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We determine the chiral phase transition line in ð2þ 1Þ-flavor QCD for small values of the light quark

chemical potential. We show that for small values of the chemical potential the curvature of the phase

transition line can be deduced from an analysis of scaling properties of the chiral condensate and its

susceptibilities. To do so we extend earlier studies of the magnetic equation of state in ð2þ 1Þ-flavor QCD
to finer lattice spacings, aT ¼ 1=8. We use these universal scaling properties of the chiral order parameter

to extract the curvature of the transition line at two values of the cutoff, aT ¼ 1=4 and 1=8. We find that

cutoff effects are small for the curvature parameter and determine the transition line in the chiral limit to

leading order in the light quark chemical potential. We obtain Tcð�qÞ=Tcð0Þ ¼ 1� 0:059ð2Þð4Þð�q=TÞ2 þ
Oð�4

qÞ.
DOI: 10.1103/PhysRevD.83.014504 PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Mh, 25.75.Nq

I. INTRODUCTION

Extending lattice QCD calculations to nonzero baryon-
chemical potential or, equivalently, to nonzero net baryon
number density is known to be difficult in general.
However, important information on the QCD phase dia-
gram can be deduced for small values of the chemical
potential by using well-established numerical techniques
such as reweighting [1], analytic continuation [2,3], or
Taylor expansion [4,5]. We will concentrate here on the
latter approach.

Not only do Taylor expansions of thermodynamic ob-
servables provide information on QCD thermodynamics at
small but nonzero chemical potential, the expansion coef-
ficients themselves also are sensitive indicators for critical
behavior in the vicinity of the chiral phase transition at
vanishing chemical potential. As the chemical potential
couples to the quark number current, which does not break
chiral symmetry, it acts to leading order like a temperature
variable. Derivatives with respect to chemical potentials
lead to susceptibilities which exhibit critical behavior
similar to that of thermal susceptibilities [6]. We will
show here that a calculation of the leading order Taylor
expansion coefficient of the chiral order parameter, which
defines a mixed susceptibility, allows us to perform quan-
titative studies of the phase boundary between low and
high temperature phases of QCD close to � ¼ 0.

At nonzero values of the chemical potential a phase
boundary in the temperature and chemical potential pa-
rameter space of QCD is well defined only in the heavy
quark limit or for vanishing quark masses. In the former
case the phase transition line corresponds to the first order

deconfinement transition in the pure gauge theory. At
infinite values of the quark mass this transition is indepen-
dent of the chemical potential and defines a straight line in
the T-� plane. For a large range of quark mass values the
transition line is not unique. It characterizes a region of
(rapid) crossover in thermodynamic quantities and a pseu-
docritical temperature extracted from these observables
may differ somewhat, depending on the observable that
is used. In the chiral limit, however, the transition line is
again well defined. For sufficiently large strange-quark
mass it defines a line of second order phase transitions in
the universality class of three dimensional Oð4Þ symmetric
spin models [7].
Taylor expansions, analytic continuation, as well as

reweighting techniques have been used to locate the cross-
over line Tcð�Þ in the T-� plane for small values of the
chemical potential [8]. These calculations, which have
been performed for different flavors and various values of
the quark masses, suggest that the curvature is small, i.e.,
Tcð�Þ=Tcð0Þ decreases only by a few percent at �=T ’ 1.
However, so far most lattice QCD calculations performed
to determine the transition line have been performed
on coarse lattices,1 i.e., lattices with only four sites in the
temporal direction for which the lattice spacing in units of
the temperature thus equals aT ¼ 1=4. Better control over
the extrapolation to the continuum limit and the quark mass
dependence of the transition line clearly is needed.
So far studies of the transition line concentrated on its

dependence on a single chemical potential, taken to be

1An attempt to determine the transition line closer to the
continuum limit has been presented in [9].
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either identical for the light up (�u) and down (�d) quarks
or of opposite sign. The former is the light quark chemical
potential, �q ¼ ð�u þ�dÞ=2 and the latter is the isospin

chemical potential, �I ¼ ð�u ��dÞ=2 for which direct
numerical calculations are possible. In order to make con-
tact to the situation met in heavy ion collisions [10,11] one
eventually wants to analyze the influence of nonzero
charge (�Q) and strangeness (�S) chemical potentials on

the curvature of the transition line, i.e., one should allow
for nonvanishing up-, down-, and strange-quark chemical
potentials. For small values of the chemical potential this is
possible in the framework we will outline here. At present
we will, however, restrict our discussion to the case of
vanishing strange-quark and isospin (electric charge)
chemical potentials.

We concentrate on an analysis of the phase transition
line in the chiral limit (mu ¼ md ¼ 0, ms > 0) where its
dependence on �q is expected to be largest. We will

present a calculation of the critical line for small values
of the light quark masses in the scaling regime of the finite
temperature chiral phase transition. This allows us to
use scaling relations to extract the curvature of the
phase transition line in the chiral limit of QCD. The scaling
relations naturally relate the curvature of the critical line as
a function of�q to the magnitude of a mixed susceptibility.

We will perform our numerical calculations for
ð2þ 1Þ-flavor QCD keeping the heavier strange-quark
mass close to its physical value and decreasing the two
degenerate light quark masses towards the massless limit.
On coarse lattice with temporal extent N� ¼ 4 we will
make use of a recently performed scaling analysis [12] of
the chiral order parameter performed with an improved
staggered fermion action. This study showed that the chiral
order parameter is well described by a universal scaling
function characteristic for a three dimensional, OðNÞ
universality class. As we are using a staggered fermion
discretization scheme for our scaling analysis we expect
that the transition in the chiral limit, performed at non-
zero lattice spacing, is controlled by the Oð2Þ rather than
the Oð4Þ universality class. We thus will analyze our
numerical results in terms of Oð2Þ scaling functions. We
will comment on the application of Oð4Þ scaling relations
later on.

This paper is organized as follows. In the next section we
will extend the scaling analysis of the chiral order parame-
ter to lattices with temporal extent N� ¼ 8. This provides
the basic parameters needed for a calculation of the cur-
vature of the chiral phase transition line which will be
discussed in Sec. III. We give a discussion of our results
and an outlook in Sec. IV.

II. MAGNETIC EQUATION OF STATE

In the vicinity of a critical point regular contributions to
the partition functions become negligible in higher order
derivatives and the singular behavior of response functions

will generally be dominated by contributions arising from
the singular part of the free energy density2

fðT;ml; ms; �q;�sÞ
¼ fsðT;ml; ms; �q;�sÞ þ frðT;ml; ms; �q;�sÞ: (1)

In addition to the temperature T, light ðmlÞ, and strange
ðmsÞ quark masses we also allow for a dependence of
the free energy density on the quark chemical potentials.
Close to the chiral phase transition temperature at vanish-
ing chemical potential the singular part fs will give rise to
universal scaling properties of response functions. This has
been exploited to analyze basic universal features of the
QCD phase diagram close to criticality [13].
The singular part of the free energy density depends on

the parameters of the QCD Lagrangian, e.g., the quark
masses, and the external control parameters, temperature
and chemical potentials, only through two relevant cou-
plings. These scaling variables, t and h, control deviations
from criticality, ðt; hÞ ¼ ð0; 0Þ, along the two relevant di-
rections, which in the case of QCD characterize fluctua-
tions of the energy and chiral condensate, respectively.
To leading order the scaling variable h depends only on
parameters that break chiral symmetry in the light quark
sector, while t depends on all other couplings. In particular,
t will depend on the light quark chemical potential while h
remains unaffected by these in leading order,

t � 1

t0

�
T � Tc

Tc

þ �q

�
�q

T

�
2
�
; h � 1

h0

ml

ms

; (2)

where Tc is the phase transition temperature in the chiral
limit and t0, h0 are nonuniversal scale parameters (as is Tc).

While the combination z0 ¼ h1=��0 =t0 is unique for a given
theory, the values of t0 and h0 will change under the
rescaling of the order parameter [12]. Note also that they
depend on the definition of the parameter introduced to
control symmetry breaking, i.e., the fact that we choose the
strange-quark mass to normalize the symmetry breaking
light quark mass parameter. For the rest of this chapter we
will not need to refer any further to the contribution
of chemical potentials to the reduced temperature t. We
will come back to it in the next chapter.
The singular part of the free energy, fs, is a homoge-

neous function of its arguments. This can be used to rewrite

it in terms of the scaling variable z ¼ t=h1=�� as

fsðt; hÞ ¼ h1þ1=�fsðz; 1Þ � h1þ1=�fsðzÞ; (3)

where �, � are critical exponents of the three dimensional
OðNÞ universality class [14,15], � ¼ 0:349 and � ¼ 4:780
for three dimensional Oð2Þ models and � ¼ 0:380 and

2For systems belonging to the 3-dimensional Oð2Þ or Oð4Þ
universality classes this does not hold for the thermal response
function (specific heat) as the relevant critical exponent � is
negative in these cases.
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� ¼ 4:824 for Oð4Þ, respectively. All parameters entering
the definition of t and h, i.e., t0, h0, and Tc may depend on
the strange-quark mass, but are otherwise unique in the
continuum limit of ð2þ 1Þ-flavor QCD. Just like the tran-
sition temperature Tc, however, t0 and h0 are also cutoff
dependent and will need to be extrapolated to the contin-
uum limit.

The universal critical behavior of the order param-
eter, M� @f=@ml, is controlled by a scaling function fG
that arises from the singular part of the free energy density
after taking a derivative with respect to the light quark
mass,

Mðt; hÞ ¼ h1=�fGðzÞ: (4)

The scaling function fGðzÞ is well known for the Oð2Þ
and Oð4Þ universality classes through studies of three
dimensional spin models [16]. This so-called magnetic
equation of state, Eq. (4), has been analyzed recently for
ð2þ 1Þ-flavor QCD using an improved staggered fermion
formulation (p4-action) on lattices with temporal extent
N� ¼ 4 [12] and light quark masses as small as ml=ms ¼
1=80, which corresponds to a pion mass that is about
half its physical value. It could be shown that the chiral
order parameter can be mapped onto a universal OðNÞ
scaling curve and the scale parameters t0, h0, Tc could be
extracted. As the calculations had been performed with
staggered fermions the scaling analysis has been per-
formed by comparing results with the magnetic equation
of state for aOð2Þ universality class rather thanOð4Þ as one
should find in the continuum limit for two massless quark
flavors. However, as has been argued in [12] both scaling
curves are similar in the limited range of z values, where
this scaling analysis has been performed, and the scaling
analysis could have been performed with Oð4Þ scaling
functions as well.

At least on these coarse N� ¼ 4 lattices violations of
scaling have been found to be small also for physical
values of the light quark mass, i.e., ml=ms ’ 1=27. Of
course, it is to be expected that the scale parameters,
extracted on coarse lattices with temporal extent N� ¼ 4,
are subject to cutoff effects. We therefore extend the analy-
sis of Ref. [12] to smaller lattice spacings. We perform
calculations on lattices with temporal extent N� ¼ 8. We
follow here the discussion presented in Ref. [12] and
introduce two order parameters that are multiplicatively
renormalized by multiplying the chiral condensate with the
strange-quark mass, but differ in handling additive diver-
gences, linear in the quark mass,3

Mb � N4
�m̂sh �c c il;

M � N4
�m̂s

�
h �c c il � ml

ms

h �c c is
�
:

(5)

We use in our study data for the chiral condensate
which have been collected by the hotQCD [17] and
RBC-Bielefeld [18] Collaborations in their studies of the
ð2þ 1Þ-flavor equation of state on lattices of size 323 � 8
as well as in the course of analyzing the transition tem-
perature in ð2þ 1Þ-flavor QCD [19]. These calculations
have been performed with the p4-action [20] for three
different quark mass ratios ml=ms ¼ 0:2, 0.1, and 0.05,
respectively. We use subsets of these data samples which
cover a small temperature interval close to the transition
region, but also cover the region of the transition tempera-
ture in the chiral limit. For the smallest quark mass
ratio this includes a set of 16 values of the gauge coupling
which cover a temperature interval 0:950:3 & T=Tc &
1:12 (3:48< 6=g2 < 3:545). Typically (20.000–30.000)
trajectories of 0.5 time units have been generated for
each set of quark masses and gauge couplings. The tem-
perature scale used in our scaling analysis is based on
calculations of the scale parameter r0 that have been
determined from calculations of the heavy quark potential
performed on lattices of size 324 [17,18].
The basic approach for the scaling analysis on N� ¼ 8

lattices is identical to that described in Ref. [12]. However,
as the calculations on the N� ¼ 8 lattices have not been
performed for as small light quark masses as in the N� ¼ 4
analysis [12], where the smallest ratio was ml=ms ¼ 1=80,
we did not perform a separate analysis for the determina-
tion of scaling parameters in the small mass regime and a
determination of scaling violating terms for larger values
of the quark masses, as it has been done in Ref. [12]. We
perform a simultaneous analysis of data obtained for all
three quark mass ratios and include scaling violating regu-
lar terms in the ansatz for scaling fits,

Mðt; hÞ ¼ h1=�fGðt=h1=��Þ þ at�TH þ b1H þ b3H
3;

(6)

with �T ¼ ðT � TcÞ=Tc and H ¼ ml=ms. This includes
all the scaling violating terms also used on N� ¼ 4 lattices.
In our final analysis, however, we will set b3 ¼ 0.
We verified that this approach, applied to the N� ¼ 4

data set, and restricted to the same mass range available
now on N� ¼ 8 lattices, i.e., 1=20 � ml=ms � 1=5, leads
to results compatible with our earlier findings. We extract
values for t0, h0, and Tc which are similar to those obtained
previously. In fact, results for fit parameters obtained
from the analysis of different order parameters, M and
Mb, turn out to be in even better agreement. Results of
this new scaling analysis for the N� ¼ 4 data set is shown
in the upper half of Fig. 1. All fit parameter are summarized
in Table I.

3At finite values of the cut off these terms are, of course, finite
and may be viewed as a specific contribution to the regular part
that will not alter the scaling properties for sufficiently small
values of the quark mass.
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Using the approach described above for the analysis of
our N� ¼ 8 data set we find good agreement of fit parame-
ters extracted from an analysis of Mb and M, respectively.
Results of this scaling analysis are shown in the lower half
of Fig. 1. All fit parameters are summarized in Table I. As
already noted in the analysis performed on lattices with
temporal extent N� ¼ 4 [12], we observe also for N� ¼ 8
that scaling violations are small for ml=ms � 1=10. This

confirms that physical quark mass values, corresponding to
ml=ms ’ 1=27, are in the scaling region.
The constants h0, t0 determined for N� ¼ 8 take on

values different from those for N� ¼ 4. The invariant
combination of scale parameters,

z0 � h1=��0 =t0 ¼ z0ðmsÞ þOða2Þ; (7)
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FIG. 1 (color online). Fit of the Oð2Þ scaling function to numerical results for the subtracted order parameter M (right) and the
nonsubtracted light quark condensateMb (left), both for N� ¼ 4 (top) and N� ¼ 8 (bottom). The fits include an ansatz for violations of
scaling as discussed in the text. Shown are results for ml=ms � 1=5.

TABLE I. Scale parameters determined from the scaling fits on lattices of temporal extent
N� ¼ 4 and 9. In columns 6 and 7 we list the couplings for the leading scaling violating

corrections. The last column gives z0 � h1=��0 =t0. We give the results for parameters entering the

definition of scaling functions forMb and the subtracted order parameterM as defined in Eq. (5).
Only the former has been used in the analysis of the mixed susceptibilities. Note that fits
including regular terms give consistent determinations of the parameters of the scaling functions
determined from Mb and M, respectively.

N� Mi t0 h0 Tcð0Þ [MeV] at b1 z0

Fit using the scaling term only

4 Mb 0.0037(2) 0.0022(3) 194.5(4) � � � � � � 6.8(5)

M 0.0048(5) 0.0048(2) 195.6(4) � � � � � � 8.5(8)

Fit using scaling and regular terms

4 Mb 0.004 07(9) 0.002 95(22) 194.9(2) 3.8(21) 2.1(1) 7.5(3)

M 0.004 01(9) 0.002 71(20) 194.8(2) 11.2(21) �2:4ð1Þ 7.2(3)

8 Mb 0.002 71(21) 0.000 48(9) 174.1(8) �10:1ð16Þ 3.3(5) 3.8(5)

M 0.003 02(22) 0.000 59(10) 175.1(8) �0:9ð15Þ �4:6ð4Þ 3.8(4)
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changes by about 50% which shows that its continuum
extrapolation is not yet possible. This also is the case for t0
and h0 separately.

When comparing results obtained for N� ¼ 4 and
N� ¼ 8 one also has to take into account the dependence
of the scale parameters on the strange-quark mass. In fact,
as the scaling analysis has been performed at bare strange-
quark mass valuesms, fixed in lattice units, the correspond-
ing physical value in the chiral limit at t ¼ 0 is only
determined a posteriori, once Tc has been determined.
It turns out that the physical values of the strange-quark
mass in the N� ¼ 4 and 8 calculations differ at Tc by about
10%. One may account for this mismatch by reweighting
the results for the chiral condensates in the light and
strange-quark masses [21]. However, we will not attempt
to do this here.

The main outcome of the N� ¼ 8 scaling analysis, aside
from confirming the good scaling properties of the order
parameter at a twice smaller value of the lattice spacing, is
a determination of the scale parameters and the transition
temperature Tc in the chiral limit, needed in the definition
of the scaling variable z, i.e., the determination of t0, h0,
and Tc. We summarize these results in Table I. In the next
section we will make use of these scale parameters to
determine the curvature of the phase transition line for
small values of the quark chemical potential.

III. CURVATURE OF THE CRITICAL LINE

As outlined in the beginning of the previous section at
leading order the light quark chemical potential only enters
the reduced temperature t, as introduced in Eq. (2). Also at
nonvanishing values of the quark chemical potential the
phase transition point is located at t ¼ 0. The variation of
the transition temperature with chemical potential there-
fore is parametrized in terms of the constant �q introduced

in Eq. (2),

Tcð�qÞ
Tc

¼ 1� �q

�
�q

T

�
2 þO

��
�q

T

�
4
�
: (8)

To determine the chiral phase transition line in the T-�
plane we thus need to determine the proportionality con-
stant �q. This is, in fact, the only left over free parameter

in universal scaling functions that needs to be determined.
All other parameters [t0, h0, Tc � Tcð�q ¼ 0Þ] have

already been determined in the scaling analysis of the order
parameter discussed in the previous section.

The constant �q can be determined by analyzing the

dependence of the chiral condensate on the light quark
chemical potential. Of course, at vanishing light quark
mass onewould simply determine the temperature at which
h �c c il vanishes. At nonzero but small values of the quark
mass this information is encoded in scaling functions. To
extract information about the dependence of the scaling

variable t on �q it suffices to consider the leading order

Taylor expansion coefficient of the chiral condensate,

h �c c il
T3

¼
�h �c c il

T3

�
�q¼0

þ �m;q

2T

�
�q

T

�
2 þOðð�q=TÞ4Þ;

(9)

where

�m;q

T
¼ @2h �c c il=T3

@ð�q=TÞ2
¼ @�q=T

2

@ml=T
: (10)

The mixed susceptibility �m;q is proportional to the leading

order coefficient of the Taylor expansion of the chiral
condensate, which has been introduced in [22,23]. It may
also be viewed as the quark mass derivative of the light
quark number susceptibility (�q). Details of its definition

in terms of inverses of the staggered fermion matrix and its
derivatives with respect to the quark chemical potential are
given in Appendix A of Ref. [23]. We have summarized the
formulas relevant for our current analysis in an Appendix.
In the massless limit the chiral order parameter vanishes

at Tc and varies as M� ð�tÞ�. Its derivative with respect
to t thus will diverge at Tc like t��1. The same singular
behavior will thus show up in a derivative of the chiral
condensate with respect to temperature as well as the
second derivative with respect to �q=T. The prefactors of

the singularity in dM=dT and d2M=dð�q=TÞ2, however,
will differ by a factor 2�qTc. We will make use of

this relation to determine the curvature of the critical line
at �q ¼ 0.

In the vicinity of the critical point the mixed suscepti-
bility can be expressed in terms of the scaling function
f0GðzÞ � dfGðzÞ=dz,

�m;q

T
¼ 2�qT

t0ms

h�ð1��Þ=��f0GðzÞ: (11)

The scaling function f0GðzÞ is easily obtained from fGðzÞ by
using the implicit parametrization for the latter given in
Ref. [16]. We also note that �m;q diverges as a function

of the light quark mass at t ¼ 0, i.e., at the chiral phase
transition temperature. In contrast to the chiral susceptibil-
ity, �m � @M=@ml, which stays finite in the chiral limit
only for t > 0, the mixed susceptibility is finite for all
t � 0; for t < 0 it scales like ð�tÞ��1 while for t > 0 it
behaves like ht�1��.
For small values of the light quark mass numeri-

cal results for the mixed susceptibilities �m;q may be

compared to the right-hand side of Eq. (11). Here all
parameters that enter f0GðzÞ are known and the only

undetermined parameter is �q. As we did for the analysis

of the magnetic equation of state, we should consider
the influence of scaling violations induced by nonzero
values of the light quark masses on the determination of
the curvature of the phase transition line. The leading
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quark mass corrections identified in the analysis of the
magnetic equation of state will not contribute to �m;q as

they do not depend on the chemical potential. The first
scaling violating term would arise from a regular term
that gives corrections to the order parameter of the form
M� aqHð�q=TÞ2. This would give rise to corrections to

the scaling relation given in Eq. (11)

t0h
ð1��Þ=�� ms

T

�m;q

T
¼ 2�qf

0
GðzÞ þ

2aqh
1=�
0

z0
H1þð1��Þ=��:

(12)

As we do not know the prefactor aq we need to check in the

analysis of the mixed susceptibilities whether corrections
to scaling play a role. We note, however, that in the case of
the magnetic equation of state the dominant corrections
arise from the term b1H, which is ultraviolet divergent in
the continuum limit. This term drops out in the analysis
of �m;q. Moreover, scaling violating terms are further sup-

pressed by a factor Hð1��Þ=�� � H0:39 [or H0:34 in Oð4Þ
symmetric models] as the dominant scaling term itself is
divergent at ðt; hÞ ¼ ð0; 0Þ. We thus expect scaling viola-
tions to be small.

Using a subset of the data samples described in the
previous section, we calculated the mixed susceptibility
�m;q on lattices with temporal extent N� ¼ 4 for several

values of the quark mass. For this analysis we used data
sets separated by 50 trajectories. For the lightest quark
mass ratio, ml=ms ¼ 1=80, we selected 4 and for the 3
heavier quark mass ratios, ml=ms ¼ 1=10, 1=20, 1=40, we
choose 6 values of the gauge coupling in a narrow tem-
perature interval close to the chiral phase transition tem-
perature Tc, i.e., �0:02 � ðT � TcÞ=Tc � 0:06. Typically
this involved about 500 to 950 gauge field configurations
per parameter set, except for the lightest quark mass ratio
where we analyzed about 350 gauge field configurations.
On each gauge field configuration we calculated the
various operators necessary to construct �m;q. An explicit

expression for them is given in the Appendix (see also
Appendix A of [23]).

The calculation of the various operators required inver-
sions of the staggered fermion matrix with a large set of
random noise vectors. We used 500 noise vectors on each
gauge field configuration and constructed unbiased estima-
tors for the various traces that need to be calculated. All
these calculations could be performed very efficiently on a
graphics processing unit (GPU) cluster.

Results obtained for the mixed light quark number sus-
ceptibility, �m;q, on lattices with temporal extent N� ¼ 4

are shown in Fig. 2. We clearly see that �m;q increases in

the transition region with decreasing values of ml=ms.
Using the scaling relation given in Eq. (11) we can

rescale the data and obtain a unique scaling curve.
This scaling curve can be mapped onto the Oð2Þ scaling
function f0GðzÞ with a simple multiplicative rescaling

factor, 2�q. The resulting scaling plot is shown in Fig. 3.

To check for possible contributions from scaling violating
terms we have analyzed the data separately for quark
mass ratios ml=ms ¼ 1=10, 1=20 and ml=ms ¼ 1=40,
1=80. These fits agree within statistical errors. We then
determine the curvatures �q from fits to the complete data

set. Results of these fits are summarized in Table II.
The scaling analysis performed for the mixed suscepti-

bility on lattices with temporal extent N� ¼ 4 suggests that
the determination of the curvature parameter �� can be

reliably performed with quark massesml=ms & 1=10. This
is in accordance with the scaling analysis of the order
parameter itself, which we have discussed in the previous
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section. It thus seems to be safe to extract the curvature
parameter also at smaller values of the lattice spacing, i.e.,
from ourN� ¼ 8 data set, by using the smallest quark mass
ratio available there, ml=ms ¼ 1=20. We have performed
calculations at five values of the temperature using gauge
field configurations on 323 � 8 lattices generated by the
hotQCD Collaboration [19]. For these parameter sets we
have analyzed 300 to 600 gauge field configurations, which
were separated by 100 trajectories. Again we used 500
noise vectors for the calculation of all relevant operators
on each of the gauge field configurations. The result of this
analysis is shown in Figs. 2 and 3 with filled symbols. As
can be seen they agree well with results obtained on coarser
lattices.

When rescaling data obtained for �m;q to the Oð2Þ scal-
ing curve f0GðzÞ we need to take into account errors on the

scaling parameters t0 and z0 (or h0). This leads to a 10%
error for the determination of the curvature terms.

Performing a combined fit to all results obtained for
different quark mass values and lattice spacings we obtain

�q ¼ 0:059ð2Þð4Þ: (13)

This result for the curvature of the critical line is about
a factor of 2 larger than the reweighting results obtained
in ð2þ 1Þ-flavor QCD [1]. It is however consistent with
results obtained in calculations with imaginary chemical
potentials. In fact it lies in between the 2-flavor [2] and
3-flavor [24] simulations performed with the standard
staggered fermion formulation and also is consistent
with results reported from ð2þ 1Þ-flavor simulations
with imaginary chemical potential performed with the
action used also in this study (p4-action) [25].

IV. CONCLUSIONS

With this analysis we have established a systematic way
to determine the curvature of the QCD phase transition line
in the chiral limit for small values of the light quark
chemical potential. We have determined the curvature for
two values of the cutoff using an improved staggered
fermion action (p4-action). Within our present statistical
accuracy we did not observe any significant quark mass
dependence of the scaled mixed susceptibilities. The result
observed for the curvature of the second order phase

transition line in the chiral limit thus also is a good estimate
for the crossover line at physical values of the light quark
masses.
Although the final result for the curvature term seems to

show little cutoff dependence, one has to be cautious as the
other three scale parameters that enter this analysis (t0, h0,
and Tc) all vary significantly as the lattice spacing is
reduced by a factor of 2. Clearly more work is needed to
extrapolate safely to the continuum limit. We will do so in
the future by repeating the analysis with a discretization
scheme that also suppresses cutoff effects arising from
taste symmetry violation in the staggered fermion action
more efficiently (hisq action).
In our current analysis we have kept the strange-quark

and isospin chemical potentials equal to zero. A direct
comparison to the situation met in heavy ion collisions
on the freeze-out curve thus should be done with caution.
However, at least for large energies, i.e., small values of
the baryon-chemical potential experimental results for
the freeze-out curve correspond to electric charge chemical
potentials, which are more than an order of magnitude
smaller than�B. As susceptibilities obtained by derivatives
with respect to strange-quark chemical potentials rather
than light quark chemical potentials are generally smaller,
one may also expect that the curvature in the �S direction
will turn out to be smaller. It thus seems that the curvature
of the critical surface along the �q ’ �B=3 direction is

most relevant for a comparison of lattice QCD results
with the experimentally determined freeze-out curve.
The phenomenological parametrization of the freeze-
out curve given in [11] yields Tfreezeð�BÞ=Tfreezeð0Þ ’ 1�
0:21ð2Þð�q=TÞ2 þOð�4

qÞ. The curvature of the freeze-out
curve thus is about a factor of 4 larger than that determined
here for the chiral phase transition curve. This suggests that
the freeze-out curve may not follow the chiral phase tran-
sition or crossover line at nonzero values of the chemical
potential. With increasing �q=T the hadronic freeze-out

seems to happen further away from criticality. At the
largest value of the light quark chemical potential currently
explored in the low energy scan at the Relativisitc Heavy
Ion Collider [26], �q=T ’ 1, the freeze-out temperature

may be about 15% below the crossover temperature.
Nonetheless, as pointed out above, one still needs

to improve the current lattice calculations. Results closer
to the continuum limit with further improved fermion
discretization schemes are needed and one should also
get control over the influence of nonvanishing strange-
quark chemical potentials in order to firmly establish the
separation of the freeze-out curve from the chiral transition
line as advocated above.
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APPENDIX: THE MIXED SUSCEPTIBILITY �m;q

We summarize here the operators entering a calculation
of the mixed susceptibility �m;q introduced in Eq. (10).

This susceptibility is proportional to the second order
Taylor expansion coefficient of the chiral condensate
in terms of the light quark chemical potentials. Using
Appendix A of Ref. [23] we introduce the expectation
value of the light quark chiral condensate as

h �c c il
T3

¼ hC0i; (A1)

and obtain for the mixed susceptibility,

�m;q

T
� @2h �c c il=T3

@ð�q=TÞ2
���������q¼0

¼ 1

N2
�

@2h �c c il=T3

@�̂2

���������̂¼0

¼ 1

N3
	

ðhC2i þ 2hC1D1i þ hC0D2i þ hC0D2
1i

� hC0iðhD2i þ hD2
1iÞÞ; (A2)

where we have introduced the shorthand notation �̂ ¼
�qa for the chemical potential expressed in units of the

lattice spacing. Here Cn and Dn denote n-th derivatives of
the trace of the inverse fermion matrix (D) and logarithms
of its determinant, respectively,

C n ¼ 1

4

@ntrD�1

@�̂n ; Dn ¼ 1

2

@n lndetD

@�̂n ; (A3)

where the derivatives are defined with respect to the flavor
chemical potential �̂ � �̂f for the quark flavor f. The

factors 1=4 and 1=2 arise because we define the mixed
susceptibility as a derivative of the 1-flavor light quark
chiral condensate with respect to the light quark chemical
potential �q which is identical for the two light flavor

components of the fermion action, i.e., a flavor factor
nf ¼ 2 arises only in derivatives of the logarithm of the

fermion matrix.
The operators needed to calculate �m;q thus are

C 0 ¼ 1
4 trðD�1Þ; (A4)

C 1 ¼ � 1

4
tr

�
D�1 @D

@�̂
D�1

�
; (A5)

C2 ¼ � 1

4

�
tr

�
D�1 @

2D

@�̂2
D�1

�

� 2 tr

�
D�1 @D

@�̂
D�1 @D

@�̂
D�1

��
; (A6)

D 1 ¼ 1

2
tr

�
D�1 @D

@�̂

�
; (A7)

D 2 ¼ 1

2

�
tr

�
D�1 @

2D

@�̂2

�
� tr

�
D�1 @D

@�̂
D�1 @D

@�̂

��
: (A8)
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