational vertex V.
If we use Eq. (5.1d) to remove the bare vertex, the surviv-
ing terms in each pair are at least 3-loop in the perturbative

expansion. Therefore, at the 2-Loop level we have the
additional cancellations:

½UMERCEDES½UHAIR��1 þ ½U1p
HAIR½VEYEBALL��1 ¼ 0;

½U1p
HAIR½VBBALL½UHAIR���1 þ ½U1p

HAIR½VLOOPY��1 ¼ 0:

(5.21)

3. eom for U for 5-Loop 5PI

Now we consider the 5-Loop 5PI effective theory. We
have min½iþ 2; n� ¼ min½3þ 2; 5� ¼ 5 and L½m; i� ¼
L½5; 3� ¼ 3. Equation (4.12) becomes

U ¼ U0 þ fsd3 ½D;U; V;W� þ extra|{z}
Lpt�4

; (5.22)

and we drop the subscript L � 2 on the second term on the
rhs, since all terms in the sd equation have two or fewer
loops.
In order to prove Eq. (5.22), we must show that the

diagrams in the extra term cancel to Lpt ¼ 3 loop order.

We start by listing the 3-loop diagrams that were dropped
in the discussion in the previous subsection.
(1) In the second item of the list under Fig. 40, we said

that the U
2p
EYEBALL graphs and the U

1p
TARGET graph in

the eom produce the diagrams marked (9,10) in the
sd equation, if we use Eq. (5.1c) to replace the
variational vertices on the lhs by bare vertices, and
drop 3-loop terms. Now we need to keep these
3-loop terms, which we will write

U2p
EYEBALL½fcnð1-loopÞ4 �

U1p
TARGET½fcnð1-loopÞ4 �

(2) There are 3-loop contributions that we dropped in
Fig. 38 which we write

UMERCEDES½fcnð2-loopÞ3 �
(3) There are 3-loop contributions that we dropped in

Fig. 40 which we write

U
1p
HAIR½VBBALL½fcnð2-loopÞ3 ��

(4) In Eq. (5.21), we had cancellation at the 2-Loop
level when we used Eq. (5.1d) to replace the V0

vertex. The 3-loop terms have the form

UMERCEDES½UHAIR1
½fcnð1-loopÞ4 ��

U1p
HAIR½VBBALL½UHAIR1

½fcnð1-loopÞ4 ���

We must show that these diagrams cancel with the new
3-loop diagrams that are introduced at the level of 5-Loop
5PI. Using Eq. (4.6) we can see where these diagrams will
appear:

FIG. 40. Rearrangement of the diagram labeled U
1p
HAIR½VBBALL� in Fig. 39.
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(5) Since L½5; 3� ¼ 3, there will be new 3-loop contri-
butions to the eom for U (Fig. 45) from the 5-loop
diagrams in the effective action.10

(6) SinceL½5; 4� ¼ 2 there will be 2-loop contributions
to the eom for V, which will contribute at the 3-loop
level when Eq. (5.1c) is used to rearrange the UHAIR

diagram (see Fig. 39). We write these terms:

U
1p
HAIR½fcnð2-loopÞ4 �

(7) There is no graph in the original (unrearranged) eom
for the 3-point function with the same structure as
the graph labeled (12) in the sd equation (Fig. 31),
and it cannot be produced by performing substitu-
tions on lower loop graphs. We insert this graph into
the eom by hand and group it with the other terms
that make up the sd equation. We then subtract the
same graph from the extra terms. Since the graph
contains a 5-point vertex, and since the bare 5-vertex
is identically zero, this subtracted counterterm
contributes to the list of extra terms at Lpt ¼ 3

loop order. In addition, we can replace the bare
4-vertex with the proper variational 4-vertex, up to
corrections at the Lpt ¼ 4 loop level that can be

grouped with the extra term. We name the sub-
tracted graph USD12. The 3-loop terms that are pro-
duced by the replacements of the 5-point vertex
using Eq. (5.1e), and the bare 4-point vertex using
Eq. (5.1d), are written

USD12½VBBALL½fcnð1-loopÞ5 ��

The 3-loop terms listed above are shown diagrammatically
in Fig. 41. Expanding the vertex insertions produces 61
different topologies. We have verified that they all cancel.
To do this calculation one must write explicitly all external

indices to separate the contributions to each topology.
We give several examples below.
The PEA diagram in the effective action produces

only one contribution to the U eom which is labeled
UPEA and shown in Fig. 45. It is canceled by
USD12½VBBALL½WEIGHT4��1 as shown in Fig. 42.
The diagram 3D in the effective action produces six

different permutations in eom for U. They are labeled
U3D and shown in Fig. 45. In order to see how they are
canceled, we draw the six permutations separately in parts
(a)–(f) of Fig. 43. Comparing with Fig. 42, we can see that
all six different permutations of U3D are canceled exactly.
The first two permutations are canceled by the graph

labeled ½U1p
EYEBALL½VEYEBALL��1, the second two are can-

celed by ½U2p
TARGET½VLOOPY��1, and the last two are can-

celed by ½U1p
HAIR½V4A�2�1.

Note that some of the topologies that are produced by
the substitutions in Fig. 42 do not have the same form as
any of the graphs in Fig. 45. For example, the diagrams

labeled by ½U1p
HAIR½½V4A�2��2 and ½U1p

HAIR½½V4A�2��3 in

Fig. 42 are canceled by contributions obtained from

½U1p
HAIR½VBBALL½UHAIR���1 and ½UMERCEDES½UHAIR��1 by

removing the bare 4-vertex using Eq. (5.1d), and taking
the pieces that correspond to VEYEBALL and VLOOPY,
respectively.

C. Comparison of the structure of the � and U eom’s

There are three special features of the cancellations for
the 2-point function (see Sec. VA 5) that do not apply to
the cancellations for the 3-point function:
(1) For the 2-point function, all of the graphs in the sd

equation appear in the eom at the level of 4-Loop
4PI. For the 3-point function this is not true: there
is no term in the eom for U with the form of the
last term in Fig. 31, for any nPI effective theory,
and it cannot be produced by rearranging a lower
loop graph.

FIG. 41. The 3-loop terms in the U eom for 5-Loop 5PI. The circles represent 2-loop insertions and the squares are 1-loop insertions.
The symbol UI means contributions to the U eom from differentiating the 5-loop diagrams in the 5PI effective action. The numbers
under the diagrams correspond to the numbers in the list under Eq. (5.22).

10There is one diagram that is 4-loop 5PI which we call
BBALL2 (see Fig. 25), but this diagram does not contribute to
the U eom because it does not depend on U and thus goes to zero
when the functional derivative acts on it.
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(2) The 3-point function cancellations depend on a
complicated level of cooperation between contribu-
tions from different diagrams (see Figs. 42 and 43):
unlike the case of the 2-point function, it is not true
that we can add diagrams one at a time to the
effective action and find that Eq. (4.12) is satisfied
diagram by diagram (see Fig. 37).

(3) For the 2-point function, every topology that is
canceled gets a contribution from the term labeled
�I in Fig. 37, while it is not true that all canceled 3-
point topologies have a contribution of the form UI .

VI. CONCLUSIONS

In this paper we have calculated the 5-Loop 5PI effective
action for a scalar theory with cubic and quartic interac-
tions. The result has some surprising features.

The effective action does not contain only 5-particle
irreducible diagrams, even when a 5PR diagram is defined
in the strictest possible sense, as a diagram that cannot be
divided into two pieces by cutting five or fewer lines such
that each piece contains at least one closed loop.

It is not true that all diagrams (except the super-BBALL
and super-BBALL0 diagrams) carry symmetry factors that
are produced by the usual combinatoric rules.

Neither of these features has been seen previously, since
they do not appear at the level of the 4-Loop 4PI effective

action, which is the highest Legendre transform that has
appeared in the literature to date.
We have shown that the skeleton diagrams in the

m-Loop nPI effective action correspond to an infinite
resummation of perturbative diagrams that is void of
double counting at the m-Loop level.
From our calculation of the 5-Loop 5PI effective action

we are able to obtain results for the 3PI and 4PI effective
action up to 5 loops. The result is that the 3PI effective
action contains only 3-particle irreducible diagrams up to 5
loops. However, although the 4PI effective action contains
only 4-particle irreducible diagrams up to 4 loops, there
are 4-particle reducible diagrams at the 5-loop level. The
conclusion is that the standard idea that the nPI effective
action contains only n-particle irreducible diagrams is not
applicable at arbitrary loop order.
We stress that the absence of double counting is a

property of the Legendre transforms, and the cancellation
of nPR diagrams is not. At lower levels in the loop
expansion, the effective action contains only n-particle
irreducible graphs in the skeleton loop expansion, but at
higher orders, the counting becomes more complicated
and a combination of irreducible and irreducible graphs
is needed.
We have worked with a toy model which has the same

basic diagrammatic structure as QED or QCD. We expect
that it would be straightforward to use the same method to

FIG. 42. Some examples of 3-loop diagrams in the eom of U that cancel.

FIG. 43. The contributions to the U eom from the diagram 3D in the effective action.
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show that the m-Loop nPI effective action for these gauge
theories matches the corresponding perturbative expansion
to m loops. This would prove that the m-Loop effective
action respects gauge invariance to order �g2m�2. This
result has been obtained previously in Refs. [16,17] using a
completely different method.

We have also shown that the variational equations of
motion produced by the n-Loop nPI effective theory
are equivalent to the Schwinger-Dyson equations, up to
the truncation order. The equation of motion for the
2-point function has exactly the same structure as the
corresponding Schwinger-Dyson equation. An equivalent
statement is that if we did a calculation using an n-Loop

nPI effective theory, and replaced the equations of
motion for the variational propagators and vertices by
the Schwinger-Dyson equations truncated by setting the
(nþ 1)-vertex to the bare one, the error we would make is
of the same order as terms that would come from contri-
butions to the effective action that are beyond the trunca-
tion order.

APPENDIX A: EOM’S FROM THE 5-LOOP 5PI
EFFECTIVE ACTION

In this appendix we give the eom’s for the 5-Loop 5PI
effective action in diagrammatic form.

FIG. 44. Contributions to the �-integral equation from the 5-loop 5PI effective action, and the BBALL2 diagram from Fig. 25.

FIG. 45. 3-loop contributions to the U-integral equation from the 5-loop 5PI effective action.
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APPENDIX B: EQUIVALENCE HIERARCHY

In Ref. [13] it is argued that at m-Loop order, the nPI
effective action for n � m depends only onV i; i � m. An
equivalent statement is that the n-Loop nPI effective action
provides a complete self-consistent description. We show
below that the arguments we have used in Sec. IVA about
the structure of the diagrams in the effective action are
consistent with the equivalence hierarchy proposed in [13].

Consider the m-Loop effective action. We have argued
that verticesV i for i > mþ 2 do not appear in them-Loop
effective action, since these vertices would appear in
graphs that would produce disconnected contributions to
the eom’s. It is straightforward to calculate the eom for the
vertex Vmþ1. From Sec. IVA, the only terms in the
effective action that contain this vertex are the m-loop
super-BBALL and super-BBALL0 diagrams. The eom
produced by these diagrams is

Vmþ1 ¼ V 0
mþ1 for m � 3;

Vmþ1 ¼ 0 for m � 4:
(B1)

The conclusion is that them-Loop effective action depends
on the vertices V i, i � m:

�ðmÞ
n�m ¼ �ðmÞ

m : (B2)

Our result for the 5-Loop 5PI effective action verifies
Eq. (B2) for m ¼ 4.

APPENDIX C: THE SD EQUATION
FOR THE 4-POINT VERTEX

In Fig. 48 we give the sd equation for the 4-point vertex
in diagrammatic form.

FIG. 46. 2-loop contributions to the V-integral equation from the 5-loop 5PI effective action.

FIG. 47. 1-loop contributions to the W-integral equation from the 5-loop 5PI effective action.

FIG. 48. Schwinger-Dyson equation for the 4-point vertex.
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