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We study the potential energy between static charges in G2 gluodynamics in three and four dimensions.

Our work is based on an efficient local hybrid Monte Carlo algorithm and a multilevel Lüscher-Weisz

algorithm with exponential error reduction to accurately measure expectation values of Wilson and

Polyakov loops. Both in three and four dimensions we show that at intermediate scales the string tensions

for charges in variousG2 representations scale with the second order Casimir. In three dimensions Casimir

scaling is confirmed within 4% for charges in representations of dimensions 7, 14, 27, 64, 77, 770, 182, and
189 and in four dimensions within 5% for charges in representations of dimensions 7, 14, 27, and 64. In

three dimensions we detect string breaking for charges in the two fundamental representations. The scale

for string breaking agrees very well with the mass of the created pair of glue lumps. Close to the string

breaking distance Casimir scaling between adjoint and defining representation is violated by 2.5%. The

analytical prediction for the continuum string tension is confirmed for the defining representation in three

dimensions.
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I. INTRODUCTION

There is compelling experimental evidence that
the fundamental constituents of QCD, quarks, and gluons,
never show up as asymptotic states of strong interaction—
rather they are confined in mesons and baryons.
Understanding the dynamics of this confinement mecha-
nism is one of the challenging problems in strongly
coupled gauge theories. There are convincing analytical
and numerical arguments to believe that confinement is a
property of pure gauge theories (gluodynamics) alone and
that the underlying mechanism should not depend on the
number Nc of colors. Confinement is lost at high tempera-
tures and for gauge groups with a nontrivial center the
trace of the Polyakov loop

Pð ~xÞ ¼ trP ð ~xÞ;
P ð ~xÞ ¼ 1

N
tr

�
exp i

Z �T

0
A0ð�; ~xÞd�

�
;

�T ¼ 1

T
; (1)

vanishes in the confined low-temperature phase and is
close to an element of the center in the deconfined high-
temperature phase. In gluodynamics or gauge theories with
matter in the adjoint representation the action and measure
are both invariant under center transformations, whereas
the Polyakov loop transforms nontrivially and hence serves
as order parameter for the global center symmetry. This
means that the center symmetry is realized in the confined
phase and spontaneously broken in the deconfined phase.

In the vicinity of the transition point the dynamics of the
Polyakov loop is successfully described by effective three
dimensional scalar field models for the characters of the
Polyakov loop [1–4]. If one further projects the scalar
fields onto the center of the gauge group then one arrives
at generalized Potts models describing the effective
Polyakov loop dynamics [5]. The temperature dependent
couplings constants of these effective theories have been
calculated ab initio by inverse Monte Carlo methods in [3].
With dynamical quarks in the fundamental representa-

tion the center symmetry is explicitly broken and the
Polyakov loop points always in the direction of a particular
center element. In a strict sense the Polyakov loop ceases to
be an order parameter. This is attributed to breaking of the
string connecting a static ‘‘quark antiquark pair’’ when one
tries to separate the charges. It breaks via the spontaneous
creation of dynamical quark antiquark pairs which in turn
screen the individual static charges.
The pivotal role of the center for confinement also

follows from a recent observation relating the Polyakov
loop with center averaged spectral sums of the Dirac
operator [6–8]. More precisely, for gauge groups with a
nontrivial center one can relate the expectation value of the
Polyakov loop to dual condensates. This result could fi-
nally explain why for gauge groups with a nontrivial center
and fundamental matter the transition temperatures for the
deconfinement and chiral phase transitions coincide. On
the contrary, for gauge theories with adjoint matter the two
transition temperatures can be very different [9,10].
To clarify the relevance of the center for confinement it

suggests itself to study pure gauge theories whose gauge
groups have a trivial center. For such theories the string
connecting external charges can break via the spontaneous
creation of dynamical ‘‘gluons’’ such that the Polyakov
loop acquires a nonvanishing expectation value for all
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temperatures, similarly as it does in QCD with dynamical
fermions. Here the simple gauge group SOð3Þ suggests
itself and indeed the SOð3Þ gauge theory has been studied
in great detail on the lattice, see, for example, [11].
Unfortunately, via the nontrivial first homotopy group
�1ðSOð3ÞÞ ¼ Z2 the lattice gauge theory ‘‘detects’’ its
simply connected universal covering group SUð2Þ. To avoid
the resulting lattice artifacts one should investigate theories
with simply connected gauge groups with a trivial center.

From Table I, taken from [12], one reads off that the
smallest simple Lie group with these properties is the 14
dimensional exceptional Lie group G2. This is one reason
why the group in Bern investigated G2 gauge theories with
and without Higgs fields in a series of papers [13–15]. In
their pioneering works it has been convincingly demon-
strated that G2 gluodynamics shows a first order finite
temperature phase transition without an order parameter
from a confining to a deconfining phase. In this context
confinement refers to confinement at intermediate scales,
where a Casimir scaling of string tensions has been re-
ported [16]. On large scales strings will finally break due to
spontaneous gluon production and the static interquark
potential is expected to flatten [17]. However, the threshold
energy for string breaking inG2 gauge theory is rather high
and all previous attempts to detect this flattening have been
without success. In the present paper we shall demonstrate
that string breaking for charges in the fundamental and
adjoint representations of G2 takes place at the expected
scales. To that aim we implemented a slightly modified
Lüscher-Weisz multistep algorithm for high precision mea-
surements of the static interquark potential.

The present paper deals with G2 gluodynamics in 3
and 4 dimensions. The simulations are performed with an
efficient and fast implementation of a local hybrid
Monte Carlo algorithm. Below we shall calculate the po-
tentials at intermediate scales for static charges in the 7, 14,
27, 64, 77, 770, 182, and 189 dimensional representations.
We show that in 3 and 4 dimensions the string tensions on
intermediate scales are proportional to the second order
Casimir of the representations. The high precision mea-
surements in 3 dimensions confirm Casimir scaling within
4% for all mentioned representations. In 4 dimensions
Casimir scaling for the lowest 4 representations is again
fulfilled within 5%. In 3 dimensions we also calculated the
static potential for widely separated charges in the two
fundamental representations. In both cases we see a flat-
tening of the potential which signals the breaking of the
connecting string. The energy where string breaking sets in
is in full agreement with the independently calculated
masses of the glue lumps formed after string breaking.

Interestingly, in the region close to the string breaking
distance Casimir scaling for the fundamental charges is
found to be violated by about 2.5%. Eventually the con-
tinuum extrapolated numerical value of the string tension
in 3 dimensions is found to be in good agreement with
analytical predictions.

II. THE GROUP G2

The exceptional Lie group G2 is the automorphism
group of the octonion algebra or, equivalently, the sub-
group of SOð7Þ that preserves any vector in its 8 dimen-
sional real spinor representation. This means that the
8 dimensional real spinor representation of Spin(7)
branches into the trivial representation and the 7 dimen-
sional fundamental representation of G2. The 14 dimen-
sional fundamental representation ofG2, which at the same
time is the adjoint representation, arises in the branching of
the adjoint of SOð7Þ according to 21 ! 7 � 14. The 27
dimensional representations of SOð7Þ acting on symmetric
traceless 2-tensors remains irreducible under G2. In this
work we need the following branchings of SOð7Þ repre-
sentations to G2:

7 ! 7; 21 ! 14 � 7; 27 ! 27;

35 ! 27 � 7 � 1; 77 ! 77: (2)

For explicit calculations it is advantageous to view the
elements of the 7 dimensional representation of G2 as
matrices in the defining representation of SOð7Þ, subject
to seven independent cubic constraints [15]

Tabc ¼ Tdefgdagebgfc: (3)

Here T is a total antisymmetric tensor given by

T127 ¼ T154 ¼ T163 ¼ T235 ¼ T264 ¼ T374 ¼ T576 ¼ 1:

(4)

The gauge group SUð3Þ of strong interaction is a subgroup
of G2 and the corresponding coset space is a sphere [18],

G2=SUð3Þ � S6: (5)

This means that every element U of G2 can be factorized
as

U ¼S �V with V 2SUð3Þ and S2G2=SUð3Þ; (6)

and we shall use this decomposition in our simulations.
The short exact sequence

0¼�4ðS6Þ!�3ðSUð3ÞÞ!�3ðG2Þ!�3ðS6Þ¼0 (7)

shows that �3ðG2Þ ¼ Z and hence there should exist
G2 instantons of any integer topological charge. In the

TABLE I. Centers Z of simple lie groups.

Group Ar Br Cr Dr, r even Dr, r odd E6 E7 E8 F4 G2

Center Z Zrþ1 Z2 Z2 Z2 � Z2 Z4 Z3 Z2 1 1 1
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charge k sector there are at least 3k magnetically charged
defects [12].

Any irreducible representation of G2 is characterized by
its highest weight vector � which is a linear combination
of the fundamental weights,� ¼ p�ð1Þ þ q�ð2Þ, with non-
negative integer coefficients p, q called Dynkin labels.
The dimension of an arbitrary irreducible representation
R ¼ ½p; q� can be calculated with the help of Weyl’s
dimension formula and is given by

dR � dimp;q

¼ 1

120
ð1þ pÞð1þ qÞð2þ pþ qÞð3þ pþ 2qÞ

� ð4þ pþ 3qÞð5þ 2pþ 3qÞ: (8)

Below we also use the physics convention and denote a
representation by its dimension. For example, the funda-
mental representations are ½1; 0� ¼ 7 and ½0; 1� ¼ 14.
However, this notation is ambiguous, since there exist
different representations with the same dimension. For
example ½3; 0� ¼ 77 and ½0; 2� ¼ 770 have the same dimen-
sion. An irreducible representation of G2 can also be
characterized by the values of the two Casimir operators
of degree 2 and 6. Below we shall need the values of the
quadratic Casimir in a representation ½p; q�, given by

C R � Cp;q ¼ 2p2 þ 6q2 þ 6pqþ 10pþ 18q: (9)

For an easy comparison we normalize these ‘‘raw’’ Casimir
values with respect to the defining representation by C0p;q ¼
Cp;q=C1;0. The normalized Casimir values for the eight

nontrivial representations with smallest dimensions are
given in Table II.

Quarks and gluons in G2 are in the fundamental repre-
sentations 7 and 14, respectively. To better understand G2

gluodynamics we recall the decomposition of tensor prod-
ucts of these representations,

7 � 7 ¼ 1 � 7 � 14 � 27;

7 � 14 ¼ 7 � 27 � 64;

14 � 14 ¼ 1 � 14 � 27 � 77 � 770;

7 � 7 � 7 ¼ 1 � 4 � 7 � 2 � 14 � 3 � 27 � 2 � 64 � 770;

14 � 14 � 14 ¼ 1 � 7 � 5 � 14 � 3 � 27 � . . . : (10)

The decompositions (10) show that, similarly as in QCD,
two or three quarks or two or three gluons can build color

singlets—mesons, baryons, or glueballs. Since three
gluons can screen the charge of a single (static) quark,

7 � 14 � 14 � 14 ¼ 1 � . . . ; (11)

one expects that the string between two static quarks will
break for large charge separations. The two remnants are
two glue lumps—charges screened by (at least) 3 gluons.
The same happens for charges in the adjoint representation.
Each adjoint charge can be screened by one gluon.

Construction of characters from tensor products

The character �RðUÞ ¼ trRðUÞ of any irreducible rep-
resentationR is a polynomial of the characters �7 and �14

of the two fundamental representations 7 and 14. For
example, the first two decompositions in (10) imply

�27 ¼ �7 � �7 � �1 � �7 � �14;

�64 ¼ �7 � �14 � �7 � �27 ¼ �7�14 � �2
7 þ �1 þ �14;

(12)

and yield the characters of the representations 27 and 64 as
polynomials of �7 and �14. From further tensor products of
irreducible representations one can calculate the polyno-
mial in �R ¼ PolRð�7; �14Þ for any irreducible represen-
tation R. For a fast implementation of our algorithms we
also need reducible representations. In particular we use

ð7�7Þs; ð7�7�7Þs; ð7�7�7�7Þs; ð7�7Þs�14;

(13)

where the subscript ‘‘s’’ denotes the symmetrized part of
the respective tensor product. Comparing the reduction of
representations for SOð7Þ and G2 and mapping representa-
tions from SOð7Þ to G2 the following characters of reduc-
ible representations can be computed:

�ð7�7Þs ¼ �27 þ �1; �ð7�7�7Þs ¼ �77 þ �7;

�ð7�7�7�7Þs ¼ �182 þ �77 þ �27 þ �64 þ 2�14 þ �7;

�ð7�7Þs�14 ¼ �189 þ �77 þ �27 þ �64 þ 2�14 þ �7:

(14)

III. CASIMIR SCALING AND STRING
BREAKING FOR SUðNcÞ GAUGE THEORIES

In QCD quarks and antiquarks can only be screened
by particles with nonvanishing 3-ality, especially not by

TABLE II. Representations of G2 with corresponding dimension and Casimir values.

Representation R [1,0] [0,1] [2,0] [1,1] [3,0] [0,2] [4,0] [2,1]

Dimension dR 7 14 27 64 77 770 182 189

Casimir eigenvalue CR 12 24 28 42 48 60 72 64

Casimir ratio C0R 1 2 7=3 3.5 4 5 6 16=3
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gluons. Thus, in zero-temperature gluodynamics the po-
tential energy for two static color charges is linearly rising
up to arbitrary large separations of the charges. The poten-
tials for charges in a representation R can be extracted
from the 2-point correlator of Polyakov loops or the ex-
pectation values of Wilson loops with temporal extent
T according to

hPRð0ÞPRðRÞi ¼ e��TVRðRÞ;

hWRðR; TÞi ¼ e�R�TVRðRÞ:
(15)

With dynamical quarks the string should break at a char-
acteristic length rb due to the spontaneous creation of
quark antiquark pairs from the energy stored in the flux
tube connecting the static charges. However, for intermedi-
ate separations r < rb the string cannot break since there is
not enough energy stored in the flux tube.

For pure gauge theories we expect the following quali-
tative behavior of the static potential: At short distances
perturbation theory applies and the interaction is domi-
nated by gluon exchange giving rise to a Coulomb-like
potential, V ���=r, the strength � being proportional to
the value CR of the quadratic Casimir operator in the given
representationR of the charges; at intermediate distances,
from the onset of confinement to the onset of color screen-
ing at rb, the potential is expected to be linearly rising,
V � �r, and the corresponding string tension is again
proportional to the quadratic Casimir; at asymptotic dis-
tance scales (partial) screening sets in such that the string
tension typically decreases and only depends on theN-ality
of the representation. In particular for center-blind color
charges or gauge groups without center the potential flat-
tens. The characteristic length rb where the intermediate
confinement regime turns into the asymptotic screening
regime is determined by the masses of the debris left after
string breaking. The Casimir scaling hypothesis, according
to which the string tension at intermediate scales is pro-
portional to the quadratic Casimir of the representation
[19], is exact for two dimensional continuum and lattice
gauge theories and dimensional reduction arguments sup-
port that it also holds in higher dimensions. Within the
Hamiltonian approach to Yang-Mills theories in 2þ 1
dimensions the following prediction for the string tensions
has been derived [20]:

�R ¼ g4

4�

C14CR
122

; (16)

with a recent refinement in [21].1 These analytical results
directly predict Casimir scaling in three dimensions. In
four dimensions Casimir scaling can be explained via
Gaussian field correlators [22]. For pure SUð2Þ and
SUð3Þ gauge theories in three and four dimensions there

is now conclusive numerical evidence for Casimir scaling
from Monte Carlo simulations, for SUð2Þ in 3 dimensions
[19,23] and in 4 dimensions [24–27] as well as for SUð3Þ in
4 dimensions at finite temperature [28] and zero tempera-
ture [29–32]. In particular the simulations for SUð3Þ gluo-
dynamics in [31] confirm Casimir scaling within 5% for
separations up to 1 fm of static charges in representations
with Casimirs (normalized by the Casimir of f3g) up to 7.
String breaking for charges in the adjoint representation
has been found in several simulations: In 3 dimensional
SUð2Þ gluodynamics with improved action and different
operators in [33,34] and in 4 dimensional SUð2Þ gluody-
namics in [35] with the help of a variational approach
involving string and glueball operators. For a critical dis-
cussion of the various approaches we refer to [36], where
string breaking in a simple setting but with an improved
version of the Lüscher-Weisz algorithm has been analyzed
and compared with less sophisticated approaches. There is
a number of works in which a violation of Casimir scaling
on intermediate scales have been reported. For example, it
has been claimed that in 4 dimensional SUðNcÞ gluody-
namics with largerNc 2 f4; 6g the numerical data favor the
sin formula, as suggested by supersymmetry, in place of
the Casimir scaling formula [37]. The differences between
the Casimir scaling law and sin-formula are tiny and it is
very difficult to discriminate between the two predictions
in numerical simulations. Indeed, in [38] agreement with
Casimir scaling and the sin formula in 4 dimensions and
disagreement in 3 dimensions has been claimed. In addi-
tion the high precision simulations based on the Lüscher-
Weisz algorithm in [36,39] point to a violation of the
Casimir scaling law in 3 dimensional SUð2Þ gluodynamics.
In a very recent paper Pepe and Wiese [40] reanalyzed the
static potential for SUð2Þ gluodynamics in 3 dimensions
with the help of the Lüscher-Weisz algorithm and substan-
tiated Casimir scaling violation at intermediate scales
while confirming 2-ality scaling at asymptotic scales.
For gauge theories with matter we expect a similar

qualitative behavior: A Coulomb-like potential at short
distances, Casimir scaling at intermediate distances, and
(partial) screening at asymptotic distances. The string ten-
sion at asymptotic scales depends both on the N-alities of
the static color charges and of the dynamical matter. In
particular, if dynamical quarks or scalars can form center-
blind composites with the static charges then the potential
is expected to flatten at large separations. To see any kind
of screening between fundamental charges requires a full
QCD simulation with sea quarks, which is demanding.
Thus, the earlier works dealt with gauge theories with
scalars in the fundamental representation. For example,
in [41] clear numerical evidence for string breaking in
the 3 dimensional SUð2Þ Yang-Mills–Higgs model via a
mixing analysis of string and two-meson operators has
been presented. Probably the first observation of hadronic
string breaking in simulations of QCD3 with two flavors of

1The factor 1=122 in the formula given here arises from a
different normalization of the quadratic Casimir operator.
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dynamical staggered fermions using only Wilson loops has
been reported in [42,43]. Despite extensive searches for
color screening in 4 dimensional gauge theories with dy-
namical fermions the results are still preliminary at best.
First indications for string breaking in two flavor QCD,
albeit only at temperatures close to or above the critical
deconfinement temperature, have been reported in [44].
More recently Bali et al. used sophisticated methods (e.g.
optimized smearing, improved action, stochastic estimator
techniques, hopping parameter acceleration) to resolve
string breaking in two flavor QCD at a value of the lattice
spacing a�1 	 2:37 GeV and of the sea quark mass
slightly below ms [45]. By extrapolation they estimate
that in real QCD with light quarks the string breaking
should happen at rb 	 1:13 fm.

To measure the static potential and study string breaking
three approaches have been used: correlations of Polyakov
loops at finite temperature, variational ansaetze using two
types of operators (for the stringlike states and for the
broken-string state), and Wilson loops. Most results on
Casimir scaling and string breaking have been obtained
with the first two methods. This is attributed to the small
overlap of theWilson loops with the broken-string state. To
measure Polyakov orWilson loop correlators for charges in
higher representations or to see screening at asymptotic
scales one is dealing with extremely small signals down to
10�40. In order to measure such small signals one needs to
improve existing algorithms considerably or/and use im-
proved versions of the Lüscher-Weisz multistep algorithm.

For gauge groups with trivial centers like G2, F4, or E8

the flux tube between static charges in any representation
will always break due to gluon production. The potential
flattens for large separations and expectation values of the
Polyakov loop never vanish [13]. However, for G2 it
changes rapidly at the phase transition temperature and is
very small in the low-temperature confining phase, see
Fig. 1. Similarly as in QCD we characterize confinement

as the absence of free color charges in the physical spec-
trum [16,46].

IV. ALGORITHMIC CONSIDERATIONS

A. Local hybrid Monte Carlo

In simulations of gauge field theories different algo-
rithms are in use. For SUðNcÞ gluodynamics heat-bath
algorithms based on the Cabibbo-Marinari SUð2Þ subgroup
updates, often improved by over-relaxation steps, have
proven to be fast and reliable. For QCD with dynamical
fermions a hybrid Monte Carlo (HMC) scheme is prefer-
able. Based on [47] also local versions of HMC algorithms
are available where single links are evolved in a HMC
style. According to [48] the cost for the local hybrid
Monte Carlo (LHMC) is about 3 times more than for a
combined heat-bath and over-relaxation scheme for the
case of SUðNcÞ gluodynamics.
For the exceptional gauge group G2 there exists a modi-

fication of the heat-bath update [13] which combines the
heat-bath update for a SUð3Þ subgroup with randomly
distributed G2 gauge transformations to rotate the SUð3Þ
subgroup through G2. In the present work we instead use a
LHMC algorithm for several good reasons: First, the for-
mulation is given entirely in terms of the Lie group and Lie
algebra elements and there is no need to back-project onto
G2. The autocorrelation time can be controlled (in certain
ranges) by the integration time in the molecular dynamics
part of the HMC algorithm. Furthermore, one can use a real
representation of G2 and relatively simple analytical ex-
pressions for the two involved exponential maps to obtain a
fast implementation of the algorithm. Finally, the inclusion
of a (normalized) Higgs field is straightforward and does
not suffer from a low Metropolis acceptance rate (even for
large hopping parameters).
The LHMC algorithm has been essential for obtaining

the results in the present work. Since we developed the first
implementation for G2 it is useful to explain the technical
details for this exceptional group. As any (L)HMC algo-
rithm for gauge theories it is based on a fictitious dynamics
for the link-variables on the gauge group manifold. The
‘‘free evolution’’ on a semisimple group is the Riemannian
geodesic motion with respect to the Cartan-Killing metric

ds2G ¼ � trðdUU�1 � dUU�1Þ: (17)

In the fictitious dynamics the interaction term is given by
the Yang-Mills action of the underlying lattice gauge the-
ory and hence it suggests itself to derive the dynamics from
the Lagrangian

L ¼ 1

2

X
x;�

trði _Ux;�U�1
x;�Þ2 � SYM½U�; (18)

where ‘‘dot’’ denotes the derivative with respect to the
fictitious time parameter � and

FIG. 1 (color online). Phase transition on a 163 � 6 lattice in
terms of the Polyakov loop in the fundamental representation.
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SYM½U� ¼ �

2Nc

X
x;�	

trð2Nc �Ux;�	 �Uy
x;�	Þ;

� ¼ 2Nc

ag2
;

(19)

is the Wilson action. The Lie algebra valued fictitious
conjugated link momentum is given by

P x;� ¼ i
@L

@ð _Ux;�U�1
x;�Þ

¼ iUx;�

@L

@ _Ux;�

¼ �i _Ux;�U�1
x;�;

(20)

and via a Legendre transform yields the pseudo-
Hamiltonian

H ¼ 1

2

X
x;�

tr P2
x;� þ SYM½U�: (21)

The equations of motion for the momenta are obtained by
varying the Hamiltonian. The variation of the Wilson
action SYM½U� with respect to a fixed link variable Ux;�

is given by the corresponding staple variable Rx;�, the sum

of triple products of elementary link variables closing to a
plaquette with the chosen link variable. Hence we obtain


H ¼X
x;�

trfPx;�
Px;� þ i
Ux;�U
y
x;�Fx;�g

¼X
x;�

trPx;�f _Px;� � Fx;�gd�;

Fx;� ¼ i�

2Nc

ðUx;�Rx;� � Ry
x;�Uy

x;�Þ:

(22)

The variational principle implies that the projection of
the term between curly brackets onto the Lie algebra g2
vanishes,

_P x;� ¼ F�;xjg2 : (23)

Choosing a trace-orthonormal basis fTag of g2 the equa-
tions for the (L)HMC dynamics can be written as follows:

_P x;� ¼ X
a

trðFx;�TaÞTa and _Ux;� ¼ iPx;�Ux;�;

(24)

with the ‘‘force’’ Fx;� defined in (22). Now a LHMC sweep

consists of the following steps:
(1) Gaussian draw of the momentum variable on a given

link,
(2) Integration of the equations of motion for the given

link,
(3) Metropolis accept/reject step,
(4) Repeat these steps for all links of the lattice.

This local version of the HMC does not suffer from an
extensive 
H / V problem such that already a second

order symplectic (leap frog) integrator allows for suffi-
ciently large timesteps 
�. In its condensed form the
integration for a link variable yields

U ðtþ 
�Þ ¼ expðiPðtþ 
�=2Þ
�ÞUðtÞ: (25)

For a large range of Wilson couplings � in our simulations
an integration length of T ¼ 0:75 with a step size of

� ¼ 0:25 is optimal for minimal autocorrelation
times and a small number of thermalization sweeps.
Acceptance rates of more than 99% are reached.
Nevertheless, the most time consuming part of the calcu-
lations involves the exponential maps. A calculation forG2

can be implemented fast and exact up to a given order in 
�
as will be shown in the next section.

B. The exponential map g2 ! G2

For an efficient and fast computation of the exponential
map we use the real embedding of the SUð3Þ representation
3 � �3 into G2, given by

V ðW Þ¼�y
1 0 0
0 W 0
0 0 W 


0
@

1
A�2G2 with W 2SUð3Þ:

(26)

One can choose the unitary matrix � to have block diago-
nal form with �11 ¼ 1. A possible choice for � is

� ¼ 1 0

0 VQ

 !
with Q ¼

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

V ¼ 1ffiffiffi
2

p 1 i

i 1

 !
� 13: (27)

Every element of G2 can be factorized as

U ¼ S �V ðW Þ with S 2 G2=SUð3Þ: (28)

For a given timestep 
� in the molecular dynamics this
factorization will be expressed in terms of the Lie algebra
elements with the help of the exponential maps,

expf
�ug ¼ expf
�sg � expf
�vg
with generators u 2 g2; v 2 V 
ðsuð3ÞÞ

(29)

fulfilling the commutation relations

½v;v0�¼v00; ½v;s�¼s0; and ½s;s0�¼v0 þs00: (30)

The generators s are orthogonal to the generators of the
really embedded SUð3Þ subgroup. To simplify the notation
we absorb the time step 
� in the Lie algebra elements.
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The last exponential map in (29) can be calculated with
the help of the embedding (26) and the exponential map for
SUð3Þ, W ¼ expðwÞ, which follows from the Cayley-
Hamilton theorem for SUð3Þ generators, see [49]. The
result can be expressed in terms of the imaginary eigen-
values w1, w2, w3 ofw and the differences 
1 ¼ w2 � w3,

2 ¼ w3 � w1, and 
3 ¼ w1 � w2 by

W ¼ expðwÞ ¼ � 1


1
2
3

ð�11þ �wwþ �w2w2Þ;
(31)

with expansion coefficients

�1 ¼ X3
i¼1


iwiþ1wiþ2e
wi ; �w ¼ X3

i¼1


iwie
wi ;

�w2 ¼ X3
i¼1


ie
wi ; (32)

wherein one identifies w3þi and wi.
For the generators fu1; . . . ;u14g of G2 we use the real

representation given in [46]. The suð3Þ subalgebra formed
by the elements fu1; . . . ;u8g generates the really embedded
3 � �3 of SUð3Þ and the remaining generators fu9; . . . ;u14g
generate the coset elements S in the factorization (28).
With this choice for the generators the real embedding (26)
reads

V ðW Þ ¼ 1 0

0 V?

 !
;

V? ¼

a33 �b33 a32 �b32 �b31 a31

b33 a33 b32 a32 a31 b31

a23 �b23 a22 �b22 �b21 a21

b23 a23 b22 a22 a21 b21

b13 a13 b12 a12 a11 b11

a13 �b13 a12 �b12 �b11 a11

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

(33)

where the entries are the real and imaginary parts of the
elements of the SUð3Þ matrix, W ij ¼ aij þ ibij.

Finally, to parametrize the elements of the coset space
we calculate the remaining exponential map

S ¼ expfsg with s ¼ Xi¼6

i¼1

siu8þi: (34)

The result depends on the real parameter � ¼k ~s k and the
6 dimensional unit vector ŝ ¼ ~s= k ~s k . In a 1� 6-block
notation the map takes the form

S ¼ cos 2� � sin 2�ŝT
sin 2�ŝ S?

� �
; (35)

with a 6 dimensional matrix

S? ¼ cos �1þ sin �ŝ? þ ðcos 2�� cos �ÞŝŝT
þ ð1� cos �Þv̂v̂T: (36)

The matrix ŝ? is the 6� 6 right-lower block of s in (34).
The unit vector v̂T ¼ ðŝ2;�ŝ1; ŝ4;�ŝ3;�ŝ6; ŝ5Þ defining
the last projector in (36) is orthogonal to the unit vector ŝ
defining the projector ŝT.
In the numerical integration we need the exponential

map for elements u in g2. They are related to the generators
used in the factorization by the Baker-Campbell-Hausdoff
formula,


�u ¼ 
�ðsþ vÞ þ 1
2
�

2½s;v� þ . . . : (37)

Depending on the order of the symplectic integrator we
must solve this relation for s and v up to the corresponding
order in 
�. For a second order integrator used in this work
this can be done analytically since the commutator ½s;v�
does not contain any contribution of the subalgebra suð3Þ.
The integrator used in the (L)HMC algorithm must be time
reversible. It can be checked that time reversibility holds to
every order in this expansion. To summarize, for a second
order integrator the approximation (37) may be used in the
exponentiations needed to calculate V and S. This ap-
proximation leads to a violation of energy conservation,
which is of the same order as the violation one finds with a
second order integrator. In comparison to the exponentia-
tion via the spectral decomposition the method based on
the factorization (28) is more than 10 times faster. It is also
much faster than computing the exponential map for SOð7Þ
via the Cayley-Hamilton theorem.

C. Exponential error reduction for Wilson loops

In the confining phase the rectangular Wilson loop
scales as WðL; TÞ / expð��L � TÞ. In order to estimate
the string tension � we probe areas LT ranging from 0
up to 100 and thusW will vary by approximately 40 orders
of magnitude. A brute force approach where statistical
errors for the expectation value of Wilson or Polyakov
loops decrease with the inverse square root of the number
of statistically independent configurations by just increas-
ing the number of generated configurations will miserably
fail. Nevertheless, convincing results on G2 Casimir scal-
ing on intermediate scales for representations with relative
Casimirs C0R � 5 have been obtained in [16] with a variant
of the smearing procedure. When reproducing these results
we observed that the calculated string tensions depend
sensitively on the smearing parameter.2 Thus, to obtain
accurate and reliable numbers for the static potential and
to detect string breaking we implemented the multistep
Lüscher-Weisz algorithm with exponential error reduction
for the time transporters of the Wilson loops [50]. With
this method the absolute errors of Wilson lines decrease

2This is not the case for the ratios of string tensions.
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exponentially with the temporal extent T of the line. This is
achieved by subdividing the lattice into nt sublattices
V1; . . . ; Vnt containing the Wilson loop and separated by

time slices plus the remaining sublattice, denoted by �V, see
Fig. 2 (left panel). At the first level in a two-level algorithm
the time extent of each sublattice Vn is 4 such that nt is the
smallest natural number with 4nt � T þ 2. In Fig. 2 (left
panel) T ¼ 14 and the lattice is split into four sublattices
V1, V2, V3, V4 containing the Wilson loop plus the comple-
ment �V. The Wilson loop is the product of parallel trans-
porters W ¼ T 0

2T
0
3T 4T 3T 2T 1. If a sublattice Vn

contains only one connected piece of the Wilson loop (as
V1 and V4 do) then one needs to calculate the sublattice
expectation value

hT nin ¼ 1

Zn

Z
sublattice n

DUT ne
�S; (38)

if Vn contains two connected pieces (as V2 and V3) then one
needs to calculate hT n �T 0

nin. The updates in each sub-
lattice are done with fixed link variables on the time slices
bounding the sublattice. Calculating the expectation value
of the full Wilson loop reduces to averaging over the links
in the nt þ 1 time slices,

hWi ¼ hCðhT 1i1hT 2 �T 0
2i2 � � � hT nt�1 �T 0

nt�1int�1

� hT ntintÞiboundaries: (39)

Here C is that particular contraction of indices that leads
to the trace of the product W ¼ T 0

2 . . .T
0
nt�1�

T ntT nt�1 . . .T 2T 1. In a two-level algorithm each sub-

lattice Vn is further divided into two sublattices Vn;1 and

Vn;2, see Fig. 2 (middle panel), and the sublattice updates

are done on the small sublattices Vn;k with fixed link

variables on the time slices separating the sublattices
Vn;k. This way one finds two levels of nested averages.

Iterating this procedure gives the multilevel algorithm.
Since the dimensions dR grow rapidly with the Dynkin

labels ½p; q�—for example, below we shall verify Casimir
scaling for charges in the 189 dimensional representation
[2,1]—it is difficult to store the many expectation values of
tensor products of parallel transporters. Thus we imple-
mented a slight modification of the Lüscher-Weisz algo-
rithm where the lattice is further split by spatially slicing
along a hyperplane orthogonal to the plane defined by the
Wilson loop, see Fig. 2 (right panel). The sublattice up-
dates are done with fixed link variables on the same time
slices as before and in addition to the newly introduced
space slice. Instead of nt sublattices containing the Wilson
loop we now have 2nt � 2 sublattices. But now every
sublattice contains only one connected part of the Wilson
loop and (39) is replaced by

hWi ¼
�
tr
Y2nt�2

n¼1

hT nin
�
boundaries

: (40)

An iteration of this procedure by additional splittings of the
time slices leads again to a multilevel algorithm. In the
present work we use a two-level algorithm with time slices
of length 4 on the first and length 2 on the second level. We
calculate hWi for Wilson loops (and hence transporters
T n) of varying sizes and in different representations. To
avoid the storage of tensor products of large representa-
tions we implemented the modified algorithm as explained
above.
We also applied the Lüscher-Weisz algorithm to calcu-

late the correlators of two Polyakov loops hPRð0ÞPRðRÞi
on larger lattices. In this case the complete lattice is divided
into sublattices separated by time slices, hence there is no
complement �V. Since the Polyakov loops are only used for
lower-dimensional representations we have not split the
lattice by a spatial slicing but used tensor products similar
to Eq. (54). Actually for the calculations of Polyakov loop
correlators we used the three step Lüscher-Weisz
algorithm.

FIG. 2 (color online). Iterative slicing (from left to right) of a lattice and Wilson loop during the multilevel algorithm.
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V. STRING TENSION AND CASIMIR SCALING
IN G2 GLUODYNAMICS

The static interquark potential is linearly rising on in-
termediate distances and the corresponding string tension
will depend on the representation of the static charges. We
expect to find Casimir scaling where the string tensions for
different representations R and R0 scale according to

�R

cR
¼ �R0

cR0
(41)

with quadratic Casimir cR. Although all string tensions
will vanish at asymptotic scales it is still possible to check
for Casimir scaling at intermediate scales where the line-
arity of the interquark potential is nearly fulfilled.

To extract the static quark antiquark potential two differ-
ent methods are available. The first makes use of the
behavior of rectangular Wilson loops in representation R
for large T,

hWRðR; TÞi ¼ expð�RðRÞ � VRðRÞTÞ
with VRðRÞ ¼ �R � �R

R
þ �RR:

(42)

The potential can be extracted from the ratio of twoWilson
loops with different time extent according to

VRðRÞ ¼ 1

�
ln

hWRðR; TÞi
hWRðR; T þ �Þi : (43)

We calculated the expectation values of Wilson loops with
the two-level Lüscher-Weisz algorithm and fitted the right-
hand side of (43) with the potential VRðRÞ in (42). The
fitting has been done for external charges separated by one
lattice unit up to separations R with acceptable signal to
noise ratios. From the fits we extracted the constants �R,
�R, and �R entering the static potential. For an easier
comparison of the numerical results on lattices of different
size and for different values of � we subtracted the con-
stant contribution to the potentials and plotted

~V RðRÞ ¼ VRðRÞ � �R (44)

in the figures. The statistical errors are determined with the
Jackknife method. In addition we determined the local
string tension

�loc;R

�
Rþ �

2

�
¼ VRðRþ �Þ � VRðRÞ

�
; (45)

given by the Creutz ratio

�loc;R

�
Rþ �

2

�
¼ �R

RðRþ �Þ þ �R

¼ 1

��
ln
hWRðRþ �; TÞihWRðR; T þ �Þi
hWRðRþ �; T þ �ÞihWRðR; TÞi :

(46)
The second method to calculate the string tensions uses

correlators of two Polyakov loops,

VRðRÞ ¼ � 1

�T

lnhPRð0ÞPRðRÞi: (47)

The correlators are calculated with the three-level Lüscher-
Weisz algorithm and are fitted with the static potential
VRðRÞwith fit parameters �R, �R, and�R. Now the local
string tension takes the form

�loc;R

�
Rþ �

2

�
¼ � 1

�T�
ln
hPRð0ÞPRðRþ �Þi
hPRð0ÞPRðRÞi : (48)

A. Casimir scaling in 3 dimensions

Most LHMC simulations are performed on a 283 lattice
with Wilson loops of time extent T ¼ 12. To extract the
static potentials from the ratio of Wilson loops in (43) we
chose � ¼ 2. The fits to the static potential (42) for charges
in the fundamental 7 representation and for values� ¼ 30,
35, and 40 yield the lattice parameters �, �, and � given in
Table III. To check for scaling we plotted the potentials in
‘‘physical’’ units, V=�, with mass scale set by the string
tension in the 7 representation,

� ¼ ffiffiffiffiffiffi
�7

p
; (49)

as function of �R in Fig. 3. We observe that the potentials
for the three values of � are the same within error bars. In
addition they agree with the potential (in physical units)
extracted from the Polyakov loop on a much larger 483

lattice.
The fitted constants �R, �R, and �R of the potential

(42) for the eight smallest representations are given in
Table IV. The Casimir scaling of coefficients becomes
apparent when they are divided by the corresponding co-
efficients of the static potential in the 7 representation.
The local string tensions extracted from the Creutz ratio

can be determined much more accurately as the global
string tensions extracted from fits to the static potentials.
Table V contains the local string tensions for static charges
in the eight smallest representations for � ¼ 1 and differ-
ent R in (46), divided by the corresponding local string

TABLE III. Potential for charges in the 7 representation.

� ¼ 30, N ¼ 283 � ¼ 35, N ¼ 283 � ¼ 40, N ¼ 283 � ¼ 30, N ¼ 483 � ¼ 40, N ¼ 643 � ¼ 20, N ¼ 323

�a 0.185(8) 0.160(4) 0.147(5) 0.197(1) 0.164(1) 0.252(1)

� 0.0881(1) 0.0752(3) 0.071(4) 0.098(1) 0.0887(1) 0.117(1)

�a2 0.046(1) 0.0340(8) 0.024(1) 0.0435(3) 0.0221(3) 0.1161(2)
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tensions in the 7 representation. The results are insensitive
to the distance R in the Creutz ratio. They agree within 1%
with the values for the Casimir ratios C0R ¼ CR=C7 given
in the last row of that table.

In Fig. 4 we plotted the values for the eight potentials
V7; . . . ; V189 (with statistical errors) measured in ‘‘physical
units’’ � defined in (49). The distance of the charges is
measured in the same system of units. The linear rise at
intermediate scales is clearly visible, even for charges in
the 189 dimensional representation.

Figure 5 contains the same data points rescaled with the
quadratic Casimirs of the corresponding representations.
The eight rescaled potentials fall on top of each other

within error bars. This implies that the full potentials for
short and intermediate separations of the static charges
show Casimir scaling.
To further check for Casimir scaling we calculated the

local string tensions with � ¼ 1, this time for all R between
1 and 10 and not only for R ¼ 0, 1, 2 as in Table V. The
horizontal lines in Fig. 6 are the values predicted by the
Casimir scaling hypothesis. Clearly we see no sign of
Casimir scaling violation on a 283 lattice near the contin-
uum at � ¼ 40. Of course, for widely separated charges in
higher-dimensional representations the error bars are not
negligible even for an algorithm with exponential error
reduction.

TABLE IV. Fit parameters of static potentials.

R 7 14 27 64 77 770 182 189

�Ra 0.147(5) 0.29(1) 0.34(1) 0.51(1) 0.58(1) 0.74(2) 0.83(1) 0.77(2)

�Ra=C0R 0.147 0.145 0.146 0.146 0.145 0.148 0.138 0.144

�R=�7 1 1.97 2.31 3.46 3.94 5.03 5.64 5.23

�R 0.071(4) 0.145(8) 0.16(1) 0.24(1) 0.27(1) 0.36(1) 0.37(1) 0.36(1)

�R=C0R 0.071 0.0725 0.069 0.069 0.068 0.072 0.062 0.068

�R=�7 1 2.04 2.25 3.38 3.80 5.07 5.21 5.07

�Ra2 0.024(1) 0.048(2) 0.057(3) 0.086(4) 0.099(5) 0.120(6) 0.157(6) 0.132(6)

�Ra2=C0R 0.024 0.024 0.024 0.025 0.025 0.024 0.026 0.025

�R=�7 1 2.00 2.37 3.58 4.12 5.00 6.54 5.50

FIG. 3 (color online). Continuum scaling of the fundamental
potential.

TABLE V. Scaled local string tension.

R 7 14 27 64 77 770 182 189

�Rð1=2Þ=�7ð1=2Þ 1 1.9996(3) 2.3327(5) 3.498(1) 3.997(2) 4.996(3) 5.991(5) 5.328(4)

�Rð3=2Þ=�7ð3=2Þ 1 1.9989(7) 2.331(1) 3.495(5) 3.994(4) 4.989(7) 5.99(1) 5.321(9)

�Rð5=2Þ=�7ð5=2Þ 1 1.996(1) 2.327(1) 3.484(5) 3.980(7) 4.96(1) 5.94(2) 5.29(1)

C0R 1 2.0000 2.3333 3.5000 4.0000 5.0000 6.0000 5.3333

FIG. 4 (color online). Unscaled potential with � ¼ 40 on a 283

lattice.
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B. Lüscher term

In Table IV we have seen that the dimensionless coeffi-
cient �R in the static potential scales with the quadratic
Casimir, similarly to the string tension. The corresponding
term, if measured at distances where the flux tube is fully
developed, is referred to as the Lüscher term. Its value has
been calculated by Lüscher for charges in the fundamental
representation, in d dimensions� ¼ ðd� 2Þ�=24, and it is
believed to be universal [51]. The value � ¼ �=24 in 3
dimensions is off the results in Table III. However, since
the coefficients in this table are fitted to the static potential
from R ¼ 1 to values of R with acceptable signal to noise
ratio, they contain contributions from the short range
Coulombic tail. To calculate �R at intermediate distances
we better use the (local) Lüscher term

�loc;RðRÞ ¼ �RR2

R2 � �2

¼ R3

2�T�
2

� ln
hPRð0ÞPRðRþ �ÞihPRð0ÞPRðR� �Þi

hPRð0ÞPRðRÞihPRð0ÞPRðRÞi ;

(50)

with � ¼ 1. In Fig. 7 we plotted the local Lüscher term for
charges in the 7 and 14 representation at couplings � 2
f30; 40g. Our data for the defining 7 dimensional represen-
tation at intermediate distances are in agreement with the
theoretical prediction �7 ¼ �=24 	 0:131. The local
Lüscher term for the adjoint representation approaches a
value close to �14 	 �=12. Although this exceeds the
universal prediction of [51] by a factor of 2 this behavior
is in close analogy to the situation in 3 dimensional SUð5Þ
Yang-Mills theory where Casimir scaling of the local
Lüscher term at short distances has been reported in [52]
for the 10 dimensional representation. Since the Lüscher
term is expected to show up at asymptotic large distances,
this term can only be extracted if the flux tube has fully
developed before string breaking sets in. Whether this is
the case for G2 gauge theory is not clear. Our results
suggest that this happens for charges in the 7 dimensional
representation.

C. String breaking and glue-lumps in 3 dimensions

To observe the breaking of strings connecting static
charges at intermediate scales when one further increases
the separation of the charges we performed high statistics
LHMC simulations on a 483 lattice with � ¼ 30. We
calculated expectation values of Wilson loops and products
of Polyakov loops for charges in the two fundamental
representations of G2. When a string breaks then each
static charge in the representation R at the end of the
string is screened by NðRÞ gluons to form a color blind

FIG. 6 (color online). Ratio of the local string tension
with � ¼ 40 scaled on a 283 lattice for the eight smallest
representations.

FIG. 5 (color online). Scaled potential with � ¼ 40 on a 283

lattice.

FIG. 7 (color online). Local Lüscher term at two different
couplings and for two different representations.
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glue lump. We expect that the dominant decay channel for
an over-stretched string is string ! glue lump þ glue
lump. For a string to decay the energy stored in the string
must be sufficient to produce two glue lumps. According to
(11) it requires at least 3 gluons to screen a static charge in
the 7 representation, one gluon to screen a charge in the 14
representation and two gluons to screen a charge in the 27
representation. We shall calculate the separations of the
charges where string breaking sets in and the masses of the
produced glue lumps. The mass of such a quark-gluon
bound state can be obtained from the correlation function
according to

expð�mRTÞ / CRðTÞ

¼
��ONðRÞ

n¼1

F�	ðyÞ
���������R;a

RðUyxÞab
�ONðRÞ

n¼1

F�	ðxÞ
���������R;b

�
;

(51)

where RðUyxÞ is the temporal parallel transporter in the

representation R from x to y of length T. It represents the
static sources in the representation R. The vertical line
means projection of the tensor product onto that linear
subspace on which the irreducible representation R acts,

ð14 � 14 � � � � � 14Þ ¼ R � . . . : (52)

For example, for charges in the 14 representation the
projection is simply

F�	ðxÞj14;a ¼ Fa
�	ðxÞ; where Fa

�	T
a ¼ F�	: (53)

For charges in the 7 representation we must project the
reducible representation 14 � 14 � 14 onto the irreducible
representation 7. Using the embedding of G2 into SOð7Þ
representations one shows that this projection can be done
with the help of the totally antisymmetric " tensor with 7
indices,

F�	ðxÞ � F�	ðxÞ � F�	ðxÞj7;a
/ Fp

�	ðxÞFq
�	ðxÞFr

�	ðxÞ"abcdefgTp
bcT

q
deT

r
fg: (54)

Figure 8 shows the logarithm of the glue-lump correlator
(51) as function of the separation of the two lumps for
static charges in the fundamental representations 7 and 14.
The linear fits to the data yield the glue-lump masses

m7a ¼ 0:46ð4Þ; m14a ¼ 0:761ð3Þ: (55)

Thus, we expect that the subtracted static potentials ap-
proach the asymptotic values

~V R ! 2mR � �R: (56)

With the fit values �7a ¼ 0:197ð1Þ and �14a ¼ 0:381ð2Þ
we find

~V 7=� ! 3:47; ~V14=� ! 5:47: (57)

Figure 9 shows the rescaled potentials for charges in the
fundamental representations together with the asymptotic
values (57) extracted from the glue-lump correlators. At
fixed coupling � ¼ 30 both potentials flatten exactly at
separations of the charges where the energy stored in the
flux tube is twice the glue-lump energy. However, the
direct comparison of the potentials for two different cou-
plings, i.e., different lattice spacings, reveals that the po-
tential for adjoint charges is nearly free of lattice artifacts
while the string breaking distance for charges in the defin-
ing representation is largely coupling dependent and the
continuum limit is not reached yet.
A good approximation for the string breaking distance is

then given by VRðRbÞ 	 2mR. Assuming Casimir scaling
for the coefficients �R, �R, and �R in the static potential
we obtain

FIG. 8 (color online). Glue-lump correlator (lattice size 483,
� ¼ 30).

FIG. 9 (color online). Potential for both fundamental represen-
tations at � 2 f20; 30g and corresponding glue-lump mass for
� ¼ 30.
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�Rb
R ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7 þ 1

4

�
�7

�
�MR

�
2

s
� 1

2

�
�7

�
�MR

��
;

MR ¼ 2mR

�C0R
: (58)

Inserting the result from the last row in Table III and the
glue-lump masses we find �Rb

7 ¼ 3:49 and �Rb
14 ¼ 2:77.

These values agree well with the separations �R in Fig. 9
where the static potentials flatten such that string breaking
sets in at scales predicted by formula (58). Figure 10 shows
the local string tensions in the two fundamental represen-
tations and Fig. 11 their ratio. Especially the last plot
makes clear that the string connecting charges in the
adjoint representation break earlier than the string connect-
ing charges in the 7 representation. Just at the critical
separation predicted by formula (58) the ratio of local
string tensions �14ðRÞ=�7ðRÞ shows indeed a pronounced
knee.

D. Signs of Casimir scaling violations

Although the coarse grained view onto the ratio of local
string tensions up to the string breaking distance (Fig. 11)
shows an approximate Casimir scaling, a closer look un-
covers deviations from the expected Casimir ratio of the
adjoint and defining representation (see Fig. 12). The
results for two different lattice spacings indicate that for
short distances, in the Coulombic part of the potential,
Casimir scaling is fulfilled, in agreement with the predic-
tions of perturbation theory, valid at short distances. For
larger distances the measured ratio drops by about 2.5%
near the string breaking distance and similar deviations
have already been reported in [36,39] in 3 dimensional
SUð2Þ gauge theory. In either case the scale dependence
identifies Casimir scaling violations as a purely nonpertur-
bative long range effect. Of course, the given error bounds
in Fig. 12 may be taken with care as they include only
statistical uncertainties. Lattice artifacts are still visible
and further work will be necessary to confirm that this
violation persists in the continuum limit.

E. Continuum limit of the string tension

Equation (16) gives the string tension in the continuum
as a function of the coupling � / 1=g2 [20]. To compare
this continuum result with our lattice data we extrapolate
the corresponding value g�2 ffiffiffiffiffiffi

�7
p

linearly in��1 / a to the

FIG. 10 (color online). Local string tension (483 lattice,
� ¼ 30).

FIG. 11 (color online). Casimir scaling of local string tension
(483 lattice, � ¼ 30).

FIG. 12 (color online). Deviations from Casimir scaling at two
different couplings.

TABLE VI. String tension for the 7 representation on lattice
sizes and couplings that are used for the continuum extrapola-
tion.

� N �7a
2 g�2 ffiffiffiffiffiffi

�7
p

20 323 0.118 07(19) 0.4908(4)

25 403 0.068 63(12) 0.4678(4)

30 483 0.044 81(28) 0.4536(14)

35 563 0.031 93(14) 0.4467(10)

40 643 0.022 19(33) 0.4256(32)
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continuum limit by using the couplings and lattice sizes in
Table VI. This procedure is motivated by the (in leading
order) linear behavior that has been found in a similar
study for gauge groups SUð2Þ up to SUð5Þ [53]. For in-
creasing� the scaling window with a linear rising potential
shrinks and it becomes more difficult to extract reliable
values for the intermediate string tension. Thus, a linear fit
to all points in Table VI leads to g�2 ffiffiffiffiffiffi

�7
p ¼ 0:381ð5Þ (see

Fig. 13) with a rather large reduced �2 ¼ 8:56, whereas a
linear fit to the reliable data points with the 3 smallest �
values yields g�2 ffiffiffiffiffiffi

�7
p ¼ 0:376ð2Þ with a small reduced

�2 ¼ 0:51. Both fit values are in good agreement with
the prediction of Eq. (16), g�2 ffiffiffiffiffiffi

�7
p ¼ 0:398 94.

Corrections to this theoretical value have been derived in
a systematic expansion in [21]

g�2 ffiffiffiffiffiffi
�7

p ¼
ffiffiffiffiffiffiffi
1

2�

s
ð1� 0:027 99þ � � �Þ 	 0:387 78; (59)

but they are still subject to ambiguities in defining a low
momentum cutoff that may change this value by up to 3%.
Keeping in mind that we are left with possible systematic
uncertainties in the extrapolation procedure that are not
reflected in the given statistical error a complete agreement
between analytical and numerical results is apparent.

F. Casimir scaling in 4 dimensions

In this last section we present our results for the static
potential in 4 dimensions. The LHMC simulations have
been performed on a small 144 and a larger 204 lattice for
different values of �. The static potentials and local string
tensions have been extracted from (43) and (46), where the
expectation values have been calculated with a two-step
Lüscher-Weisz algorithm. Table VII contains the fits to the
parameters in the potential for static charges in the 7
representation for these lattices and values for �.

Figure 14 shows the static potentials in ‘‘physical units’’
� ¼ ffiffiffiffiffiffi

�7
p

for charges in the 7, 14, 27, and 64 dimensional

representations and coupling � ¼ 9:7 as a function of the
distance between the charges in physical units. The corre-
sponding value for �7 is taken from Table VII. The same
coupling has been used in [16] on an asymmetric 143 � 28
lattice. After normalizing the potential with the quadratic
Casimirs they are identical within error bars, as can be seen
in Fig. 15. Our findings are in complete agreement with the

FIG. 13 (color online). Linear continuum extrapolation of the
string tension. The shaded region indicates the corresponding
error bound.

TABLE VII. Parameters of the quark antiquark potential in 4
dimensions for R ¼ 7.

� ¼ 9:7, N ¼ 144 � ¼ 10, N ¼ 144 � ¼ 9:7, N ¼ 204

�7a 0.83(8) 0.74(4) 0.68(9)

�7 0.40(7) 0.33(3) 0.28(8)

�7a
2 0.07(2) 0.042(9) 0.11(1)

FIG. 14 (color online). Unscaled potential at � ¼ 9:7 on a 144

lattice.

FIG. 15 (color online). Scaled potential at � ¼ 9:7 on a 144

lattice.
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results in [16] on Casimir scaling in 4 dimensional G2

gluodynamics at � ¼ 9:7 and our accurate results on
Casimir scaling on intermediate scales in 3 dimensional
G2 gluodynamics.

Figures 16 and 17 show the corresponding results for a
weaker coupling � ¼ 10 closer to the continuum limit. For
this small coupling we can measure the potential only up to
separations �R 	 1:5 of the charges. But we can do this
with high precision and for higher-dimensional represen-
tations. As for � ¼ 9:7 we find that the potentials normal-
ized with the second order Casimirs fall on top of each
other. This confirms Casimir scaling for G2 gluodynamics
in 4 dimensions for charges in representations with dimen-
sions 7, 14, 27, 64, 77, 770, 182, and 189.

Finally, we simulated on a much larger 204 lattice at
� ¼ 9:7 in order to calculate the static potential for larger
separations of the static quarks. Unfortunately the distance

�R 	 3 is still not sufficient to detect string breaking, see
Fig. 18. But again the potentials normalized with the
quadratic Casimirs shown in Fig. 19 are equal within error
bars.
In Table VIII we have listed the fit values for the

parameters of the potentials on the larger 204 lattice for
static charges in the representations with dimensions 7, 14,
and 27. For all representation we find Casimir scaling of all
three parameters in the potential. Unfortunately the fit
parameters cannot be determined reliably in the 64 repre-
sentation with the present data. This is attributed to larger
errors for the potentials at intermediate scales, see Fig. 18,
so that the parameters can only be determined from
the ultraviolet part of the potential for this representation
(R< 3) which is rather Coulomb-like than linearly rising.
Much more conclusive are the local string tensions calcu-
lated on the larger lattice (now up to the 64 representation).
Table IX contains the local string tensions divided by the

FIG. 16 (color online). Unscaled potential at � ¼ 10 on a 144

lattice.

FIG. 17 (color online). Scaled potential at � ¼ 10 on a 144

lattice.

FIG. 18 (color online). Unscaled potential at � ¼ 9:7 on a 204

lattice.

FIG. 19 (color online). Scaled potential at � ¼ 9:7 on a 204

lattice.
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local string tensions in the 7 representation. These normal-
ized values are constant up to separations of the charges
where the statistical errors are under control. Compared to
the corresponding numbers in 3 dimensions, see Table V,
we now see a slight dependence of the local string tensions
from Eq. (59) on the distance R. Despite of the lower
precision of the results in 4 dimensions compared to the
corresponding results in 3 dimensions we again confirm
Casimir scaling on short to intermediate scales within 5%.

All our simulation results for the local string tensions
�RðRÞ normalized by �7ðRÞ on a 144 lattice with � 2
f9:7; 10g and on a 204 lattice with � ¼ 9:7 and for �R �
1:5 are collected in Fig. 20. The horizontal lines in this
figure show the prediction of the Casimir scaling hypothe-
sis. The normalized data points are compatible with each
other and with the hypothesis.

VI. CONCLUSIONS

In the present work we implemented an efficient and fast
LHMC algorithm to simulate G2 gauge theory in three and
four dimensions. With only a slight modification we can
include a (normalized) Higgs field in the 7 representation.
The corresponding results for the phase diagram of G2

Yang-Mills–Higgs theory will soon be presented in a com-
panion paper. The algorithm has been optimized with the
help of the coset decomposition of group elements and the
analytic expressions for the exponential maps for the two
factors. In addition we implemented a slightly modified
Lüscher-Weisz multistep algorithm with exponential error
reduction to measure the static potentials for charges in
various G2 representations. The accurate results in 3 di-
mensions show that all parameters of the fitted static
potentials show Casimir scaling, see Table III. The global
string tensions extracted from these fits show that possible
deviations from Casimir scaling must be less than 4%. We
also extracted the local string tensions from the Creutz
ratios to obtain even more precise data. This way we
confirm Casimir scaling at short distances

ffiffiffiffiffiffi
�7

p
R< 1

with 1% accuracy. Thus we conclude that in 3 dimensional
G2 gluodynamics the Casimir scaling violations of the
string tensions are small for all charges in the representa-
tions with dimensions 7, 14, 27, 64, 77, 770, 182, and 189.
For charges in the two fundamental representations we

performed LHMC simulations on larger lattices to detect
string breaking at asymptotic scales. In 3 dimensions we
observe that string breaking indeed sets in at the expected
scale where the energy stored in the flux tube is sufficient to
create two glue lumps. To confirm this expectation we
calculated masses of glue lumps associated with static
charges in the fundamental representations. Here, close
to the string breaking distance, systematic Casimir scaling
violations show up at the 2.5% level and they are identified
as a nonperturbative effect arising only at large distances.
Finally, the prediction for the numerical value of the string
tension in 3 dimensions is confirmed by a continuum
extrapolation of our precise data.
In 4 dimensional G2 gluodynamics we found Casimir

scaling for charges in the representations 7, 14, 27, and 64,
similarly as we did in 3 dimensions, although the uncer-
tainties are of course larger. But within error bars we see no
violation of Casimir scaling and this confirms the corre-
sponding results in [16], obtained with a variant of the
smearing procedure. To see the expected string breaking in
4 dimensions one would need larger lattices than those
used in the present work.
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TABLE VIII. Fit parameters of static potentials (204 lattice,
� ¼ 9:7).

R 7 14 27

�Ra 0.68(9) 1.39(4) 1.61(3)

�Ra=C0R 0.68 0.695 0.690

�R 0.28(8) 0.60(2) 0.69(2)

�R=C0R 0.28 0.30 0.295

�Ra2 0.11(1) 0.21(1) 0.251(9)

�Ra2=C0R 0.11 0.105 0.107

TABLE IX. Scaled local string tension (204 lattice, � ¼ 9:7).

R 7 14 27 64

�Rð1=2Þ=�7ð1=2Þ 1 1.973(1) 2.294(1) 3.396(8)

�Rð3=2Þ=�7ð3=2Þ 1 1.987(3) 2.303(4) 3.44(2)

�Rð5=2Þ=�7ð5=2Þ 1 1.92(1) 2.28(3) -

C0R 1 2.0000 2.3333 3.5000

FIG. 20 (color online). Scaled local string tension with � 2
f9:7; 10g on 144 and 204 lattices.
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