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Technidilaton (TD) was proposed long ago in the technicolor near criticality/conformality. To reveal

the critical behavior of TD, we explicitly compute the nonperturbative contributions to the scale anomaly

h���i and to the technigluon condensate h�G2
��i, which are generated by the dynamical mass m of

the technifermions. Our computation is based on the (improved) ladder Schwinger-Dyson equation,

with the gauge coupling � replaced by the two-loop running coupling �ð�Þ having the Caswell-Banks-

Zaks infrared fixed point ��: �ð�Þ ’ � ¼ �� for the infrared region m<�<�TC, where �TC is the

intrinsic scale (analogue of �QCD of QCD) relevant to the perturbative scale anomaly. We find that

�h���i=m4 ! const � 0 and h�G2
��i=m4 ! ð�=�cr � 1Þ�3=2 ! 1 in the criticality limit m=�TC �

expð��=ð�=�cr � 1Þ1=2Þ ! 0 (� ¼ �� & �cr, or Nf % Ncr
f ) (‘‘conformal edge’’). Our result precisely

reproduces the formal identity h���i ¼ ð�ð�Þ=4�2Þh�G2
��i, where �ð�Þ ¼ �TC

@�
@�TC

¼ �ð2�cr=�Þ �
ð�=�cr � 1Þ3=2 is the nonperturbative beta function corresponding to the above essential singularity

scaling of m=�TC. Accordingly, the partially conserved dilatation current implies ðMTD=mÞ2ðFTD=mÞ2 ¼
�4h���i=m4 ! const � 0 at criticality limit, where MTD is the mass of TD and FTD the decay constant of

TD. We thus conclude that at criticality limit the TD could become a ‘‘true (massless) Nambu-Goldstone

boson’’MTD=m ! 0, only whenm=FTD ! 0, namely, getting decoupled, as was the case of ‘‘holographic

technidilaton’’ of Haba-Matsuzaki-Yamawaki. The decoupled TD can be a candidate of dark matter.
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I. INTRODUCTION

The conformal/scale-invariant (walking) technicolor
(TC) characterized by the large anomalous dimension
�m ¼ 1 was first proposed [1,2] as a solution to the prob-
lem of the flavor-changing neutral currents (FCNC) in TC,
based on the pioneering work by Maskawa and Nakajima
[3] who discovered nonzero critical coupling,�crð� 0Þ, for
the spontaneous chiral symmetry breaking (S�SB) to take
place in the ladder Schwinger-Dyson (SD) equation with
nonrunning (conformal) gauge coupling �ð�Þ��>�cr.

1

Subsequently, similar solution to FCNC within the same
framework of the ladder SD equation was also considered
without usage of the concept of the anomalous dimension
[5]. See for a review, see [6].

Because of the (approximate) scale invariance, the the-
ory also predicted [1,2] a technidilaton (TD), a composite
pseudo-Nambu-Goldstone (NG) boson for the spontaneous
(and explicit) breaking of the scale symmetry of the TC, as
a technifermion and anti-technifermion bound state.

Actually, the mass function of the fermion �ðQÞ of the
S�SB solution takes the asymptotic form [3]

�ðQÞ �m2=Q; ðQ � mÞ; (1)

which was interpreted as [1]

�m ¼ 1; (2)

where the dynamical mass m (�ðmÞ ¼ m) is given by the
form of essential singularity [7,8]:

m�� � exp
0
@� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
�cr

� 1
q

1
A; �cr ¼ �

3CF

; (3)

with � being the cutoff introduced to the SD equation and
CF the quadratic Casimir of the fermion of the fundamental
representation of the gauge group.
Equation (3), often called Miransky scaling, implies [8]

that the dynamical generation of m by the nonperturbative
dynamics should lead to the nonperturbative running of the
coupling � ¼ �ð�=mÞ (! �cr as �=m ! 1) even when
it is nonrunning (conformal) in the perturbative sense:

�NPð�Þ ¼ �
@�

@�
¼ � 2�cr

�

�
�

�cr

� 1

�ð3=2Þ
; (4)

with �cr being interpreted as the UV fixed point. See Fig. 1
[1]. Actually, the mass scale of m has never been created
from nothing but transferred from the ‘‘hidden scale’’ �
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1The solution of the FCNC problem by the large anomalous

dimension was first considered by B. Holdom [4], based on a
pure assumption of the existence of ultraviolet (UV) fixed point
in TC without explicit dynamics and hence without definite
prediction of the value of the anomalous dimension.
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whose effect persists even when it is removed by taking the
limit � ! 1 while tuning � ! �cr.

It was then argued [2] that the dynamically generated
mass m is a renormalization-group (RG)—invariant quan-
tity, dm

d� ¼ 0, and is regarded as generated by the dimen-

sional transmutation:

m ¼ � � exp
�
�
Z �ð�Þ d�

�NPð�Þ
�
; (5)

due to (nonperturbative) running of �ð�Þ, such that

�@�ð�Þ
@� ¼ �NPð�ð�ÞÞ, which reflects the (nonperturbative)

scale anomaly

h@�D�i ¼ h���i ¼ �NPð�Þ
4�2

h�G2
��i; (6)

with �NPð�Þ given in Eq. (4), where h�G2
��i is the non-

perturbative contribution to the technigluon condensate
due to the mass generation of m. Note that the nonpertur-
bative beta function (4) has a multiple zero, i.e., ��
�ð�=�cr � 1Þ	 with 	 > 1, which is crucial for Eq. (5)
with Eq. (4) to reproduce the essential singularity scaling
Eq. (3) for � ¼ �.

Initially it was assumed [1,2] that

h�G2
��i ¼ Oðm4Þ; (7)

so that

h���i ¼ �NPð�Þ �Oðm4Þ; (8)

namely, h���i=m4 � �NPð�Þ ! 0 in the criticality limit
� ! �cr. From the scale anomaly through partially con-
served dilatation currents (PCDC), the TD mass (MTD) and
its decay constant (FTD) are related as

M2
TDF

2
TD ¼ �4h���i ¼ ��NPð�Þ

�2
h�G2

��i; (9)

which would imply ðMTD=mÞ2ðFTD=mÞ2 ���NPð�Þ ! 0
for the criticality � ! �cr. It was then argued [2] that

MTD=m could be arbitrarily small by tuning � as
�NPð�Þ ! 0 (� ! �cr), namely, TD could become a true
NG boson, MTD=m ! 0, in the criticality limit � ! �cr

(m=� ! 0).
Actually, Eq. (8) [and hence Eq. (7)] turned out to be

false at least in the ladder approximation: In the criticality
limit � ! �cr (m=� ! 0) the straightforward ladder cal-
culation [9] of h���i ¼ 4h�00i, with the vacuum energy h�00i
evaluated through the Cornwall-Jackiw-Tomboulis (CJT)
effective potential, yields

h���i ¼ �4
NfNTC

�4
m4; (10)

in obvious contradiction with Eq. (8). Accordingly, we
have

h�G2
��i

m4
¼ 4�2

�NPð�Þ �
h���i
m4

�� 1

�NPð�Þ ! 1; (11)

in contrast to Eq. (7). Equation (9) now reads�
MTD

m

�
2
�
FTD

m

�
2 ¼ � 4h���i

m4
! const � 0; (12)

which implies that there is no massless TD in the criticality
limit,MTD=m ! const � 0, as far asm=FTD! const�0.2

Recently a possibility was suggested [14] that the TD is
relatively light compared with other technihadrons, though
not extremely light: The TD mass may be evaluated at
� ¼ �cr in the limit m=� ! 0 as

MTD ’ ffiffiffi
2

p
m; (13)

through the old calculation [15] of a scalar bound state in
the gauged NJLmodel which well describes the conformal/
scale-invariant gauge dynamics at criticality � ! �cr

where the anomalous dimension �m ¼ 1 makes the in-
duced four-fermion operator marginal with physical di-
mension d ¼ 2ð3� �mÞ ¼ 4 [10]. Equation (13) is
consistent with the ladder calculation Eq. (10) [and hence
Eq. (12)].
Furthermore, in the modern version [16–18] of

conformal/scale-invariant TC based on the Caswell-
Banks-Zaks infrared fixed point (CBZ-IRFP), �� ¼
��ðNf;NTCÞ [19], of the two-loop beta function, the cou-

pling is almost nonrunning �ð�Þ ’ � ¼ �� over the wide
infrared (IR) region�<�TC below the intrinsic scale�TC

which is an analogue of �QCD of QCD [see Eq. (30)].

Based on the SD equation in the (improved) ladder ap-
proximation, with the nonrunning coupling � in the ladder
expression simply replaced by the two-loop running cou-
pling �ð�Þ, we have approximately the same result as
Eq. (1)–(3) with the cutoff � replaced by �TC (to be
typically identified with the Extended TC scale �ETC),

0
β N

P

α

αcr

FIG. 1. Schematic behavior of the nonperturbative �ð�Þ given
in Eq. (4).

2There were several other arguments against the massless
dilaton in the criticality limit of the (nearly) conformal/scale-
invariant gauge theories in ladder-type approximation [10–13].
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and the nonperturbative beta function Eq. (4) as well as
�m ’ 1 near criticality.

In this case such a relatively light TD was also suggested
[14,20] from the result of the straightforward calculation
[21] of scalar bound state mass,

MTD ’ 1:5mð’ 4F�Þ ’
ffiffiffi
2

p
m<M
;Ma1 ’ 4:2m; (14)

near the criticality �� ’ �crðNf ’ Ncr
f Þ, where Ncr

f ¼
Ncr

f ðNTCÞ is determined by �� ¼ �cr [17] and M
, Ma1

are mass of techni-
 and techni-a1 mesons. The calcula-
tions are based on the SD equation and the homogeneous
Bethe-Salpeter (BS) equation in the improved ladder ap-
proximation.3 Although the result Eq. (14) is evaluated not
in the critical limit � ¼ �� ! �cr but slightly away from
it, the result seems to indicate MTD=m ! const � 0 in the
criticality limit � ¼ �� ! �cr, which is consistent with
the ladder calculation Eq. (12). Numerically, Eq. (14)
suggests [14,20]

MTD � 500 GeV (15)

in the typical one-family TC model near criticality (with
Nf ’ 4NTC ¼ 8–12).

More recently, TD mass was estimated by Haba,
Matsuzaki and Yamawaki [23] in the hard-wall type
(bottom-up) holographic approach including the techni-
gluon condensate h�G2

��i. It was found that for fixed value
of S and �m,

4 the TD mass is a monotonically decreasing
function

MTD

m
! 0; ð� ! 1Þ; (16)

of the technigluon condensate � (normalized by the corre-
sponding quantity of QCD),

� �
� h�G2

��i=F4
�

ðh�G2
��i=F4

�ÞQCD
�ð1=4Þ

; (17)

where F� is the decay constant of the (techni-) pion of
order OðmÞ. It was argued that the limit � ! 1 is realized
at the criticality �NPð�Þ ! 0 (� ¼ �� ! �cr), as is seen
from Eq. (11), when the value of h�G2

��i is evaluated

through Eq. (6) by assuming the ladder result Eq. (10)
and the nonperturbative beta function Eq. (4). This would
imply the existence of true (massless) NG boson at criti-
cality in contrast to Eq. (13) and (possibly) Eq. (14).
However, from the ladder result Eq. (12) and (16) implies
that

m

FTD
�MTD

m
! 0 (18)

in that limit, namely, the holographic TD becomes a de-
coupled TD whose all couplings are characterized by the
power of ðp=FTDÞ with the typical momentum pð�mÞ.
This is a new feature of the holographic TD.
The actual phenomenologically interesting situation of

TC model building is slightly away from the criticality,
m=� ¼ m=�ETC ’ 10�3 � 10�4 � 0,5 in which case we
have �� 7. This implies mass of holographic TD for
typical conformal/scale-invariant TC model with Nf ’
4NTC as [23]

MTD ’ 600 GeV<M
;Ma1 ’ 3:8 TeV (19)

for the value of S ¼ 0:1 and �m ¼ 1, in rough agreement
with Eq. (15).6

Most recently, on the other hand, Appelquist and Bai
[27] argued, based on the improved ladder SD equation
with the two-loop running coupling, that there does exist
a (nondecoupled) massless TD, MTD=m ! 0, in the
conformal/scale-invariant TC in the criticality limit
�ð�Þ ! 0 as � ¼ �� ! �crðNf ! Ncr

f Þ, based on essen-

tially the same assumption as in Refs. [1,2], namely,
Eq. (7), which is in disagreement with the ladder calcula-
tion, Eq. (10), as noted before. (See also Ref. [28].) Note
that although the beta function in Ref. [27] is somewhat
different from that in Eq. (4) used in Ref. [2], they both
vanish at the criticality �� ! �cr (Nf ! Ncr

f ).

In view of these subtleties in the literature on the critical
behavior of the TD near the conformal edge associated
with the CBZ-IRFP, it is very important to settle the critical
behavior of h�G2

��i and h���i in the calculation within the

same framework as that relevant to the above controversy,
namely, literally incorporating the perturbative two-loop
running effects as well the nonperturbative effects which
produce the dynamical mass m.
In this paper we shall explicitly calculate the nonpertur-

bative contributions to the technigluon condensate h�G2
��i

and to the scale anomaly h���i ¼ 4h�00i arising from the

fermion mass generation in the TC near conformality/
criticality (conformal edge), �� ! �crðNf ! Ncr

f Þ, based
on the ‘‘improved ladder SD equation’’ [29]. Although the
improved ladder approximation with the two-loop running
coupling as well as the ladder approximation with non-
running coupling is not a systematic approximation and
hence not very reliable, all the above controversy about the

3These results are compared with those in QCD: [22]
ðM
=F�Þ=ðM
=F�ÞQCD ’ 1:3, ðMa1=F�Þ=ðMa1=F�ÞQCD ’ 0:86,
while ðMTD=F�Þ=ðMscalar=F�ÞQCD ’ 0:38.

4Note that in the holography the S parameter [24] and anoma-
lous dimension �m are not calculable parameters but arbitrary
adjustable parameters [25].

5In the actual situation of TC, m is the weak scale m� TeV
and � is identified with the typical scale �ETC of the dynamics
[like the extended TC (ETC)] transmitting the technifermion
mass m to that of the quark/lepton, i.e., � ¼ �ETC � 103 TeV.
Thus m=�� 10�3 � 10�4 which corresponds to �ð�Þ * 10�2

(for NTC ¼ 2–3) from Eqs. (3) and (4).
6The value M
, Ma1 is essentially determined by the value

of S: Lower S value corresponds to higher M
, Ma1 . The
calculated S value in Ref. [26] in the same setting as Ref. [21]
is higher than S ¼ 0:1, which corresponds to the value of M
,
Ma1 in the holography close to that of Eq. (14).
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technidilaton in the literature has been confined to this
approximation. So our aim of this paper is to resolve the
confusion within this approximation. We first study ana-
lytically the solution of the improved ladder SD equation,
with the two-loop running coupling being approximated by
a simplified ansatz (solution to the ‘‘parabolic’’ beta func-
tion �ð�Þ ¼ �b0�ð�� � �Þ),

�ð�2Þ ¼ ��
1þ e�1ð �2

�2
TC

Þb0��
; (20)

which agrees with the exact two-loop running coupling
written in terms of the Lambert’s W function in the IR
region �<�TC responsible for the dynamical mass gen-
eration (see text). The result will be checked by the nu-
merical solution based on the exact two-loop running
coupling.

We then calculate the technigluon condensate near
the conformal edge and show explicitly it behaves as

hG2
��i=m4 � ð�=�cr � 1Þ�3=2 ! 1 (� ! �cr), which is a

direct evidence against the assumption of Ref. [2] (in the
ladder SD equation with nonrunning coupling) and also
that of Ref. [27] (in the improved ladder SD equation with
the two-loop running coupling). Our result directly con-
firms the estimate of the technigluon condensate in
Ref. [23] which indicates divergence of the technigluon
condensate � ! 1 at criticality.

We also find that the numerical calculation of the vac-
uum energy with the two-loop running coupling agrees
with the analytical solution (10) with the fixed coupling,
h���i � �m4, again in contrast to the assumption in Ref. [2]
and Ref. [27].

On the other hand, the scale anomaly satisfies the formal
relation, h���i ¼ �ð�Þ=ð4�Þ � hG2

��i. Hence our results im-

ply the beta function near criticality:

�ð�Þ ¼ 4�h���i
hG2

��i
� �

�
�

�cr

� 1

�ð3=2Þ
: (21)

The result also confirms the assumption made in Ref. [23]
where the nonperturbative beta function, Eq. (4), as well as
the ladder result of the vacuum energy was used for the
nonperturbative conformal anomaly to estimate the tech-
nigluon condensate.

We thus conclude that the nonperturbative beta function
arising from the nonperturbative effects of the dynamical
mass generation in the IR region ð�<�TCÞ is essentially
like Eq. (4), Fig. 1, even in the case of the two-loop running
gauge coupling set in the SD equation. It should be con-
siderably changed from the perturbative expression near
criticality. In Fig. 14, we schematically depict the conjec-
tured behavior of the beta function including both of the
perturbative and nonperturbative region.

Our two-loop results combined with the PCDC relation,
F2
TDM

2
TD ¼ �4h���i �m4, suggest F2

TD=m
2 �M2

TD=m
2 !

finite at the critical point, which is the same as the non-

running case (12); There is no theoretically controllable
suppression factor for MTD=m ! 0, as far as FTD=m is
finite. This contradicts the assumptions in Ref. [2] and
Ref. [27]. However, our results cannot exclude the possi-
bility [the ‘‘decoupled TD,’’ Eqs. (16) and (18)] that there
might exist a very light TD, MTD � 0, if FTD=m is quite
large, as could be the case in the limit of the holographic
TD [23]. This decoupled TD may be dark matter.
This paper is organized as follows: In Sec. II, we de-

scribe the behavior of the beta function in the two-loop
approximation. We also introduce the parabolic approxi-
mation in order to solve analytically the improved ladder
SD equation. In Sec. III, we study the analytical solution of
the SD equation in the parabolic approximation and also
analyze the numerical solution with the two-loop exact
gauge coupling. We show that the approximation works
well. Then we calculate the technigluon condensate and
the vacuum energy. Section IV is devoted for summary and
discussions.

II. TWO-LOOP � FUNCTION AND PARABOLIC
APPROXIMATION

In this section, we study the running effect of the gauge
coupling constant in the two-loop approximation. It is
well-known that there appears the CBZ-IRFP [19], when
the number of (techni-)fermions is in a certain range, as we
will show later. If the value of the CBZ-IRFP �� slightly
exceeds the critical coupling �cr for the S�SB, we can
apply such gauge theories to the TC with near conformality
with anomalous dimension �m ’ 1 [16–18]. We here em-
ploy the approach of the (improved) ladder SD equation
[29], with the nonrunning coupling in the ladder SD equa-
tion simply replaced by the running one, this time the two-
loop running coupling. Although the numerical analysis of
the (improved) ladder SD equation is rather straightfor-
ward, it is not so easy to extract numerically the critical
behavior of the solution. We thus approximate the two-
loop � function into a parabolic one and will solve analyti-
cally the ladder SD equation. In the next section, we will
demonstrate that this approximation works very well.
Let us study the two-loop renormalization group equa-

tion for the gauge coupling constant � [30]:

�
@

@�
� ¼ �ð�Þ ¼ �b0�

2 � b1�
3; (22)

with

b0 ¼ 1

6�
ð11CA � 4NfTRÞ; (23)

and

b1 ¼ 1

12�2
½17C2

A � 2NfTRð5CA þ 3CFÞ�; (24)

where Nf represents the number of flavor and the group

theoretical factors are
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CA ¼ NTC; TR ¼ 1

2
; CF ¼ N2

TC � 1

2NTC

; (25)

for SUðNTCÞ gauge theories.
When b0 > 0 and b1 < 0, i.e.,

34N3
TC

13N2
TC � 3

<Nf <
11

2
NTC; (26)

the CBZ-IRFP �� emerges,

�� ¼ b0
�b1

: (27)

The analytic form of �ð�2Þ is also known [31]:

�ð�2Þ ¼ ��
1þWðzð�2ÞÞ ; (28)

where W denotes the Lambert function [32], which is the
inverse of xex, and z is defined by

zð�2Þ � 1

e

�
�2

�2
TC

�
b0��

; (29)

where the intrinsic scale �TC analogous to �QCD invariant

under renormalization group equation is given by [17]:

�TC ¼ � � exp
�Z �ð�Þ d�

�ð�Þ
�

¼ � � exp
�
� 1

b0�ð�2Þ �
1

b0��
ln

�
�� � �ð�2Þ

�ð�2Þ
��

;

(30)

with the first term in ½. . .� being the usual one-loop con-
tribution and the second the two-loop one. We can, of
course, rescale �TC freely. Here we chose �TC as

�TC: �ð�2 ¼ �2
TCÞ ¼

��
1þWðe�1Þ ’ 0:78��; (31)

which reflects the conformal anomaly associated with the
perturbative running in the UV region�>�TC dominated
by the one-loop effects,

@�D
�jperturbative¼�ð�Þ

4�2
ð�G2

��Þjperturbative¼Oð�4
TCÞ; (32)

while keeping the (approximate) conformal symmetry (via
(almost) nonrunning coupling) in the IR region �<�TC

so as to be broken only nonperturbatively by the dynamical
generation of the technifermion mass m. Actually, the UV
and IR behaviors of �ð�2Þ in Eq. (28) are

�ð�2Þ � 1

b0 ln
�2

�2
TC

ð�2 � �2
TCÞ; (33)

and

�ð�2Þ � ��
1þ e�1

�
�2

�2
TC

�
b0��

; ð�2 	 �2
TCÞ; (34)

respectively.

Note that in this paper we are not interested in the
perturbative part of the conformal anomaly in Eq. (32)
and will focus on the nonperturbative contributions to
the conformal anomaly and the relevant technigluon con-
densate associated with the dynamical generation of the
mass m in the IR dynamics: [9,23]

h�G2
��i � h�G2

��ifull � h�G2
��iperturbative;

h���i � h���ifull � h���iperturbative;
(35)

where the perturbative conformal anomaly h���iperturbative ¼
�Oð�4

TCÞ is associated with the perturbative running ef-

fects of the coupling in the UV region �>�TC. The
quantities defined in Eq. (35) are similar to those discussed
in Ref. [27].
In order to solve analytically the improved ladder SD

equation, we would need to simplify the expression of �.
We thus adopt the approximation (34) in all region, be-
cause it enjoys both of desirable natures, the CBZ-IRFP
(� ! �� for � ! 0) and the asymptotic freedom (� ! 0
for � ! 1). This approximation corresponds to a para-
bolic � function,

�ð�Þ ¼ �b0�ð�� � �Þ; (36)

which can be applied from the IR region to the UV region.
Although the damping of � in the UV region is much faster
than the two-loop solution (28), [see Fig. 3] it turns out that
the critical behavior of the dynamical mass is insensitive to
the UV behavior of the mass function. On the other hand,
the linear approximation �ð�Þ ¼ �b0��ð�� � �Þ, which
yields �ð�2Þ ¼ ��ð1� e�1ð�2=�2

TCÞb0�� Þ, is simpler, but

it can be applied only in a narrower region.
Schematic behaviors of the two-loop and parabolic �

functions are depicted in Fig. 2. We also show the running
effects of the gauge coupling � for both cases in Fig. 3,
where we took NTC ¼ 3 and Nf ¼ 11:85 (�� ¼ 0:810).

The parabolic approximation is very successful in the IR

0

β

α

α*

FIG. 2. Behavior of �ð�Þ in perturbation. The bold solid and
dashed curves correspond to the two-loop � function (22) and
the parabolic one (36), respectively.
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region � & �TC, while the damping of � is quicker than
the two-loop one in the UV region � � �TC, as we
mentioned above. (See Fig. 3.) Below the scale of the
dynamical mass m discussed in the next section, the tech-
nifermions should be decoupled and thereby the running of
� is expected to be changed. We depict this expectation by
the dots below �<m in Fig. 3.

III. ANALYSIS OF THE LADDER SD EQUATION
WITHRUNNINGGAUGE COUPLING CONSTANTS

A. The CJT potential and the improved
ladder SD equation

The ladder SD approach is a convenient method to
analyze the dynamical generation of the fermion mass
and its critical behavior. In order to incorporate the running
effect of the gauge coupling �, a conventional technique,
so-called the improved ladder approximation, has been
widely employed [29]. We can derive the improved ladder
SD equation via the CJT potential VCJT [33]:

VCJTðBÞ ¼ �NTCNf

4�2

�Z �2

0
dxx



�
1

2
ln

�
1þ B2ðxÞ

x

�
� B2ðxÞ

xþ B2ðxÞ
	

þ 1

2

Z �2

0
dxx

Z �2

0
dyy
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ðxþ B2ðxÞÞðyþ B2ðyÞÞ



�
�ðxÞ
x

�ðx� yÞ þ �ðyÞ
y

�ðy� xÞ
��

; (37)

with the (normalized) gauge coupling �ðxÞ,

�ðxÞ � 3CF�ð�2 ¼ xÞ
4�

; (38)

where x and y denote the Euclidean momenta, the full
fermion propagator inverse is iS�1

f ðpÞ ¼ Að�p2Þp�
Bð�p2Þ, and we took the Landau gauge at which
the fermion wave function renormalization is unity,
Að�p2Þ � 1. See Fig. 4. Although the UV cutoff � is
not needed for case of the two-loop running coupling
which is asymptotically free in the UV region in contrast
to the nonrunning case, we have put an artificial �ð! 1Þ
in Eq. (37) only for the numerical calculation, which
should not be confused with � in the nonrunning case
used in Eqs. (3) and (4). The variation of VCJT with respect
to the fermion mass function BðxÞ with x � �p2 yields the
improved ladder SD equation [33],

BðxÞ ¼
Z �2

0
dy

yBðyÞ
yþ B2ðyÞ

�
�ðxÞ
x

�ðx� yÞ þ �ðyÞ
y

�ðy� xÞ
�
:

(39)

B. Analytic solution for the improved ladder SD
equation in the parabolic approximation

The integral Eq. (39) is equivalent to a set of a nonlinear
differential equation and boundary conditions (BC’s). It is,
however, difficult to solve analytically the nonlinear dif-
ferential equation in general. We may adopt the bifurcation
method [34], which yields a more handy linearized differ-
ential equation. We also ignore xd�=dx / �, because of
�� 0 near x� 0 and x�1. Under these simplifications,
we obtain the following differential equation and the two
BC’s:

x2
d2

dx2
BðxÞ þ 2x

d

dx
BðxÞ þ ��

1þ e�1
�

x
�2

TC

�
s
BðxÞ ¼ 0;

(40)

and

ðUV-BCÞ: x d

dx
BðxÞjx¼�2 þ Bð�2Þ ¼ 0; (41)
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FIG. 3. Behavior of �. The bold solid and dashed curves
correspond to the behavior of � for the two-loop � function
(22) and the parabolic approximation (36). We tookNTC ¼ 3 and
Nf ¼ 11:85, which yields �� ¼ 0:810. The scale �ð�2¼�2

crÞ¼
�cr¼�=4 is given by �cr=�TC ¼ 0:002 25. Below the scale of
the dynamical mass m, numerically m=�TC ¼ 5:88
 10�10

obtained by solving the corresponding ladder SD equation
with the gauge coupling (28), the technifermions should be
decoupled and thereby the running of � is expected to be
changed. The dots below �<m corresponds to this expectation.
The dash-dotted curve below �<m is for the formal solution of
the two-loop � function.

FIG. 4. Effective action for the fermion propagator. The CJT
potential is defined by �CJT ¼ �VCJT

R
dx4. Sf and S0 represent

the full fermion propagator and the free one, respectively. In the
last diagram, the solid line with a shaded blob and the wavy line
represent the full fermion propagator Sf and the gauge boson

propagator, respectively.
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ðIR-BCÞ: x2 d

dx
BðxÞjx!m2 ! 0; (42)

where m is defined by the normalization of the mass
function,

Bðx ¼ m2Þ ¼ m; (43)

and the IRFP �� and the power factor s are

�� � 3CF��
4�

; (44)

and

s � b0�� > 0; (45)

respectively. In the parabolic approximation, the normal-
ized gauge coupling �ðxÞ is

�ðxÞ ¼ ��
1þ e�1

�
x

�2
TC

�
s
: (46)

Note that in the limit of s ! 1 the gauge coupling be-

comes �ðxÞ ¼ ���ðeð1=sÞ�2
TC � xÞ, where the step function

is defined by �ðtÞ ¼ 1 for t > 0, �ðtÞ ¼ 1=2 for t ¼ 0, and
�ðtÞ ¼ 0 for t < 0.

We can analytically solve the differential Eq. (40) as
follows:

BðxÞ
m

¼ c1

�
x

m2

��ð1�!Þ=2


F

�
�1�!

2s
;��1�!

2s
;1þ!

s
;� �xs
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þd1

�
x

m2

��ð1þ!Þ=2


F

�
�1þ!

2s
;��1þ!

2s
;1�!

s
;� �xs

�
; ðx�m2Þ;

(47)

where Fð�;�; �; zÞ represents the Gauss’s hypergeometric
function7 and we introduced

�x � e�1=s x

�2
TC

; (48)

and

! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

�cr

s
; �cr � 1

4
: (49)

The integration constants c1 and d1 are determined through
the IR-BC and the normalization of BðxÞ. The UV-BC
gives the scaling relation.

The normalization Bðx ¼ m2Þ ¼ m yields

1 ¼ c1F

�
� 1�!

2s
;��1�!

2s
; 1þ!

s
;� �xsm

�

þ d1F

�
� 1þ!

2s
;��1þ!

2s
; 1�!

s
;� �xsm

�
; (50)

with

�x m � e�1=s m2

�2
TC

: (51)

On the other hand, the IR-BC gives

c1

�
!F

�
� 1�!

2s
;��1�!

2s
; 1þ!

s
;� �xsm
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sþ!

�xsmF
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2s
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2s
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s
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��
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�xsmF
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1� 1þ!

2s
; 1þ 1�!

2s
; 2�!

s
;� �xsm

�

¼ 1þ!

2
; (52)

where we used Eq. (50).
In the limit of m 	 �TC, we obtain

c1 ¼ 1þ!

2!
; d1 ¼ � 1�!

2!
; (53)

which corresponds to the coefficients of the bifurcation
solution with the fixed gauge coupling �ðxÞ ¼ ��. On the
other hand, the UV-BC in the limit of m2 	 �2

TC 	 �2

yields�
e1=s�2

TC

m2

�
! ¼ ð1�!Þ2

ð1þ!Þ2
�ð1� !

s Þ�2ð1þ 1þ!
2s Þ

�ð1þ !
s Þ�2ð1þ 1�!

2s Þ : (54)

It is noticeable that the dependence of the UV cutoff �
disappears. Only when ! is pure imaginary, i.e.,

�� > �cr ¼ 1

4
; (55)

Equation (54) has a relevant solution,

ln
m

e1=ð2sÞ�TC

¼ �n�

~!
þ 2 arctan ~!

~!
�

ln

�
�ð1�i ~!

s Þ�2ð1þ1þi ~!
2s Þ

�ð1þi ~!
s Þ�2ð1þ1�i ~!

2s Þ

�
2i ~!

;

(56)

where

~! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��
�cr

� 1

s
; (57)

and n ¼ 1; 2; 3; � � � . It is known that the zero node solution
n ¼ 1 is the true vacuum [33]. Equation (56) yields the
essential singularity scaling relation,

m� e��= ~!�TC ¼ �TC � exp
0
@� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��
�cr

� 1
q

1
A; (58)

7If we employ the linear approximation, �ðxÞ ¼ ��ð1�
e�1ðx=�2

TCÞsÞ, the analytical solution is written by the modified
Bessel functions.
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similarly to Eq. (3) with replacement of � by �� and � by
�TC.

The behavior of the mass function BðxÞ in the supercriti-
cal region �� > �cr is approximately

Bðx 	 �2
TCÞ

m
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~!2

p

~!

�
x

m2

��1=2


 sin

�
~!

2
ln

�
x

m2

�
þ arctan ~!

�
; (59)

Bðx � �2
TCÞ

m
’ e1=2s½Að ~!Þ þ Að� ~!Þ�m�TC

x
; (60)

with

Að ~!Þ � ��
i ~!

�ð1þ i ~!
s Þ�ð1� 1

sÞ
�2ð1þ �1þi ~!

2s Þ
�
e1=ð2sÞ�TC

m

�
i ~!
: (61)

The behaviors of the mass function in the IR and UV
regions correspond to those with the anomalous dimen-
sions �m ¼ 1 and �m ¼ 0, respectively. In particular, ow-
ing to the quicker damping of � than the logarithm, there is
no log correction unlike QCD. On the other hand, the IR
behavior is the same as that for the fixed coupling.

In passing, the critical number Nf, which corresponds to

�cr, is

Ncr
f ¼ 4NTC

�
1� 3

10

1

5N2
TC � 3

�
: (62)

Since the power factor s is

s ¼ b0�� ¼
ð11NTC � 2NfÞ2

�6½17N2
TC � Nfð5NTC þ 3CFÞ�

; (63)

at the critical point, it reads

scr ¼ b0�cr ¼ NTC

18ðN2
TC � 1Þ

�
3NTC þ 12

5

NTC

5N2
TC � 3

�
:

(64)

For NTC ¼ 3, they are numerically

Ncr
f ¼ 417

35 ’ 11:914; scr ¼ 107
560 ’ 0:191 02: (65)

We can solve numerically the improved-ladder SD
Eq. (39) with the normalized gauge coupling (46). The
computational technique is described in Ref. [35].

We depict the analytical and numerical solutions of
BðxÞ in Fig. 5, where we took NTC ¼ 3 and Nf ¼ 11:63.

Although we drastically simplified the integral Eq. (39)
into the linearized differential Eq. (40) with the two BC’s,
we find that the approximation works well.

The scaling relations in the numerical and analytical
approaches are shown as the dashed and dotted curves in
Fig. 6, respectively. We confirmed that the numerical so-
lution is unchanged for �=�TC ¼ 101;2;���;10. (It is not the
case for � ¼ �TC, however.) In the figure, we took
�=�TC ¼ 105. The shapes of the scaling relation are

qualitatively similar. We also find that the analytical ex-
pression (56) is close to the numerical solution for the two-
loop gauge coupling (28), which will be discussed in the
next subsection.

C. Numerical solution for the improved ladder SD
equation with the two-loop gauge coupling

We studied the parabolic approximation in the analytical
and numerical ways, so far.
Let us now solve numerically the improved ladder SD

equation with the gauge coupling (28) expressed through
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FIG. 5. Behaviors of the mass function in the parabolic ap-
proximation. The solid and dashed curves correspond to the
numerical solution of the improved ladder SD Eq. (39) with
the running gauge coupling (46) and the bifurcation solution
(47), respectively. We took NTC ¼ 3 and Nf ¼ 11:63, which

yields �� ¼ 0:900 and �� ¼ 0:287.
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FIG. 6. Scaling relations in several approaches. The solid,
dashed, and dash-dotted curves correspond to the numerical
solution of the ladder SD Eq. (39) for the two-loop � function,
the parabolic approximation, and the fixed coupling, respec-
tively. The dotted one is for the analytical expression (56) in
the parabolic approximation. We took NTC ¼ 3 and varied con-
tinuously Nf.
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the Lambert function. We calculate the Lambert function
via the Halley’s method [32],

wjþ1 ¼ wj �
wje

wj � z

ewjðwj þ 1Þ � ðwjþ2Þðwje
wj�zÞ

2wjþ2

: (66)

The computational technique for solving the improved
ladder SD equation is described in Ref. [35]. The results
are depicted in Figs. 6–13. We also show the results for the
fixed gauge coupling �ðxÞ ¼ ��. In this case, we take the
UV cutoff� of the SD equation to�TC. We confirmed that
the consequences of the fixed gauge coupling are consis-
tent with those in Ref. [21], where �ðxÞ ¼ ���ð�2

TC � xÞ
was essentially used, instead of the two-loop one (28).

We depict the scaling relation in Fig. 6. We confirmed
that the numerical solution for the two-loop gauge cou-
pling (28) is unchanged for �=�TC ¼ 102;���;10. (It is not
the case for �=�TC ¼ 100;1, however.) In the figure, we
took �=�TC ¼ 105. We find that the numerical values of
the dynamical mass m=�TC for the two-loop gauge cou-
pling is smaller than those for the fixed coupling. It is
amazing that the analytic solution for the parabolic ap-
proximation is quantitatively close to the numerical one for
the two-loop gauge coupling.

In Fig. 7, we show the behaviors of the mass functions
for the two-loop gauge coupling, the parabolic approxima-
tion, and the fixed gauge coupling. In this resolution, we
cannot distinguish each other. We did not draw here the
analytical solution (47) for the parabolic approximation.
Although the behavior is close to the numerical one, there
is a slight deviation between the analytical and three
numerical solutions. Compare Fig. 5 with Fig. 7. An im-

portant point is that we normalized the mass function by
the dynamical mass Bðx ¼ m2Þ ¼ m, not by �TC. Note
that the dynamical masses for the two-loop gauge cou-
pling, the parabolic approximation, and the fixed gauge
coupling are numerically obtained as m=�TC ¼
1:08
 10�4, 0:845
 10�4, 13:3
 10�4 for NTC ¼ 3
and Nf ¼ 11:63, respectively. If we had normalized BðxÞ
by�TC, the three behaviors would thus look very different.
Owing to this universal nature of the dimensionless mass
function normalized by the dynamical mass, BðxÞ=m, the
normalized physical quantities such as the decay constant
F�=m, the vacuum energy h���i=m4, and the technigluon
condensate hG2

��i=m4, which are determined through the

mass function, become insensitive to the approximations of
the running gauge coupling near the conformal edge, as we
will see later.
How about the relation between the scale �ð�2 ¼

�2
crÞ ¼ �cr and the dynamical mass m? By definition, we

can obtain the scale �cr by

WðzcrÞ ¼ 4�� � 1; (67)

with

zcr � e�1

�
�2

cr

�2
TC

�
b0��

: (68)

FIG. 9. Technigluon condensate associated with the generation
of mass m.
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FIG. 7. Behaviors of the mass function in the numerical ap-
proaches. The bold solid, dashed, and dash-dotted curves corre-
spond to the numerical solutions of the improved ladder SD
equation for the two-loop � function, the parabolic approxima-
tion, and the fixed coupling, respectively. We normalized each
scale by each dynamical mass Bðx ¼ m2Þ ¼ m. We took NTC ¼
3 and Nf ¼ 11:63, which yields �� ¼ 0:900 and �� ¼ 0:287. In

this resolution, we cannot distinguish each other, however.

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.25  0.28  0.31  0.34  0.37  0.4

F π
/m

λ*

FIG. 8. Decay constant F� in the numerical approaches. The
solid, dashed, and dash-dotted curves correspond to the numeri-
cal solution of the ladder SD Eq. (39) for the two-loop �
function, the parabolic approximation, and the fixed coupling,
respectively. We took NTC ¼ 3 and ND ¼ 1.

TECHNIDILATON AT THE CONFORMAL EDGE PHYSICAL REVIEW D 83, 015008 (2011)

015008-9



For NTC ¼ 3 and Nf ¼ 11:63, the scale �ð�2 ¼ �2
crÞ ¼

�cr is numerically obtained as �cr=�TC ¼ 0:189. As we
showed previously, the dynamical mass is m=�TC ’
1:08
 10�4. When we vary the number of flavor to
Nf ¼ 11:85, they are much more hierarchical, �cr=�TC ¼
0:00225 and m=�TC ’ 5:88
 10�10. In the parabolic ap-
proximation, we find a more handy formula,

�cr ¼ eð1=2sÞðln ~!þ1Þ�TC: (69)

This is apparently much larger than the dynamical mass m
in Eq. (58),

m� eðð��Þ= ~!Þ�TC: (70)

We show a concrete value for NTC ¼ 3 and Nf ¼ 11:85 in

Fig. 3.
Let us calculate the decay constant F� of the technipion,

which is connected with the weak boson mass. We assume
that a part of the fermion flavor Nf couples to the electro-

weak current. In order to estimate the decay constant, we
employ the Pagels-Stokar formula [36],
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condensate. The solid, dashed, and dash-dotted curves corre-
spond to the numerical solutions of the ladder SD Eq. (39) for the
two-loop � function, the parabolic approximation, and the fixed
coupling, respectively. We took NTC ¼ 3. The dotted line cor-
responds to the least-squares fitting by � ~!3=��. Numerically, we
obtain � ’ �0:026.
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FIG. 13. Instantaneous exponent of the nonperturbative beta
function with respect to ~!. The vertical axis at �� ¼ 1=4 ¼ 0:25
is the criticality (conformal edge). The solid, dashed and dash-
dotted curves correspond to the numerical solutions of the ladder
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F2
� ¼ NDNTC

4�2

Z �2

0
dxx

B2ðxÞ � x
4

d
dx B

2ðxÞ
½xþ B2ðxÞ�2 ; (71)

where ND denotes the number of fermion doublets which
couple to the electroweak current. The numerical results
for the two-loop gauge coupling, the parabolic approxima-
tion, and the fixed gauge coupling are shown in Fig. 8. We
found that the parabolic approximation works well. Note

that F�=m ’ 0:41
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDNTC=3

p
near the critical coupling,

where we took into account the dependence of NTC and
ND. Thus, when we fix F� ¼ 246 GeV, we can estimate
the dynamical mass as m� 1 TeV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDNTC

p
.

The nonperturbative technigluon condensate defined in
Eq. (35) can be estimated as [37]

hG2
��i ¼

NTCNf

2�2

Z �2

0
dxx

B2ðxÞ
xþ B2ðxÞ : (72)

See also Fig. 9. Note that after substituting the solution of
the ladder SD equation, the expression of hG2

��i explicitly
depends only on the mass function BðxÞ and has no explicit
dependence of the running of the gauge coupling [37].
Hence we expect that the result is not sensitive to the
details of the running behaviors of the gauge coupling:
The numerical results for the two-loop gauge coupling, the
parabolic approximation, and the fixed gauge coupling are
shown in Fig. 10. We found that the behavior of hG2

��i is
not like hG2

��i �m4 as assumed in Refs. [2,27], but

hG2
��i=m4 � 1= ~!3 ! 1 in the limit of �� ! �cr. Our

result directly confirms the estimate of the technigluon
condensate made in Ref. [23] which assumed the ladder
result for the vacuum energy Eq. (10) and nonperturbative
beta function Eq. (4) in the case of the nonrunning cou-
pling. We can show this behavior by using the approxima-
tion (59), i.e.,

hG2
��i ’

NTCNf

2�2

Z �2
TC

m2
dxB2ðxÞ; (73)

and thus

hG2
��i ’

NTCNf

2�2

1þ ~!2

~!2
m4 ln

�
�TC

m

�
� NTCNf

2�

m4

~!3
; (74)

where we used the scaling relation (58).
Next to the vacuum energy V ¼ h���i=4 as defined in

Eq. (35). Substituting the solution BsolðxÞ of the ladder SD
Eq. (39) for the CJT potential (37), we obtain the vacuum
energy,

V ¼ VCJTðB ¼ BsolÞ; (75)

¼ �NTCNf

8�2

Z �2

0
dxx

�
ln

�
1þ B2

solðxÞ
x

�
� B2

solðxÞ
xþ B2

solðxÞ
�
;

(76)

where we explicitly wrote the subscript for the mass func-
tion in order to distinguish the vacuum energy from the

CJT potential itself. [Of course, also in the expressions (71)
and (72), BðxÞ represents BðxÞ ¼ BsolðxÞ.] The numerical
results for the two-loop gauge coupling, the parabolic
approximation, and the fixed gauge coupling are shown
in Fig. 11. It is clear that the vacuum energy normalized by
m4 does not vanish, because the numerical calculations
shown in Fig. 11 suggests

h���i ¼ 4V ’ �0:76m4; with  � NTCNf

2�2
; (77)

near the critical coupling. This result disagrees with the
assumption in Refs. [2,27].
The approximate expression (59) suggests that our re-

sults coincide with the estimate of V for the fixed gauge
coupling [9]:

4V ’ � 4NTCNf

�4
m4 ¼ �0:81m4: (78)

It is to be noted that this value is also close to the numerical
estimate (77) in our case. In fact, although the CJT poten-
tial itself explicitly depends on the running of the gauge
coupling, the vacuum energy has an explicit dependence
only on the mass function BsolðxÞ after using the solution
of the SD equation, and hence only depends implicitly on
the running gauge coupling through BsolðxÞ. [Compare
Eq. (37) with Eq. (76).] The IR behaviors of BsolðxÞ for
the two-loop running and fixed couplings coincide each
other, as shown in Fig. 7. (Inside of the frame of the figure
corresponds to the IR region.) Since the UV contribution to
the vacuum energy is negligible, the vacuum energy (77)
for the two-loop running gauge coupling is almost the same
as that for the nonrunning one.
From these analytical and numerical analyses, we con-

clude that in the vacuum energy there is no divergence
unlike the technigluon condensate, hG2

��i=m4 ! 1, and

also the quantity V=m4 does not approach to zero in the
limit of �� ! �cr, within our approximation.
Since the formal RG analysis yields [18]

h���i ¼ 4V ¼ �

4�
hG2

��i; (79)

the ratio 4V=hG2
��i is closely connected with the � func-

tion. We depict it in Fig. 12. By using the least-squares
method, we numerically obtain

�

4�
¼ 4V

hG2
��i

¼ �
~!3

��
; with � ¼ �0:026: (80)

in the form similar to the nonrunning case. In the case of
the nonrunning coupling �ðxÞ ¼ ��, we have the analytical
result � ¼ �1=ð8�Þ ¼ �0:0398 corresponding to Eq. (4),
� ¼ �2 ~!3=ð3CFÞ, which agrees with the numerical result
� ¼ �0:0400 in the vicinity of the critical coupling.
Incidentally, in the case of the two-loop coupling we may
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take a fitting function other than the above: �ð1=�cr �
1=��Þ3=2 with � ¼ �0:0155, which yields much better
fitting.

How about the exponent of the nonperturbative beta
function with respect to ~!? Let us write

�

4�
¼ 4V

hG2
��i

¼ fð��Þ ~!�; (81)

where fð��Þ represents some function of �� and the instan-
taneous exponent � ¼ �ð��Þ is extracted from the relation

� ¼ ~! @
@ ~! ð �4�Þ
ð �4�Þ

: (82)

We depict the numerical results in Fig. 13. Near the critical
edge, the numerical values of � ¼ �ð��Þ are

� ’ 2:73; 2:75; 2:95; (83)

for the two-loop exact solution, the parabolic approxima-
tion and the fixed coupling case, respectively. Because
the linear and multiple zeros of the beta function with
respect to �ð�Þ ¼ � ’ �� correspond to �j��¼�cr

¼ 2

and �j��¼�cr
> 2, respectively, the numerical results

obviously show that the nonperturbative beta function
has the multiple zero at the critical edge. If we smoothly
extrapolate the behavior of � to the criticality, the behavior
of the nonperturbative beta function at the criticality
will be � / � ~!3, in accord with the above least-square
fitting (80).

It is noticeable that the nonperturbative beta function has
a multiple zero at the critical coupling � ’ �� ¼ �cr, as
shown in Eq. (80), which corresponds to the essential
singularity scaling Eq. (58). On the other hand, it is not
the case in the perturbative (two-loop) expression (22),
which has a linear zero, �� �� �� � �cr � �� at criti-
cality � ¼ �cr. Therefore the actual beta function is cru-
cially different from the perturbative beta function which
should be modified in the IR region where the nonpertur-
bative dynamics responsible for the mass generation is
dominant. The full � function including the perturbative
and the nonperturbative contributions is thus suggested in
Fig. 14. We hope that the lattice studies will clarify this
nature.

Now we discuss the behavior of the TD mass in the limit
toward the criticality. Through the PCDC, Eq. (9), the
vacuum energy is connected with the TD mass,

F2
TDM

2
TD ¼ �d�h���i ¼ �4d�V; (84)

where FTD, MTD and d�ð¼ 4Þ represent the TD decay
constant, the TD mass and the scale dimension of the trace
of the energy-momentum tensor. Our results qualitatively
agree with the conclusion in the case of SD equation with
the nonrunning gauge coupling, Eq. (12), which is in
disagreement with Refs. [2,27]: There is no true (massless)
NG boson for the conformal symmetry at the criticality,

unless the TD decay constant diverges, i.e., gets decoupled.
Such a decoupled TD was in fact implied by the idealized
limit of the holographic TD [23]. In the realistic situation
of the TC model building m=�TC is not arbitrarily small
but only m=�TC �m=�ETC � 10�3 � 10�4, so that the
‘‘masslessness’’ and ‘‘decoupling’’ are somewhat milder.
In the quantitative sense our results, though valid only in
the vicinity of criticality, indicate rough idea about the
mass and decay constant of TD as follows. Substituting
our numerical result, Eq. (77), into Eq. (84), we find

M2
TD ’ 3:02

m4

F2
TD

: (85)

Furthermore, by using F�=m ’ 0:41
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDNTC=3

p
in

Eq. (71), we obtain

MTD

F�
’ 3:5

F�

FTD

�
� ffiffiffiffiffiffiffiffiffiffi

Nf

2ND

s ffiffiffiffiffiffiffiffiffiffi
8

2ND

s ffiffiffiffiffiffiffiffiffi
2

NTC

s �
: (86)

The TD with mass, say MTD � 500 GeV, would require
TD coupling smaller than that of the standard model Higgs
by F�=FTD ’ 3=5 up to model-dependent factors of Nf,

ND and NTC besides other dynamical details. If the TD
mass is much smaller, FTD 	 F�, on the other hand, it
could lead to a decoupled TD, which might be a candidate
of dark matter. Detailed studies are required in order to
confirm whether or not such a decoupled TD satisfies
conditions for dark matter.

IV. SUMMARYAND DISCUSSION

We have studied analytically the improved ladder SD
equation with the parabolic approximation for the beta
function and also analyzed numerically the solution of
the ladder SD equation with the two-loop exact running
gauge coupling.

0

β

α

α*
αcr

FIG. 14. Conjecture of the shape of the � function including
the nonperturbative behavior. The bold solid and dashed curves
correspond to the conjectured � function and the purely pertur-
bative one, respectively.
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We explicitly calculated the technigluon condensate
near the conformal edge and found that the behavior is

hG2
��i=m4 � ð�=�cr � 1Þ�3=2 ! 1 (� ! �cr) with m 	

�TC, in accord with Ref. [23] but in disagreement with the
assumption of Refs. [2,27]. The numerical calculation is
consistent with this analytic result. This situation is differ-
ent fromQCDhaving no approximate conformal symmetry,
where �QCD �m and hG2

��ifull � hG2
��iperturbative ��4

QCD.

On the other hand, the vacuum energy (divided bym4) is
finite, V=m4 ! const, even in the critical limit, as in the
case of the fixed gauge coupling. Our result for the vacuum
energy only yields a combination of the massMTD and the
decay constant FTD through PCDC but not each of them
separately, as was the case for most of the discussions in
the literature. Combining the PCDC relation, Eq. (84),
F2
TDM

2
TD ¼ �4h���i, with the numerical result for the vac-

uum energy, Eq. (77), we found M2
TD ¼ 3:02m4=F2

TD

with  � NTCNf=ð2�2Þ, Eq. (85). This relation implies

MTD=m�m=FTD near the conformal edge and hence
naturally MTD ¼ OðmÞ in contrast to Refs. [27,28]. (A
similar conclusion was made in a different context [38].)
As an extreme possibility we could haveMTD=m ! 0 only
when m=FTD ! 0 and the TD gets decoupled. If such an
idealized decoupled massless TD is realized at the confor-
mal edge, the light decoupled TD as a pseudo NG boson
slightly off the conformal edge may be a candidate for the
dark matter.

The scale anomaly formally yields the relation
�=ð4�Þ ¼ h���i=hG2

��i, so that the above results imply

the nonperturbative behavior of the beta function reflecting
the nonperturbative effects of the dynamical mass genera-

tion, �ð�Þ � �ð�=�cr � 1Þ3=2. Numerically, we obtained

�=ð4�Þ ¼ �ð�=�cr � 1Þ3=2=�� with � ¼ �0:026 for the
two-loop running gauge coupling. The absolute value of
the coefficient is smaller than that for the fixed gauge
coupling, � ¼ �0:04. However, the exponent � of the
nonperturbative beta function at the conformal edge seems

universal, � ¼ 3, where �=ð4�Þ / ð�=�cr � 1Þ�=2. This
nature of the nonperturbative beta function having the
multiple zero is crucial to reproduce the essential singu-
larity scaling Eq. (58).

We have settled some of the controversy related with the
TD mass raised within the improved ladder SD equation.
However, several issues remain to be explored:

In particular, a central problem is how large the TD mass
MTD is. In order to discuss collider phenomenology of the
TD and also check whether or not a decoupled TD is in fact
realized near the conformal edge, we should obtain mass
MTD and the decay constant FTD separately.

Thus we would need more information other than the
vacuum energy. As wasmentioned in the Introduction, such
a calculation was in fact done in amost straightforwardway
[21], based on the SD and BS equations in the improved
ladder approximation with the two-loop running coupling
constant having the CBZ-IR fixed point, which suggests

MTD � ffiffiffi
2

p
m, Eq. (14), without evidence of the decoupled

light TD much smaller than m. Note however that this
calculation was actually done only numerically and at
slightly off the conformal edge, and hence the result is not
conclusive about the very close point to the conformal edge.
On the other hand, in the holographic framework [23]

which has a wider parameter space than that of the (im-
proved) ladder approximation so as to adjust the S parame-
ter arbitrarily small, it was shown that at the limit of
conformal edge m=�TC ! 0 the technigluon condensate
vanishes � ! 1, with � parameterized as in Eq. (17),
which in turn implies MTD=m ! 0 at the sacrifice of
decoupling m=FTD ! 0, although such an extreme case
is unlikely for the realistic setting of the typical TC model
building (slightly away from the conformal edgem=�TC ¼
10�3 � 10�4) where the holography suggests MTD=m ¼
Oð1Þ, or MTD � 600 GeV [Eq. (20)]. So although the
theoretical possibility for the decoupled TD at the confor-
mal edge is not completely excluded, there is no signature
of such a possibility at least in near conformal edge region
relevant to the realistic TC model building.
We have not included interactions like ETC (extended

technicolor) between the techni-fermions and the quarks/
leptons which should be included to give mass to the
quarks and leptons in the realistic TC models. Including
these interactions also induce additional interactions
among the techni-fermions themselves, which may be
described by the effective four-fermion interactions in
addition to the TC gauge interactions we have discussed
(‘‘gauged NJL model’’). Such ETC-like effects on the TD
mass were already studied intensively in the ladder SD
equation with nonrunning gauge coupling [10,12,13], with
the results MTD �OðmÞ, i.e., against very light TD mass
and decoupled TD, as was mentioned in the Introduction.
As is clear from our arguments in this paper, the situation
with the additional four-fermion interaction in the ladder
approximation with nonrunning gauge coupling will re-
main essentially the same in the improved-ladder SD equa-
tion with the two-loop running gauge coupling. Moreover,
more elaborate calculations in the gauged NJL model [15]

showed that MTD ! ffiffiffi
2

p
m [Eq. (13)] in such a limit along

the whole critical line (0<� � �cr). Note also that the
result Eq. (13) [15] is consistent with Eq. (14) [21] which is
the straightforward computation of the spectra within the
ladder SD and BS equations in the improved ladder ap-
proximation with the two-loop gauge coupling near the
conformal edge (without four-fermion coupling). Note
however that these calculations did only for the inverse
propagator at zero-momentum but not the pole mass (on-
shell mass), and hence are still not conclusive. We defi-
nitely need more reliable calculations such as the lattice
simulations about the TD spectrum.
We have considered TD as a bound state of technifer-

mion and anti-technifermion both of which acquired mass
m. The mass m spontaneously breaks chiral symmetry and
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at the same time breaks spontaneously and explicitly the
scale symmetry, the scale anomaly due to this mass gen-
eration being of order Oðm4Þ as we computed explicitly in
this paper. Hence such a bound state should have mass of
order OðmÞð	 �TCÞ. On the contrary, it was argued [23]
that the techniglueball mass should be of order Oð�TCÞ,
since the scale-symmetry breaking free from the techni-
fermion mass generation is due to the scale anomaly of
order Oð�4

TCÞ corresponding to the usual perturbative

running of the coupling for �>�TC (h���iperturbative in

Eq. (35)). Then we expect little mixing between our TD
and the techniglueball, in sharp contrast to QCD where the
flavor-single scalar meson (analogue of TD) and the scalar
glueball may mix strongly. More reliable calculations are
of course highly desired.

In this paper, we assumed that the fermion loop is
dominant in the technigluon condensate and the vacuum
energy. In principle, there might exist nonperturbative
technigluonic effects. It is difficult to estimate it in our
approach, however. A lattice simulation may also resolve
this issue. We shed a light on the problem which has made
confusion in the improved ladder approximation with the
two-loop running gauge coupling. We clarified it in the
analytical and numerical ways within the same framework

of the improved ladder SD approximation. There should
exist nonperturbative effects beyond the improved ladder
approximation, although it is very unclear whether or not
they are relevant. Toward a conclusive answer, one might
challenge a more rigorous approach such as a lattice gauge
theory. We hope that our results will be reconfirmed more
rigorously in future.
Needless to say, our analysis in this paper is also appli-

cable to dynamical symmetry breaking scenarios with
large anomalous dimension/conformality other than TC,
such as the top-mode standard model with extra dimen-
sions which has a UV fixed point [35], higher representa-
tion quark condensate model [39], or even the QCD with
finite temperature where the running of the coupling will
be frozen (mocking conformal) in the IR region below the
temperature scale, etc..
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