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The Cahn effect and the unintegrated unpolarized parton distribution function fq1 ðx;pTÞ are studied in a
covariant approach. The Cahn effect is compared with some other effects due to the parton intrinsic

motion. The comparison suggests that the present understanding of parton transverse momenta and

intrinsic motion in general is still rather incomplete. The new relation for fq1 ðx;pTÞ is obtained in the

framework of the covariant parton model from which a prediction for this distribution function follows.
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I. INTRODUCTION

Studies of the transverse momentum dependent (or ‘‘un-
integrated’’) parton distribution functions (TMDs) [1] open
a new way to a better understanding of the partonic quark-
gluon structure of the nucleon. At the same time, it is
evident that the explanation of some experimental obser-
vations could be hardly possible without a more accurate
and realistic 3D picture of the nucleon, which naturally
includes transverse motion. The azimuthal asymmetry in
the distribution of hadrons produced in deep-inelastic
lepton-nucleon scattering (DIS), known as the Cahn
effect [2,3], is a classical example. The role of the quark
(transversal) intrinsic motion is crucial also for the
explanation of some spin effects, like the asymmetries in
particle production related to the direction of proton
polarization [4–10].

In our previous study, we proposed a covariant parton
model in which the 3D picture of parton momenta with
rotational symmetry in the nucleon rest frame represents a
basic input [11–17]. At the same time, the model is based
on the assumption that for sufficiently large momentum
transfer Q2, the quarks can be considered as almost free
due to the asymptotic freedom. It appears that the main
potential of this approach is the implication of some old
and new sum rules and relations among various parton
distribution functions. The sum rules which relate the
structure functions g1 and g2 in a Wandzura-Wilczek ap-
proximation and some others are proved in [12]. Assuming
the SUð6Þ symmetry (in addition to the covariance and
rotational symmetry) we have proved relations between
polarized and unpolarized structure functions [13], which
agree very well with the experimental data. In [14], we
studied transversity in the framework of this model and
we derived relations between transversity and helicity.
Recently, we generalized the model to include also the
pretzelosity distribution [16] and derived relations which
connect helicity, transversity, and pretzelosity. Finally,
with the same model we studied the TMDs and a set of
relations among them [17]. Further, in the framework of

the model we demonstrated that the 3D picture of parton
momenta inside the nucleon is a necessary input for a
consistent accounting for quark orbital angular momentum
(OAM). The dominating contribution of the OAM to the
nucleon spin is a consequence of the quark relativistic
motion inside the nucleon, i.e. when quark mass �
momentum in the nucleon rest frame. In this case, only
the total angular momentum Jqz ¼ Lq

z þ Sqz is a good
quantum number and we obtained mean values of the
quark orbital and spin components: hLq

z i ¼ 2hSqz i ¼ ��
or hJqz i ¼ hSqz i þ hLq

z i ¼ 3
2 �� [15].

A comparison of the obtained relations and predictions
with experimental data is very important and interesting
from phenomenological point of view. It allows to judge to
which extent the experimental observation can be inter-
preted in terms of simplified, intuitive notions. The ob-
tained picture of the nucleon can be a useful complement to
the exact but more complicated theory of the nucleon
structure based on the QCD. For example, the covariant
parton model can be a useful tool for separating QCD
effects from effects of relativistic kinematics.
In this work, we study further aspects of the intrinsic

motion of quarks. The Cahn effect is due to transverse
momentum of quarks, and in Sec. II we analyze the con-
ditions, which induce this effect in more detail. We show
that the azimuthal asymmetry is a general consequence of
the intrinsic motion of constituents inside the composite
target. We obtain the corresponding asymmetry as a func-
tion of parton transverse momentum in the covariant ap-
proach. In Sec. III, we make a comparison of the data on
average transverse momenta of the quarks obtained by the
method based on the Cahn effect with the data obtained by
other also model-dependent methods. In Sec. IV, we ana-
lyze the unpolarized TMD defined in our previous study
[17] and, as a result, we obtain the relation between this
unintegrated distribution and its integrated counterpart.
This relation allows us to make a prediction for the TMD
using the known parton distribution function. We also
make a detailed comparison with the recent approach by
U. D’Alesio, E. Leader, and F. Murgia [18], in which an
equivalent relation has been obtained. Finally, in Sec. V, we
summarize the obtained results.*zavada@fzu.cz
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II. CAHN EFFECT: MANIFESTATION OF THE
INTRINSIC MOTION

The Cahn effect, which is related to azimuthal asymme-
try of struck quarks in DIS, is due to the nonzero transverse
momentum of quarks inside the nucleon. The probability
W ¼ jMfij2 of the elementary lepton-quark scattering

in one photon exchange approximation is given by the
expression

Wðŝ; ûÞ / ŝ2 þ û2; (1)

where the Mandelstam variables depend on the azimuthal
angle ’ (angle between leptonic and hadronic planes) as:

ŝ 2 ¼ Q4

y2

�
1� 4

pT

Q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
cos’

�
þO

�
p2
T

Q2

�
; (2)

û 2 ¼ Q4

y2
ð1� yÞ2

�
1� 4

pT

Q

cos’ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
�
þO

�
p2
T

Q2

�
; (3)

where pT is the quark momentum component transverse to
the photon momentum q, Q2 � �q2 [19]. Apparently, the
dependence on ’ disappears for pT ! 0. The intrinsic
motion of the constituents creating the composite target
is a necessary condition for the appearance of the effect.
The Cahn effect is a kinematical effect accompanying the
QED scattering of leptons on quarks inside the nucleon and
its origin is different from that of the QCD higher-twist
effects [20–22]. At the same time it is evident, that the
intrinsic quark motion in itself is due to nonperturbative
QCD. The Mandelstam variables in terms of the lepton and
quark momenta ðl; pÞ read

ŝ ¼ ðlþ pÞ2 ¼ 2plþm2
l þm2

q; (4)

û ¼ ðp� l0Þ2 ¼ �2plþQ2 þm2
l þm2

q; (5)

where ml, mq are the corresponding masses. Obviously,

one can substitute the variables of the probability (1):

ŝ; û ! pl;Q2; Wðŝ; ûÞ ! Wðpl;Q2Þ: (6)

The probability W expressed in terms of the new variables
clearly demonstrates an azimuthal symmetry of p with
respect to the lepton beam direction l, which represents
the axis of the azimuthal symmetry. It follows that the
photon direction q, being different from the direction l,
in general cannot be the second axis of the azimuthal
symmetry. In fact, this is the essence of the Cahn effect,
see Fig. 1(a). Let us consider two reference frames:

A. The nucleon rest frame, where the first axis is directed
along q and the projection of l on the plane transversal
to q defines a second axis. The azimuthal angle ’ and the
transverse momentum pT are defined equally as above (pT

and ’ do not change under any Lorentz boost along q), so
the quark momentum p in this frame has the components:

p A ¼ ðp1; pT cos’; pT sin’Þ: (7)

B. The nucleon rest frame, where the first axis is directed
along l and projection of �q on the plane transversal to l
defines the second axis. This reference frame is obtained
by a rotation of the frame A by an angle � around a third
axis, so the quark momentum has the new components:

pB ¼ ðp1 cos�� pT sin� cos’;pT cos� cos’

þ p1 sin�; pT sin’Þ: (8)

The angle � is defined as

cos� ¼ qL
jqj ; sin� ¼ qT

jqj ; (9)

where qL and qT are the longitudinal and transversal
components of the photon momentum in the frame B,
qB ¼ ðqL; qT; 0Þ. For the lepton energy l0 (the lepton
mass will be neglected in the following), one can obtain
[11]:

jqLj
�

¼ 1þM

l0
xB;

jqj
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

Q2
x2B

s
(10)

and

qT
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4M2

Q2
�M2

l20

�
x2B � 2M

l0
xB

s
; (11)

where the standard notation is used:

xB ¼ Q2

2M�
; � ¼ l0 � l00: (12)

Now the variable pl can be expressed as

pl ¼ ðp0 � p1 cos�� pT sin� cos’Þl0: (13)

FIG. 1 (color online). (a) The interaction of a lepton with a
quark defines two axes of different symmetry. (b) The azimuthal
asymmetry as a result of variable collision energy, see text.
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This variable, after inserting into the relations (4) and (5),
allows to exactly calculate the azimuthal dependence of the
probability (1).

If one assumes

Q2 � 4M2x2B; l0 � MxB; (14)

then the relations (9) and (10) give

jqj � jqLj � �; cos� � 1: (15)

Now, since

p1 ¼ pq

jqj ¼
p0�� pq

jqj ; (16)

the relation (13) is modified as

pl �
�
pq

�
� pTqT

�
cos’

�
l0: (17)

Further, Eq. (11) is rearranged as

qT
�

¼ 2MxB
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

l0
� Q2

4l20

s
: (18)

Since the complete expression for the probability Wðŝ; ûÞ
involves the �–function term

�ððpþ qÞ2 �m2
qÞ ¼ �ð2pqþ q2Þ ¼ 1

2Pq
�

�
pq

Pq
� xB

�
;

(19)

where P is the nucleon momentum, one can replace the
product pq in (17) by MxB�. Then, assuming 4l20 � Q2,

after inserting (18) into (17) one gets

pl � Q2

2y

�
1� 2pT

ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
Q

cos’

�
; (20)

where

y ¼ �

l0
¼ Pq

Pl
;

Q2

2y
¼ xBPl:

Now, the term

� ¼ 2pT

ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
Q

cos’ (21)

represents a ‘‘small’’ correction and one can check, that the
Mandelstam variables (4) and (5) in which the term pl is
replaced by the expression (20) and the quark masses are
neglected, give the relations (2) and (3).

Now the probability Wðpl;Q2Þ can be expanded as

Wðpl;Q2Þ ¼Wðpl;Q2Þj�¼0 � @Wðpl;Q2Þ
@ðplÞ pl

���������¼0
�þ . . .

�Wðpl;Q2Þj�¼0

�
1� @ lnWðpl;Q2Þ

@ lnðplÞ
���������¼0

�

�
:

(22)

Let us make some remarks on this relation:

i) The relation implies, that the azimuthal asymmetry of
the recoiled quark is described by the distribution

Pð’Þ ¼ ð1� a cos’Þ; (23)

where

a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
Q

�
�
@ lnWðpl;Q2Þ

@ lnðplÞ
�
�¼0

� hpTi: (24)

From the analysis of experimental data one can obtain the
parameter a. Obviously for obtaining hpTi, one has to
know also the term involving differentiation of W. This
term can be estimated either from the model (Eq. (1)) or
from the experiment, if the data for a few lepton energies
are available.
ii) The azimuthal asymmetry generated by the probabil-

ity Wðpl;Q2Þ has a simple geometrical interpretation. In
Fig. 1(b), the two momenta p1, p2 with opposite transverse
components pT1, pT2 correspond to different collision
energies ŝ1, ŝ2 since

ŝ ¼ 2pl ¼ 2ðp0l0 � jpjjlj cos�Þ; (25)

where � is an angle between the lepton and quark mo-
menta. Obviously, ŝ1 < ŝ2 in this figure, and because W
depends on ŝ, then the two corresponding momenta p1, p2

give different probabilities. In this way the asymmetry is
generated. The figure reflects the necessary conditions for
the asymmetry:

sin� > 0;
@W

@s
> 0; hpTi> 0; (26)

which correspond to the three factors in the asymmetry
parameter (24).
iii) In fact, we have shown that this asymmetry can be

expected in any process lþ p ! l0 þ p0 described by the
probabilityWðŝ; ûÞ, which is defined only by the incoming
particle vector l, momentum transfer q and by the parton
vector p (or another constituent of composite target having
some distribution of intrinsic pT).
In our case, the probabilityW is related to the individual

lepton-quark scattering, which is only one stage of the
Cahn effect. For complete phenomenology of the effect
in lepton-nucleon DIS one needs further inputs:
a) 3D distribution GðpÞd3p of parton momenta in the

nucleon. The covariant approach will be studied in Sec. IV.
b) Fragmentation of recoiled quark and transfer of

azimuthal asymmetry to hadrons. It is a complex stage
containing both perturbative and nonperturbative QCD
aspects, but some standard parameterization of the frag-
mentation function can be used, like in [19].

III. WHAT DOWE KNOWABOUT
INTRINSIC MOTION?

In the lepton-quark scattering the distributions of the
scattered lepton and the recoiled quark are controlled by
the initial quark distribution GqðpÞ. And vice versa, from
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the knowledge of the distributions of the scattered leptons
or quarks (in real analysis hadrons from the quark frag-
mentation), one can obtain information about the initial
distribution by two independent ways. The comparison of
the results can serve as a consistency check. So we can
analyze two sets of data:

A. Leptonic data

The nucleon structure function F2ðx;Q2Þ is obtained
from the analysis of lepton data from DIS experiments.

i) The interpretation of this function in the framework
of the usual, noncovariant parton model suggests, that
(valenceþ sea) quarks carry approximately only 50% of
the nucleon energy-momentum. It follows that the one
valence quark can carry less than roughly 15% (more
exactly hxi ¼ R

xqvalðxÞdx=
R
qvalðxÞdx ¼ 0:155ð0:118Þ

for the u(d) valence quarks at Q2 ¼ 4 GeV2 [23]). This
estimate follows from the approach in the nucleon infinite
momentum frame, where the transversal momentum of the
quarks is neglected.

ii) The analysis of the function F2ðx;Q2Þ in the frame-
work of the covariant parton models gives the following
results. The model [24] gives the prediction for the depen-
dence hp2

T=M
2i on x: the ratio vanishes at x ¼ 0 and x ¼ 1

and reaches the peak value 0:04–0:05 at x � 0:5. A very
similar picture is obtained also in [18]. Since pT=M � 0:2
at the peak, the mean value averaged over x must be
smaller. These results are quite consistent with those
obtained in the covariant model in which we obtained for
massless quarks the relation [11]

p2
T � M2xð1� xÞ � p2

TmaxðxÞ (27)

and for average momentum of the valence quarks in the
nucleon rest frame we get [15]

hjpvalji � 0:1 GeV; hpTvali ¼ �

4
hjpvalji: (28)

iii) The statistical model [25] of the nucleon gives a very
good description of the unpolarized (Fp;n

2 ) and polarized
(gp;n1 ) structure functions in a broad kinematical region.

The temperature, one of the free parameters of the model,
is fixed to the value T � 0:06 GeV. Similar estimates
follow also from a statistical model [26,27]. Let us remark
that lattice QCD calculations suggest that the temperature
corresponding to the transition of the nuclear matter to
the quark-gluon plasma is around T � 0:175 GeV [28].
Naively, one could expect that the average quark momenta
(or temperature) in the nucleon rest frame are less than this
transition temperature. The estimates above do not contra-
dict this expectation. Further, despite the variety of applied
models, the analysis of structure functions gives compat-
ible results on the measure of intrinsic motion of quarks
inside the nucleon. Roughly speaking, the average momen-
tum of the quark, if ‘‘measured’’ by the scattered lepton
should not exceed � 0:15 GeV in the nucleon rest frame,

or � 15% of the nucleon energy-momentum regardless of
the reference frame. One can add that the leptonic infor-
mation is straightforward, since after interaction with a
quark, the lepton state is not affected by other processes
(final state interaction).

B. Hadronic data (quark line)

The Cahn effect is a method for measuring transverse
quark momenta by means of produced hadrons. This pro-
cess has two stages:
(1) The lepton-quark interaction generates an azimuthal

asymmetry on the level of the recoiled quarks,
which is defined by the relations (1)–(3) and by
the distribution of their transverse momentum.

(2) The fragmentation of the recoiled quark—the
asymmetry is partially smeared in this stage. The
inclusion of this effect requires additional free
parameters, so this method of evaluating the quark
intrinsic motion is less direct.

The pT dependence of the quark distribution function is
usually parameterized as

fq1 ðx; pTÞ ¼ fq1 ðxÞ
1

�hp2
Ti

exp

�
� p2

T

hp2
Ti
�
; (29)

where

Z 1

�hp2
Ti

exp

�
� p2

T

hp2
Ti
�
d2pT ¼ 1: (30)

One can calculate

hpTi ¼
Z pT

�hp2
Ti

exp

�
� p2

T

hp2
Ti
�
d2pT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hp2

Ti
q

2
(31)

and from the transverse momentum, one estimates the total
momentum in the nucleon rest frame as

hjpji ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3hp2

Ti
2

s
¼

ffiffiffiffi
6

�

s
hpTi: (32)

The analysis of the experimental data on the azimuthal
asymmetry suggests the following. In the paper [19], the
value hp2

Ti � 0:25 GeV2 (i.e. hpTi � 0:44 GeV) is ob-
tained (note different notation). This result is close to the
estimate hpTi � 0:5–0:6 GeV following from the analyses
[29,30]. Using the latest information on transverse hadron
momenta measured in semi-inclusive DIS, similar num-
bers were obtained in an independent approach [31]. These
figures suggest that the corresponding average energy-
momentum of a quark in the nucleon rest frame amounts
to � 0:6–0:8 GeV, i.e. � 64–85% of the nucleon mass.
They are also substantially higher than the QCD transition
temperature mentioned above.
Obviously, two questions arise:
(a) Why do the results related to the intrinsic quark

momentum obtained by the methods A and B, differ
by a factor greater than four?
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(b) Why does the method B lead to a paradox, that total
energy of quarks in the nucleon rest frame can
considerably exceed the nucleon mass and related
temperature is higher than the QCD transition
temperature?

We do not know the answer, but we realize that the
contradiction is related to the parton model, which has its
limits of validity. Nevertheless, the questions are legitimate
and require further discussion. In fact, the inconsistency
can originate in an arbitrary stage of the process. For
example, the approximation of the probability W by
only the one photon exchange (1) can be insufficient
without further QCD corrections. Or, another function W
can generate a different degree of azimuthal asymmetry in
the general expression (24), which means, that fitting the
data with the false W can give false hpTi even though the
corresponding �2 is good. Further, the quark fragmentation
into hadrons is a complex stage containing both perturba-
tive and nonperturbative QCD aspects. So the present
estimates of its impact on the smearing of primordial quark
azimuthal asymmetry can be also rather approximate.
Actually, the same inconsistency is discussed also in [18].

IV. INTRINSIC 3D MOTION IN COVARIANT
PARTON MODEL

This section follows from our previous study [15,17]. In
the present paper, we again assume the quark massm ! 0.
This assumption substantially simplifies the calculation
and seems be in a good agreement with experimental
data—in all model relations and sum rules where such a
comparison can be done. But, in principle, a more compli-
cated calculation with m> 0 is possible [13]. After fixing
the quark mass, there are no free parameters and the
construction of the model is based only on the two sym-
metry requirements: covariance and rotational symmetry.
The formulation of the model in terms of the light-cone
formalism is suggested in [17] and allows to define the
unpolarized leading-twist TMDs f1 and f?1T by means of
the light-front correlators �ðx;pTÞij as:

1

2
tr½�þ�ðx;pTÞ� ¼ f1ðx;pTÞ � "jkpj

TS
k
T

MN

f?1Tðx;pTÞ:
(33)

The corresponding expressions for the integrated and un-
integrated distributions f1 are given by Eqs. (5) and (25) in
the cited paper and can be equivalently rewritten as:

fq1 ðxÞ ¼ Mx
Z

Gqðp0Þ�
�
p0 þ p1

M
� x

�
dp1d

2pT

p0

; (34)

fq1 ðx;pTÞ ¼ Mx
Z

Gqðp0Þ�
�
p0 þ p1

M
� x

�
dp1

p0

: (35)

Now we shall study these expressions in more detail.
Because of rotational symmetry in the nucleon rest frame,

the distribution Gq depends on one variable p0; in the

manifestly covariant representation the p0 is replaced by
the variable pP=M. In this way, the relation (34) defines
the transformation

Gq ! fq1 ; (36)

where both functions depend on one variable. In [15] we
showed that the integral (34) can be inverted

GqðpÞ ¼ � 1

�M3

�
fq1 ðxÞ
x

�0
; (37)

where

x ¼ 2p

M
; p � p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

T

q
:

In this way, the distributions Gq can be obtained from the

distributions fq1 , which are extracted from the structure

functions by global analysis. Apparently, there is a one-
to-one mapping

GqðpÞ⇆ fq1 ðxÞ (38)

so both distributions represent equivalent descriptions.
Now, we will calculate the TMD integral (35). First we

calculate roots of the expression in the �� function for the
variable p1:

p0 þ p1

M
� x ¼ 0; (39)

there is just one root

~p 1 ¼ Mx

2

�
1�

�
pT

Mx

�
2
�
: (40)

At the same time the corresponding variable p0 reads:

~p 0 ¼ Mx

2

�
1þ

�
pT

Mx

�
2
�
: (41)

The �-function term can be modified as

�

�
p0 þ p1

M
� x

�
dp1 ¼ �ðp1 � ~p1Þdp1

j d
dp1

ðp0þp1

M � xÞp1¼~p1
j

¼ �ðp1 � ~p1Þdp1

x=p0

; (42)

then after inserting into Eq. (35), one gets:

fq1 ðx;pTÞ ¼ M
Z

Gqðp0Þ�ðp1 � ~p1Þdp1 ¼ MGqð~p0Þ:
(43)

One can observe that fq1 ðx;pTÞ depends on x, pT via one
variable ~p0 defined by Eq. (41). It is due to fact that this
variable in Gqð~p0Þ reflects rotational symmetry in the rest

frame. Obviously, x, pT are not independent variables at
fixed p0 or p1. Also in Eq. (43), both functions represent
equivalent description. Further, if we define

GENERALIZED CAHN EFFECT AND PARTON 3D MOTION . . . PHYSICAL REVIEW D 83, 014022 (2011)

014022-5



	 ¼ x

�
1þ

�
pT

Mx

�
2
�
; (44)

then

fq1 ðx;pTÞ ¼ MGq

�
M

2
	

�
: (45)

Since Eq. (37) implies

Gq

�
M

2
	

�
¼ � 1

�M3

�
fq1 ð	Þ
	

�0
; (46)

after inserting to Eq. (45) we get the result

fq1ðx;pTÞ ¼ � 1

�M2

�
fq1 ð	Þ
	

�0
; 	 ¼ x

�
1þ

�
pT

Mx

�
2
�
:

(47)

This equation represents a new relation which connects
integrated and unintegrated unpolarized distribution func-
tions. Before further discussion, one can verify the com-
patibility with Eqs. (34) and (35):

fq1 ðxÞ ¼
Z

fq1 ðx;pTÞd2pT: (48)

Equation (47) implies

Z
fq1ðx;pTÞd2pT ¼ � 2

M2

Z pTmaxðxÞ

0

�
fq1 ð	Þ
	

�0
pTdpT;

(49)

where we replaced d2pT ¼ 2�pTdpT . From Eq. (44) we
have

d	 ¼ 2pTdpT

M2x
: (50)

and Eqs. (27) and (44) imply

x � 	 � 1: (51)

Now the Eq. (49) can be modified as

Z
fq1 ðx;pTÞd2pT ¼ �x

Z 1

x

�
fq1 ð	Þ
	

�0
d	; (52)

from which Eq. (48) follows easily.
We can make two remarks about the obtained results:
i) Because of covariance and rotational symmetry

(which follows from the invariant variable pP=M in the
rest frame), all the following distributions used in our
approach involve equivalent information

fq1 ðx;pTÞ , GqðpÞ , Gqðp0Þ , Gq

�
pP

M

�
, fq1 ðxÞ (53)

and also the two sets of variables are equivalent:

p , ðx;pTÞ; d3p ¼ p0

x
dxd2pT: (54)

ii) All the functions (53) are assumed to depend also on
Q2, although the evolution is not involved in the present

version of the model. Nevertheless, due to this equivalence,
in the present approach, the evolution of fq1 ðx;pT; Q

2Þ can
be obtained from fq1 ðx;Q2Þ, which is evolved in standard

way and similarly for the distribution Gqðp; Q2Þ.
Now, we can apply the obtained relations for corre-

sponding numerical calculation. The transverse momen-
tum dependent distribution functions fq1 ðx;pTÞ are

calculated from Eq. (47), for input distributions fq1ðxÞ we
used the standard parameterization [23] (LO at the scale
4 GeV2). In Fig. 2 we have results for u and d-quarks. The
left panel demonstrates, that x and pT are not independent
variables. In accordance with the relation (27), in the
sample of partons with fixed pT , the region of low x is
effectively suppressed. For larger pT , the effect is getting
more pronounced. The right panel of the figure demon-
strates, that the typical value of pT in this approach corre-
sponds to the estimates based on the leptonic data in
Sec. III.
Further, let us compare our model giving the relation

(47) with the approach described in the recent paper [18].
The corresponding relation (57) in the cited paper reads:

qðx;k2
TÞ ¼ � 1

�M2

d

dx

�
qðxÞ
x

�
x¼


�½xð1� xÞM2 � k2
T�;
(55)

where


 ¼ xþ k2
T

xM2
:

We agree with the authors of the cited paper, that both
relations are equivalent (the authors refer to a first version
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FIG. 2. Transverse momentum dependent unpolarized distribu-
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curved line corresponds to the integrated distribution fqðxÞ. Right
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of our paper). The �-function term corresponds to the
constraint (27) valid in our approach, and the correspon-
dence of other symbols is obvious. The relation (55) fol-
lows from a previous relation (55) in [18]

qðx;k2
TÞ ¼

1

�M2
’3

�
xþ k2

T

xM2

�
�½xð1� xÞM2 � k2

T�:
(56)

If we integrate this equation, then the left-hand side (lhs)
represents the definition (54) in [18]

Z
qðx;k2

TÞd2kT ¼ qðxÞ (57)

and after substitutions d2kT ! �dk2
T , k2

T ! 
 ¼
xþ k2

T=xM
2, the right-hand side (rhs) gives

1

�M2

Z xð1�xÞM2

0
’3

�
xþ k2

T

xM2

�
d2kT ¼ x

Z 1

x
’3ð
Þd
:

(58)

The last two equations imply the relation

qðxÞ ¼ x
Z 1

x
’3ð
Þd
; (59)

which after differentiation and inserting into Eq. (56) gives
the final relation (55). The approach developed in [18] is
motivated by the classic papers [32,33] fromwhich also the
starting Eq. (56) is adopted. The corresponding model is
represented by the handbag diagram, in which the incom-
ing line is put on-mass-shell k2 ¼ 0 but has nonzero
transverse momentum [32], Fig. 1(a). Let us also remark,
that the form of the expression (56) is dictated by
Lorentz invariance. Further, comparing this expression
with Eq. (45) allows to identify

1

�M3
’3ð	Þ ¼ Gq

�
M

2
	

�
; (60)

where

	 ¼ xþ p2
T

xM2
¼ 2P � p

M2
; (61)

see e.g. Eq. (28) in [18]. The last equality means, that in the
nucleon rest frame 	 ¼ 2p0=M, which implies rotational
symmetry of both functions ’3 and Gq in this frame.

So, we can conclude that both approaches have a com-
mon basis represented by the requirements:

(i) Lorentz invariance, which, in fact, implies also rota-
tional symmetry of the quark momentum distribu-
tion in the nucleon rest frame.

(ii) Quarks are on-mass-shell: p2 ¼ 0.
The equivalent results, like Eqs. (47) and (55) are just a

consequence of these conditions. The Wandzura-Wilczek
relation obtained equally in [12,18] is a further example. At
the same time, it is apparent that despite a common input,
the procedures applied in both approaches are substantially

different. Other distribution functions like transversity or
pretzelosity require additional assumptions to be included
in the approach, so the corresponding results from both
approaches may differ depending on the chosen method of
generalization.

V. SUMMARYAND CONCLUSION

We studied some questions related to the distribution of
quark transverse momenta in the framework of the cova-
riant approach. From this point of view, this distribution is
a projection of a more general 3D motion of quarks inside
the nucleon with respect to the plane transverse to the
momentum of the probing particle. Because of general
arguments, the 3D motion of quarks in the nucleon rest
frame has rotational symmetry. We suggested that in our
approach, this rotational symmetry follows from covari-
ance (Lorentz invariance). It follows that in both pictures,
2D and 3D momenta distributions involve equivalent in-
formation. The main results obtained in this paper can be
summarized as follows.
i) We analyzed the conditions generating the Cahn ef-

fect, which represents an important tool for measuring of
the quark transverse motion. We suggested that the effect
has a more general origin than it is currently considered.
We obtained a general expression for azimuthal asymme-
try, which depends on intrinsic transverse momentum of
the quarks and on the probability Wðŝ; ûÞ of the lepton-
quark scattering. At the same time, we presented argu-
ments why the analysis of data on azimuthal asymmetry
due to Cahn effect requires caution.
ii) We have done a comparison which suggests that the

data on transverse motion based on Cahn effect disagree
with the data based on analysis of the structure functions
(F2) in the framework of various models. Both methods
differ in estimation of hpTi by factor � 4.
iii) We studied the unpolarized parton distribution func-

tions fq1 ðx;pTÞ in the framework of the 3D covariant parton

model. We obtained a new relation which relates this TMD
to its integrated counterpart fq1 ðxÞ. Using this relation with

the input on the integrated distribution obtained from
global analysis, we calculated fq1 ðx;pTÞ also numerically.

iv) We have done a detailed comparison with the recent
approach by U. D’Alesio, E. Leader, and F. Murgia [18], in
which an equivalent relation and other results coincident
with our approach have been obtained. We have proved
that both approaches have a common general basis
consisting in Lorentz invariance (covariance), and in the
on-mass-shell condition p2 ¼ 0. That is why, despite sub-
stantially different procedures and formalism applied in
both approaches, some results are identical.
v) We confirmed that the requirement of relativistic

covariance combined with the nucleon rotational symme-
try represents a powerful tool for revealing new relations
connecting various parton distribution functions, including
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the relations between the unintegrated distributions
fq1 ðx;pTÞ and their integrated counterparts fq1 ðxÞ.
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