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I. INTRODUCTION

It is well known that the Froissart bound [1] for total cross
section �tot � �=m2

�ln
2s [2] is violated in perturbation

theory within the Leading Logarithmic Approximation
(LLA). The hard Pomeron exchange obtained in the LLA
is described by the Balitsky, Fadin, Kuraev, Lipatov (BFKL)
equation [3–6]. This violation persists also at the Next to
Leading Logarithmic Approximation (NLLA). Although
strictly speaking valid only for hadronic observables, and
not for external virtual states such as ��, there is a common
belief that this bound should be satisfied within any reason-
able perturbatively resummed scheme. This was the starting
point of various lines of research, which led to various
unitarization and saturation models in which the triple
Pomeron vertex is a key building block.

The Generalized Leading Log Approximation, which
takes into account any fixed number n of t-channel ex-
changed Reggeons, leads to the Bartels, Jaroszewicz,
Kwiecinski, Praszalowicz (BJKP) equation [7–10]. The
BJKP equation can be reformulated as a 2-dimensional
quantum mechanical problem with n sites, each one cor-
responding to one of the (gluonic) t-channel Reggeons (in
the coordinate space), with time � lns. The underlying
hamiltonian is holomorphically separable and invariant
under global conformal transformations [11,12]. In the
large Nc limit, this two-dimensional quantum mechanical
model greatly simplifies and turns out to be integrable
[12–16]. The singlet color bound states of an even number
n of t-channel Reggeons have the quantum numbers of the
Pomeron (with P ¼ C ¼ þ1), while for n odd, such
bound states contribute both to Pomeron and Odderon
(with P ¼ C ¼ �1) exchange. For Odderon, the obtained
trajectory belongs to two types of solutions [17–22]. The
first one satisfies �O < 1, and when summing with respect
to n, it is expected that the whole series, although diver-
gent, could have a critical behavior with an Odderon
intercept �O ¼ 1. However, these bound states decouple
from Born impact factors. They couple to photon impact
factor only through nontrivial color states, at least of
quadrupole type, which are therefore suppressed by 1=N2

c

powers. In contrast, it is possible to exhibit a second
critical solution, �O ¼ 1 [20], which couples to Born
impact factors. These peculiar solutions can also be ob-
tained either from the perturbative Regge approach [23] or
from the dipole model, see Ref. [24].
In comparison to the previous approach, the Extended

Generalized Leading Log Approximation (EGLLA)
[25–29], in which the number of Reggeon in t channel is
not conserved, satisfies full unitarity (in all subchannel)
and leads to an effective two dimensional field theory real-
izing the Gribov idea of Reggeon field theory [30] in QCD
(for a pedagogical review on this approach see Ref. [29]).
In the framework of EGLLA, the simplest new building
block (with singlet subchannels) is the triple Pomeron
vertex [26–28,31]. The conformal properties of this vertex
allow one to relate it to the conformal blocks of an under-
lying (still unknown) conformal field theory, and, using
bootstrap properties, it was possible to evaluate this vertex
[32]. The Pomeron vertex contains two contributions: a
planar one, and a nonplanar one, which is suppressed by a
factor of 1=N2

c with respect to the planar one:

V1P!2P ¼ V1P!2P
planar þ V1P!2P

non-planar: (1)

The dipole model [33–38], equivalent to the BFKL
equation at LLA [38,39], is based on the description of
the wave function of an onium state in terms of color dipole
degrees of freedom in the ’t Hooft limit and at large s. This
wave function satisfies a nonlinear evolution equation. In
this approach, the vertex of 1 ! 2 dipoles [40–42] is
equivalent to the planar part of the triple Pomeron vertex
derived through the EGLLA approach. The nonplanar part
of the triple Pomeron vertex cannot be derived from the
dipole model since this approach relies on the large Nc

limit which suppresses all nonplanar contributions.
Since it became clear that at high-energy (Regge limit)

nonlinear effects dominate the dynamics of the scattering
processes, nonlinear evolution equations were derived.
One of these equations is the Balitsky-Kovchegov (BK)
equation, derived first by Balitsky [43–46] in the Wilson

PHYSICAL REVIEW D 83, 014020 (2011)

1550-7998=2011=83(1)=014020(10) 014020-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.014020


line formalism, and then by Kovchegov [47,48] in the
dipole model.

The Wilson line formalism is an operator language. It is
based on the concept of factorization of the scattering
amplitude in rapidity space and on the extension to high-
energy (Regge limit) of the Operator Product Expansion
(OPE) technique, which was known before only at moder-
ate energy (Bjorken limit) as an expansion in terms of local
operators or in terms of light-ray operators. In Deep
Inelastic Scattering (DIS) off a hadron at high-energy, the
matrix elements made of Wilson line operators appearing
in the OPE, describe the nonperturbative part of the pro-
cess, and their evolution in rapidity is related to the evolu-
tion of the structure function of the target. In order to find
the evolution equation, one may use the background field
technique. The Wilson-line operators evolve with respect
to rapidity according to the Balitsky equation, which re-
duces to the BK equation in the large Nc limit. The BK
equation describes the so called fan diagrams neglecting all
nonplanar contributions, while the Balitsky equation gives
one the possibility to describe the fan diagrams including
also the nonplanar contributions.

A similar method to the background field technique is
given in Ref. [49], where the authors studied the propaga-
tion of a fast moving particle and showed that resumming
the emission of soft gluons from this source and neglecting
its recoil (eikonal approximation), one may obtain the
BFKL equation.

The Color Glass Condensate (CGC) [50–58] (for a re-
view, see Ref. [59]) is another available way to describe
high-energy scattering processes. This approach is similar to
the Wilson line formalism described above, and the corre-
sponding evolution equation is the Jalilian-Marian, Iancu,
MacLerran, Weigert, Leonidov, and Kovner (JIMWLK)
equation. Indeed, the Balitsky equation, as already men-
tioned above, is not a closed evolution equation, but it
contains an infinite set of evolution equations which goes
by the name of Balitsky-hierarchy. The JIMWLK equation
is equivalent to this hierarchy of evolution equations thus
leading to the acronym B-JIMWLK equation.

In all of these approaches, the description of the scatter-
ing of two probes involves the computation of the interac-
tion of one Wilson loop describing one probe with the field
of the other. Note that within the dipole model, a similar
approach, based on the computation of the scattering phase
of a dipole in the field emitted by a fast moving object
(involving color structures as well as multicolor states),
was suggested in Ref. [60].

A further approach to the description of high-energy
processes is based on an effective field theory. This formal-
ism [61–64] provides the building blocks (Reggeon-
Reggeon-gluon) necessary to the explicit computation
of any type of diagram at this regime. However, the
precise relationship between this effective theory and the
EGLLA approach has not been clarified yet, and explicit

applications of this effective field theory are highly desir-
able [65–67].
The triple Pomeron vertex is the first nontrivial building

block common to all the above approaches. It turns out that
up to now, its exact expression, including planar and non-
planar contribution, was derived only in the EGGLA
approach [28]. Using its conformal invariance [31], both
the planar and the nonplanar contributions of the vertex
were computed in the coordinate space [68] (see Ref. [32]
for explicit expressions in the SUðNcÞ case).
So far, only the planar contribution was derived with

formalisms different from the EGLLA one. These are the
dipole model [40–42] and the Wilson line formalism ap-
plied to diffractive processes [69].
The purpose of the present paper is to show that the exact

expression of the triple Pomeron vertex (planar and non-
planar contributions) can be easily derived through the
Wilson line formalism not only for diffractive case but
also for fan diagrams.
Indeed, this formalism was already used to derive sev-

eral new and desirable results and to confirm others which
have been derived after many years of calculations. This
includes, for example, the next-to-leading order (NLO) BK
kernel in QCD [70] and in N ¼ 4 Super-Yang-Mills
(SYM) [71], whose linearized version confirmed the
NLO BFKL kernel in QCD [72–75] and in N ¼ 4 SYM
[76]. Moreover, through Wilson line formalism, it was
possible to derive for the first time the conformal expres-
sion for the NLO BFKL kernel [77], the full amplitude at
NLO in N ¼ 4 SYM for four scalar currents made of
chiral-primary operator [78], and the analytic result for the
NLO photon impact factor [79], relevant for phenomenol-
ogy at high-energy, was recently derived.
It is clear that the Wilson line approach to the study of

high-energy scattering processes opens the way to attack
more difficult problems which have not been solved before
despite the many efforts that have been devoted to them
using different techniques. This includes, for example,
multiplePomeron orOdderon vertices, as well as sublead-
ing contributions.

II. INTRODUCTION TO THE WILSON LINE
FORMALISM

In this section, we will give a brief introduction to the
Wilson line formalism. This will set the notations which
will be used for the derivation of the triple Pomeron vertex
first in the diffraction case and then for fan diagrams which
are important for unitarization.
The main tool which we will use is the OPE for high

energies [43] of the T product of two electromagnetic
currents in terms of Wilson lines:

Tj�ðxÞj�ðyÞ ¼
Z

d2z1d
2z2 I

LO
�� ðx; y; z1?; z2?Þ

� TrfÛðz1?ÞÛyðz2?Þg þ � � � (2)
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with the operator j�ðxÞ ¼ ��ðxÞ���ðxÞ. This expansion is

in terms of a coefficient function to be identified with the
photon impact factor and a matrix element of two Wilson
line operators, with

Ûðx?; y?Þ ¼ 1� 1

Nc

TrfÛðx?ÞÛyðy?Þg; (3)

where the Wilson line is defined as usual by the operator

Ûðx?Þ ¼ P exp

�
ig

Z 1

�1
dup

�
1 A�ðp1uþ x?Þ

�
: (4)

We use here the standard Sudakov decomposition k ¼
�p1 þ �p2 þ k?, where p1 and p2 are lightlike vectors
defined in such a way that in a typical high-energy scat-
tering process, the first projectile (referred as the ‘‘above’’
one) flies almost along p1, while the second one (respec-
tively, ‘‘below’’) flies almost along p2.

The operator Û evolves according to the Balitsky
equation

d

d�
Ûðx?; y?Þ ¼ �sNc

2�2

Z
d2z

ðx� yÞ2?
ðx� zÞ2?ðz� yÞ2?

� ½Ûðx?; z?Þ þ Ûðy?; z?Þ
� Ûðx?; y?Þ � Ûðx?; z?ÞÛðz?; y?Þ�;

(5)

where x?, y?, z? are two-dimensional vector with
Euclidean metric.1 The � dependence of the operator U
enters as a regulator of the divergence by changing the
slope of theWilson line according to p1 ! p1 þ e�2�p2 in
Eq. (4).

The BK equation [43,47] is obtained from Eq. (5) at
large Nc when the correlation function of the nonlinear

term Ûðx; zÞÛðz; yÞ decouples in a product of two corre-

lation functions hÛðx; zÞihÛðz; yÞi. From now on we will
use the short-hand notation Uðx; yÞ � Uxy.

III. TRIPLE POMERON VERTEX FROM
DIFFRACTION

A. Diffraction within Keldysh formalism

We will derive in this section the triple Pomeron vertex
for diffractive processes, using Keldysh formalism adapted
to describe diffractive processes through functional inte-
gration [80]. The idea is to use the OPE for diffractive
high-energy processes [69] in order to reproduce automati-
cally the Cutkosky rules for the calculation of total cross-
sections. One introduces two different fields, each of them
living on one side of the cut, which results in three different
propagators: hAþAþi, hAþA�i, hA�A�i.

Following [69,81], we write the diffractive amplitude of
the ��p ! p0 þ X process as

Wdiff ¼ X
flavors

e2i

Z d2k?
4�2

IAðk?;0Þ

�hNjTrfŴ	¼m2=sðk?ÞŴy;	¼m2=sð�k?ÞgjNi; (6)

where Ŵðk?Þ is the Fourier transform of

Ŵðx?Þ ¼ V̂yðx?ÞÛðx?Þ; Ŵyðx?Þ ¼ Ûyðx?ÞV̂ðx?Þ;
(7)

and Ûðx?Þ now denotes the Wilson-line operator con-

structed from Aþ fields while V̂ðx?Þ denotes the same
operator constructed from A� fields:

Ûðx?Þ ¼ P exp

�
ig

Z 1

�1
dup�

1 A
þ
�ðp1uþ x?Þ

�
;

V̂ðx?Þ ¼ P exp

�
ig

Z 1

�1
dup�

1 A
�
�ðp1uþ x?Þ

�
:

(8)

In Eq. (6) m is a cutoff for collinear singularities (for
example a nonzero quark mass), and the notation
	 ¼ e�2� is used. In the case of diffractive processes, the
operator

Ŵ ðx?; y?Þ ¼ 1� 1

Nc

TrfŴðx?ÞŴyðy?Þg (9)

evolves according to the same Balitsky equation (5), as
[69]

d

d�
Ŵ ðx?; y?Þ ¼ �sNc

2�2

Z
d2z

ðx� yÞ2?
ðx� zÞ2?ðz� yÞ2?

� fŴ ðx; zÞ þ Ŵ ðz; yÞ � Ŵ ðx; yÞ
� Ŵ ðx; zÞŴ ðz; yÞg: (10)

In the right-hand side of this equation, the nonlinear term
should be interpreted as the splitting of a diffractive

Pomeron defined by hŴ ðx?; y?Þi. We now define V̂ in

a similar way as Û in Eq. (3)

V̂ ðx?; y?Þ ¼ 1� 1

Nc

TrfV̂ðx?ÞV̂yðy?Þg: (11)

Our goal is now to extract from the nonlinear part in

Eq. (10) terms of the type hÛihV̂ i, which will be inter-
preted, respectively, as the Pomeron on the left (respec-
tively, right) of the cut. In order to do this, we should
linearize this nonlinear term up to two gluons accuracy.2

B. Linearization of nonlinear term

The idea of linearization consists in expanding the non-
linear term of Eq. (10) up to g4 and rewriting this result
in terms of products of the type UV . The two-gluon
approximation means that each U and V should be

1Hereafter, these variables will be denoted simply like x, y, z.

2In the following, the notation ^ on operators will be removed
for simplification.
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approximated up to g2, since each Pomeron is a singlet
color object. The obtained result, whose detailed derivation
is given in the Appendix, is

TrfWxW
y
z � 1gTrfWzW

y
y � 1g¼2g UxzV zy þUyzV zx

þ 1

N2
c � 1

½Uxy �Uxz �Uyz�½V xy �V zx �V zy�

¼ N2
c

N2
c � 1

�
UxzV zy þUyzV zx þ 1

N2
c

½�UxyV xy

þUxzV xz þUzyV zy þUxyðV xy �V xz �V zyÞ
þV xyðUxy �Uxz �UzyÞ�

�
: (12)

C. Projection on BFKL green functions

In order to extract the triple Pomeron vertex, one has to
define precisely how to factorize out each of the three
Pomeron Green functions from the three-Pomeron corre-
lator. This is achieved according to Fig. 1. We denote the

above (below) Pomeron Green functions by ~�0 (respec-
tively, ~�). The vertex V1P!2P is defined symbolically in
the following way:

hPPPi ¼ ð��~�0ÞV1P!2P ~� ~�; (13)

where ��~�0 is the amputated Pomeron Green function,

which is denoted as ~�0
amp in Fig. 1. This prescription is in

accordance with standard definitions, as exhibited, for
example, in Ref. [82], from which notations of Fig. 1 are

inspired. We will now translate this definition of the triple
Pomeron vertex in the shock-wave approach.
In the present treatment, we deal with colorless probes.

These probes are dipoles, which respect the global confor-
mal invariance of the BFKL equation. The dipole-dipole
scattering, in the BFKL approximation, can then be pre-
sented as an elementary function of a conformal anhar-
monic ratio. This is the basis of the so-called Möebius
representation of BFKL.
In the shock-wave analysis, hUxyi describes the two-

gluon nonamputated amplitude in the Möebius representa-
tion (the upper probe is a dipole with coordinate x and y
referring, respectively, to the position of the quark and
antiquark pair), where the average is on the external field
of a lower probe. The contact with the usual 4-gluon BFKL
Green function in the Möebius representation can be made
if one considers the specific case of a lower probe made of
two Wilson lines in a color singlet state (a dipole), each of
them having definite transverse coordinates.
The dynamics of the process is encoded in the dipole

kernel (identical to the BK kernel), which acts on the
coordinates x and y (the same situation appears for the
evolution of multiple dipole densities in the dipole model,
which is the starting point of the Kovchegov approach),
while the averaging from below on a given probe does not
affect this dynamic. In both the BFKL and the shock-wave
pictures, this dynamic is encoded in a kernel which acts on
nonamputated functions (this remains true also in the
dipole picture).
Now, on one side, the BFKL Green function is

nonamputated, both from below and from above. Indeed,
at Born order it simply reduces to the product of two
propagators. Its Möebius representation is obtained by
Fourier transform and then by a ‘‘substraction,‘‘ which is
needed to enforce its vanishing for equal upper or lower
coordinates [82]. This can be obtained directly when com-
puting the elementary dipole-dipole scattering amplitude
in the two-gluon exchange approximation [39]. On the
other side, in both the shock-wave and dipole formalisms,
the operator U or the dipole densities correspond to
amputated quantities from the point of view of the below
probe.
Indeed, to get a scattering amplitude, one should con-

volute these amputated Green functions to the below
probe, thus restoring the gluonic propagators, as it is in-
deed done in these two formalisms. In the Wilson line
formalism, the fields are not contracted with the probe
from below (no propagators). In the dipole model, when
computing the scattering of two onia, in the frame where
the below onium is almost at rest, one first evaluates the
dipole content of the above probe. Then, the restoration of
these gluonic propagators appears when convoluting this
dipole density with the elementary dipole-dipole scattering
amplitude between an internal dipole constituent of the
above probe and the below dipole.

∼

V

∼ ∼

FIG. 1. A typical diagram contributing to the triple Pomeron
vertex V, with three 4-gluon Green functions (denoted as ~� and
~�0 in the Möebius representation) at g2 order. This exhibits
explicitly the amputation of the above Green function from
below.
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D. Projection on conformal three-point functions

In the Möebius representation, the Hamiltonian of the
BFKL equation acts as an integral operator, according to

�HBFKLfðx; yÞ ¼
Z

d2z
ðx� yÞ2

ðx� zÞ2ðy� zÞ2 ½fðx; yÞ

� fðx; zÞ � fðz; yÞ�: (14)

Based on the conformal invariance of this BFKL hamilto-
nian, one can diagonalize it using the following set of
eigenfunctions

Eh �hð
10; 
20Þ �
�


12


10
20

�
h
�

�
12

�
10 �
20

� �h
; (15)

where the conformal weights h and �h are given by

h¼1þn

2
þ i�; �h¼1�h� ¼1�n

2
þ i�; (16)

and where the notation 
ij ¼ 
i � 
j is used. The eigen-

value equation then reads

� ��s

2
HBFKL

xy Eh �h ¼ !ðhÞEh �h; (17)

with ��s � �sNc

� , and where !ðhÞ is given by

!ðhÞ ¼ 2 ��s Re½c ð1Þ � c ðhÞ�: (18)

The corresponding BFKL Green function then reads, in the
Mellin space ! conjugated to s,

GBFKL
! ðx;y;x0;y0Þ

¼X
h

��������
h� 1

2

hðh�1Þ
��������

2 1

!�!ðhÞ
Z
d2
0Eh �hðx�
0;y�
0Þ

�E�
h �h
ðx0 �
0;y

0�
0Þ: (19)

Let us now turn to the shock-wave formalism. In the BFKL
approximation, the average of the U operator on a given
probe (denoted as B) can be written as

hBjUð!Þ
xy jBi ¼

X
�

hx; yj�ih�jBi 1

!�!ðh�Þ

�
��������

h� � 1
2

h�ðh� � 1Þ
��������

2

; (20)

where the notation j�i is used in order to label both the
center of mass 
� and the conformal weights ðh�; �h�Þ.
Note that in Eq. (20), we make an identification of the
evaluation of the operator U on the state B through func-
tional integration on the left-hand side, with quantum
mechanical notations appearing on the right-hand side.
Here jx; yi denotes an upper dipole, x and y being the
coordinates of the two corresponding Wilson line. The
relationship with the 4-Reggeon BFKL Green function
GBFKLðx; y; x0; y0Þ in the Möebius representation is ob-
tained when choosing the lower state B to be a dipole of

coordinates ðx0; y0Þ, for which (19) reads, in the above
notations,

hdipoleðx0; y0ÞjUð!Þ
xy jdipoleðx0; y0Þi

¼ X
�

hx; yj�ih�jx0; y0i 1

!�!ðh�Þ
��������

h� � 1
2

h�ðh� � 1Þ
��������

2

;

(21)

leading to the following natural identification:

Eh�; �h�
ðx� 
�; y� 
�Þ ¼ hx; yj�i;

E�
h�; �h�

ðx0 � 
�; y
0 � 
�Þ ¼ h�jx0; y0i: (22)

We denote the quantum numbers of the upper Pomeron
by �, while the lower left Pomeron (respectively, lower
right) is labeled by � (respectively, �) (see Fig. 2). We are
interested here in the extraction of the triple Pomeron
vertex. For that purpose, based on the factorized form
(21) of the BFKL Green function as a series of products
of conformal blocks, the two lower Pomerons are de-
scribed through hx; zj�i and hz; yj�i, while the above one
is described through h�jx; yi. Now, using the property that

ðEh; �hðx� 
; y� 
ÞÞ� ¼ E1�h;1� �hðx� 
; y� 
Þ; (23)

wewill not make any distinction between the above and the
two below Pomerons, which will all be described by a set
of Eh; �h functions, as it is done, for example, in Ref. [32] to

which we would like to compare our final results.
We now fix our notation for the internal degrees of

freedom of the vertex, based on the nonlinear term of
Eq. (10). Let us equate the coordinates x, y, and z with

a, 
b, and 
c, respectively. It is convenient to identify the
component of the dipole with definite conformal weight
with U, according to

Uxy!Eh� �h�
ð
a�;
b�Þ; Uxz!Eh� �h�

ð
a�;
c�Þ;
V xy!Eh� �h�

ð
a�;
b�Þ; V yz!Eh� �h�
ð
b�;
c�Þ: (24)

Now, since we are in the Möebius representation, for each
of the three Pomeron which are here involved, the Green
function is the sum of products of conformal block with
even conformal spin n. This is due to the fact that

a b

c

a b

FIG. 2. (a) Configuration of planar diagrams. (b) Configuration
of nonplanar diagrams.
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GBFKL
M€oebiusðx; y; x0; y0Þ / GBFKLðx; y; x0; y0Þ

þGBFKLðy; x; x0; y0Þ; (25)

as discussed in Ref. [39] (see Eqs. (2.50) and (2.51), as well
as Eq. (B.12) in the Born approximation). Therefore, since
n ¼ hþ �h is even, and using the property

Eh; �hðx�
;y�
Þ¼ ð�1Þhþ �hEh; �hðy�
;x�
Þ; (26)

one can make the following identification

U ab ¼ Uba ¼ Eh� �h�
ð
a�; 
b�Þ ¼ Eh� �h�

ð
b�; 
a�Þ;
(27)

where Uab ¼ Uba in the two-gluon approximation.
Identifications similar to Eq. (27) are done also for Ubc,
V ab, etc. . . .

Since the upper Pomeron is amputated, one needs to
evaluate the effect of the amputation on a conformal block.
This is obtained using the following identity:

�a�bEh� �h�
ð
a�;
b�Þ

¼16h�ðh��1Þ �h�ð �h��1ÞEh� �h�
ð
a�;
b�Þ 1


2
ab �


2
ab

: (28)

The three Pomeron vertex is now defined, according to
Eq. (12), as

V1P!2P ¼ 1

2

Z
d2
ad

2
bd
2
c16h�ðh� � 1Þ �h�

� ð �h� � 1ÞEh� �h�
ð
a�; 
b�Þ 1


2
ab �


2
ab

j
abj2
j
acj2j
bcj2

�
�
UacV cb þUbcV ca þ 1

N2
c

½�UabV ab

þUacV ac þUcbV cb þUabðV ab �V ac

�V cbÞ þV abðUab �Uac �UcbÞ�
�
: (29)

Using property (27), the planar part in Eq. (29) can be
rewritten as

V1P!2P
planar ¼16h�ðh��1Þ �h�ð �h��1Þ
�
Z
d2
ad

2
bd
2
cEh� �h�

ð
b�;
a�Þ

� 1

j
abj2j
acj2j
bcj2
Eh� �h�

ð
a�;
c�ÞEh� �h�
ð
c�;
b�Þ:

(30)

Let us now consider the nonplanar part of the vertex.
Using the Hermiticity property of HBFKL (14) when acting
on the product of the two below Green functions UxyV xy

and acting on the above amputated Green function, we
have

�
Z

d2
ad
2
bd

2
cEh� �h�
ð
a�; 
b�Þ½HBFKL

ab UabV ab�

¼ �
Z

d2
ad
2
bd

2
c½HBFKL
ab Eh� �h�

ð
a�; 
b�Þ�
� Eh� �h�

ð
a�; 
b�ÞEh� �h�
ð
a�; 
b�Þ

¼ �
Z

d2
ad
2
bEh� �h�

ð
a�; 
b�ÞEh� �h�
ð
a�; 
b�Þ

� Eh� �h�
ð
a�; 
b�Þ

�
� 2

��s

!ðh�Þ
�
: (31)

Similarly, for the other two terms of the nonplanar part we
have

Z
d2
c

j
abj2
j
acj2j
bcj2

½UabðV ab �V ac �V cbÞ

þV abðUab �Uac �UcbÞ�
¼ �Uab½HBFKL

ab V ab� þ �V ab½HBFKL
ab Uab�

¼ �½Eh� �h�
ð
a�; 
b�ÞHBFKL

ab Eh� �h�
ð
a�; 
b�Þ

þ Eh� �h�
ð
a�; 
b�ÞHBFKL

ab Eh� �h�
ð
a�; 
b�Þ�

¼ ��
2

��s

½!ðh�Þ þ!ðh�Þ�Eh� �h�
ð
a�; 
b�Þ

� Eh� �h�
ð
a�; 
b�Þ: (32)

Thus, using once more property (27), the nonplanar part
reads

V1P!2P
non-planar ¼ � 2�

N2
c

Z
d2
ad

2
b16h�ðh� � 1Þ �h�

� ð �h� � 1ÞEh� �h�
ð
b�; 
a�Þ 1

j
abj4
Refc ð1Þ

þ c ðh�Þ � c ðh�Þ � c ðh�ÞgEh� �h�
ð
b�; 
a�Þ

� Eh� �h�
ð
b�; 
a�Þ: (33)

Finally, putting together the nonplanar part Eq. (33) and the
planar one Eq. (30), the triple Pomeron vertex is

V1P!2P ¼
Z

d2
ad
2
b16h�ðh� � 1Þ �h�

� ð �h� � 1ÞEh� �h�
ð
b�; 
a�Þ

�Z
d2
c

1

j
abj2j
acj2j
bcj2
� Eh� �h�

ð
a�; 
c�ÞEh� �h�
ð
c�; 
b�Þ

� 2�

N2
c

1

j
abj4
Refc ð1Þ þ c ðh�Þ � c ðh�Þ

� c ðh�ÞgEh� �h�
ð
b�; 
a�ÞEh� �h�

ð
b�; 
a�Þ
�
: (34)
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We now compare our result (34) with the one obtained
through the Reggeon approach of Ref. [28], and which is
written explicitly for SUðNcÞ and for arbitrary conformal
weights in Ref. [32]. Up to a global normalization factor,
related to the convention used to define the triple Pomeron
vertex, Eq. (34) agrees with Eq. (2.1) of Ref. [32].

IV. FAN DIAGRAM APPROACH

The diffractive case, discussed in the previous section,
implied that the upper Pomeron was at t ¼ 0. In this
section, instead, we will show how to obtain the triple
Pomeron vertex without using the Keldysh formalism.
This will allow us to obtain the triple Pomeron vertex for
fan diagrams, which means that every Pomeron is now at
arbitrary t. Therefore, we need to work with the Balitsky
equation (5), which we rewrite here for convenience

d

d�
Ûðx; yÞ ¼ �sNc

2�2

Z
d2z

ðx� yÞ2?
ðx� zÞ2?ðz� yÞ2?

½Ûðx; zÞ

þ Ûðy; zÞ � Ûðx; yÞ � Ûðx; zÞÛðz; yÞ�:

It is easy to see that at large Nc limit the correlation
function hUðx?; z?ÞUðz?; y?Þi decouples to the product
of two correlation functions hUðx?; z?ÞihUðz?; y?Þi, and
this nonlinear term is interpreted as the splitting of one
Pomeron into two Pomerons. In this way, the Balitsky
equation with the truncation of the hierarchy reduces to the
BK equation; its nonlinear term coincides exactly with the
planar part of the triple Pomeron vertex [82]. The triple
Pomeron vertex takes the following form

V1P!2P
BK /

Z
d2z

ðx� yÞ2?
ðx� zÞ2?ðz� yÞ2?

hUxzihUzyi: (35)

Our aim is now to extract from the nonlinear termUxzUzy

not only the planar contribution to the triple Pomeron
vertex but also the nonplanar one. We then show that the
result so obtained coincides with the one we obtained for
diffractive processes. We will adopt the following proce-
dure. First, we consider the correlation function of four
Wilson lines i.e. hUxzUzyi, we then apply the two-gluon

approximation to them, and finally we rewrite the contri-
butions thus obtained in terms of decoupled correlation
function of the type hUxzihUzyi. This method is techni-

cally very similar to the one used in Sec. III, the details of
which are given in the Appendix. We first expand each
Wilson line operator. In what follows, we use the short-

hand notation Ux 	 Uð0Þ
x þUð1Þ

x þUð2Þ
x þ . . . , with Uð0Þ

being the zeroth order term of the expansion, Uð1Þ
x the first

order term, and so on. Thus, we have

N2
chUxzUzyi 	 hTrf1� ðUð0Þ

x þUð1Þ
x þUð2Þ

x ÞðUð0Þy
z

þUð1Þy
z þUð2Þy

z ÞgTrf1� ðUð0Þ
z þUð1Þ

z

þUð2Þ
z ÞðUð0Þy

y þUð1Þy
y þUð2Þy

y Þgi: (36)

At this point, we want to rewrite Eq. (36) as a sum of
decoupled correlation functions like hUxzihUzyi such that

when we apply the 2-gluon approximation to them we get

back the Eq. (36). Since Uð0Þ ¼ 1, the only possible con-
traction in order to produce terms of the type hUxzihUzyi is
between Uð1Þ terms or between Uð2Þ terms. Contraction
between terms of order higher than 2 would result in
remaining multiplicative terms which are not color singlet

(these terms are of the type TrUð1Þ which vanish). Other
terms involving contraction of gluon fields at the same
coordinate will clearly not contribute: terms like Uzz

vanish. Finally, the expansion of each Wilson line is
needed only up to second order. So, it is then easy to see
that

hUxzUzyi	
2g 1

2ðN2
c � 1Þ

�
2hUxzihUzyi þ 1

N2
c

½2hUxyi

� ðhUxyi � hUxzi � hUyziÞ þ hUzyihUzyi
þ hUxzihUxzi � hUxyihUxyi�

�
: (37)

We can immediately recognize in Eq. (38) the planar
contribution hUxzihUzyi, which coincides with the non-

linear term in the BK equation and with the planar part of
the diffractive triple Pomeron vertex obtained in the pre-
vious section [cf. Equation (A6)]. The terms proportional
to N�2

c are instead the nonplanar contributions which are
suppressed in the limit of Nc ! 1 and which are, there-
fore, obtained only from Balitsky equation and not from
BK equation.
We now want to compare the two above approaches: the

one based on diffractive processes, Eq. (29), and the other
one based on the fan diagram approach, Eq. (38). The first
obtained result is a particular case of the second one, since
it was derived for the splitting Pomeron at t ¼ 0. Indeed,
the second one can be obtained when identifying U with
V since in the fan diagram case one cannot distinguish
between the two produced Pomerons. Let us first consider
the planar contribution. In the diffractive approach, the
obtained structure [see Eq. (12)]

N2
c

N2
c � 1

½UacV cb þV acUcb� (38)

is an operator which should be contracted with an external
set of Pomeron states of quantum numbers denoted by j�i
and j�i (which as already stated above describes both the
conformal weight and the center of mass coordinate of the
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Pomeron state). At this stage, in the case of the diffractive
amplitude, these two Pomeron states are distinguishable
(one is at the left of the cut while the other one is at
the right), and after using the symmetry of the integrand
under the replacement a $ b, the net result reads symboli-
cally

2
N2

c

N2
c � 1

Uacj�iV cbj�i: (39)

Now, one can make the identification of the Uijj�i and
V ijj�i states, leading to the final result

2
N2

c

N2
c � 1

Uacj�iUcbj�i: (40)

On the other hand, from the fan diagram approach, one has
[see first term of Eq. (38)], using the same overall normal-
ization as in Eq. (38),

N2
c

2ðN2
c � 1Þ 2UacUcbj�ij�i

¼ N2
c

N2
c � 1

2ðUacj�iÞðUcbj�iÞ; (41)

where the factor of 2 on the right-hand side of Eq. (41) is
due to the two possible contractions. This shows explicitly
that both, the planar result obtained from the general fan
diagram case and the one obtained from a continuation of
the t ¼ 0 diffractive case in Keldysh formalism, are in
agreement. The proof for the nonplanar case follows the
same line of thinking.

V. CONCLUSION

In this paper, we have shown that the triple Pomeron
vertex, including the planar and the nonplanar contribu-
tion, can be obtained very easily withinWilson line formal-
ism. In Ref. [69], this was already done for the case of
diffractive processes using Keldysh formalism, but the
result obtained there was only for the planar part of
the vertex. In Sec. III, we have shown how to compute
also the nonplanar contribution of the diffractive triple
Pomeron vertex from Wilson line formalism. To this end,
we considered the generalization of the Balitsky equation
for diffractive process, and, using the linearization proce-
dure and the 2-gluon approximation, we have extracted the
desired subleading term in Nc of the vertex.

In Sec. IV, we have extended the result of Sec. III to the
more generic case of fan diagrams, where the Pomeron,
which split to two other ones, does not need to be at t ¼ 0.
We then showed that the triple Pomeron vertex for fan
diagrams is the same as the one obtained in the diffractive
case.

Since, as we have shown in the present paper, theWilson
line formalism allows one to rederive very easily results

that have been obtained after nontrivial and lengthy calcu-
lation, we plan to use it to study other still unknown and
highly desirable results. For example, it will be interesting
to compute the vertex for P ! 3P [83], P ! OO [84],
O ! PO (so far unknown), or more generally nP ! mP
(inaccessible at the moment through Reggeon calculus
techniques). These nontrivial building blocks will be rele-
vant in order to identify the unknown underlying effective
theory for high-energy scattering processes. This study is
in progress.
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APPENDIX

Below we present some details of the linearization pro-
cedure which we used to extract the planar and nonplanar
part of the triple Pomeron vertex.
Let us consider the nonlinear term in Eq. (10)

N2
c TrfW ðx; zÞW ðz; yÞg
¼ TrfWxW

y
z � 1gTrfWzW

y
y � 1g

¼ TrfVzV
y
x UxU

y
z � 1gTrfVyV

y
z UzU

y
y � 1g: (A1)

Our aim is to extract from this expression the contribu-
tion of two noninteracting Pomerons: one Pomeron built
by Aþ fields and the other one built by A� fields. We now
approximate Wilson line operators U and V up to linear
terms in Aþ and A� fields [here we use the short-hand
notation iAþ

x � ig
R
1
0 dup

�
1 A

þ
�ðp1uþ x?Þ and similarly

for iA�
x ]

N2
c TrfW ðx; zÞW ðz; yÞg
	 Trfð1þ iA�

z Þð1� iA�
x Þð1þ iAþ

x Þð1� iAþ
z Þ � 1g

� Trfð1þ iA�
y Þð1� iA�

z Þð1þ iAþ
z Þð1� iAþ

y Þ � 1g:
(A2)

From each trace of Eq. (A2) we keep only terms to
second order since we are working in the 2-gluon approxi-
mation. Thus, we have
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N2
c TrfW ðx; zÞW ðz; yÞg
	 TrfA�

z A
�
x þ Aþ

x A
þ
z � A�

z A
þ
x þ A�

z A
þ
z

þ A�
x A

þ
x � A�

x A
þ
z gTrfA�

y A
�
z � A�

y A
þ
z þ A�

y A
þ
y

þ A�
z A

þ
z � A�

z A
þ
y � Aþ

z A
þ
y g: (A3)

The next step of the linearization procedure up to 2 gluon
accuracy consists in keeping in the product of the two
traces in (A3) only terms, which involve two Aþ fields
with different coordinates and two A� fields with different
coordinates. Thus, we obtain that

N2
c TrfW ðx; zÞW ðz; yÞg	2g TrfA�

x A
�
z gTrfAþ

z A
þ
y g

þ TrfAþ
x A

þ
z g trfA�

y A
�
z g þ TrfA�

z A
þ
x gTrfA�

y A
þ
z g

� TrfA�
z A

þ
x gTrfA�

y A
þ
y g þ TrfA�

z A
þ
z g trfA�

y A
þ
y g

� TrfA�
x A

þ
x gTrfA�

y A
þ
z g þ TrfA�

x A
þ
x gTrfA�

y A
þ
y g

þ TrfA�
x A

þ
x g trfA�

z A
þ
z g � TrfA�

x A
þ
x gTrfA�

z A
þ
y g

� TrfA�
x A

þ
z gTrfA�

y A
þ
y g þ TrfA�

x A
þ
z g trfA�

z A
þ
y g: (A4)

We now have to rewrite Eq. (A4) in terms of product of
traces involving only Aþ and A� fields, so we obtain

N2
c TrfW ðx; zÞW ðz; yÞg2g
	 TrfA�

x A
�
z gTrfAþ

z A
þ
y g þ TrfAþ

x A
þ
z gTrfA�

y A
�
z g

þ 1

N2
c � 1

½TrfAþ
x A

þ
y g � TrfAþ

x A
þ
z g � TrfAþ

y A
þ
z g�

� ½TrfA�
x A

�
y g � TrfA�

x A
�
z g � TrfA�

y A
�
z g�: (A5)

The final step is to write Eq. (A5) in terms of the original
operators U and V such that when we apply to them the
2-gluon approximation we get back Eq. (A5). So, we have

N2
c TrfW ðx; zÞW ðz; yÞg2g
	 N2

c

�
UxzV zy þUyzV zx þ 1

N2
c � 1

� ½Uxy �Uxz �Uyz�½V xy �V zx �V zy�
�
; (A6)

which is the linearization we used in Eq. (12).
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