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We calculate the electromagnetic, axial, and pseudoscalar form factors of the nucleon to �ð1232Þ
transition using two dynamical light degenerate quarks and a dynamical strange quark simulated with the

domain wall fermion action. Results are obtained at lattice spacings a ¼ 0:114 fm and a ¼ 0:084 fm,

with corresponding pion masses of 330 MeVand 297 MeV, respectively. High statistics measurements are

achieved by utilizing the coherent sink technique. The dominant electromagnetic dipole form factor,

the axial form factors and the pseudoscalar coupling are extracted to a good accuracy. This allows the

investigation of the nondiagonal Goldberger-Treiman relation. Particular emphasis is given on the

extraction of the subdominant electromagnetic quadrupole form factors and their ratio to the dominant

dipole form factor, REM and RSM, measured in experiment.
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I. INTRODUCTION

Form factors are fundamental quantities which probe the
internal structure of the hadron. They are typically ex-
tracted from electromagnetic or weak scattering processes
on hadronic targets, dominated by one-body exchange
currents. The prime example are the form factors of the
proton, which remain the most well-studied. Its electro-
magnetic (Sachs) form factors have been measured since
the 1950’s [1] and static properties such as the magnetic
moment and the charge radius are extracted. For recent
reviews on the experimental and theoretical status we refer
the reader to Refs. [1–4], respectively. Despite the long
history of measurements of the electromagnetic nucleon
form factors, polarization experiments recently revealed an
unexpected behavior in the momentum dependence of the
electric to magnetic form factor of the proton which has
triggered theoretical investigations to explain the dynamics
that give rise to such behavior [5].

The proton, being the building block of all matter that is
presently observed to be stable, provides a nice laboratory
for studying a relativistic bound state. One fundamental
question is whether hadrons being composite systems are
deformed and, in particular, whether the proton is spherical
or has an intrinsic deformation. The elastic form factors do
not suffice to answer this question on nucleon deformation,
an important quantity that characterizes the distribution of
quarks in the nucleon. The reason lies in the fact that the
spectroscopic quadrupole moment of an J ¼ 1=2 state
vanishes identically in the laboratory frame if a one-photon
exchange process is studied, although a quadrupole defor-
mation may still exist in the body-fixed intrinsic frame.
Therefore, regarding the nucleon, one has to study the

transition to the lowest positive parity J ¼ 3=2 state which
is the �ð1232Þ. The �N� matrix element is parameterized
in terms of a dominant magnetic dipole, GM1, plus the
subdominant electric quadrupole,GE2, and Coulomb quad-
rupole, GC2, transition form factors. Detection of nonzero
GE2 orGC2 signals the existence of deformation in theN-�
system [6–8]. Precise electroproduction experiments in
the last decade demonstrated that this is indeed the case
and provided measurements of the electromagnetic (EM)
transition form factors for a wide range of values of the
momentum transfer squared q2. The E2 and C2 amplitudes
are measured to a few percent of the dominant, M1,
amplitude and are typically given as ratios to the M1
amplitude, denoted by REM and RSM respectively.
State-of-the-art lattice QCD calculations can yield

model independent results on hadron form factors, thereby
providing direct comparison with experiment. Like in
experiment, the electromagnetic nucleon form factors
have been studied by many collaborations recently using
dynamical simulations [9–15]. Reproducing the experi-
mental results on the electric and magnetic form factors
is a prerequisite for enabling lattice predictions of other
form factors. This is also true for lattice calculations of the
dominant magnetic dipole N to � transition form factor
which is also well measured experimentally. In particular,
in the case of the N to �, there are no disconnected
contributions and therefore reproducing this form factor
would provide a validation of lattice QCD techniques in
calculating hadron form factors. The evaluation of the
subdominant N to � electric and Coulomb quadrupole
form factors have also been studied for many years in
dedicated experiments since, as we already pointed out,
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a nonzero value of these form factors signals a deformation
in the N-� system. However, the experimental determina-
tion needs model input and therefore lattice QCD can
provide an ab initio calculation of these fundamental
quantities.

In the axial sector, in the case of the nucleon, there exist
two form factors, the axial, GA, and induced pseudoscalar,
Gp, form factors. They have been studied in neutrino

scattering and muon capture experiments, respectively,
but experimental data are less precise [16,17]. There
have also been several lattice evaluations of the nucleon
axial charge gA [9,18–20] and of the momentum depen-
dence of the two form factors [12,21]. Partial conservation
of axial symmetry (PCAC) leads to a relation between the
nucleon axial charge and the pseudoscalar �-N coupling
constant g�NN , the well-known Goldberger-Treiman rela-
tion. The strong decay of the � obscures greatly experi-
mental studies of the N to � weak matrix element, but
some information on the dominant axial transition form
factors CA

5 ðq2Þ and CA
6 ðq2Þ is available from neutrino inter-

actions on hydrogen and deuterium targets. CA
5 and CA

6 are

the analogue of the nucleon axial form factors, GA and Gp,

respectively. Indeed, like Gp, the q2 dependence of CA
6 is

dominated by the pion pole and due to the axial Ward-
Takahashi identity (AWI), a relation can be derived
between CA

5 and the phenomenological strong coupling

of the pion-nucleon-� vertex, g�N�. This relation is re-
ferred to as the nondiagonal Goldberger-Treiman relation.

Such observations strongly motivate the study of the
N-to-� transition from first principles using lattice QCD.
The first lattice study of the electromagnetic �N� transi-
tion was carried out in the quenched approximation [22] at
a fixed Euclidean momentum transfer squared Q2 ¼ �q2

with inconclusive results as to whether the E2 or C2
amplitudes were nonzero due to large statistical errors. A
study employing the formalism of Ref. [22] followed using
quenched and two dynamical flavors of degenerate Wilson-
type quarks at smaller quark masses, but still only at the
lowest q2-value allowed on the lattices at hand. Although
there was an almost ten-fold increase in statistics, the
values obtained for the quadrupole form factors had large
statistical noise and a zero value could not be excluded
[23,24]. In order to obtain sufficient accuracy, we com-
bined sequential inversions through the source instead of
through the current for the evaluation of the three-point
functions and optimized sources that led to a large sample
of statistically independent measurements for a given
q2-value. The calculation, carried out in the quenched
approximation, confirmed a nonzero value with the correct
sign for both of the quadrupole amplitudes [25,26]. A
similar study was also carried out for the axial vector N
to �matrix element [27]. Using this new methodology, we
extended the calculation of the N to � electroweak form
factors to unquenched lattice QCD. For the latter study, we
used Nf ¼ 2 Wilson fermions as well as an Nf ¼ 2þ 1

calculation with a mixed action with domain wall valence
quarks on a staggered sea, reaching a pion mass of about
350 MeV [21,28–30]. This calculation showed that the
unquenched results on the Coulomb quadrupole form fac-
tor at low q2 decreased towards the experimental results.
However, the discrepancy in the momentum dependence
of the dominant dipole form factor remained with lattice
results having smaller values at low q2-values and a weaker
dependence on q2. Using the same set of sequential pro-
pagators as in the electromagnetic case the axial and
pseudoscalar N to � form factors were studied [21,30].
The strong coupling constant g�N� and nondiagonal
Goldberger-Treiman relation were examined in detail and
it was demonstrated that the behavior is very similar man-
ner to the corresponding relations in the nucleon system.
In this work, we study the N-to-� transition using NF ¼

2þ 1 dynamical domain wall fermions simulated by the
RBC-UKQCD collaborations [31]. This eliminates ambi-
guities about the correctness of the continuum limit due to
the rooting of the staggered sea quarks and the matching
required in a mixed action. Preliminary results have been
presented in Ref. [32]. We use two ensembles correspond-
ing to lattice spacing a ¼ 0:114 fm and a ¼ 0:084 fm and
physical volume of ð2:7 fmÞ3. Both lattice spacings are
smaller than the lattice spacing used in our previous
mixed-action calculation. This allows, for the first time,
the investigation of cutoff effects on these hadronic ob-
servables. For each lattice spacing, we chose to perform the
calculation on the lightest pion mass set available, namely,
at 330 MeV pions for the coarse lattice and 297 MeV for
the fine one, in order to be as close as possible to the
physical regime. The goal is, first, to check whether lattice
results on the well measured experimentally dominant
dipole form approach experiment. Secondly, we would
like to see the onset of the large pion cloud contributions
to the quadrupole form factors as predicted by chiral
effective theory [33]. Thirdly, we will extract the axial N
to � coupling that enters in chiral expansions of the
nucleon axial charge as well as the strong coupling con-
stant g�N�. Determining these quantities together with the
corresponding quantities gA and g�NN for the nucleon as
well as for the � on the same gauge configurations will
enable simultaneous chiral extrapolations to the physical
point and yield more reliable results on these fundamental
quantities.
The paper is organized as follows: In Section II, we

describe the general lattice setup and outline the techniques
utilized to extract all the transition form factors from three-
point functions measured on the lattice. In Section III, we
present in detail the decomposition of the electromagnetic
N to�matrix element on the hadronic level in terms of the
Sachs form factors and discuss the results for the electro-
magnetic transition form factors. In Section IV, we give the
corresponding matrix element for the electroweak transi-
tion and discuss the results on the axial and pseudoscalar
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form factors. Finally, the last section contains our conclu-
sions and an outlook regarding further studies in the sub-
ject. In an appendix, we collect some of our numerical
data.

II. LATTICE SETUP AND TECHNIQUES

We use the Nf ¼ 2þ 1 dynamical domain wall fermion

(DWF) ensembles generated by the RBC and UKQCD
collaborations [31,34,35] with the strange quark mass fixed
at the physical point. Specifically, we consider gauge con-
figurations on lattices of volume 243 � 64 corresponding
to a pion mass of about 330 MeV and inverse lattice
spacing a�1 ¼ 1:73ð3Þ GeV and 323 � 64 corresponding
to a pion mass of about 297 MeVand a�1 ¼ 2:34ð3Þ GeV.
We refer to the former lattice corresponding to a�1 ¼
1:73ð3Þ GeV, as the coarse DWF lattice, and the one
corresponding to a�1 ¼ 2:34ð3Þ GeV, as the fine DWF
lattice.

Domain wall fermions preserve chiral symmetry in the
infinite limit of the fifth dimension, L5. In actual compu-
tations, L5 is finite leading to an additive contribution
to the quark mass as defined through the Axial Ward-
Takahashi Identity (AWI). For the coarse ensemble,
a residual quark mass of amres ¼ 0:00315ð2Þ has been
measured by UKQCD-RBC [31] with the extent of the
fifth dimension set to L5 ¼ 16. The same L5 extent for
the fine ensemble leads to a much smaller violation, mea-
sured to amres ¼ 0:000665ð3Þ, or just 17% of the bare
quark mass [11].

Details about the lattice parameters used in this study are
provided in Table I, where for comparison the relevant
values of the parameters used in our previous study using
the mixed action [12,21,28] are also given.

In order to create the proton and �þ states we use the
standard interpolating operators

�pðxÞ ¼ �abc½uTaðxÞC�5d
bðxÞ�ucðxÞ; (1)

��þ
� ðxÞ ¼ 1ffiffiffi

3
p �abcf2½uTaðxÞC��d

bðxÞ�ucðxÞ

þ ½uTaðxÞC��u
bðxÞ�dcðxÞg; (2)

respectively. The J ¼ 3=2 � state is described by the
Rarita-Schwinger vector-spinor where � ¼ 1, 2, 3, 4 is
the Lorentz vector field index. C ¼ �4�2 is the charge-
conjugation matrix.
Form factors of the N-� transition are extracted on the

lattice from the three-point function

hG�J�N
� ðt2; t1;p0;p; ��Þi
¼ X

x2;x1

e�ip0�x2eþiq�x1��	
�

� h�jT½��	
� ðx2; t2ÞJ�ðx1; t1Þ ���

Nð0; 0Þ�j�i: (3)

In this notation, an initial nucleon state with momentum p
is created at time zero and propagated to a later time t1, at
which it couples to the current J, causing a transition to the
� state of momentum p0, which is annihilated at a later
time t2. q ¼ p0 � p is the momentum transfer. The projec-
tion matrices �� are given by

�i ¼ 1

2

�i 0
0 0

� �
; �4 ¼ 1

2

1 0
0 0

� �
: (4)

The one-body currents considered in this work include the
local vector current

V�ðxÞ ¼ 2

3
�uðxÞ��uðxÞ � 1

3
�dðxÞ��dðxÞ; (5)

the axial-vector current and pseudoscalar density

Aa
�ðxÞ ¼ �c ðxÞ���5

�a

2
c ðxÞ;

PaðxÞ ¼ �c ðxÞ�5

�a

2
c ðxÞ

(6)

with �a the three Pauli-matrices acting in flavor space and
c the isospin doublet quark field. Note that due to the

TABLE I. Parameters for the calculation of the electromagnetic and axial transition form factors. The mixed-action results from
Refs. [21,28] are also included for completeness. In the second (third) column we show the number of gauge configurations used for
the dominant (suppressed) form factors. For the DWF lattices, the numbers in the parentheses next to the number of configurations are
multiplied by four, since the coherent sink method was employed, showing the actual number of measurements taken into account in
the overconstrained analysis. In the fifth and sixth columns, we list the values of the vector and axial current renormalization constants,
respectively, that have been used as input parameters in our calculation, since we have used local currents and not the lattice conserved
ones.

Volume Ndom:
confs (Nmeas:) Nsubd:

confs (Nmeas:) a�1 [GeV] ZV ZA mu;d=ms m� [GeV] mN [GeV] m� [GeV]

coarse NF ¼ 2þ 1 DWF [31]

243 � 64 200 (800) 398 (1592) 1.73(3) 0.7161(1) 0.7161(1) 0:005=0:04 0.329(1) 1.130(6) 1.457(11)

fine NF ¼ 2þ 1 DWF [11]

323 � 64 176 (704) 309 (1236) 2.34(3) 0.7468(39) 0.74521(2) 0:004=0:03 0.297(5) 1.127(9) 1.455(17)

Hybrid action [12]

DWF valence: amu;d ¼ 0:0138, ams ¼ 0:081
283 � 64 300 (300) 300 (300) 1.58(3) 0:01=0:05 0.353(2) 1.191(19) 1.533(27)
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�J ¼ 1 nature of the transition, only the isovector part
of V� contributes and, due to isospin symmetry, only the

flavor diagonal operator �3 needs to be evaluated. Inclusion
of baryon states in the three-point function (3) and the
use of standard Euclidean spin-sums for the Rarita-
Schwinger fieldX
s

u�ðp; sÞ �u�ðp; sÞ ¼ �i� � pþm�

2m�

�

�� þ 2p�p�

3m2
�

� i
p��� � p���

3m�

� 1

3
����

�
; (7)

and the Dirac spinorX
s

uðp; sÞ �uðp; sÞ ¼ �i� � pþmN

2mN

(8)

lead to the isolation of the desired matrix element, assum-
ing that the initial and final ground states dominate the
propagation before and after the operator insertion, respec-
tively. In order to cancel, in the large Euclidean time limit,
the dependence on the Euclidean time evolution and on the
unknown overlaps of the nucleon and � states with the
initial states, we form the following ratio:

RJ
�ðt2; t1;p0;p; ��;�Þ

¼ hG�J�N
� ðt2; t1;p0;p; �Þi
hG��

ii ðt2;p0; �4Þi
�hG��

ii ðt2;p0; �4Þi
hGNNðt2;p; �4Þi

� hGNNðt2 � t1;p; �4ÞihG��
ii ðt1;p0; �4Þi

hG��
ii ðt2 � t1;p

0; �4ÞihGNNðt1;p; �4Þi
�
1=2

(9)

which requires also measurements of the nucleon (GNN)
and � (G��

�� ) two-point functions

hGNNðt;p; �Þi ¼ X
x

e�ip�x��	h�jT�	ðx; tÞ ���ð0; 0Þj�i;

(10)

hG��
�� ðt;p; �Þi ¼

X
x

e�ip�x��	h�jT�	
�ðx; tÞ ���

� ð0; 0Þj�i:

(11)

Implicit summations on indices i ¼ 1, 2, 3 are assumed in
the above ratio (9), which is designed such that the time
evolution (and consequently the noise) appearing in its
two-point function part is minimized. In the large
Euclidean time limit (t2 � t1 � 1, t1 � 1) where we
have ground state dominance, this ratio (9) thus yields a
time-independent function �J

�ðp0;p; ��;�Þ that is related
to the matrix element h�ðp0ÞjJjnðpÞi. Therefore, we look
for the plateau region of Eq. (9) in order to extract the
matrix element that we are interested in. For a given
operator insertion J and projection matrix ��, the function
�J

�ðp0;p; ��;�Þ is a linear combination of the correspond-
ing form factors. These relations for the appropriate choice
of �� and � vector index � will be given in the following
sections.

The computationally intensive part of the calculation
lies in the calculation of the three-point function given in

Eq. (3). In order to achieve the extraction of the momentum
dependence of the matrix element for the V�ðxÞ, A3

�ðxÞ,
and P3ðxÞ insertions, one needs an evaluation for a large
number of values of the momentum transfer q. This is
feasible by evaluating the matrix element using sequential
inversions through the sink. In this method, the quantum
numbers of the source and sink interpolating fields are
fixed, effectively by fixing the � and � indices. The time
slices of the source and sink are, in addition, fixed. The
quark propagator with the operator insertion is obtained by
the joining of a forward propagator and the sequential
propagator which is obtained by using as a source the
baryon state at the sink folded in with the two forward
propagators from the source. With the forward and sequen-
tial propagators available, the operator insertion at selected
intermediate times t1 and momenta transfers q is readily
available. In this method, the final state, in this case the
�-state, is always at rest. Since the �-� space of indices
still spans a set of 16 independent inversions that would be
required, an optimization in this space has been exploited.
Three linear combinations are constructed from which the
EM, axial and pseudoscalar form factors are extracted such
that the maximal set of statistically independent measure-
ments of momentum transfer vectors q per q2 value is
achieved. In addition, they are chosen to decouple the
dominant dipole (M1) part of the EM transition from the
subdominant quadrupoles E2 and C2 measurements. The
three linear combinations which we construct and measure
in this work are given below.

SJ1ðq; JÞ ¼
X3
�¼1

�J
�ð0;�q; �4; JÞ (12)

SJ2ðq; JÞ ¼
X3

��k¼1

�J
�ð0;�q; �k; JÞ (13)

SJ3ðq; JÞ ¼ �J
3ð0;�q; �3; JÞ � 1

2
½�J

1ð0;�q; �1; JÞ
þ�J

2ð0;�q; �2; JÞ�; (14)

where J denotes the operators V�, A3
� and P3.

Occasionally, we refer to S1, S2, S3 as optimal � sinks,
although they actually correspond to an optimal linear
combination of the full N-� three-point function with
arbitrary insertion J. We stress that, given the forward
propagators, three inversions in total are required in order
to compute the momentum dependence of the full N-�
transition and extract the electromagnetic, axial and pseu-
doscalar form factors.
Since the source-sink separation is fixed in this method,

it is crucial to suppress the excited baryon states as much as
possible. This is achieved by employing gauge invariant
Gaussian smearing on the local quark fields with APE-
smeared [36] gauge fields and parameters that have been
carefully optimized for the nucleon state. For the coarse
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lattice, we show in Fig. 1 a comparison of results obtained
with a sink-source separation of 0.91 fm and 1.14 fm. As
can be seen, extending the source-sink separation to
1.14 fm, the plateau values for the dominant magnetic
dipole form factor GM1, which are the most accurate, are
consistent with a time-separation of 0.91 fm. Since the
larger time separation introduces a doubling in the statis-
tical noise, for the accuracy needed in this study, we opt to
use the smaller sink-source separation in time. For the fine
lattice, we take a sink-source separation of �T ¼ 12a
corresponding to 1.01 fm, consistent with our findings
using the coarse lattice.

In order to improve accuracy, a goal that is particularly
crucial for the extraction of the subdominant electromag-
netic form factors, we employ a new method first imple-
mented in the study of the nucleon form factors [11] and
referred to as the coherent sink technique. The method
consists of creating four sets of forward propagators for
each configuration at source positions separated in time by
one-quarter of the total temporal size. Namely, for the
coarse DWF lattice, NL ¼ 24, we have forward propaga-
tors generated with sources positioned at:

�
ð~0; 0Þ;

� ~L
2
; 16a

�
;

� ~L
4
; 32a

�
;

� ~3L

4
; 48a

��
;

and for the fine DWF lattice, NL ¼ 32, placed at:

�
ð~0; 10aÞ;

� ~L
2
; 26a

�
; ð~0; 42aÞ;

� ~L
2
; 58a

��
;

or

�� ~L
4
; 10a

�
;

�
3 ~L

4
; 26a

�
;

� ~L
4
; 42a

�
;

�
3 ~L

4
; 58a

��
:

From each source ð ~xi; TiÞ, a zero-momentum projected
� source is constructed at T0 slices away, i.e. at ( ~xi, Ti þ
T0). For the coarse DWF lattice T0=a ¼ 8, while for the
fine DWF lattice T0=a ¼ 12. Then a single coherent back-
ward propagator is calculated in the simultaneous presence
of all four sources. The cross terms that arise vanish due to
gauge invariance when averaged over the ensemble. The
forward propagators have already been computed by the
LHPC collaboration [11], and therefore we effectively
obtain four measurements at the cost of one sequential
inversion. This assumes large enough time-separation be-
tween the four sources to suppress contamination among
them. A question that arises is whether or not there exist
statistically important correlations among these four
measurements. In Fig. 2, we show the dependence of the
jackknife error on the magnetic dipole GM1 for different
coherent sink bin sizes. As can be seen, the jackknife errors
using one sequential inversion for each are the same as
combining all four in single inversion. This is a direct
verification that cross-correlations between the different
sinks are absent or negligible.
Finally, the full set of lattice data obtained at a given Q2

value is analyzed simultaneously by a global �2 minimi-
zation using the singular value decomposition of an
overconstrained linear system [21,37]. Generically, this

FIG. 1 (color online). The ratio RJ
� from the source S1 of

Eq. (9) versus t=a for a source-sink separation 0.91 fm shifted
by a time slice (triangles) and 1.14 fm (squares) for the four
smallest nonzero ~q2 values. The fit range is also shown along
with the fitted lines and the corresponding error bands. The
behavior is the same for both, but the error reduction is better
in the former, which is what we therefore utilize in the calcu-
lations.

FIG. 2 (color online). Dependence of the jackknife error for
GM1ðQ2Þ on the coherent sink bin sizes. This test shows that
there is no problem with cross-correlations in the coherent sink
method applied in this study.
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consists of setting up the following linear over-complete
system of equations

Pðq;�Þ ¼ Dðq;�Þ � FðQ2Þ; (15)

where Pðq;�Þ represent the lattice measurements of the
appropriately defined ratios of Eq. (9), each one with its
associated statistical weight wk. The column vector FðQ2Þ
contains the number M of form factors to be extracted.
If we let N represent the number of momentum vectors q
and current directions � that contribute to a specific value
of Q2, then Dðq;�Þ is a matrix structure of the form
N �M which depends on kinematical form factors
obtained from the trace algebra on the employed matrix
element. The form factors, at the specificQ2 value, are then
extracted from the minimization of the total �2:

�2 ¼ XN
k¼1

�P2
j¼1 DkjFj � Pk

wk

�
2
; (16)

by applying the singular value decomposition on the
N �M, Dðq;�Þ matrix. All the errors on the lattice mea-
surements as well as the errors on the form factors are
determined from the jackknife procedure.

III. ELECTROMAGNETIC N-TO-� TRANSITION
FORM FACTORS

A. The electromagnetic matrix element

The electromagnetic transition matrix element

h�ðp0; s0Þjj�jNðp; sÞi

¼ i

ffiffiffi
2

3

s �
m�mN

E�ðp0ÞENðpÞ
�
1=2

�u�ðp0; s0ÞO��uðp; sÞ (17)

is decomposed in terms of three multipole form factors:

O �� ¼ GM1ðq2ÞKM1
�� þGE2ðq2ÞKE2

�� þGC2ðq2ÞKC2
��

where the kinematical factors in Euclidean space are
given by

KM1
�� ¼ � 3

ðm� þmNÞ2 þQ2

m� þmN

2mN

i"��	�p
	p0�;

KE2
�� ¼ �KM1

�� þ 6��1ðQ2Þ
�m� þmN

2mN

2i�5"��	�p
	p0�"��
� p�p

0

;

KC2
�� ¼ �6��1ðq2Þm� þmN

2mN

i�5q�ðq2ðpþ p0Þ�
� q � ðpþ p0Þq�Þ: (18)

The pðsÞ and p0ðs0Þ denote initial and final momenta
(spins), q2 � ðp0 � pÞ2, and u�ðp0; s0Þ is a Rarita-
Schwinger vector-spinor. We also define�ðQ2Þ ¼ ½ðm� þ
mNÞ2 þQ2�½ðm� �mNÞ2 þQ2�, with (Q ¼ q,Q4 ¼ iq0),
so the lattice momentum transfer gives Q2 ¼ �q2.

In this work we present results for the dominant mag-
netic dipole form factor GM1ðq2Þ as well as the subdomi-
nant electric GE2ðq2Þ and Coulomb quadrupole GC2ðq2Þ
form factors. Note that these are all scalar functions
depending on the momentum transfer q2 ¼ �Q2, whereas
on the lattice, only the spacelike q2 are accessible, thus
Q2 > 0.

B. The magnetic dipole form factor

The magnetic dipole form factor is directly evaluated
from the optimized linear combination SV1 with the vector
current V�ðxÞ insertion. In the large Euclidean time-

separation limit with the � produced at zero momentum,
we obtain,

SV1 ðq;V�Þ ¼ iAfðp2 � p3Þ
1;� þ ðp3 � p1Þ
2;�

þ ðp1 � p2Þ
3;�gGM1ðQ2Þ: (19)

The vector index � takes spatial values, � ¼ 1, 2, 3 and A
is a kinematical constant,

A ¼
ffiffiffi
2

3

s
m� þmN

4mNEN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN

EN þmN

s
: (20)

The local vector current of Eq. (5) is not conserved by the
lattice action and the renormalization constant ZV , given in
Table I, is used to renormalize the current. ZV is deter-
mined from charge conservation that dictates that the
electric nucleon form factor is one at Q2 ¼ 0, namely
ZV ¼ 1=GEð0Þ ¼ 1=F1ð0Þ where F1 is the Dirac form
factor.

FIG. 3 (color online). The magnetic dipole GM1ðQ2Þ using
DWF fermions (both coarse and fine lattices) and using the
hybrid action. The circles show the experimental results. The
solid blue (dashed black) line is a fit to dipole (exponential) form
for the fine DWF lattice. The corresponding DWF data used in
the graph are provided in Table IV (coarse DWF) and Table V
(fine DWF).
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In Fig. 3, we show the DWF results for the magnetic
dipole form factor GM1 at m� ¼ 330 MeV on the coarse
lattice and at m� ¼ 297 MeV on the fine lattice as a
function of the momentum transfer Q2. These are com-
pared with our previous results obtained with a hybrid
action approach that uses Asqtad improved staggered
fermions generated by the MILC collaboration [38] and
domain wall valence quarks [28]. The experimentally
available data (for more details see Ref. [28]) are also
shown in Fig. 3 showing a discrepancy between lattice
results and experiment. Although there is a small decrease
in the value of GM1 at high Q2 bringing lattice data closer
to experiment, the slope at small Q2 is still smaller than in
experiment. The second observation is that although the
hybrid calculation used a lattice spacing about 50% larger
than the fine DWF lattice, these data show no significant
finite a-effects. Fits to a dipole form, g0=ð1þQ2=m2

0Þ2, as
well as to an exponential form ~g0 expð�Q2= ~m2

0Þ are shown
for the fine DWF lattice. As can be seen they both provide a
good description of the lattice results. A list of the fit
parameters for all sets is provided in Table II.

The discrepancy between experiment and lattice results
is clearly reflected in the value of the dipole mass of
m0 ¼ 0:78 GeV obtained by performing a dipole fit to
the experimental data as compared to the m0 values ob-
tained from the lattice results listed in Table II. The steeper
rise of the experimental results on GM1 as a function of Q

2

near the origin is indicative of the onset of strong chiral
quark effects, or equivalently, the lack of strong pion cloud
from the still heavy pion mass lattice ensembles that are
utilized. Similar behavior has also been observed in the
nucleon electromagnetic form factors studies [10,11,13].
The N to � transition is particularly clean since there is no
ambiguity regarding disconnected contributions and thus
the flatter dependence observed in the N-to-� electromag-
netic form factor must be of different origin. Large pion
cloud effects would have to set in as we lower the pion
mass in order to explain the experimental curve. Such
effects have been shown to arise in chiral expansions
[33], and it is thus interesting to repeat the calculation
for m� < 250 MeV where they are expected to become
more pronounced.

C. The electric quadrupole form factor-GE2

The subdominant electromagnetic quadrupole form fac-
tors GE2 and GC2 are extracted from the optimized sources
SV2 and SV3 . The relevant expressions for a static � final

state are [28]:

SV2 ðq;�Þ ¼ �3A

�
ððp2 þ p3Þ
1;� þ ðp3 þ p1Þ
2;�

þ ðp1 þ p2Þ
3;�ÞGE2ðQ2Þ
� 2

p�

p2
ðp1p2 þ p1p3 þ p2p3Þ

�
�
GE2ðQ2Þ þ EN �m�

2m�

GC2ðQ2Þ
��
; (21)

for the spatial current directions � ¼ 1, 2, 3. For the
temporal current direction � ¼ 4, we have

SV2 ðq;� ¼ 4Þ ¼ �i6B

p2
ðp1p2 þ p1p3 þ p2p3ÞGC2ðQ2Þ;

(22)

where B is given by B ¼ p2

2m�
A, and A is the constant

provided in Eq. (20).
Notice that the above combination, if used alone,

will not allow for the extraction of GC2 at the lowest
photon momentum q ¼ ð1; 0; 0Þ 2�aL . Since chiral effects

are stronger at low Q2 values and experiments are targeted
in that regime, we utilize the optimal linear three-function
combination SV3 in order to obtainGC2 also at the lowestQ

2

point allowed on the lattice. The corresponding expres-
sions are

SV3 ðq;�Þ ¼ � 3A

2
p�

�
3

�

�;3 � p2

3

p2

�
GE2ðQ2Þ

þ EN �m�

2m�

�
1� 3

p2
3

p2

�
GC2ðQ2Þ

�
(23)

for � ¼ 1, 2, 3, and for the temporal component

SV3 ðq;� ¼ 4Þ ¼ 3iB

2

�
1� 3

p2
3

p2

�
GC2ðQ2Þ; (24)

which is directly proportional to GC2ðQ2Þ. Data obtained
from both SV2 and SV3 are simultaneously fitted in the over-

constrained analysis in order to extract the momentum
dependence of GE2 and GC2 as accurately as possible.
In Fig. 4(a) we plot the values of the electric quadrupole

form factor GE2 for a range of values of Q
2 < 1 GeV2, in

the case of the fine DWF lattice. These results are com-
pared to the results obtained from the mixed action [28].
We also mention here that in the case of the coarse DWF
lattice the statistical noise on the GE2 and GC2 values is
large, so a zero value can therefore not be excluded. The
phenomenologically interesting ratio REM (REM) is de-
fined as

TABLE II. The fit parameters for the magnetic dipole form
factor obtained for both a dipole and an exponential fit form with
fit parameters ðg0; m0Þ and ð~g0; ~m0Þ, respectively.
m� [GeV] g0 m0 [GeV] ~g0 ~m0 [GeV]

coarse NF ¼ 2þ 1 DWF

0.329(1) 1.937(65) 1.171(44) 1.737(53) 1.025(32)

fine NF ¼ 2þ 1 DWF

0.297(5) 2.115(161) 1.078(79) 1.907(127) 0.939(55)

HYBRID

0.353(2) 3.263(64) 1.305(27) 3.05935(61) 1.097(21)

Experiment- (various sources)

- 3.266(40) 0.745(4) 2.202(67) 0.776(10)
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REM ¼ � GE2ðQ2Þ
GM1ðQ2Þ ; (25)

and has been used traditionally as a signal of deviation
from spherical symmetry in the nucleon-� system. Early
quark models as well as models of the proton wave
function based on relativistic quarks including two-body
exchange currents agree that a small REM value in the
�1� 2% regime should appear. The experimental values
included in Fig. 4(a) show practically no dependence on
Q2. The same is true for the lattice data and in fact a good
consistency with the experiment is evident. The approach

to the physical point can be predicted in chiral effective
theory [33] where a nonmonotonic dependence on the
pion mass is expected with a minimum at 200 MeV. It is
a significant challenge for the lattice to provide accurate
results in the future in this regime in order to crosscheck
the pion dynamics.

D. The Coulomb quadrupole form factor-GC2

As mentioned in the previous section, the Coulomb
quadrupole form factor is computed with the help of
Eqs. (21)–(24). In the case of GC2, Fig. 5(a) shows
the results from the fine DWF lattice for values of

(a) (b)

FIG. 4 (color online). In (a) the result of the electric quadrupole form factor GE2ðQ2Þ extracted from the fine DWF lattice
measurements (see also Table V) is shown. The results obtained from the hybrid action [28], as well as the experimentally extracted
results from Bates [42,43,47], Jlab [44], and MAMI [45,46] are also plotted for comparison. In (b) the corresponding REM evaluated in
the rest frame of the � baryon (p0 ¼ 0) is depicted for the fine DWF lattice as well as for the hybrid action [28]. The experimentally
available results from [42–47] are also shown.

(a) (b)

FIG. 5 (color online). In plot (a) we show the Coulomb quadrupole form factor GC2ðQ2Þ extracted from the fine DWF lattice
measurements (see also Table V). Along with it, we provide also the result from the hybrid action approach [28]. Plot (b) depicts the
corresponding RSM evaluated in the rest frame of the � baryon. Nonzero values are confirmed, for the lowest Q2 values accessible on
the lattices. We also show results using the hybrid action taken from Ref. [28]. Experimental results are also included using the same
notation as those in Fig. 4.
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Q2 < 1:5 GeV2. The values of GC2ðQ2Þ are positive and
consistent with previous results obtained using the mixed
action [28], and are also shown on the same figure. The
experimentally measured ratio of Coulomb quadrupole to
magnetic dipole form factor known also as CMR is defined
by

RSM ¼ � jqj
2m�

GC2ðQ2Þ
GM1ðQ2Þ ; (26)

in the frame where the � is produced at rest. Lattice results
on the RSM ratio are shown in Fig. 5(b) where m� in
Eq. (26) is set to the physical mass. Known values of RSM

from various experiments are included in Fig. 5(b), and as
with REM show almost no dependence on the momentum
transfer. This is also the feature shown by the two lattice
ensembles, the fine DWF at 297 MeV and the hybrid
scheme at 353 MeV which are in very good agreement
with each other. Despite the large statistical errors which
escort the lattice values, they disagree with the experiment.
Chiral effective theory predicts a monotonic decrease of
this ratio as the pion mass approaches the chiral limit,
which is different from the dependence of REM. The onset
of large pion effects are expected below 300 MeV pions.

The overall conclusion is that QCD confirms nonzero
quadrupole amplitudes pointing to the existence of the
deformation in the N-� system, as coded in the EMR
and CMR ratios. However, quantitative agreement with
experiment has to await simulations at lighter pions
masses, expected to become available in the next couple
of years. Statistical accuracy at these light pions masses, in
particular, for the subdominant form factors is an issue that
has to be addressed. The use of the coherent source tech-
nique as employed here is a way to increase statistical
accuracy.

IV. AXIAL N TO � TRANSITION FORM FACTORS
AND THE GOLDBERGER-TREIMAN RELATION

A. The electroweak and pseudoscalar transition
matrix element

The nucleon to � matrix element of the axial-vector
current is parameterized in terms of four dimensionless
form factors. In the Adler parameterization [39], it is
written as follows

h�ðp0; s0ÞjA3
�jNðp; sÞi

¼ i

ffiffiffi
2

3

s �
m�mN

E�ðp0ÞENðpÞ
�
1=2

�u�
�þðp0; s0Þ

�
��

CA
3 ðq2Þ
mN

�� þ CA
4 ðq2Þ
m2

N

p0�
�
ðg��g
� � g�
g��Þq


þ CA
5 ðq2Þg�� þ CA

6 ðq2Þ
m2

N

q�q�

�
uPðp; sÞ (27)

with the axial current given in Eq. (6).

The form factors CA
3 ðq2Þ and CA

4 ðq2Þ belong to the

transverse part of the axial current and are both suppressed
[27] relative to the longitudinal form factors CA

5 ðq2Þ and
CA
6 ðq2Þ, which are the dominant ones and are the ones

considered in this work.
Likewise, the pseudoscalar transition form factor

G�N�ðq2Þ, is defined via

2mqh�ðp0; s0ÞjP3jNðp; sÞi

¼ i

ffiffiffi
2

3

s �
m�mN

E�ðp0ÞENðpÞ
�
1=2 f�m

2
�G�N�ðq2Þ
m2

� � q2
�u�
�þðp0; s0Þ

� q�
2mN

uPðp; sÞ (28)

where the normalization of the right-hand side (rhs) of (28)
is chosen such that G�N�ðq2Þ reproduces the phenomeno-
logical coupling of the �-N-� vertex in the strong inter-
action Lagrangian,

L �N� ¼ g�N�

2mN

���@� ~� � ~�N þ h:c: (29)

and the pseudoscalar density is defined in Eq. (6). In the
SU(2) symmetric limit with mq denoting the up/down

mass, the pseudoscalar density is related to the divergence
of the axial-vector current through the axial Ward-
Takahashi identity (AWI)

@�Aa
� ¼ 2mqP

a: (30)

Taking matrix elements of the above identity between N
and � states leads to the nondiagonal Goldberger-Treiman
(GT) relation

CA
5 ðq2Þ þ

q2

m2
N

CA
6 ðq2Þ ¼

1

2mN

G�N�ðq2Þf�m2
�

m2
� � q2

: (31)

On the other hand, flavor symmetry in the hadronic world
is expressed through the partially-conserved axial-vector
current (PCAC) hypothesis

@�Aa
� ¼ f�m

2
��

a (32)

which relates the pseudoscalar current to the pion field
operator and the pion decay constant f�, which is here is
taken to be 92 MeV. From Eqs. (30) and (32), the pion field
�a is related to the pseudoscalar density via

�a ¼ 2mqP
a

f�m
2
�

: (33)

Assuming pion pole dominance we can relate the form
factor CA

6 to G�N� through:

1

mN

CA
6 ðq2Þ �

1

2

G�N�ðq2Þf�
m2

� � q2
: (34)

Then, substituting Eq. (34) in Eq. (31), we obtain the
simplified Goldberger-Treiman (GT) relation
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G�N�ðq2Þf� ¼ 2mNC
A
5 ðq2Þ (35)

in an analogous fashion to the well-known GT relation
which holds in the nucleon sector studied on the lattice
in Ref. [21]. Pion pole dominance therefore fixes com-
pletely the ratio CA

6 ðq2Þ=CA
5 ðq2Þ as a pure monopole term

CA
6 ðq2Þ

CA
5 ðq2Þ

¼ m2
N

m2
� � q2

: (36)

The aim here is to calculate the dominant axial CA
5 ðq2Þ,

CA
6 ðQ2Þ, as well as the pseudoscalar G�N�ðQ2Þ form factor

and examine the validity of the GT relations within the
dynamical DWF framework, using both the coarse and fine
DWF lattices.

B. The dominant axial CA
5 , C

A
6 transition form factors

The extraction of the axial transition form factors re-
quires data from two sets of the optimal� sinks, namely S1
and S2, which are introduced in section II, for the local
isovector axial-vector current insertion A3

�ðxÞ. The corre-

sponding expressions for the large Euclidean time-
separation ratios are:

SA1 ðq; jÞ ¼ B

�
�CA

3

2

�
ðEN � 2m� þmNÞ

þ
�X3
k¼1

pk

�
pj

EN þmN

�
�m�

mN

ðEN �m�ÞCA
4

þmNC
A
5 � CA

6

mN

pj

�X3
k¼1

pk

��
; (37)

for spatial components j ¼ 1, 2, 3 of the axial current, and

SA1 ðq; 4Þ ¼ �iB
X3
k¼1

pk

�
CA
3 þm�

mN

CA
4 þ EN �m�

mN

CA
6

�
;

(38)

for the temporal component. Since the four form factors
are not completely decoupled by the above relations, we
also employ the optimal � sink SA2 given in the plateau by

SA2 ðq; jÞ ¼ i
3A

2

��X3
k¼1

pk

�
ð
j;1ðp2 � p3Þ þ 
j;2ðp3 � p1Þ

þ 
j;3ðp1 � p2ÞÞCA
3

�
; (39)

valid for spatial components j ¼ 1, 2, 3. The kinematical
factors A and B are given by

A ¼ B

ðEN þmNÞ ; B ¼
ffiffiffi
2

3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEN þmNÞ=EN

p
3mN

: (40)

Data from SA1 and SA2 determine all four form factors CA
3 ,

CA
4 , C

A
5 , and CA

6 at each value of Q2 in a simultaneous

overconstrained analysis. ZA is required to renormalize the
axial-vector operator. This has been computed by the
UKQCD-RBC and LHP collaborations for both ensembles
[11,31,34]. The values provided in Table I confirm that
ZV ¼ ZA þOða2Þ in the chiral limit, as expected for the
manifestly chiral DWF action.
The results for the axial dominant form factor CA

5

from the two DWF lattices considered in this work are
presented in Fig. 6(a), and are in good agreement with
the results obtained from the mixed-action approach at
m� ¼ 353 MeV [21]. The Q2 dependence is well
described by two-parameter dipole (solid line) and
exponential (dashed line) forms d0=ð1þQ2=m2

AÞ2,

(a) (b)

FIG. 6 (color online). Plot (a) shows the Q2-dependence of the axial form factor CA
5 extracted from the coarse and fine DWF lattices.

The corresponding mixed-action results [21] have also been included. The solid blue (dashed black) line is from the dipole
(exponential) fit for to the fine DWF lattice results. Note that the error band corresponds to the dipole fit. The dotted brown line is
the dipole fit to the experimental data. Lattice results for CA

6 are shown in (b) as a function of Q2. The solid blue line is the fit to the

form of Eq. (41). The calculated data from the DWF lattices are listed in Table VI.
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~d0 expð�Q2= ~m2
AÞ, respectively, which are almost indistin-

guishable in the plot. The fitted values for CA
5 ð0Þ � d0 (or

~d0 of the exponential form) and the corresponding axial
mass mAð ~mAÞ are given in Table III. In the same figure, we
also show a dipole fit to the available experimental data
[40], which determine an axial mass within the range of
values of mA � 0:85–1:1 GeV [40,41], obtained from the
pure dipole parameterization. As in the case of GM1ðQ2Þ,
we observe a flatter slope for the lattice data, reflected in
the larger value of the axial mass mA extracted from the
lattice results. The lattice results for the CA

6 are plotted

in Fig. 6. The curve shown in the figure corresponds to
the form

d0c0
ð1þQ2=m2

AÞ2ð1þQ2=m2Þ : (41)

In Fig. 7, we show the ratio CA
6=C

A
5 . The dashed black

line shows the pion pole dominance prediction of Eq. (36),
where for mN and m�, we use the lattice extracted values
that correspond to the fine DWF lattice. The predicted
curve does not describe the data at low-Q2 i.e., in the
regime where the strong pion cloud effects are expected
to be present. Fitting the ratio to the monopole form
c0=ð1þQ2=m2Þ allowing c0 and m to vary, one can de-
scribe satisfactorily the data on the ratio. The value of m is
larger than the lattice value of the pion mass (see Table III).
Such behavior has been observed also for the hybrid and
quenched Wilson actions [21].

C. The pseudoscalar transition form factor and
Goldberger-Treiman relation

The pseudoscalar form factor G�N�ðQ2Þ, defined via the
matrix element given in Eq. (28), is extracted directly from
the optimized linear combination S1 with the pseudoscalar
current operator insertion of Eq. (6). In the large Euclidean
time limit where only the nucleon and � states dominate
the corresponding ratio yields

SP1 ðq;�5Þ ¼
ffiffiffi
2

3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þmN

EN

s �
q1 þ q2 þ q3

6mN

f�m
2
�

2mqðm2
� þQ2Þ

�

�G�N�ðQ2Þ: (42)

Notice that the extraction of G�N� from the above
equation requires knowledge of the quark mass mq and

the pion decay constant, f�, on the given ensembles.
Calculation of f� requires the two-point functions of the
axial-vector current A3

4 with local-smeared (LS) and
smeared-smeared (SS) quark sources,

CA
LSðtÞ ¼

X
x

h�jTðA3
4ðx; tÞ ~A3

4ð0; 0ÞÞj�i (43)

(and similarly for CA
SS), where A3

4ðx; tÞ denotes the local

operator and ~A3
4ðx; tÞ the smeared operator. The pion-to-

vacuum matrix element

TABLE III. The first column gives the pion mass in GeV. The second and third columns provide the dipole fit parameters mA and d0
extracted from fitting CA

5 to d0=ð1þQ2=m2
AÞ2, the fourth and fifth columns the corresponding parameters obtained from the use of an

exponential ansatz ~d0 expð�Q2= ~m2
AÞ, the sixth and seventh columns the fit parameters m and c0 extracted from fitting the ratio CA

6=C
A
5

to a monopole form c0=ð1þQ2=m2Þ for the N-to-� process. The eighth and ninth columns show the calculated values of the fit
parameters 	0 and�0 defined in the linear fit of Eq. (51). The last two columns give the predicted values of the strong coupling constant
g�N� � G�N�ð0Þ. The first value of the strong coupling constant is determined using the fit function of Eq. (50), while the second uses
the linear fit based on Eq. (51), which is exactly equal to 	0.

m� [GeV] mA [GeV] d0 ~mA [GeV] ~d0 m [GeV] c0 �0 g�N�

coarse NF ¼ 2þ 1 DWF (K) (	0)
0.329(1) 1.588(70) 0.970(30) 1.262(36) 0.940(21) 0.509(15) 5.132(204) 0.030(5) 9.525(168) 13.936(588)

fine NF ¼ 2þ 1 DWF

0.297(5) 1.699(170) 0.944(58) 1.314(98) 0.927(46) 0.507(33) 5.756(516) 0.037(6) 8.444(491) 16.257(867)

Hybrid action

0.353(3) 1.795(40) 0.903(11) 1.386(18) 0.888(8) 0.496(10) 5.613(150) 0.019(11) 9.323(219) 11.446(617)

FIG. 7 (color online). The ratio CA
6=C

A
5 versus Q2. The dashed

black line refers to the fine DWF lattice results and is the pion
pole dominance prediction of Eq. (36). The solid blue line is a fit
to a monopole form c0=ð1þQ2=m2Þ with c0 and m adjustable
parameters.
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h0jAa
�ð0Þj�bðpÞi ¼ if�p�


ab (44)

is extracted from the two-point functions CA
LS and CA

SS and

feff� ðtÞ ¼ ZA

ffiffiffiffiffiffiffi
2

m�

s
CA
LSðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
CA
SSðtÞ

q em�t=2; (45)

yields f� in the large Euclidean time limit.
The renormalized quark massmq is determined from the

AWI, via two-point functions of the pseudoscalar density
with either local (P3) or smeared ( ~P3) quark fields,

CP
LSðtÞ ¼

X
x

h�jTðP3ðx; tÞ ~P3ð0; 0ÞÞj�i; (46)

(and similarly for CP
SS). The effective quark mass is defined

by

mAWI
eff ðtÞ ¼ m�

2

ZA

ZP

CA
LSðtÞ

CP
LSðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CP
SSðtÞ

CA
SSðtÞ

s
; (47)

and its plateau value yieldsmq. Note that ZP will be needed

only if ones wants mq alone. Since ZP enters also Eq. (42),

it cancels—as does ZA since it comes with f�—and there-
fore G�N� is extracted directly from ratios of lattice three-
and two-point functions without prior knowledge of either
ZA or ZP. We also note that the quark mass computed
through (47) includes the effects of residual chiral symme-
try breaking from the finite extent L5 of the fifth dimen-
sion. These effects are of the order of 60% for the coarse
ensemble and 17% for the fine ensemble. Chiral symmetry
breaking affects the PCAC relations and therefore the value
of G�N� through Eq. (42).

The ratio

f�G�N�ðQ2Þ
2mNC

A
5 ðQ2Þ (48)

is depicted in Fig. 8(a). It should be unity if the off-
diagonal Goldberger-Treiman relation of Eq. (35) is satis-
fied, which in turn requires that PCAC holds exactly at the
pion masses simulated in these ensembles. Deviations from
this relation are seen in the low-Q2 regime. For the fine
ensemble considered in this study, the deviations from
unity are less severe. At momentum transfers, of about
Q2 * 0:5 GeV2, the relation is at least approximately sat-
isfied and it is consistent among all actions considered
here.
Pion pole dominance relates CA

6 to CA
5 through Eq. (36).

It is found that the lattice data for all the actions employed
in this work (see also Fig. 7) are indeed well described by
the monopole form c0=ð1þQ2=m2Þ but with c0 and m
differerent from what PCAC predicts. One can test pion
pole dominance on the ratio

mNf�G�N�ðQ2Þ
2ðm2

� þQ2ÞCA
6 ðQ2Þ (49)

which should be consistent with unity. As can be seen in
Fig. 8(b), where this ratio is shown there agreement with
unity.
In Fig. 9 we compare results on G�N�ðq2Þ using the

dynamical DWF lattices to the results obtained from the
hybrid scheme taken from Ref. [21]. There is an agreement
for Q2 > 0:5 GeV2, whereas for lower Q2 values the fine
DWF data appear to be higher than the data from the other
two lattices. The solid line is a one-parameter fit form to
the fine DWF data

(a) (b)

FIG. 8 (color online). In (a) we plot the ratio of Eq. (48) as a function of Q2 as a validity test of the GT relation. Similarly, in plot
(b) ratio of Eq. (49) that relates to the validity of Eq. (34).
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G�N�ðQ2Þ ¼ K
ðQ2=m2

� þ 1Þ
ðQ2=m2

A þ 1Þ2ðQ2=m2 þ 1Þ ; (50)

which is expected assuming the validity of Eq. (36). The fit
parameter K provides an estimate of the strong coupling
g�N� at Q2 ¼ 0. In addition, we fit to the ansatz

G�N�ðQ2Þ ¼ 	0
�
1��0 Q

2

m2
�

�
; (51)

shown by the dashed line. The fit parameters are provided
in Table III. As can be seen, despite the fact that both
fits describe sufficiently well the data for 0:5 & Q2 &
1:5 GeV2, they yield quite different values at Q2 ¼ 0
prohibiting a reliable evaluation of g�N�. Clearly, in order
to achieve this goal, a better understanding of the behavior
at low-Q2 is required, since this quantity is sensitive to
pion loop effects that maybe affected by lattice artifacts
such as the finite-L5 extent.

Finally, from our lattice results we can predict the
currently unmeasured ratio CA

5=C
V
3 , which is an important

first approximation to the parity violating asymmetry. Its
dependence in Q2 is depicted in Fig. 10. From the plot
we can see a very good agreement between the coarse and
fine DWF data, at least in the range up to Q2 � 1:0 GeV,
indicating that there are no lattice cutoff effects regarding
this quantity. It is also evident from the plot that atQ2 ¼ 0,
the ratio is expected to have a nonzero value. It is noted that
CV
3 is computed from the relationship

CV
3 ¼ 3

2

m�ðmN þm�Þ
ðmN þm�Þ2 þQ2

ðGM1 �GE2Þ (52)

and is therefore dominated by GM1. As both CA
5 and

GM1 lack chiral effects near the origin, the ratio
CA
5=C

V
3 is expected to be less sensitive to such

effects. The present results for CA
5=C

V
3 are also consistent

within statistics with the results reported earlier in
Ref. [27].

V. CONCLUSIONS

The nucleon to � electromagnetic, axial and pseudosca-
lar transition form factors are calculated using Nf ¼ 2þ 1

dynamical domain wall fermions for pion masses of
330 MeV and 297 MeV for Q2 values up to about
2 GeV2. There is qualitative agreement between results
obtained in the unitary theory and corresponding results
obtained using valence domain wall quarks on a staggered
sea. The momentum dependence of the dominant magnetic
dipole, GM1, and axial, C

A
5 , form factors are well described

by dipole forms. They both show a slower falloff with
Q2 than the comparison to the experimental data, a
fact that is reflected in the heavier dipole masses that fit
the lattice data. Pion cloud effects are expected to
dominate the low-Q2 dependence, and therefore simula-
tions with pion mass below 300 MeV are required in
order to allow the evaluation of such effects from first
principles.
The phenomenologically interesting subdominant elec-

tromagnetic quadrupole form factors GE2 and GC2 have
been calculated in the case of the fine DWF lattice using
the coherent sink technique in order to increase the statis-
tical accuracy. The results confirm a nonzero value at low
Q2 � 1 GeV2. The EMR and CMR ratios are almost Q2

independent. The EMR values are in agreement with
the experiment, whereas the strength of the CMR is

FIG. 9 (color online). The plot shows the Q2-dependence of
the pseudoscalar transition form factor G�N�. The solid blue line
is a fit to pion pole dominance form of Eq. (50) for the fine DWF
ensemble. The dashed black line is the linear fit given by Eq.
(51). The strong coupling constant g�N� is the value of G�N� at
Q2 ¼ 0. Notice that the plotted values corresponding to the
DWF fermions are given in Table VI.

FIG. 10 (color online). The plot describes the Q2-dependence
of the ratio CA

5=C
V
3 . The results shown are those extracted from

both DWF lattices considered in this work.
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underestimated. This can be understood in chiral effective
theory, which predicts different chiral behavior for the two
quantities. The nonzero values calculated in QCD are in
accord with the experimental determinations [8,42–46],
and confirm a deviation from spherical symmetry in the
Nucleon-� system.

The axial transition form factor CA
6 is dominated by

chiral symmetry breaking dynamics, which is directly
reflected in the pion pole dominance. In addition, the
pseudoscalar form factor G�N� is computed and the non-
diagonal Goldberger-Treiman relation, which is a direct
consequence of PCAC is shown to be well satisfied by the
lattice data, especially for the lowest mass on the fine DWF
ensemble. Pure monopole dependence of the CA

6=C
A
5 ratio

is well satisfied, but with monopole masses considerably
heavier than the corresponding lattice pion masses. The
low-Q2 dependence of G�N� appears to be nontrivial and
the extraction of the phenomenological strong �-N-�
coupling, g�N�, requires careful understanding of the ma-
trix element systematics, since it will be sensitive to both
chiral and lattice cutoff effects.

In conclusion, the N-� transition contains valuable in-
formation that is complementary to nucleon and delta form
factors. Also, since the transition is isovector, it provides an
opportunity to assess the importance of disconnected quark
loop effects. Furthermore, it provides constraints on the
low energy constants that enter the chiral effective descrip-
tion of hadron properties. This work, utilizing dynamical
chiral fermions corresponding to pion masses of 297 MeV
and 330MeV, together with related calculations of nucleon
and delta form factors, is a significant advance in the quest
to understand from first principles how the closely related
structure of the nucleon and delta arise from QCD. The
outstanding challenge for the future is to extend these
calculations to the physical pion mass and reduce statistical
and systematic errors to the level of a few percent. It is an
appealing challenge for lattice QCD to perform precise
calculations for pion masses that approach the physical
point with all systematics under control. Simulations

with pions almost at its physical value will soon become
available and it will be important to continue the inves-
tigation of these quantities.
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APPENDIX

TABLE IV. Coarse DWF results for GM1, theirQ
2-dependence

and the corresponding (form factor) jackknife statistical errors.

Q2 (GeV2) GM1

DWF (Nf ¼ 2þ 1), a�1 ¼ 1:73 GeV, m� ¼ 330 MeV

0.141 1.581(40)

0.380 1.198(32)

0.605 0.933(33)

0.819 0.786(39)

1.022 0.641(30)

1.217 0.545(33)

1.584 0.449(50)

1.757 0.369(42)

1.925 0.332(51)

2.088 0.238(48)

2.247 0.204(99)

TABLE V. DWF results for GM1, GE2, EMR (%), GC2 and CMR (%) along with their Q2-dependence shown in the first column. The
errors shown are statistical jackknife errors.

Q2 (GeV2) GM1 GE2 EMR (%) GC2 CMR (%)

DWF (Nf ¼ 2þ 1), a�1 ¼ 2:34 GeV, m� ¼ 297 MeV

0.154 1.602(93) 0.0508(344) �3:118ð2:064Þ 0.249(142) �2:748ð1:595Þ
0.398 1.168(75) 0.0146(208) �1:129ð1:686Þ 0.122(98) �2:624ð2:144Þ
0.627 0.928(84) 0.0156(259) �1:528ð2:749Þ 0.006(124) �3:145ð4:036Þ
0.844 0.875(101) 0.0441(375) �5:246ð4:259Þ 0.158(105) �6:439ð4:348Þ
1.051 0.593(72) 0.0261(225) 4.263(3.707) 0.186(67) �12:490ð4:742Þ
1.248 0.417(86) 0.0206(251) 4.874(5.781) 0.197(74) �20:847ð8:769Þ
1.620 0.439(44)

1.802 0.224(159)

1.964 0.165(181)
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