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We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the

SU(3) vacuum and revisit previous results for SU(2). We find that the transverse profile of the flux tube

resembles the dual version of the Abrikosov vortex field distribution. We give an estimate of the London

penetration length of the chromoelectric field in the confined vacuum. We also speculate on the value of

the ratio between the penetration lengths for SU(2) and SU(3) gauge theories.
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I. INTRODUCTION

Color confinement in QCD is a long-distance behavior
whose understanding continues to be a challenge for theo-
retical physics [1,2]. Lattice formulation of gauge theories
allows us to investigate the confinement phenomenon in
a nonperturbative framework. In particular, Monte Carlo
simulations can produce samples of vacuum configurations
that can be used to get insight into the nonperturbative
sector of QCD. Tubelike structures emerge by analyzing
the chromoelectric field between static quarks [3–19].
Such tubelike structures naturally lead to a linear potential
and, consequently, to a ‘‘phenomenological’’ understand-
ing of color confinement.

An intriguing model was conjectured a long time ago by
’t Hooft [20] and Mandelstam [21] to explain the formation
of chromoelectric flux tubes in the QCD vacuum. It relies
on the hypothesis that the QCD vacuum behaves like a
coherent state of color magnetic monopoles. This amounts
to saying that the vacuum of QCD is a magnetic (dual)
superconductor [22]. According to this picture the (dual)
Meissner effect naturally accounts for the observed color
flux tubes. There are clear analogies with the usual super-
conductivity where, as found by Abrikosov [23], a tubelike
structure arises as a solution of Ginzburg-Landau equa-
tions. Nielsen and Olesen also found tubelike or vortex
solutions in their study of the Abelian Higgs model [24].
In particular, they showed that a vortex solution exists
independently of the fact that vacuum behaves like a
type I or type II superconductor.

Even if the dynamical formation of color magnetic
monopoles is not explained by the ’t Hooft construction,

lattice calculations [25–33] have given numerical evidence

in favor of their condensation in the QCD vacuum.

However, as observed in Ref. [34] in connection with

the dual superconductivity picture, magnetic monopole

condensation in the confinement mode could be the con-

sequence rather than the origin of the confinement mecha-

nism that actually could depend on additional dynamical

causes.
Whether or not monopole condensation and dual super-

conductivity could give an exhaustive account of color

confinement, it is worth analyzing the tubelike structure

in the QCD vacuum using the phenomenological frame

of the dual superconductivity picture. Previous studies

[12–16] of the SU(2) confining vacuum recognized the

presence in lattice configurations of color flux tubes

made up of chromoelectric fields directed along the line

joining a static quark-antiquark pair. By adopting the lan-

guage of dual superconductivity, the transverse size of the

chromoelectric flux tube was interpreted as the London

penetration length in the Meissner effect. By measuring the

penetration length on lattice gauge configurations in the

maximal Abelian gauge and without gauge fixing, it was

also shown that the so-called London penetration length

is a physical gauge-invariant quantity. Moreover, starting

from the simple definition of the string tension as the

energy stored in the flux tube per unit length, it was

possible to compute the string tension from the measured

distribution of the chromoelectric field. In this way, an

estimate of the string tension was obtained in good agree-

ment with the results in the literature.
In the present work we investigate the formation of

chromoelectric flux tubes in the more physical case of

SU(3) gauge theory. The main aim is to compute the size

of the chromoelectric flux tube in QCD. The method and

the numerical results are reported in Sec. II. In Sec. III we

discuss our results and present our conclusions.
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II. COLOR FIELDS ON THE LATTICE

The field configurations produced by a static quark-
antiquark pair in SU(N) gauge theory can be explored
[7,8,35,36] by means of the following connected correla-
tion function:

�W ¼ htrðWLUPL
yÞi

htrðWÞi � 1

N

htrðUPÞtrðWÞi
htrðWÞi ; (1)

where (see Fig. 1) UP ¼ U��ðxÞ is the plaquette in the

ð�; �Þ plane connected to the Wilson loop W by a
Schwinger line L, and N is the number of colors. The
correlation function defined in Eq. (1) measures the field
strength. Indeed, in the naive continuum limit [8],

�W !a!0
a2g½hF��iq �q � hF��i0�; (2)

where h iq �q denotes the average in the presence of a static

q �q pair and h i0 the average in the vacuum. According to
Eq. (2) we define the color field strength tensor as

F��ðxÞ ¼
ffiffiffiffiffiffiffi
�

2N

s
�WðxÞ: (3)

By varying the distance and the orientation of the plaquette
UP with respect to the Wilson loop W, one can probe the
color field distribution of the flux tube. In particular, the
case of a plaquette parallel to the Wilson loop corresponds
to the component of the chromoelectric field longitudinal
to the axis defined by the static quarks.

A. SU(2)

In previous studies [10,12–16] the formation of chromo-
electric flux tubes was investigated in SU(2) lattice gauge

theory, both in the maximal Abelian gauge and without
gauge fixing.
The main result of those works was that the flux tube is

almost completely formed by the longitudinal chromo-
electric field, El, which is constant along the flux and
decreases rapidly in the transverse direction xt.
The formation of the chromoelectric flux tube was

interpreted as the dual Meissner effect in the context of
the dual superconductor model of confinement. In this
context the transverse shape of the longitudinal chromo-
electric field El should resemble the dual version of the
Abrikosov vortex field distribution. Hence the proposal
was advanced [10,12–16] to fit the transverse shape of
the longitudinal chromoelectric field according to

ElðxtÞ ¼ �

2�
�2K0ð�xtÞ; xt > 0: (4)

Here,K0 is the modified Bessel function of order zero,� is
the external flux, and � ¼ 1=� is the London penetration
length. Equation (4) is valid if � � �, � being the coher-
ence length (type II superconductor), which measures the
coherence of the magnetic monopole condensate (the dual
version of the Cooper condensate).
Moreover, in Ref. [16] it was found that the inverse

penetration length � exhibits approximate scaling with
the string tension �, leading to �=

ffiffiffiffi
�

p ¼ 4:04ð18Þ, based
on a numerical study on lattices 164, 204, and 244 with
poor statistics (20–100 configurations). Assuming

ffiffiffiffi
�

p ¼
420 MeV, this amounts to having a penetration length
� ¼ 0:118ð5Þ fm, in good agreement with the results
obtained in Ref. [37] on a 324 lattice.
In this work, we first repeated the determination of � in

SU(2) with a much larger statistics [details on the numeri-
cal setup are postponed to the next subsection, where the
SU(3) case is considered]. We confirm the scaling of �
with the string tension � (see Fig. 2), from which we
estimate

FIG. 1. The connected correlator (1) between the plaquette Up

and the Wilson loop. The subtraction appearing in the definition
of the correlator is not explicitly drawn.
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FIG. 2. Scaling of the inverse London penetration length withffiffiffiffi
�

p
versus � in SU(2).
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�=
ffiffiffiffi
�

p ¼ 4:21ð16Þ: (5)

The result given in the above equation is based on a study
on a 204 lattice, with a statistics of 1000 configurations.

B. SU(3)

The main motivation for repeating the study in SU(3) is
to verify the scaling of � with the string tension and to
compare the resulting determination of �=

ffiffiffiffi
�

p
with SU(2).

This result should provide us with important reference
values, that any approach aiming at explaining confine-
ment should be able to accommodate.

We performed numerical simulations with the Wilson
action and periodic boundary conditions, using the
Cabibbo-Marinari algorithm [38], combined with over-
relaxation on SU(2) subgroups. The summary of � values,
lattice size, Wilson loop size, and statistics is given in
Table I. The lattice size L has been chosen such that the
combination L

ffiffiffiffi
�

p
* 4. The size of the Wilson loop enter-

ing the definition of the operator given in Eq. (1) has been
fixed at L=2� 2a. In order to reduce the autocorrelation
time, measurements were taken after 10 updates. The error
analysis was performed by the jackknife method over bins
at different blocking levels.

In order to reduce the quantum fluctuations, we adopted
the controlled cooling algorithm. It is known [39] that by
cooling equilibrium configurations in a smooth way, quan-
tum fluctuations are reduced by a few orders of magnitude,
while the string tension survives and shows a plateau. We
shall show below that the penetration length behaves in
a similar way. The details of the cooling procedure are
described in Ref. [16] for the case of SU(2). Here we
adapted the procedure to the case of SU(3), by successively
applying this algorithm to various SU(2) subgroups. The
control parameter 	 was fixed at the value 0.0354, as in
Ref. [16].

A novelty with respect to the study of Ref. [16] is related
to the construction of the lattice operator given in Eq. (1). If
the Wilson loop lies on the plane, say, 1-2, then the
Schwinger line can leave the plane 1-2 in the direction,
say, 3; before attaching the plaquette to the Schwinger line,
the latter can be prolongated further in the direction 4, by
one or two links. In this way, by varying the length of the
Schwinger line in the direction 3, one can obtain a large set
of distances xt=a between the center of the plaquette and
the center of the Wilson loop, both integer and noninteger.
On each configuration we averaged over all possible direc-

tions for the relative orientation of the Wilson loop to the
Schwinger line.
The general strategy underlying this work is the follow-

ing:
(i) for each � we generate an ensemble of thermalized

configurations and, correspondingly, ensembles of
‘‘cooled’’ configurations after a number of cooling
steps ranging from 5 to 16;

(ii) for different values of the distance xt, the longitu-
dinal component of the chromoelectric field, aver-
aged over each cooled ensemble of configurations,
is then determined by means of the operator (1),
with the help of Eq. (3) [see, for example, Fig. 3,
which shows ElðxtÞ averaged over the ensemble at
� ¼ 5:90 after 10 cooling steps];

(iii) for each cooling step, data for ElðxtÞ are fitted with
the function given in Eq. (4) and the parameters �
and � are extracted;

(iv) a plateau is then searched for in the plot for � and
� versus the cooling step.

In Tables II and III we report the results of the fit at the
four � values considered in this work for one selected
cooling step. When the fit is done on all available data
for ElðxtÞ, above a certain xt;min, the 


2=d:o:f: is very high,
thus reflecting the wiggling of data due to the inclusion of

TABLE I. Summary of the Monte Carlo simulations.

� Lattice Wilson loop Statistics

5.90 184 7� 7 5.k

6.00 204 8� 8 4.5k

6.05 224 9� 9 3.6k

6.10 244 10� 10 2.4k

0 1 2 3 4 5 6 7 8 9 10
xt

0

0.05

0.1

0.15

0.2

E
l

β=5.90

cooling step = 10

FIG. 3. Longitudinal component of the chromoelectric field
versus the distance xt at � ¼ 5:9 after 10 cooling steps.

TABLE II. Summary of the fit values for a�.

� Cooling step a� 
2=d:o:f: xt;min=a Data set

5.90 10 0.5577(12) 626. 6 All data

6.00 9 0.510 15(92) 383. 6 All data

6.05 10 0.4730(13) 133. 7 All data

6.10 10 0.4357(20) 27. 7 All data

5.90 10 0.5557(40) 1.22 7 Integer xt=a

6.00 9 0.5099(28) 2.56 9 Integer xt=a

6.05 10 0.4735(39) 1.08 8 Integer xt=a

6.10 10 0.4349(56) 0.25 8 Integer xt=a
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noninteger distances xt=a. When the fit is restricted to
integer values of xt=a, the 
2=d:o:f: turns out to be very
reasonable. Remarkably, the resulting parameters obtained
with the two fitting procedures agree very well.

In Figs. 4–7, we show the behavior of a� and � with
the cooling step at the four � values considered. A short

plateau is always visible, except for the case of � at
� ¼ 5:90. We take as a ‘‘plateau’’ value for � the value
corresponding to the number of cooling steps given in the
second column of Table II.
Finally, we studied the scaling of the plateau values

of a� with the string tension. For this purpose, we have
expressed these values of a� in units of

ffiffiffiffi
�

p
, using the

parametrization

a
ffiffiffiffi
�

p ðgÞ ¼ fSUð3Þðg2Þ½1þ0:2731â2ðgÞ�0:01545â4ðgÞ
þ0:01975â6ðgÞ�=0:01364;

âðgÞ ¼ fSUð3Þðg2Þ
fSUð3Þðg2ð�¼ 6ÞÞ ; �¼ 6

g2
; 5:6��� 6:5;

(6)

fSUð3Þðg2Þ ¼ ðb0g2Þ�b1=2b
2
0 exp

�
� 1

2b0g
2

�
;

b0 ¼ 11

ð4�Þ2 ; b1 ¼ 102

ð4�Þ4 ;
(7)

given in Ref. [40].
Figure 8 suggests that the ratio �=

ffiffiffiffi
�

p
displays a nice

plateau in �, as soon as � is larger than 6. The scaling of�

TABLE III. Summary of the fit values for �.

� Cooling step � 
2=d:o:f: xt;min=a Data set

5.90 10 12.784(57) 626. 6 All data

6.00 9 11.354(41) 383. 6 All data

6.05 10 14.40(19) 87. 8 All data

6.10 10 12.38(11) 27. 7 All data

5.90 10 13.52(25) 1.22 7 Integer xt=a

6.00 9 12.04(16) 2.56 7 Integer xt=a

6.05 10 14.08(30) 1.08 8 Integer xt=a

6.10 10 12.90(38) 0.25 8 Integer xt=a
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FIG. 4. (Top panel) The inverse of the penetration length a� at
� ¼ 5:90 versus the cooling step. Data are obtained by fitting the
transverse profile of the longitudinal chromoelectric field with
the function (4); circles correspond to a fit to all available data of
ElðxtÞ starting from a certain xt;min, while squares correspond to a

fit of ElðxtÞ for integer values of xt=a. (Bottom panel) The same
for the amplitude of the longitudinal chromoelectric field �.
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FIG. 5. The same as Fig. 4 at � ¼ 6.
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is a natural consequence of the fact that the penetration
length is a physical quantity related to the sizeD of the flux
tube [10,12]:

D ’ 2

�
: (8)

We get the following estimate for the penetration length in
SU(3) gauge theory,

�ffiffiffiffi
�

p ¼ 2:325ð5Þ; (9)

which corresponds to

� ¼ 0:977ð2Þ GeV: (10)

We observe that this value is in nice agreement with the
determinations of Ref. [41], obtained by using correlators
of plaquette and Wilson loops not connected by the
Schwinger line, thus leading to the (more noisy) squared
chromoelectric and chromomagnetic fields.

Before concluding this section we note that the ratio
between the penetration lengths respectively given in
Eq. (5) for the SU(2) gauge theory and in Eq. (9) for the
SU(3) gauge theory is

�SUð2Þ
�SUð3Þ

¼ 1:81ð7Þ: (11)

This result recalls analogous behavior seen in a different
study of SU(2) and SU(3) vacuums in a constant external
chromomagnetic background field [42]. In Ref. [42] nu-
merical evidence that the deconfinement temperature for
SU(2) and SU(3) gauge systems in a constant Abelian

5.85 5.9 5.95 6 6.05 6.1 6.15
β

2.1

2.15

2.2

2.25

2.3

2.35

µ/
√σ

all data
only integer distances

FIG. 8. Scaling of the inverse London penetration length withffiffiffiffi
�

p
versus �. Data have been slightly shifted on the horizontal

axis for the sake of readability.
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FIG. 7. The same as Fig. 4 at � ¼ 6:10.
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FIG. 6. The same as Fig. 4 at � ¼ 6:05.
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chromomagnetic field decreases when the strength of the
applied field increases was given. Moreover, as discussed
in Refs. [28,42,43], above a critical strength

ffiffiffiffiffiffiffiffiffi
gHc

p
of the

chromomagnetic external background field, the deconfined
phase extends to very low temperatures. It was found [42]
that the ratio between the critical field strengths for SU(2)
and SU(3) gauge theories is

ffiffiffiffiffiffiffiffiffi
gHc

p jSUð2Þffiffiffiffiffiffiffiffiffi
gHc

p jSUð3Þ ¼ 2:03ð17Þ; (12)

in remarkable agreement with the ratio between the pene-
tration lengths for SU(2) and SU(3) [Eq. (11)]. As stressed
in the Conclusions of Ref. [42], the peculiar dependence
of the deconfinement temperature on the strength of the
Abelian chromomagnetic field gH could be naturally
explained if the vacuum behaved as a disordered chromo-
magnetic condensate which confines color charges due to
both the presence of a mass gap and the absence of color
long range order, such as in the Feynman picture for Yang-
Mills theory in ð2þ 1Þ dimensions [44].

The fact that the ratio between the SU(2) and SU(3)
penetration lengths agrees within errors with the above-
discussed ratio of the critical chromomagnetic fields sug-
gests that the Feynman picture of the Yang-Mills vacuum
could be a useful guide to understand the dynamics of color
confinement.

III. CONCLUSIONS

In this paper we present a study of the chromoelectric
field distribution in a static quark-antiquark pair in the
SU(3) vacuum, after revisiting some old results for SU(2)
gauge theory [16]. By means of the connected correlator
given in Eq. (1), we are able to compute the chromoelectric
field that fills the flux tube along the line joining a quark-
antiquark pair. The transverse behavior of the longitudinal
chromoelectric field can be fitted according to the solution
of the London equation for superconductors [Eq. (4)] and
gives us information on the so-called penetration length (or
inverse size of the flux tube). We find that the ratio between
the penetration lengths, respectively, for SU(2) and SU(3)
gauge theories is 1.81(7) and agrees, within errors, with the
ratio of the corresponding critical chromomagnetic fields,
which, as discussed at the end of the previous section,
could be understood within the Feynman picture of the
Yang-Mills vacuum.
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