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The construction of a Monte Carlo generator for high energy hadronic and nuclear collisions is

discussed in detail. Interactions are treated in the framework of the Reggeon Field Theory, taking into

consideration enhanced Pomeron diagrams which are resummed to all orders in the triple-Pomeron

coupling. Soft and ‘‘semihard’’ contributions to the underlying parton dynamics are accounted for within

the ‘‘semihard Pomeron’’ approach. The structure of cut enhanced diagrams is analyzed; they are

regrouped into a number of subclasses characterized by positively-defined contributions which define

partial weights for various ‘‘macro-configurations’’ of hadronic final states. An iterative procedure for a

Monte Carlo generation of the structure of final states is described. The model results for hadronic cross

sections and for particle production are compared to experimental data.
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I. INTRODUCTION

Nowadays Monte Carlo (MC) generators of hadronic
interactions are standard tools for data analysis in high
energy collider and cosmic ray fields. The idea behind
employing such MC models is twofold. First of all, they
provide a bridge between rigorous theoretical approaches
and corresponding experimental studies, thus allowing to
confront novel ideas against observations. On the other
hand, MC simulations are an inevitable part of contempo-
rary experimental analysis procedures, a measurement of
new phenomena depending crucially on the understanding
of the corresponding detector response and of the contri-
bution of the ‘‘standard’’ hadronic physics which is mim-
icked with the help of the MC tools.

In particular, hadronic interaction models play an im-
portant role in investigations of very high energy cosmic
rays. Because of the extremely low flux of such ultra-
energetic particles, they can not be detected directly.
Instead, one infers their properties from measured charac-
teristics of nuclear-electro-magnetic cascades, so-called
extensive air showers (EAS), induced by them in the
atmosphere. The corresponding analysis relies crucially
on the MC treatment of the cascade development, most
importantly, of its backbone—the cascade of hadron-
nucleus (nucleus-nucleus) interactions in the atmosphere.
The peculiarity of cosmic ray applications of hadronic
interaction generators is related to the fact that one has to
treat hadronic collisions at energies orders of magnitude
higher than ones of present day colliders and that EAS
characteristics depend strongly on model predictions for
very forward spectra of secondary particles. As a conse-
quence, cosmic ray interaction models, like DPMJET [1],
EPOS [2], QGSJET [3], or SIBYLL [4], which are

designed to treat general inelastic hadronic collisions, are
developed in the framework of the Reggeon Field Theory
(RFT) [5], which allows one to take into consideration
contributions from both soft and ‘‘hard’’ parton dynamics
to the interaction mechanism.
Soft nonperturbative interactions are described as soft

Pomeron exchanges and dominate hadronic collisions at
large impact parameters, thus giving important contributions
to total, inelastic, and diffractive hadron-nucleus (nucleus-
nucleus) cross sections. On the other hand, at sufficiently
high energies the role of so-called semihard hadronic colli-
sionswhich involve partons ofmoderately largevirtualities is
significantly enhanced, the smallness of the corresponding
strong coupling being compensated by large collinear and
infrared logarithms and by a high density of small x partons.
A convenient way to include such processes in the RFT
treatment is provided by the ‘‘semihard Pomeron’’ approach
[6,7] where the perturbative part of an ‘‘elementary’’ semi-
hard rescattering is described within the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi formalism, which is preceded by
nonperturbative parton cascades (‘‘soft preevolution’’) de-
scribed as soft Pomeron emissions.
Additionally, high parton densities reached in ‘‘central’’

collisions of hadrons and, especially, nuclei result in sig-
nificant nonlinear corrections to the interaction dynamics,
related to parton shadowing and saturation [8]. In MC
generators, such effects are typically accounted for in a
phenomenological way, via energy-dependent parametri-
zations of some model parameters. The drawback of such
constructions is evident: with nonlinear effects dominating
the interaction mechanism in the very high energy limit,
model predictions are governed by the choice of the cor-
responding empirical parametrization, rather than by the
underlying theoretical approach.
In this work, we choose an alternative way, treating

nonlinear interaction effects in the RFT framework as*e-mail: sergey.ostapchenko@ntnu.no
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Pomeron-Pomeron interactions [9–11], based on the recent
progress in the resummation of the corresponding, so-
called enhanced, RFT diagrams [12–14]. AMC implemen-
tation of such an approach has been hampered for a long
time by two factors. First, with the energy increasing,
enhanced graphs of more and more complicated topologies
start to contribute significantly to the scattering amplitude
and to partial cross sections for particular hadronic final
states. Thus, dealing with enhanced diagrams, all-order
resummation of the corresponding contributions is a
must, both for elastic scattering diagrams and for the cut
diagrams representing particular inelastic processes.
Secondly, it is quite nontrivial to split the complete set of
cut enhanced diagrams into separate classes characterized
by positively-defined contributions which could be inter-
preted probabilistically and employed in a MC simulation
procedure. While the first problem has been addressed in
[12–14], the MC implementation of the approach is dis-
cussed in the present work. Here we mainly address the
construction of the model while the results for various
particle production processes and applications of the model
for calculations of EAS development will be the subject of
the forthcoming publication [15].

The outline of the paper is as follows. In Section II, the
calculation of hadron-hadron scattering amplitude is dis-
cussed, taking into account enhanced diagram contribu-
tions. In Section III, we consider unitarity cuts of elastic
scattering diagrams and define partial contributions for
various ‘‘macro-configurations’’ of the interaction, which
are employed in the corresponding MC procedure, as
described in Section IV. Finally, in Section V, we discuss
characteristic features of the developed model, calibration
of model parameters, and present the model results for
various hadronic cross sections.

II. HADRON-HADRON SCATTERING AMPLITUDE

In the RFT approach, high energy hadron-hadron scat-
tering amplitude is defined by multiple scattering graphs of
the kind depicted in Fig. 1. The elementary rescattering
contributions correspond to independent parton cascades

developing between the projectile and target hadrons,
which are described by Pomeron exchanges, and to parton
cascades which strongly overlap in the phase space and
interact with each other, which is described as Pomeron-
Pomeron interactions. Thus, applying the multichannel
(Good-Walker-like) eikonal scheme [16,17] to account
for contributions of small mass intermediate states between
Pomeron emissions, elastic hadron a—hadron d scattering
amplitude is defined as [13]

fadðs; bÞ ¼ i
X
j;k

Cj=aCk=d½1� e�ð1=2Þ�adðjkÞðs;bÞ� (1)

�adðjkÞðs; bÞ ¼ 2�P
adðjkÞðs; bÞ þ 2�enh

adðjkÞðs; bÞ: (2)

Here s and b are c.m. energy squared and the impact
parameter for the interaction, Cj=a defines partial weight

for hadron a elastic scattering eigenstate jji (jai ¼P
j

ffiffiffiffiffiffiffiffiffi
Cj=a

p jji, PjCj=a ¼ 1), �P
adðjkÞ and �enh

adðjkÞ are eikonals
corresponding to an exchange of a Pomeron or of an
irreducible enhanced (Pomeron-Pomeron interaction)
graph between the projectile and target hadrons, the latter
being represented by eigenstates jji and jki.
In this work, we use the ‘‘semihard Pomeron’’ approach

[6,7] to account for contributions of both nonperturbative
soft processes and of ‘‘semihard’’ ones, the latter corre-
sponding to parton cascades which develop at least partly
in the perturbative region of relatively high virtualities
jq2j>Q2

0, Q
2
0 being some cutoff for pQCD being appli-

cable. Describing the former as phenomenological soft
Pomerons and the latter by ‘‘semihard Pomeron’’ ex-
changes, the ‘‘general Pomeron’’ eikonal is given by the
sum of the two contributions:

�P
adðjkÞðs; bÞ ¼ �Psoft

adðjkÞðs; bÞ þ �Psh

adðjkÞðs; bÞ: (3)

The soft Pomeron eikonal �Psoft

adðjkÞ is expressed via

Pomeron emission vertices NP and the Pomeron propaga-
tor DP as

�Psoft

adðjkÞðs; bÞ ¼
1

8�2is

Z
d2qe�i ~q ~b

Z
dx1dx2N

P
j=aðx1; q2Þ

� NP
k=dðx2; q2ÞDPðx1x2s; q2Þ; (4)

where

DPðŝ; tÞ ¼ 8�is0ðŝ=s0Þ�Pe�
0
P lnðs=s0Þt; (5)

with �P and �0
P being the intercept and the slope of the

Pomeron Regge trajectory and s0 ’ 1 GeV2—the hadronic
mass scale.
The Pomeron emission vertices are parametrized as

NP
j=aðx; tÞ ¼ �j=ae

�j=atx��partð1� xÞ�lead ; (6)

where the exponents �part ’ 0 and �lead are related to

intercepts of secondary Regge trajectories [7,18].

...

FIG. 1 (color online). General multi-Pomeron contribution to
hadron-hadron scattering amplitude; elementary scattering pro-
cesses correspond to Pomeron exchanges (vertical thick lines) or
to Pomeron-Pomeron interactions.
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The semihard contribution �Psh

adðjkÞ corresponds to a piece
of QCD parton ladder sandwiched between two soft
Pomerons (see Fig. 2) and is defined as [7,19]

�Psh

adðjkÞðs;bÞ¼
1

32�2s20

Z
d2qe�i ~q ~b

Z
dx1dx2N

P
j=aðx1;q2Þ

�NP
k=dðx2;q2Þ

Z
dxþdx�ImDPðs0=xþ;q2Þ

�ImDPðs0=x�;q2Þ�
X

I;J¼g;qs

gIðxþÞgJðx�Þ

��QCD
IJ ðxþx�x1x2s;Q2

0Þ; (7)

where the vertices gI for parton I (gluon or sea quark)1

coupling to the soft Pomeron are parametrized as

ggðzÞ ¼ rgð1� wqgÞð1� zÞ�g

gqsðzÞ ¼ rgwqg

Z 1

z
dyy�P�1PqgðyÞð1� z=yÞ�g;

(8)

with PqgðyÞ being the Altarelli-Parisi splitting function and
the constant rg being fixed by momentum conservation for

parton distribution functions .

The contribution �QCD
IJ ðxþx�s; Q2

0Þ of the parton ladder

with the virtuality cutoff Q2
0 and with the leg-parton types

I, J and light cone momentum fractions xþ, x� is defined
in a standard way [7,19]

�QCD
IJ ðŝ; Q2

0Þ ¼ K
X
I0;J0

Z
dzþdz�

Z
dp2

t E
QCD
I!I0 ðzþ; Q2

0;M
2
FÞ

� EQCD
J!J0 ðz�; Q2

0;M
2
FÞ
d�2!2

I0J0 ðzþz�ŝ; p2
t Þ

dp2
t

��ðM2
F �Q2

0Þ; (9)

with d�2!2
IJ =dp2

t being the differential parton-parton
cross section, pt—parton transverse momentum in the
hard process, M2

F—the factorization scale (here M2
F ¼

p2
t =4), and with EQCD

I!I0 ðz; Q2
0; Q

2Þ describing the evolution

of the parton density from the virtuality scale Q2
0 to Q2.

The factor K ’ 1:5 is designed to take effectively into
account higher order QCD corrections.
The idea behind Eq. (7) is to split parton evolution in an

elementary scattering process in two parts: i) nonperturbative
soft one described phenomenologically by the soft Pomeron
asymptotics; ii) parton cascading at jq2j>Q2

0, treatedwithin

the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi formalism.
The former is characterized by a significant parton diffusion
in the transverse plane and, in the absence of nonlinear
corrections, forms parton (sea quark or gluon) momentum
and impact parameter distributions at the virtuality scaleQ2

0

[7,19,20]. During the latter, parton transverse displacements
can be neglected, leaving only the momentum-dependent
part, Eq. (9), which is characterized by a stronger energy-
rise compared to the soft Pomeron amplitude and drives
therefore the high energy behavior of the semihard contribu-
tion (7).
To calculate enhanced diagram contributions, we adopt

multi-Pomeron vertices of the form [11]

Gðm;nÞ ¼ G�mþn
P ; (10)

where m and n are numbers of Pomerons connected to the
vertex from the projectile, respectively, target, side (mþ
n � 3) and the constant G is related to the triple-Pomeron
coupling r3P as G ¼ r3P=ð4��3

PÞ.
The eikonal �P

aðjÞðy; bÞ for a ‘‘general Pomeron’’ ex-

change between hadron a (represented by eigenstate jjiÞ
and a multi-Pomeron vertex, the two being separated from
each other by rapidity y and transverse distance b, also
receives contributions from both soft and semihard pro-
cesses

�P
aðjÞðy; bÞ ¼ �Psoft

aðjÞ ðy; bÞ þ �Psh

aðjÞðy; bÞ; (11)

with the partial contributions �Psoft

aðjÞ and �Psh

aðjÞ being defined

similarly to (4) and (7) [20]:

�Psoft

aðjÞ ðy; bÞ ¼
�P

8�2is0e
y

Z
d2qe�i ~q ~b

Z
dx1N

P
j=aðx1; q2Þ

�DPðx1s0ey; q2Þ (12)

�Psh

aðjÞðy; bÞ ¼
�P

32�2s20

Z
d2qe�i ~q ~b

Z
dx1N

P
j=aðx1; q2Þ

�
Z

dxþdx�ImDPðs0=xþ; q2Þ
� ImDPðs0=x�; q2Þ

X
I;J¼g;qs

gIðxþÞgJðx�Þ

� �QCD
IJ ðxþx�x1s0ey; Q2

0Þ; (13)

= +

soft Pomeron

QCD ladder

soft Pomeron

FIG. 2 (color online). A ‘‘general Pomeron’’ (left-hand side
[lhs]) consists of the soft and semihard ones—correspondingly
the 1st and the 2nd contributions in the rhs.

1For brevity, we do not discuss explicitly valence quark con-
tributions to the semihard eikonal; the corresponding description
can be found elsewhere [7,19].
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where we included the vertex factors �P into the definition
of the eikonals.

Similarly, for a Pomeron exchange between two multi-
Pomeron vertices separated by rapidity and impact pa-
rameter distances y and b we use

�Pðy; bÞ ¼ �Psoftðy; bÞ þ �Pshðy; bÞ (14)

�Psoftðy; bÞ ¼ �2
P

8�2is0e
y

Z
d2qe�i ~q ~bDPðs0ey; q2Þ (15)

�Pshðy; bÞ ¼ �2
P

32�2s20

Z
d2qe�i ~q ~b

Z
dxþdx�

� ImDPðs0=xþ; q2ÞImDPðs0=x�; q2Þ
� X

I;J¼g;qs

gIðxþÞgJðx�Þ�QCD
IJ ðxþx�s0ey; Q2

0Þ:

(16)

The above-defined eikonals can be used to calculate the
total contribution of irreducible enhanced Pomeron graphs
�enh
adðjkÞ. As demonstrated in [12,13], the latter can be ex-

pressed via contributions of subgraphs of certain structure,
so-called ‘‘net fans’’. Those are defined by the Schwinger-
Dyson equation of Fig. 3 and correspond to arbitrary
irreducible ‘‘nets’’ of Pomerons, with neighboring net
‘‘cells’’ being connected to each other by 2-point sequen-
ces of Pomerons and Pomeron loops and with one vertex in
the net having a fixed position in the rapidity and impact
parameter space.2 The corresponding equation

�net
aðjÞjdðkÞðy1; ~b1jY; ~bÞ¼�

loop
aðjÞ ðy1;b1ÞþG

Z y1��

�
dy2

�
Z
d2b2ð1�e��loopðy1�y2;j ~b1� ~b2jÞÞ½ð1�e

��net
aðjÞjdðkÞðy2; ~b2jY; ~bÞÞ

�e
��net

dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ��net
aðjÞjdðkÞðy2; ~b2jY; ~bÞ� (17)

involves the contribution �loopðy1 � y2; j ~b1 � ~b2jÞ of
irreducible 2-point sequences of Pomerons and Pomeron

loops, exchanged between the vertices ðy1; ~b1Þ and

ðy2; ~b2Þ (2nd graph in the right-hand side (rhs) of Fig. 3),

and the contribution �
loop
aðjÞ ðy1; b1Þ of Pomeron loop sequen-

ces exchanged between the vertex ðy1; ~b1Þ and hadron
a, with a single Pomeron coupled to hadron a (1st graph
in the rhs of the figure). The y2 integration in the 2nd
term in the rhs of (17) is performed between � and
y1 � �, with � being the minimal rapidity interval for
the Pomeron asymptotics to be applicable. As dis-
cussed in [20], net-fan eikonals �net

aðjÞjdðkÞ are related to

parton (sea quark and gluon) distributions which are
probed during hadron-hadron interaction and are thus
influenced by rescattering processes on the partner hadron.
As in [14], we define the contribution

�loopðy1 � y2; j ~b1 � ~b2jÞ and a part of it �loopð1Þðy1 � y2;

j ~b1 � ~b2jÞ, corresponding to Pomeron loop sequences
which start from a single Pomeron coupled to the vertex

ðy1; ~b1Þ, via Schwinger-Dyson equations of Fig. 4, which
gives

�loopð1Þðy2 � y1; j ~b2 � ~b1jÞ
¼ �Pðy2 � y1; j ~b2 � ~b1jÞ þG

Z y2��

y1þ�
dy0

Z
d2b0

� �Pðy0 � y1; j ~b0 � ~b1jÞ½1� e��loopðy2�y0;j ~b2� ~b0jÞ

� �loopð1Þðy2 � y0; j ~b2 � ~b0jÞ� (18)

y ,b
22

ne
t

...n
2

y ,b
1 1

y ,b

net net

11
y ,b
1 1

+
...m

Σ
m +n  >2

/

2

...l>1/

=
2

2 2

2

/

m  >1, n  >0/

FIG. 3 (color online). Recursive equation for projectile net-fan

contribution �net
aðjÞjdðkÞðy1; ~b1jY; ~bÞ; y1 and b1 are rapidity and

impact parameter distances between the projectile proton and

the vertex in the handle of the fan. The vertex ðy2; ~b2Þ couples
together m2 projectile net fans and n2 target net fans. In addition,
there are l � 1 irreducible 2-point sequences of Pomerons and

Pomeron loops, exchanged between the vertices ðy1; ~b1Þ and

ðy2; ~b2Þ.

...

y ,b
1 1

y ,b
2 2

y ,b
2 2

y ,b
1 1

y ,b
2 2

y ,b
1 1

_m>1

y ,b
1 1

y ,b
2 2

y ,b
2 2

y ,b
2 2

y ,b
2 2

y ,b
1 1

y ,b
1 1

y ,b
1 1

_n>2

+=

= +

...

y’,b’ y’,b’

y’,b’

... _m>1

−

FIG. 4 (color online). Recursive representations for the con-
tributions of irreducible 2-point sequences of Pomerons and
Pomeron loops �loopð1Þ (top) and �loop (bottom), exchanged

between the vertices ðy1; ~b1Þ and ðy2; ~b2Þ.
2The 2-point sequence of Pomerons and Pomeron loops, coupled

to this vertex, will be referred to as the ‘‘handle of the fan’’.
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�loopðy2 � y1; j ~b2 � ~b1jÞ
¼ �loopð1Þðy2 � y1; j ~b2 � ~b1jÞ þG

Z y2��

y1þ�
dy0

�
Z

d2b0½1� e��loopðy0�y1;j ~b0� ~b1jÞ

� �loopðy0 � y1; j ~b0 � ~b1jÞ�½1� e��loopðy2�y0;j ~b2� ~b0jÞ�:
(19)

In turn, for the contribution �loop
aðjÞ ðy1; b1Þ and a part of it

�loopð1Þ
aðjÞ ðy1; b1Þ, corresponding to irreducible Pomeron loop

sequences with a single Pomeron coupled to the vertex

ðy1; ~b1Þ, this leads to recursive equations [14]

�
loop
aðjÞ ðy1;b1Þ

¼�P
aðjÞðy1;b1ÞþG

Z y1��

�
dy0

Z
d2b0�P

aðjÞðy0;b0Þ

�½1�e��loopðy1�y0;j ~b1� ~b0jÞ ��loopð1Þðy1�y0; j ~b1� ~b0jÞ�
(20)

�
loopð1Þ
aðjÞ ðy1; b1Þ

¼ �P
aðjÞðy1; b1Þ þG

Z y1��

�
dy0

Z
d2b0½�loop

aðjÞ ðy0; b0Þ

� �
loopð1Þ
aðjÞ ðy0; b0Þ��Pðy1 � y0; j ~b1 � ~b0jÞ: (21)

Finally, for the total contribution of irreducible enhanced
graphs �enh

adðjkÞ (exchanged between eigenstates jji and jki
of the projectile and of the target, respectively) to elastic
scattering amplitude one obtains [13,14]

�enh
adðjkÞðs;bÞ

¼G
Z Y��

�
dy1

Z
d2b1f½ð1�e

��net
aðjÞjdðkÞ Þð1�e

��net
dðkÞjaðjÞ Þ

��net
aðjÞjdðkÞ�

net
dðkÞjaðjÞ��½�net

aðjÞjdðkÞ��loop
aðjÞ ðY�y1;j ~b� ~b1jÞ�

�½ð1�e
��net

dðkÞjaðjÞ Þe��net
aðjÞjdðkÞ ��net

dðkÞjaðjÞ�
þ�P

dðkÞðy1;b1Þ½�loop
aðjÞ ðY�y1;j ~b� ~b1jÞ

��loopð1Þ
aðjÞ ðY�y1;j ~b� ~b1jÞ�g; (22)

where Y ¼ lnðs=s0Þ and the omitted arguments of the

eikonals read �net
aðjÞjdðkÞ ¼ �net

aðjÞjdðkÞðY � y1; ~b� ~b1jY; ~bÞ,
�net
dðkÞjaðjÞ ¼ �net

dðkÞjaðjÞðy1; ~b1jY; ~bÞ. As demonstrated in [14],

Eqs. (17)–(22) account for all important enhanced diagram
contributions to elastic scattering amplitude.

The generalization of the treatment for nucleus-nucleus
scattering amplitude is described in Appendix A.

III. CONFIGURATIONS OF FINAL STATES

The knowledge of the elastic scattering amplitude is
far insufficient for the construction of a MC procedure
for hadronic and nuclear inelastic collisions. What we
need are partial cross sections for particular configurations
of final states, which are defined by contributions of
the corresponding unitarity cuts of elastic scattering dia-
grams. Those can be easily derived in the nonenhanced
eikonal scheme using the Abramovskii-Gribov-Kancheli
(AGK) cutting rules [21]. Considering diagrams with
precisely m � 1 Pomerons being cut, each cut Pomeron
corresponding to an elementary production process, and
summing over any number of uncut Pomerons which de-
scribe additional elastic rescatterings, one obtains the
so-called topological cross sections for hadron-hadron
scattering [17,18]:

�ðmÞ
ad ðsÞ ¼

Z
d2b

X
j;k

Cj=aCk=d

ð2�P
adðjkÞðs; bÞÞm

m!
e
�2�P

adðjkÞðs;bÞ:

(23)

The integrand in (23) can be interpreted as a probability to
have precisely m elementary production processes in the
hadron-hadron collision at impact parameter b. On the
other hand, combining diagrams where the cut plane passes
between n � 2 Pomerons, none being cut, and choosing
either elastic or inelastic states in the cut plane for the
projectile and the target, one obtains either elastic �el

ad or

various (low mass) diffraction cross sections. For example,
for �el

ad and for single projectile hadron diffraction cross

section one obtains [17]:

�el
adðsÞ ¼

Z
d2b

�X
j;k

Cj=aCk=dð1� e
��P

adðjkÞðs;bÞÞ
�
2

(24)

�SDðprojÞ
ad ðsÞ ¼

Z
d2b

X
j;k;l;m

ðCj=a�jl

� Cj=aCl=aÞCk=dCm=de
��P

adðjkÞðs;bÞ��P
adðlmÞðs;bÞ:

(25)

It is worth stressing that a configuration of the final state is
defined by the structure of the unitarity cuts, here—by the
number of cut Pomeron exchanges, and implies a resum-
mation of all absorptive corrections due to virtual rescat-
tering processes—uncut Pomeron exchanges.
Taking into account enhanced Pomeron diagrams signifi-

cantly complicates the analysis and produces a variety of
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final state configurations, including e.g. ones with single or
multiple large rapidity gaps (LRG) not covered by second-
ary particle production. The complete set of AGK-based cut
enhanced diagrams has been derived in [13], the correspond-
ing contributions being composed of various unitarity cuts
of net-fan subgraphs, and contains cut diagrams of two
types. The first class consists of cut diagrams characterized
by a ‘‘tree’’-like structure of cuts; such graphs are con-
structed coupling arbitrary numbers of cut and uncut net-
fan contributions in one central (not necessarily unique)
vertex, such that each cut net-fan subgraph is characterized
by a ‘‘fan’’-like structure of cuts [13]. The diagrams of the
second kind are characterized by a ‘‘zigzag’’-like structure
of cuts; they are constructed in a similar way, with the
important difference that at least one of the cut net-fan
subgraphs has a zigzaglike structure of cuts, with subsequent
Pomeron end rapidities satisfying y1 > y2 < y3 > � � � .
Tree-like cut diagrams give important contributions to
the total cross section and to partial cross sections of various
final states; they provide main corrections to inclusive
spectra of secondary particles. On the other hand, various
contributions of zigzaglike cut graphs to the total cross
section precisely cancel each other, moreover, as demon-
strated in [14], they do not influence noticeably the rapidity
gap structure of final states. Nevertheless, such diagrams
provide contributions to inclusive particle spectra and to
partial cross sections for particular final states. Therefore,
our strategy will be to develop first a MC scheme taking into
consideration treelike cut enhanced graphs only. After that,
the procedure will be complemented by taking into account
zigzaglike cut contributions.

As discussed above, to obtain cross sections for various
final state configurations, we shall use as ‘‘building
blocks’’ contributions of various unitarity cuts of net-fan
graphs. For the moment, we are interested in the AGK cuts
of net fans, characterized by a fanlike structure of cuts,

which are defined by the Schwinger-Dyson equations of
Fig. 53 [13,14]. The top line of the figure defines the
contribution 2�̂fan

aðjÞjdðkÞ of the subset of graphs in which

the Pomeron loop sequence coupled to the vertex ðy1; b1Þ
(the handle of the fan) is crossed by the cut plane. In turn,
the equation in the bottom line gives the one of the dia-
grams where the handle of the fan remains uncut,
2~�fan

aðjÞjdðkÞ. The total contribution of fanlike cuts of net

fans is thus 2 ��fan
aðjÞjdðkÞ ¼ 2�̂fan

aðjÞjdðkÞ þ 2~�fan
aðjÞjdðkÞ. The first

graph in the rhs of the top line corresponds to all possible
AGK-based cuts of the single 2-point sequence of
Pomerons and Pomeron loops exchanged between the
vertex ðy1; b1Þ and the projectile hadron, whereas the
next two diagrams in the rhs of the graphic equation
describe the development of the cut Pomeron net. The
vertex ðy2; b2Þ couples together �m � 1 cut projectile net
fans, each one characterized by a fanlike structure of cuts,
and any numbers m, n � 0 of uncut projectile and target
net fans, such that �mþmþ n � 2. There, one has to
subtract the contributions of the next two diagrams which
correspond to configurations of non-AGK type, where in
all the �m cut projectile net fans connected to the vertex
ðy2; b2Þ the handles of the fans remain uncut and are
situated on the same side of the cut plane, together with
all them uncut projectile net fans. Finally, in the last graph
in the top line of the Figure, the cut plane passes between
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FIG. 5 (color online). Recursive representations for cut net-fan diagrams characterized by a fanlike structure of cuts. The top line of
the figure defines the contribution 2�̂fan

aðjÞjdðkÞ of the subset of graphs in which the handle of the fan is cut; the bottom line gives the one

of the diagrams with uncut handle, 2~�fan
aðjÞjdðkÞ.

3Here and in the following we use a slightly different graphic
notation compared to Figs. 3 and 4: a shaded ellipse with solid
margins, positioned between the vertices ðy1; b1Þ and ðy2; b2Þ,
denotes a general (not necessarily irreducible) 2-point sequence
of Pomerons and Pomeron loops exchanged between these verti-
ces, with the corresponding contribution ½1� expð��loopðy1 �
y2; j ~b1 � ~b2jÞÞ�. Similarly, such an ellipse with dashed margins
corresponds to the AGK cuts of such a sequence, with the con-
tribution 2½1� expð��loopðy1 � y2; j ~b1 � ~b2jÞÞ�.
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m � 2 uncut projectile net fans, with at least one remain-
ing on either side of the cut, such that a large rapidity gap is
formed between the projectile proton and the vertex
ðy2; b2Þ. The diagrams in the bottom line of the Figure
have a similar structure, as discussed in more detail in
[13,14].

As demonstrated in [13], the total contribution of fanlike
cuts of net fans coincides with twice the uncut one:

2 ��fan
aðjÞjdðkÞðy1; ~b1jY; ~bÞ ¼ 2�net

aðjÞjdðkÞðy1; ~b1jY; ~bÞ; (26)

whereas for 2�̂fan
aðjÞjdðkÞ one obtains the recursive equation

2�̂fan
aðjÞjdðkÞðy1; ~b1jY; ~bÞ

¼ 2�
loop
aðjÞ ðy1; b1Þ þ 2G

Z y1��

�
dy2

�
Z

d2b2ð1� e��loopðy1�y2;j ~b1� ~b2jÞÞ

� ½ð1� e
��̂fan

aðjÞjdðkÞðy2; ~b2jY; ~bÞÞe�2�net
dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ

� �̂fan
aðjÞjdðkÞðy2; ~b2jY; ~bÞ�: (27)

In Appendix B we derive also alternative representations
for 2�̂fan

aðjÞjdðkÞ, 2~�
fan
aðjÞjdðkÞ which can be used in a MC pro-

cedure to generate the cut Pomeron structure of an irre-
ducible cut diagram, to be discussed in Section IV. In

addition, we obtain there subcontributions 2 ��loop
aðjÞjdðkÞ,

2~�
loop
aðjÞjdðkÞ, which correspond to such cuts of net-fan graphs

in which just one cut Pomeron is coupled to hadron a.
Using the above-defined building blocks, the complete

set of cut irreducible graphs (with a treelike structure of
cuts) for hadron-hadron scattering is given in Fig. 64 [13].
Each square bracket in the Figure corresponds to a posi-
tively defined contribution of a certain ‘‘macro-
configuration’’ of the final state, characterized by certain
topology of cut Pomerons, hence, by a definite pattern for
secondary hadron production. For example, the diagrams
in the first square bracket in Fig. 6 correspond to the
configuration with at least two cut projectile and target
net fans ( �m � 2, �n � 2) coupled together in the vertex

ðy1; ~b1Þ, which results in a treelike structure of the final
state.5 In each of the �m cut projectile net fans any cut
Pomeron may split into a few, forming a fanlike structure
(composed of cut Pomerons) developing towards the pro-
jectile hadron (in the 0s order with respect to the triple-
Pomeron coupling a cut net fan is represented by a single
cut Pomeron exchanged between the hadron and the multi-
Pomeron vertex); in all the �n cut target net fans, such
fanlike structures develop towards the target hadron. For
the corresponding contribution we obtain

FIG. 6 (color online). Complete set of irreducible cut diagrams characterized by a tree-like structure of cuts.

4As discussed in [13], the set of diagrams of Fig. 6 can also be
represented in a form explicitly symmetric with respect to the
projectile and the target.

5The 2nd and 3rd graphs in the square bracket define the
subtracted contributions of the cuts of non-AGK types.
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��ð1Þ
adðjkÞðs; bÞ ¼

G

2

Z Y��

�
dy1

Z
d2b1

X1
�m¼2

X1
�n¼2

8<
:
½2�̂fan

aðjÞjdðkÞ þ 2~�fan
aðjÞjdðkÞ� �m

�m!
e
�2�net

aðjÞjdðkÞ
½2�̂fan

dðkÞjaðjÞ þ 2~�fan
dðkÞjaðjÞ� �n

�n!
e
�2�net

dðkÞjaðjÞ

� 2
½2�̂fan

aðjÞjdðkÞ þ 2~�fan
aðjÞjdðkÞ� �m

�m!
e
�2�net

aðjÞjdðkÞ
½~�fan

dðkÞjaðjÞ� �n
�n!

e
��net

dðkÞjaðjÞ

� 2
½~�fan

aðjÞjdðkÞ� �m
�m!

e
��net

aðjÞjdðkÞ
½2�̂fan

dðkÞjaðjÞ þ 2~�fan
dðkÞjaðjÞ� �n

�n!
e
�2�net

dðkÞjaðjÞ

9=
;

¼ G

2

Z Y��

�
dy1

Z
d2b1f½1� e

�2�net
aðjÞjdðkÞ ð1þ 2�net

aðjÞjdðkÞÞ�½1� e
�2�net

dðkÞjaðjÞ ð1þ 2�net
dðkÞjaðjÞÞ�

� 2½1� e
�2�net

aðjÞjdðkÞ ð1þ 2�net
aðjÞjdðkÞÞ�½e~�fan

dðkÞjaðjÞ � 1� ~�fan
dðkÞjaðjÞ�e��net

dðkÞjaðjÞ

� 2½e~�fan
aðjÞjdðkÞ � 1� ~�fan

aðjÞjdðkÞ�e��net
aðjÞjdðkÞ ½1� e

�2�net
dðkÞjaðjÞ ð1þ 2�net

dðkÞjaðjÞÞ�g; (28)

where the abbreviations are similar to the ones in (22).
The 2nd class of graphs corresponds to a LRG produced

(in one particular inelastic rescattering process) between

the projectile hadron and the vertex ðy1; ~b1Þ and at least two
cut target net fans ( �n � 2) coupled to the vertex ðy1; ~b1Þ,
while in the third configuration the projectile and the target
interchange their places. The corresponding contributions
read

��ð2Þ
adðjkÞðs; bÞ ¼

G

2

Z Y��

�
dy1

Z
d2b1½1� e

��net
aðjÞjdðkÞ �2

� f½1� e
�2�net

dðkÞjaðjÞ ð1þ 2�net
dðkÞjaðjÞÞ�

� 2½e~�fan
dðkÞjaðjÞ � 1� ~�fan

dðkÞjaðjÞ�e��net
dðkÞjaðjÞ g (29)

��ð3Þ
adðjkÞðs; bÞ ¼

G

2

Z Y��

�
dy1

Z
d2b1½1� e

��net
dðkÞjaðjÞ �2

� f½1� e
�2�net

aðjÞjdðkÞ ð1þ 2�net
aðjÞjdðkÞÞ�

� 2½e~�fan
aðjÞjdðkÞ � 1� ~�fan

aðjÞjdðkÞ�e��net
aðjÞjdðkÞ g: (30)

The next two contributions are similar to the first pair,
with the difference that there is precisely one cut target net

fan ( �n ¼ 1) coupled to the vertex ðy1; ~b1Þ:
��ð4Þ
adðjkÞðs; bÞ ¼ G

Z Y��

�
dy1

Z
d2b1f½1� e

�2�net
aðjÞjdðkÞ

� ð1þ 2�net
aðjÞjdðkÞÞ�½�net

dðkÞjaðjÞe
�2�net

dðkÞjaðjÞ

� ~�fan
dðkÞjaðjÞe

��net
dðkÞjaðjÞ � � 2½e~�fan

aðjÞjdðkÞ � 1

� ~�fan
aðjÞjdðkÞ�e��net

aðjÞjdðkÞ�net
dðkÞjaðjÞe

�2�net
dðkÞjaðjÞ g (31)

��ð5Þ
adðjkÞðs; bÞ ¼ G

Z Y��

�
dy1

Z
d2b1½1� e

��net
aðjÞjdðkÞ �2

� ½�net
dðkÞjaðjÞe

�2�net
dðkÞjaðjÞ � ~�fan

dðkÞjaðjÞe
��net

dðkÞjaðjÞ �: (32)

In the 6th contribution, the secondary particles produced
are separated from the target hadron by a LRG which

extends beyond the vertex ðy1; ~b1Þ. In all the �m � 2 cut
projectile net fans the handles of the fans are uncut and
positioned on the same side of the cut plane, together with
all the m � 0 uncut projectile and n � 1 target net fans. In
the next graph the projectile and the target interchange
their roles, the two contributions being

�� ð6Þ
adðjkÞðs; bÞ ¼ 2G

Z Y��

�
dy1

Z
d2b1½e~�fan

aðjÞjdðkÞ � 1

� ~�fan
aðjÞjdðkÞ�e��net

aðjÞjdðkÞ ð1� e
��net

dðkÞjaðjÞ Þ (33)

�� ð7Þ
adðjkÞðs; bÞ ¼ 2G

Z Y��

�
dy1

Z
d2b1½e~�fan

dðkÞjaðjÞ � 1

� ~�fan
dðkÞjaðjÞ�e��net

dðkÞjaðjÞ ð1� e
��net

aðjÞjdðkÞ Þ:
(34)

In the graph in the 8th square bracket, there are only

uncut net fans coupled to the vertex ðy1; ~b1Þ; particle pro-
duction emerges here from the cut multi-Pomeron vertex

ðy1; ~b1Þ only and is separated by large rapidity gaps from
both the projectile and the target.6 For the corresponding
contribution we easily obtain

��ð8Þ
adðjkÞðs; bÞ ¼

G

2

Z Y��

�
dy1

Z
d2b1½1� e

��net
aðjÞjdðkÞ �2

� ½1� e
��net

dðkÞjaðjÞ �2: (35)

The next set of cut enhanced diagrams reminds the one
in the 4th square bracket, being reversed upside-down, with

the difference that the vertex ðy1; ~b1Þ is coupled to the

6In the following we shall neglect the production of such low
mass diffractive states at central rapidities, such that this par-
ticular set of diagrams will contribute to (quasi-)elastic rescat-
tering processes only. As demonstrated in [14], such low mass
diffractive states produced at central rapidities do not provide
significant contributions to diffraction cross sections, with the
sole exception of the central diffraction (double Pomeron
exchange).
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projectile by a single cut sequence of Pomerons and
Pomeron loops, the corresponding contributions

2 ��
loop
aðjÞjdðkÞ, 2~�

loop
aðjÞjdðkÞ being defined in Appendix B. Thus,

the cut Pomeron tree develops here towards the target
while there is only one cut Pomeron coupled to the pro-
jectile. The partial contribution of such a configuration is

��ð9Þ
adðjkÞðs; bÞ ¼ G

Z Y��

�
dy1

Z
d2b1f½ ��loop

aðjÞjdðkÞe
�2�net

aðjÞjdðkÞ

� ~�loop
aðjÞjdðkÞe

��net
aðjÞjdðkÞ �½1� e

�2�net
dðkÞjaðjÞ

� ð1þ 2�net
dðkÞjaðjÞÞ� � 2 ��loop

aðjÞjdðkÞe
�2�net

aðjÞjdðkÞ

� ½e~�fan
dðkÞjaðjÞ � 1� ~�fan

dðkÞjaðjÞ�e��net
dðkÞjaðjÞ g: (36)

In turn, the next contribution corresponds to a single cut
sequence of Pomerons and Pomeron loops, exchanged

between the projectile and the vertex ðy1; ~b1Þ and being
separated from the target by a LRG:

�� ð10Þ
adðjkÞðs; bÞ ¼ G

Z Y��

�
dy1

Z
d2b1½ ��loop

aðjÞjdðkÞe
�2�net

aðjÞjdðkÞ

� ~�loop
aðjÞjdðkÞe

��net
aðjÞjdðkÞ �½1� e

��net
dðkÞjaðjÞ �2:

(37)

Finally, the graphs in the last square bracket in Fig. 6
describe an exchange of a single cut sequence of Pomerons
and Pomeron loops between the projectile and the target
hadrons, which includes also a single cut Pomeron ex-
change, with the contribution

��ð11Þ
adðjkÞðs;bÞ¼2�P

adðjkÞðs;bÞþ2G
Z Y��

�
dy1

�
Z
d2b1f�loop

dðkÞ ðy1;b1Þ½ ��loop
aðjÞjdðkÞðe�2�net

aðjÞjdðkÞ�2�net
dðkÞjaðjÞ �1Þ

� ~�loop
aðjÞjdðkÞðe��net

aðjÞjdðkÞ�2�net
dðkÞjaðjÞ �1Þ�

þ�P
aðjÞðY�y1;j ~b� ~b1jÞ½�loop

dðkÞ ðy1;b1Þ��
loopð1Þ
dðkÞ ðy1;b1Þ�g:

(38)

As shown in [13], one has the identity

X11
i¼1

��ðiÞ
adðjkÞðs; bÞ ¼ �adðjkÞðs; bÞ; (39)

which relates the summary contribution of all the consid-
ered cut diagrams to the total opacity �adðjkÞ for hadron-
hadron scattering, Eqs. (2) and (22). Relation (39) is a
direct consequence of the s-channel unitarity of the ap-
proach and of the fact that contributions of zigzaglike cut
graphs to the elastic scattering amplitude precisely cancel
each other [13]. Using (39), we can easily write down the
absorptive cross section which corresponds to multiple
secondary hadron production, including high mass diffrac-
tion processes:

�abs
ad ðsÞ ¼

Z
d2b

X1
N¼1

½P11
i¼1

��ðiÞ
adðjkÞðs; bÞ�N
N!

e��adðjkÞðs;bÞ

¼
Z

d2b½1� e��adðjkÞðs;bÞ�; (40)

where the factor ½P11
i¼1

��ðiÞ
adðjkÞ�N=N! ¼ ½�adðjkÞ�N=N!

comes from an exchange of precisely N irreducible cut
graphs whereas the factor exp½��adðjkÞ� is obtained sum-

ming over any number ( � 0) of elastic rescattering pro-
cesses due to the exchanges of uncut graphs. Proceeding as
in Appendix A, the treatment can be generalized to the case
of nucleus-nucleus (hadron-nucleus) collisions, as outlined
in Appendix C.
It is noteworthy that total inelastic cross section contains

also contributions from low mass diffraction of the projec-
tile or/and target hadrons:

�inel
ad ðsÞ ¼ �abs

ad ðsÞ þ �
SDðprojÞ
ad ðsÞ þ �

SDðtargÞ
ad ðsÞ þ �DD

ad ðsÞ;
(41)

where the latter are defined as [cf. (25)]

�SDðprojÞ
ad ðsÞ ¼

Z
d2b

X
j;k;l;m

ðCj=a�jl � Cj=aCl=aÞ

� Ck=dCm=de
�ð1=2Þ�adðjkÞðs;bÞ�ð1=2Þ�adðlmÞðs;bÞ

(42)

�SDðtargÞ
ad ðsÞ ¼

Z
d2b

X
j;k;l;m

Cj=aCl=aðCk=d�km � Ck=dCm=dÞ

� e�ð1=2Þ�adðjkÞðs;bÞ�ð1=2Þ�adðlmÞðs;bÞ (43)

�DD
ad ðsÞ ¼

Z
d2b

X
j;k;l;m

ðCj=a�jl � Cj=aCl=aÞðCk=d�km

� Ck=dCm=dÞe�ð1=2Þ�adðjkÞðs;bÞ�ð1=2Þ�adðlmÞðs;bÞ:
(44)

Equations (40)–(44) form the basis for a MC treatment
of inelastic hadron-hadron collisions. In particular, using
Eq. (40), for a given geometrical configuration of the

collision (impact parameter ~b and elastic scattering eigen-
states j and k of the projectile and target hadrons) the factor
½�adðjkÞ�N=N! exp½��adðjkÞ� can be interpreted as the

probability for precisely N elementary inelastic interac-
tions to take place in the collision. Each of the elementary
interactions may have different topologies (defined by the
structure of the unitarity cuts) of the kinds discussed above,

characterized by partial probabilities ��ðiÞ
adðjkÞ=�adðjkÞ. It is

worth stressing that the probabilistic interpretation of
Eq. (40) and the positive definiteness of the partial cut

contributions ��ðiÞ
adðjkÞ are due to the full resummation of

absorptive corrections due to virtual rescattering processes,
in particular, due to the resummation of all the irreducible
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cut diagrams characterized by a given topology of the cuts,
with any number of uncut Pomerons and any number of
multi-Pomeron vertices.

IV. MONTE CARLO PROCEDURE

The obtained expressions allow a relatively straightfor-
ward MC implementation of the approach, which is dis-
cussed below for the case of hadron-hadron scattering.
While low mass diffraction processes, being sampled ac-

cording to the corresponding probabilities �SDðprojÞ
ad =�inel

ad ,

�
SDðtargÞ
ad =�inel

ad , and �DD
ad =�

inel
ad [Eqs. (42)–(44)], are treated

like in the original QGSJET model [3,22]—assuming the
PPR-asymptotics for the mass distribution of diffractive
states, the ‘‘true inelastic’’ interactions, which have the
partial probability �abs

ad =�
inel
ad , are simulated as follows.

One starts from sampling the squared impact parameter
for the collision—uniformly in the area b2 < b2max, with
bmax chosen sufficiently large, corresponding to negligibly
small interaction probability at b > bmax. In addition, one
generates elastic scattering eigenstates j and k for the
projectile and target hadrons—according to their partial
weights Cj=a, Ck=d. In the specified geometry, one defines

the number N � 0 of elementary inelastic processes ac-
cording to the Poisson distribution with the mean�adðjkÞ—
Eq. (40); in case N ¼ 0 the chosen geometry is rejected
and the above-discussed steps are repeated.

Next, for each of the N elementary production processes
one chooses first the ‘‘macro-structure’’ of the contributing
cut diagrams (as defined in Fig. 6)—according to the

positively-defined weights ��ðiÞ
adðjkÞ=�adðjkÞ, and reconstructs

the configuration of cut Pomerons for the corresponding set
of irreducible cut graphs. For example, for the macro-
configuration of the 1st square bracket in Fig. 6 one chooses

the rapidity y1 and transverse vector ~b1 of the central multi-

Pomeron vertex ðy1; ~b1Þ—according to the integrand of
Eq. (28), and samples the numbers of cut projectile and
target net fans �m, �n using the Poisson distribution with the
corresponding mean values 2�net

aðjÞjdðkÞ, 2�
net
dðkÞjaðjÞ (rejecting

the cases �m, �n < 2)—see the 1st term in the integrand of
Eq. (28). For each of the �m cut projectile net fans one
decides if the handle of the fan is cut—with the probability
�̂fan
aðjÞjdðkÞ=�

net
aðjÞjdðkÞ, or uncut (similarly for the �n cut target net

fans); the 2nd and 3rd terms in the integrand of Eq. (28) are
accounted for via rejection in the case all the �m cut projectile
net fans and/or the �n cut target net fans have their handles
uncut. After that, the cut Pomeron structure for each of the
�mþ �n cut net fans is reconstructed using an iterative pro-
cedure, as discussed in Appendix D. By the end of the
procedure one is left with cut Pomeron contributions of
three types: i) stretched between the projectile and target
hadrons; ii) between a given (projectile or target) hadron and
a certain multi-Pomeron vertex; iii) between a pair of multi-
Pomeron vertices.

Each of those cut Pomeron contributions corresponds to
an underlying elementary parton cascade developing in the
respective rapidity range; hadronization of partons results
in the production of secondary hadrons which densely fill
that rapidity interval. For example, a cut Pomeron ex-
changed between the projectile and the target hadrons gives
rise to particle production in the whole range ½0; Y�.7 A cut
Pomeron exchanged between, say, projectile hadron and

some multi-Pomeron vertex ðy0; ~b0Þ results in a chain of
secondaries covering the range ½y0; Y�, etc. It is noteworthy
that we speak here about cut Pomeron contributions in the
sense of Fig. 23, i.e. accounting also for absorptive correc-
tions for the corresponding configuration of the final state.
The cut Pomeron contribution includes also the ones of
diagrams with additional multi-Pomeron vertices placed
along the cut Pomeron line; those vertices are coupled to
uncut Pomerons which are in turn connected to the projec-
tile and/or the target and/or to other uncut Pomerons.
Certain configurations obtained may contain large ra-

pidity gaps not covered by secondary particles—when the
corresponding rapidity intervals are not spanned by any cut
Pomeron. For example, in the configuration of Fig. 7, cut
Pomerons cover rapidity intervals ½y1; y2�, ½y3; y4�, and
½0; y5�, resulting in the production of chains of secondary
particles in those rapidity ranges. Hence, LRGs are pro-
duced in the intervals ½y5; y3� and ½y4; Y�. On the other
hand, there is no rapidity gap in the interval ½0; y1�which is
covered by secondaries emerging from the rightmost cut
Pomeron in the graph. While the diagram in Fig. 7 (left) is
the simplest one corresponding to the discussed final state,
the one in Fig. 7 (right) illustrates some absorptive correc-
tions to the discussed configuration, which are accounted
for by the formalism.
In addition to the already generated configuration, which

is based on treelike cut enhanced graphs, an additional set
of cut Pomerons comes from zigzaglike cut diagrams. The

y
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y

y

y

y
2

3

4

5

dd

aa

FIG. 7 (color online). Example of a cut enhanced graph cor-
responding to a final state with two LRGs (left) and a more
complicated graph which describes absorptive corrections to the
same final state (right).

7Constituent partons (‘‘Pomeron ends’’) are characterized by a
relatively hard light cone momentum distribution, hence, no
LRGs arise from the energy-momentum partition between those
partons and the hadron ‘‘remnant’’ state.
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latter are treated using an effective procedure, as outlined
in Appendix E.

At the next step, both for the projectile and the target
hadrons one performs energy-momentum sharing between
all the constituent partons (Pomeron ends) connected to
them and generates inelastic excitations of the remaining
remnant states. Finally, for each cut Pomeron contribution,
either exchanged between the projectile and the target, or
between a given (projectile or target) hadron and a multi-
Pomeron vertex, or between a pair of multi-Pomeron ver-
tices, one chooses whether it is represented by its soft or
semihard Pomeron component. In the latter case, like in the
nonenhanced Pomeron scheme [3,19], one samples the
light cone momenta for the ‘‘leg’’-partons of the QCD
ladder and performs simulation of the development of the
corresponding perturbative parton cascade. One employs
the standard treatment to reconstruct the pattern of both
initial and final state parton emission using the forward
evolution algorithms described in [19]. One ends up with
the formation of strings stretched between the Pomeron
end-point partons in case of soft Pomerons; for semihard
Pomerons such strings are stretched also between the final
s-channel partons resulted from the perturbative cascades,
following the direction of the color flow.

The treatment is completed with the fragmentation of
strings into secondary hadrons, which is performed using
the original procedure of the QGSJET model [22], using
the algorithm described in [23], with string fragmentation
parameters expressed via intercepts of secondary Regge
trajectories [24].

V. SOME RESULTS AND DISCUSSION

The basic model parameters have been calibrated from
the combined description of total and elastic hadron-proton
cross sections, elastic scattering slopes, and total and

diffractive structure functions F2, FDð3Þ
2 , the latter two

being calculated as described in [20], generalizing the
corresponding expressions to account also for Pomeron
loop contributions. In turn, the parameters for the hadro-
nization procedure have been tuned comparing with data
on hadron production in proton-proton interactions, using
also new data sets obtained at the Large Hadron Collider.
Using the virtuality cutoffQ2

0 ¼ 3 GeV2 between the soft

and hard parton evolution, we obtained, in particular, for the
soft Pomeron intercept and slope �P ¼ 1:17, �0

P ¼ 0:11,
while for the triple-Pomeron coupling we got
r3P ¼ 0:1 GeV, with �P ¼ 0:4 GeV�1. The corresponding
results for �tot

hpðsÞ, �el
hpðsÞ, Bel

ppðsÞ, d�el
hpðs; tÞ=dt, and for

proton structure function F2ðx;Q2Þ are given in Figs. 8–10
in comparison with experimental data. Using the simple
exponential form (6) for the t dependence of hadronic
form factors, the calculated differential elastic cross sections
agree reasonably well with measurements at small jtj &
0:3 GeV2 which are responsible for the bulk of secondary
hadron production. To have a better agreement at larger
values of jtj, a dipole parametrization for the form factor
would be more suitable.
In Fig. 11, we compare the calculated proton diffractive

structure function FDð3Þ
2 ðx; xP; Q2Þ (proton dissociation ex-

cluded) for small Q2, xP, � ¼ x=xP with HERA data. Our
interest to this observable is related to its strong sensitivity
to the main parameter for the enhanced Pomeron scheme—
the triple-Pomeron coupling. It is easy to see that the model

results for FDð3Þ
2 agree with the measurements only in the

limit of small Q2, xP, and �. With increasing xP, the RRP
contribution to FDð3Þ

2 becomes important while for larger �
and Q2 so-called q �q diffractive component (multiple
Pomeron coupling to the q �q loop) has to be accounted
for [25], both contributions neglected in the present
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FIG. 8 (color online). Left: Calculated total and elastic proton-proton, pion-proton, and kaon-proton cross sections—respectively
solid, dashed, and dotted-dashed lines. Right: Calculated elastic scattering slope for proton-proton scattering. The compilation of
experimental data (points) is from Ref. [35].
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treatment.8 Thus, diffractive HERA data set the upper limit
on the value of the triple-Pomeron vertex.

In Fig. 12 we plot the obtained energy dependence for
single and double diffractive proton-proton cross sections
in comparison to CDF data [26,27], showing also partial
contributions of high mass diffractive states to the dis-
cussed cross sections and the contribution of high mass
diffraction of one proton and a low mass excitation of the
other one. Here we adopt the experimental definitions for
the diffractive cross sections, applying the respective event

selection triggers to hadronic final states generated via a
MC procedure. Single diffraction events are obtained when
either a projectile or target proton is separated from the
remaining final state of mass MX by a LRG and M2

X=
s < 0:15 [26]; double diffraction events contain a central
rapidity gap of size ygap � 3, which spans the central

rapidity y ¼ lns=2 point [27]. Diffractive states are classi-
fied as high mass when M2

X > 25 GeV2 and as low mass
excitations otherwise [26]. It is noteworthy that at com-
paratively low energies (

ffiffiffi
s

p � 10 GeV) certain (theoreti-
cally) nondiffractive final states satisfy the imposed
triggers, constituting about half of the plotted �SD

pp and

most of the �DD
pp . On the other hand, at sufficiently high
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FIG. 10 (color online). Calculated proton structure function F2ðx; Q2Þ compared to HERA data [42].
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8Neither of the two neglected contributions involves the triple-
Pomeron coupling.
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energies a part of the theoretical low mass diffraction,
being described by the PPR asymptotics, is classified as
high mass diffraction, which explains the energy depen-
dence of the ‘‘low-high’’ double diffraction cross section
(dotted-dashed line in Fig. 12). The obtained values for
�SD

pp agree reasonably well with the measurements, taking

the fact that most of the low mass diffraction contribution
could not be seen by the CDF detector [26]. In turn, double
diffraction is seriously underestimated by the model.

A comparison with selected data on secondary particle
production in proton-proton and proton-antiproton colli-
sions, which have been used for the model calibration, is
presented in Figs. 13–15. In Figs. 13 and 14 the calculated
Feynman x spectra of protons and charged pions as well as
pion rapidity distributions are plotted together with
data from fixed target experiments. In turn, Fig. 15 shows
the results of calculations of the pseudorapidity density
and of transverse momentum spectra of charged seconda-
ries in non-single-diffractive proton-antiproton and proton-
proton collisions over a broad range of energies

ffiffiffi
s

p ¼
0:2� 7 TeV in comparison with experimental data from
the Sp �pS, Tevatron, and LHC colliders.9 More extensive
compilation of the model results for secondary particle
production will be presented elsewhere [15].
An interesting potential test for hadronic interaction

models, which could be performed using particle detectors
at the LHC, has been proposed in Ref. [28]. The idea was to
compare event trigger rates obtained by LHC experiments,
using different combinations of the respective charged
particle scintillation counters. As such counters cover a
restricted range of pseudorapidities, 	1 < j	j<	2, with
	1 ¼ 3:1, 	2 ¼ 6:5 for the TOTEM detector [29] and
	1 ¼ 2, 	2 ¼ 4 for ATLAS [30], the so-called
minimum-bias trigger (MBT) selections by the experi-
ments will miss a significant fraction of the inelastic
proton-proton cross section, which will include both the
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9The calculations have been performed using the non-single-
diffractive triggers of the respective experiments.
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low mass diffraction and a part of the high mass one. Using
various combinations of such triggers, one gains sensitivity
both to the absolute value of�inel

pp and to the contributions of

single and double high mass diffraction, which have differ-
ent selection efficiencies by such triggers. In Table I we
present our predictions for trigger rates by the TOTEM and
ATLAS experiments at

ffiffiffi
s

p ¼ 14 TeV, in comparison to the
original calculations of Ref. [28], for the selection of trig-
gers proposed in that work, requiring a charge particle hit at
positive rapidities only (in the interval ½	1; 	2� covered by
scintillators)—MBT1, or a signal at either positive
(½	1; 	2�) or negative (½�	2;�	1�) rapidities—MBT2, or
with both detectors being fired—MBT3. The calculated
trigger rates for the presently attained LHC energy

ffiffiffi
s

p ¼
7 TeV are collected in Table II. Comparing our results with
those of Ref. [28], we observe large differences concerning
both the absolute magnitude of the calculated minimum-
bias cross sections and for their variations between different
trigger selections. Although such differences are partly due
to hadronization effects—as we apply the respective trig-
gers to hadronic final states generated via a MC procedure,
the largest effect is related to a considerably higher total
(hence, also inelastic) cross section and to a much smaller

(by a factor of 2) single high mass diffraction cross section
in our approach compared to [28], as discussed in more
detail in [14]. Nevertheless, the discussed triggers work in a
similar way for both model approaches, particularly for the
MBT selections of ATLAS: i) all the three triggers reject
lowmass diffraction; ii) the MBT3 trigger misses also most
of single highmass diffraction events; iii) theMBT1 trigger
rejects most of the target high mass diffraction. As a con-
sequence, the ratio ð�MBT2 � �MBT3Þ=ð�MBT2 � �MBT1Þ is
close to 2. Thus, the present study confirms that the method
proposed in [28] will provide a powerful selection between
different model approaches to the treatment of minimum-
bias hadronic collisions.
As discussed above, the model generalization to hadron-

nucleus and nucleus-nucleus collisions does not involve
any additional parameters. As an illustration, we plot in
Fig. 16 the calculated A dependence of total hadron-
nucleus cross sections in comparison with experimental
data. In addition, in Fig. 17 the calculated Feynman x
spectra and rapidity distributions of secondary pions in
proton-carbon collisions are compared to NA49 data [31].
As demonstrated earlier in [12,20], the high energy

behavior of hadronic cross sections is strongly affected
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by nonlinear interaction effects. A similarly strong effect is
observed when studying the generated configurations for
hadronic final states. For proton-proton collisions, we plot
in Fig. 18 the energy dependence of the number of ‘‘ele-
mentary pieces’’ of secondary production—cut Pomerons,
for the three possible contributions: i) cut Pomerons
exchanged between the projectile and target protons—
which arise from eikonal Pomeron exchanges and obtain
absorptive corrections from various cut enhanced graphs
characterized by the same pattern of the final state; ii) ones
exchanged between the projectile or target proton and
some multi-Pomeron vertex—which come from cut en-
hanced graphs only (see the examples of the corresponding
subgraphs in Fig. 23); iii) cut Pomerons exchanged be-
tween a pair of multi-Pomeron vertices. While at moder-
ately low energies the configuration of the interaction is

dominated by cut Pomerons of the first type—as one would
have in a (linear) eikonal Pomeron scheme, at higher
energies the corresponding contribution is damped by ab-
sorptive corrections and secondary hadron production
comes mainly from the other two contributions—which
originate from cut enhanced graphs, i.e. from the treatment
of nonlinear interactions. The physical picture behind the
observed trend is obvious: the contributions of the 1st kind
correspond to a number of elementary parton cascades
developing independently between the projectile and target
protons and hadronizing into secondary hadrons. With the
energy increasing, a large number of such cascades is
closely packed together in the phase space, which forces
them to overlap and to interact with each other. Thus,
production of single chains of secondaries covering
the available rapidity range ½0; Y� is strongly reduced by
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TABLE I. Calculated total, inelastic and minimum-bias (for different MBT selections) proton-
proton cross sections at

ffiffiffi
s

p ¼ 14 TeV.

TOTEM ATLAS

�tot �inel �MBT1 �MBT2 �MBT3 �MBT1 �MBT2 �MBT3

this work 105 76.8 66.6 69.7 63.4 63.9 66.4 61.3

[28] 91.5 70.0 50.7 59.0 42.4 46.6 50.8 42.4
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virtual (elastic) rescattering of intermediate partons off the
projectile and target hadrons. More typical become con-
figurations of fan (or more complicated, see Fig. 6) types,
which correspond to multiple inelastic rescattering of some
intermediate partons off the projectile and target hadrons,
leading to a splitting or fusion of the cut Pomeron lines,
hence, to a branching of the chains of secondaries and,
generally, to a production of large rapidity gaps.

Let us finally stress that the complete all-order resum-
mation of the contributions of all significant enhanced
diagrams performed in this work was absolutely necessary
for obtaining a self-consistent description of hadronic cross
sections and of particle production in the very high energy
limit. This is related to the fact that in the high energy
asymptotics the diagrams of the highest considered order
with respect to Pomeron-Pomeron coupling (more pre-
cisely, the ones with the maximal number of Pomerons
exchanged in parallel in some rapidity interval) dominate
the elastic scattering amplitude [32]. Moreover, proceeding
from one order to the next, one obtains sign-changing
contributions. Thus, breaking the series at some given
order, one obtains the total cross section which either falls
down steeply above some energy or starts to rise in a
powerlike way, violating the unitarity bound. Hence, a
meaningful answer can only be obtained after a resumma-
tion of the complete (infinite) series of diagrams. In fact,
the situation is even more demanding when applied to
calculations of partial cross sections for various (e.g. dif-
fractive) hadronic final states—as different unitarity cuts of
the same enhanced graphs give positive contributions
to some processes while providing (negative) screening

corrections to others. The simplest example of the kind is
the triple-Pomeron diagram which provides a steeply rising
contribution to high mass single diffraction cross section
and gives rise to a strong screening correction to the single
cut Pomeron cross section, the latter corresponding to a
single elementary production process. An extensive analy-
sis of such effects has been reported in the previous work
[14], where also the relative importance of various classes
of enhanced diagrams has been investigated.
A comment is in order on the adopted ansatz (10) for

multi-Pomeron vertices and on the respective parameter
�P. As discussed already in [10,11] and more recently in
[14], in a scheme based on a single Pomeron type, one is
forced to choose �P such that r3P=�P <�P—in order to
preserve the energy rise of the scattering amplitude. In the
present scheme, apart from the usual soft Pomeron we have
also the ‘‘semihard Pomeron’’ contribution [Eqs. (7), (13),
and (16)] which contains a perturbative ‘‘piece’’. In addi-
tion, we assume that multi-Pomeron coupling is dominated
by low-q2 processes (jq2j<Q2

0), i.e. such vertices are

coupled only to soft Pomerons or to soft ‘‘ends’’ of semi-
hard Pomerons,10 as discussed in more detail in [19,20].
This allows us to choose �P such that r3P=�P >�P, which
leads to a saturation of soft processes in the dense limit
(small b and large s) and to a flattening of parton distribu-
tion functions at the input scaleQ2

0 [33]. The energy rise of

the scattering amplitude is supported at very high energies
by the increase of the semihard contribution. However,
neglecting hard (jq2j>Q2

0) Pomeron-Pomeron coupling,

we are forced to choose the Q0 cutoff high enough—in
order to safely neglect parton saturation effects at
jq2j>Q2

0.
11 This in turn restricts our choice for the pa-

rameter �P. For very small �P, in particular, in the limit of
triple-Pomeron vertices only (�P ! 0), having the triple-
Pomeron coupling r3P fixed by diffraction data, the satu-
ration of the soft particle production would be achieved at
relatively low energies over a large range of impact pa-
rameters. As the semihard contribution is still inefficient
there, this leads to an underestimation of secondary particle
production and to a contradiction with observations.
Whether or not one can restrict himself with just the
triple-Pomeron vertices can be investigated in the complete
scheme only, taking perturbative Pomeron-Pomeron cou-
pling into consideration.

VI. CONCLUSIONS

In this paper, we discussed in detail the MC procedure
for modeling hadronic collisions in the RFT framework,

TABLE II. Same as in Table I for
ffiffiffi
s

p ¼ 7 TeV.

TOTEM ATLAS

�tot �inel �MBT1 �MBT2 �MBT3 �MBT1 �MBT2 �MBT3

93.3 69.7 60.8 64.3 57.4 58.1 60.8 55.3
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FIG. 16 (color online). Calculated A dependence of total
proton-nucleus (solid) and pion-nucleus (dashed) cross sections
at, respectively, 500 and 600 GeV=c lab. momentum compared
to experimental data [53].

10The corresponding ‘‘hard piece’’ is always ‘‘sandwiched’’
between a pair of soft Pomerons—see Eqs. (7), (13), and (16)
and the 2nd graph in the rhs of Fig. 2.
11Note that for our choice of the factorization scaleM2

F ¼ p2
t =4

in Eq. (9) the chosen cutoff corresponds to the minimal trans-
verse momentum in parton hard process pmin

? ¼ 2Q0 ’ 3:4 GeV.
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including the contributions of enhanced Pomeron dia-
grams. The principal difference of the presented
Monte Carlo model compared to other generators of had-
ronic interactions is the direct correspondence between the
RFT treatment and the MC implementation: Various had-
ronic final states are generated according to their partial
cross sections. The latter are defined by the contributions of
cut Pomeron diagrams characterized by the relevant struc-
ture of the cuts. Defining the contributions of certain cut
subgraphs by means of recursive equations, we were able
to generate the (generally complicated) structure of had-
ronic final states in an iterative fashion.

The described model represents a self-consistent imple-
mentation of the corresponding RFT treatment, providing, in
particular, a close link between the description of total and
elastic hadron-proton cross sections and the generation
of hadronic final states. Indeed, while the elastic scattering
amplitude is defined by the contributions of uncut

nonenhanced and enhanced diagrams, partial cross sections
for various final states are defined by unitarity cuts of thevery
same diagrams, the summary contribution of all the cuts
being related to the uncut one by s-channel unitarity
[Eqs. (39) and (C16)], as demonstrated explicitly in [13].
On the other hand, the generalization of the treatment to
hadron-nucleus and nucleus-nucleus cases, both concerning
cross section calculations and for modeling particle produc-
tion, does not involve additional adjustable parameters.
Being based on the RFT formalism, the present treat-

ment shares most of its usual assumptions, like the validity
of the AGK cutting rules and eikonal vertices for Pomeron-
hadron (Pomeron-Pomeron) coupling. It also has the usual
drawback of neglecting energy-momentum correlations
between multiple scattering processes at the amplitude
level [34]. Thus, the discussed model remains a phenome-
nological one and it is experimental data which have to
decide if it is suitable enough for the treatment of very high
energy hadronic collisions. While in the current work we
mainly addressed the construction of the MC generator and
showed only some representative results for secondary
particle spectra, a thorough comparison of the model pre-
dictions on particle production with available experimental
data and the model applications for air shower simulation
will be presented elsewhere [15].
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APPENDIX A

The generalization of the approach described in
Section II to hadron-nucleus and nucleus-nucleus colli-
sions is parameter free and formally straightforward.
Indeed, the only essential difference is that now different
Pomerons in a given irreducible enhanced graph may
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FIG. 17 (color online). Calculated Feynman x spectra (left) and rapidity distributions (right) of positive (solid lines) and negative
(dashed lines) pions in proton-carbon collisions at 158 GeV=c lab. momentum compared to experimental data [31].
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couple to different nucleons of the projectile and/or target
nuclei, whose positions in the impact parameter plane
should be chosen according to the corresponding nuclear
density profiles. Thus, in case of nucleus A—nucleus B
interaction, the net-fan contribution (17) should be gener-
alized to

�net
AjBðy1; ~b1jY; ~bÞ¼

XA
m¼1

�loop

pðjAmÞðy1;j ~b1� ~bAmjÞþG
Z y1��

�
dy2

�
Z
d2b2ð1�e��loopðy1�y2;j ~b1� ~b2jÞÞ

�½ð1�e��net
AjBðy2; ~b2jY; ~bÞÞe��net

BjAðY�y2; ~b� ~b2jY; ~bÞ

��net
AjBðy2; ~b2jY; ~bÞ�; (A1)

where y1 is the rapidity distance between the given multi-

Pomeron vertex and the nucleus A, ~b1—the position of the
vertex with respect to the center of the nucleus in the
transverse plane, jAm—elastic scattering eigenstate of mth

nucleon, and ~bAm—its transverse vector with respect to the
center of the nucleus. Thus, �net

AjB depends on the positions

f ~bA; ~bBg and the elastic scattering eigenstates fjA; kBg of all
the Aþ B nucleons of the interacting nuclei, the corre-
sponding indexes not shown explicitly in (A1). The general
contribution of irreducible enhanced graphs is generalized
in a similar way:

�enh
AB ðs; b; fjA; kB; ~bA; ~bBgÞ ¼ G

Z Y��

�
dy1

Z
d2b1

�
½ð1� e��net

AjBÞð1� e��net
BjAÞ � �net

AjB�
net
BjA�

�
�
�net
AjB � XA

m¼1

�
loop

pðjAmÞðY � y1; j ~b� ~b1 þ ~bAmjÞ
�
½ð1� e��net

BjAÞe��net
AjB � �net

BjA�

þ XA
m¼1

XB
n¼1

�P
pðkBn Þðy1; j ~b1 � ~bBn jÞ½�loop

pðjAmÞðY � y1; j ~b� ~b1 þ ~bAmjÞ � �loopð1Þ
pðjAmÞ ðY � y1; j ~b� ~b1 þ ~bAmjÞ�

�
; (A2)

where the abbreviations are similar to the ones in (22).
It is obvious that Eqs. (A1) and (A2) are impractical: for

each particular configuration of the two nuclei, i.e. for each
choice of the coordinates and elastic scattering eigenstates
of the nucleons, one has to calculate �net

AjB recursively,

which is very time consuming. Unlike hadron-hadron
case, one can not make a pretabulation of the correspond-
ing contributions which now depend on 2ðAþ BÞ coordi-
nates of the nucleons, not counting the numbers of their
possible eigenstates and the variables shown explicitly in
(A1).

To propose a suitable approximation for (A1) and (A2)
let us decompose �net

AjB as

�net
AjBðy1; ~b1jY; ~bÞ ¼

XA
m¼1

�net
pðjAmÞðy1; j ~b1 � ~bAmj; � � �Þ; (A3)

with the aim to describe the dependence of �net
pðjAmÞ on the

coordinates and eigenstates of all the Aþ B� 1 projectile
and target nucleons but the current one, indicated symboli-
cally by the multidot in the rhs of (A3), by means of a
single factor. Substituting (A3) to (A1) and using the
identity

1�exp

�
� XA

m¼1

�net
pðjAmÞ

�
¼ XA

m¼1

ð1�e
��net

pðjAmÞ Þe�
P

m�1
l¼1

�net

pðjA
l
Þ ;

(A4)

we obtain

XA
m¼1

�net
pðjAmÞðy1; j ~b1 � ~bAmj; � � �Þ ¼

XA
m¼1

�
�
loop

pðjAmÞðy1; j ~b1 � ~bAmjÞ

þG
Z y1��

�
dy2

Z
d2b2ð1� e��loopðy1�y2;j ~b1� ~b2jÞÞ

� ½ð1� e
��net

pðjAmÞðy2;j ~b2� ~bAmj;���ÞÞZðmÞ
AjBðy2; ~b2; Y; ~b;

fjA; kB; ~bA; ~bBgÞ � �net
pðjAmÞðy2; j ~b2 � ~bAmj; � � �Þ�

�
(A5)

ZðmÞ
AjBðy2; ~b2; Y; ~b; fjA; kB; ~bA; ~bBgÞ

¼ exp

�
� Xm�1

l¼1

�net
pðjA

l
Þðy2; j ~b2 � ~bAl j; � � �Þ

� XB
n¼1

�net
pðkBn ÞðY � y2; j ~b� ~b2 þ ~bBn j; � � �Þ

�
: (A6)
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Now we approximate the nuclear screening factor ZðmÞ
AjB

formth projectile nucleon by its value in the vertex ðy1; ~b1Þ:

ZðmÞ
AjBðy2; ~b2; Y; ~b; fjA; kB; ~bA; ~bBgÞ
’ ZðmÞ

AjBðy1; ~b1; Y; ~b; fjA; kB; ~bA; ~bBgÞ: (A7)

Using this approximation, the solution of the nuclear net-
fan equation (A1) is

�net
AjBðy1; ~b1jY; ~bÞ¼

XA
m¼1

�net
pðjAmÞðy1;j ~b1

� ~bAmj;ZðmÞ
AjBðy1; ~b1;Y; ~b;fjA;kB; ~bA; ~bBgÞÞ;

(A8)

where a partial contribution �net
pðjÞ of any of the A

projectile nucleons is the solution of the recursive equation
[c.f. (17)]:

�net
pðjÞðy1; b0; ZÞ ¼ �

loop
pðjÞðy1; b0Þ þG

Z y1��

�
dy2

�
Z

d2b2ð1� e��loopðy1�y2;j ~b0� ~b2jÞÞ

� ½ð1� e
��net

pðjÞðy2; ~b2;ZÞÞZ� �net
pðjÞðy2; ~b2; ZÞ�; (A9)

which can be easily tabulated as a function of its three
arguments ðy1; b0; ZÞ.
Substituting now (A8) to (A2) and using (A4), we

obtain

�enh
AB ðs;b;fjA;kB; ~bA; ~bBgÞ

¼ XA
m¼1

XB
n¼1

�enh
mn ðs;b;fjA;kB; ~bA; ~bBgÞ (A10)

�enh
mn ðs; b; fjA; kB; ~bA; ~bBgÞ ¼ G

Z Y��

�
dy1

Z
d2b1

�
½ð1� e

��net

pðjAmÞ Þð1� e
��net

pðkBn Þ Þe�
P

m�1
l¼1

�net

pðjA
l
Þ�
P

n�1
i¼1

�net

pðkB
i
Þ � �net

pðjAmÞ�
net
pðkBn Þ�

� ½�net
pðjAmÞ � �loop

pðjAmÞðY � y1; j ~b� ~b1 þ ~bAmjÞ�½ð1� e
��net

pðkBn Þ Þe�
P

A
l¼1

�net

pðjA
l
Þ�
P

n�1
i¼1

�net

pðkB
i
Þ � �net

pðkBn Þ�

þ �P
pðkBn Þðy1; j ~b1 � ~bBn jÞ½�loop

pðjAmÞðY � y1; j ~b� ~b1 þ ~bAmjÞ � �
loopð1Þ
pðjAmÞ ðY � y1; j ~b� ~b1 þ ~bAmjÞ�

�
;

(A11)

where the omitted arguments read �net
pðkBn Þ ¼ �net

pðkBn Þðy1; j ~b1 � ~bBn j; ZðnÞ
BjAðy1; ~b1; Y; ~b; fkB; jA; ~bB; ~bAgÞÞ,

�net
pðjAmÞ ¼ �net

pðjAmÞðY � y1; j ~b� ~b1 þ ~bAmj; ZðmÞ
AjBðY � y1; ~b� ~b1 þ ~bAm; Y; ~b; fjA; kB; ~bA; ~bBgÞÞ.

Nucleus-nucleus elastic scattering amplitude fABðs; bÞ can now be defined taking into account contributions from any
number of Pomerons exchanged between an arbitrary pair of the projectile and target nucleons and from exchanges of
arbitrary enhanced graphs between the two nuclei:

fABðs; bÞ ¼ ihh1� e
�PA

m¼1

P
B
n¼1

�P
ppðjAmkBn Þ

ðs;j ~bþ ~bAm� ~bBn jÞ��enh
AB

ðs;b;fjA;kB; ~bA; ~bBgÞiAiB

¼ i

��
1� exp

�
� 1

2

XA
m¼1

XB
n¼1

�ðmnÞ
AB ðs; b; fjA; kB; ~bA; ~bBgÞ

�	
A

	
B

(A12)

�ðmnÞ
AB ðs; b; fjA; kB; ~bA; ~bBgÞ ¼ 2�P

ppðjAmkBn Þðs; j ~bþ ~bAm � ~bBn jÞ þ 2�enh
mn ðs; b; fjA; kB; ~bA; ~bBgÞ; (A13)

where for averaging over transverse coordinates and elastic
scattering eigenstates of the nucleons we used the notation

hhðfjA; ~bAgÞiA¼
X

jA
1
...jA

A

CjA
1
=p� . . .�CjA

A
=p

�
Z
d2bA1 . . .d

2bAATAð ~bA1 ; . . . ; ~bAAÞhjA
1
...jA

A
ð ~bA1 ; . . . ; ~bAAÞ;

with the profile function TA being expressed via nuclear
ground state density 
A as

TAð ~bA1 ; . . . ; ~bAAÞ ¼
Z

dzA1 . . . dz
A
A
Að~rA1 ; . . . ; ~rAAÞ: (A14)

Expression (A13) for nucleus-nucleus scattering amplitude
reminds the usual multichannel eikonal form [22], looking
as a combination of binarylike nucleon-nucleon rescatter-
ings. In reality, each of the partial opacities�ðmnÞ

AB generally
depends on the transverse coordinates and elastic scatter-
ing eigenstates of all the Aþ B projectile and target nu-
cleons and contains absorptive corrections due to
rescattering processes on those nucleons.
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Knowing the elastic amplitude, one can easily calculate
total and elastic cross sections as

�tot
ABðsÞ ¼ 2

Z
d2bImfABðs; bÞ (A15)

�el
ABðsÞ ¼

Z
d2bjfABðs; bÞj2: (A16)

Hadron-nucleus scattering amplitude is obtained using

in (A11)–(A13) A ¼ 1, TAð ~bA1 Þ ¼ �ð2Þð ~bA1 Þ and replacing
the eikonals �P

ppðjA
1
kBn Þ, �

net
pðjA

1
Þ with �P

apðjA
1
kBn Þ, �

net
aðjA

1
Þ for a

given projectile hadron a; the hadron-hadron case is re-
covered similarly.

APPENDIX B

To develop a MC procedure for sampling various con-
figurations of hadronic collisions we shall need alternative
representations for the cut net-fan contributions 2�̂fan

aðjÞjdðkÞ,
2~�fan

aðjÞjdðkÞ. Those should allow us to generate recursively

the cut Pomeron structure for the corresponding subgraphs,
with all the absorptive corrections due to uncut Pomerons

being summed up. Such representations are obtained ap-
plying recursively the graphic equations of Fig. 5 to gen-
erate a t-channel sequence of multi-Pomeron vertices

ðy2; ~b2Þ; ðy3; ~b3Þ; � � � , such that these vertices are coupled
to uncut projectile and target net fans only (ml þ nl � 1,
�ml ¼ �nl ¼ 0, l ¼ 2; 3; � � � ) and they are connected to each
other by either cut or uncut 2-point sequences of Pomerons
and Pomeron loops. The recursive procedure stops in some
vertex ðy0; b0Þ when: i) the vertex ðy0; b0Þ is connected to the
given (here, projectile) hadron by a cut 2-point loop se-
quence, with a single cut Pomeron coupled to the hadron,
or ii) the vertex is coupled to �m0 � 2 cut projectile net-fans,
or iii) the vertex is coupled to m0 � 2 uncut projectile net
fans, with the cut plane positioned between them, i.e. there
is a diffractive cut between the projectile hadron and that
vertex.12 The resulting Schwinger-Dyson equations are
depicted in Figs. 19 and 20 and read
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FIG. 19 (color online). Alternative representation for the contribution 2�̂fan
aðjÞjdðkÞ of fanlike cuts of net fans, the handle of the fan being cut.
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aðjÞjdðkÞ of fanlike cuts of net fans, the handle of the fan being
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12Note, however, that the corresponding rapidity gap may be
filled by particles resulting from other cut Pomerons produced in
the corresponding rapidity interval.
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2�̂fan
aðjÞjdðkÞðy1; ~b1jY; ~bÞ ¼ ½2 ��loop

aðjÞjdðkÞðy1; ~b1jY; ~bÞ� 2~�loop
aðjÞjdðkÞðy1; ~b1jY; ~bÞ�

þG
Z y1��

�
dy0

Z
d2b0

8<
:½�loopcc

aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞe�2�net
dðkÞjaðjÞ ��loopcu

aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ

� ð1� e
��net

dðkÞjaðjÞ Þe��net
dðkÞjaðjÞ �

2
4 X1

�m0¼2

1

�m0!
ðð2�̂fan

aðjÞjdðkÞ þ 2~�fan
aðjÞjdðkÞÞ �m

0
e
�2�net

aðjÞjdðkÞ � 2ð~�fan
aðjÞjdðkÞÞ �m

0
e
��net

aðjÞjdðkÞ Þ

þ ð1� e
��net

aðjÞjdðkÞ Þ2
3
5� 2�loopcu

aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞe��net
aðjÞjdðkÞ��net

dðkÞjaðjÞ
X1
�m0¼2

ð~�fan
aðjÞjdðkÞÞ �m

0

�m0!

9=
; (B1)

2~�fan
aðjÞjdðkÞðy1; ~b1jY; ~bÞ ¼ 2~�

loop
aðjÞjdðkÞðy1; ~b1jY; ~bÞ þG

Z y1��

�
dy0

Z
d2b0

8<
:½�loopuc

aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞe�2�net
dðkÞjaðjÞ

þ �loopuu
aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞð1� e

��net
dðkÞjaðjÞ Þe��net

dðkÞjaðjÞ �
2
4 X1

�m0¼2

1

�m0!
ðð2�̂fan

aðjÞjdðkÞ

þ 2~�fan
aðjÞjdðkÞÞ �m

0
e
�2�net

aðjÞjdðkÞ � 2ð~�fan
aðjÞjdðkÞÞ �m

0
e
��net

aðjÞjdðkÞ Þ þ ð1� e
��net

aðjÞjdðkÞ Þ2
3
5

þ 2�
loopuu
aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞe��net

aðjÞjdðkÞ��net
dðkÞjaðjÞ

X1
�m0¼2

ð~�fan
aðjÞjdðkÞÞ �m

0

�m0!

9=
;; (B2)

where the arguments of the eikonals in the integrand read �net
aðjÞjdðkÞ ¼ �net

aðjÞjdðkÞðy0; ~b0jY; ~bÞ, �̂fan
aðjÞjdðkÞ ¼ �̂fan

aðjÞjdðkÞðy0; ~b0jY; ~bÞ,
~�fan
aðjÞjdðkÞ ¼ ~�fan

aðjÞjdðkÞðy0; ~b0jY; ~bÞ, �net
dðkÞjaðjÞ ¼ �net

dðkÞjaðjÞðY � y0; ~b� ~b0jY; ~bÞ.
The contributions 2 ��

loop
aðjÞjdðkÞ and 2~�

loop
aðjÞjdðkÞ correspond to the subset of graphs obtained in case (i) above, being defined by

the recursive equations (see Fig. 21)

��
loop
aðjÞjdðkÞðy1; ~b1jY; ~bÞ ¼ �

loop
aðjÞ ðy1; b1Þ þG

Z y1��

�
dy2

Z
d2b2ð1� e��loopðy1�y2;j ~b1� ~b2jÞÞ ��loop

aðjÞjdðkÞðy2; ~b2jY; ~bÞ

� ðe�2�net
aðjÞjdðkÞðy2; ~b2jY; ~bÞ��net

dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ � 1Þ (B3)
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FIG. 21 (color online). Recursive representations for the contributions 2 ��
loop
aðjÞjdðkÞ � 2~�

loop
aðjÞjdðkÞ (top) and 2~�

loop
aðjÞjdðkÞ (bottom) of the

subsets of fanlike cuts of net fans, which have a single cut Pomeron coupled to the projectile hadron.
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~�
loop
aðjÞjdðkÞðy1; ~b1jY; ~bÞ ¼ G

Z y1��

�
dy2

Z
d2b2ð1� e��loopðy1�y2;j ~b1� ~b2jÞÞ½ ��loop

aðjÞjdðkÞðy2; ~b2jY; ~bÞ

� ð1� e
��net

dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞÞe�2�net
aðjÞjdðkÞðy2; ~b2jY; ~bÞ��net

dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ þ ~�loop
aðjÞjdðkÞðy2; ~b2jY; ~bÞ

� ðe��net
aðjÞjdðkÞðy2; ~b2jY; ~bÞ�2�net

dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ � 1Þ�: (B4)

In a similar way, for the contributions �
loopxy
aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ corresponding to t-channel sequences of multi-

Pomeron vertices positioned between ðy1; b1Þ and ðy0; ~b0Þ, coupled to uncut projectile and target net fans and connected

to each other and to the vertices ðy1; b1Þ, ðy0; ~b0Þ by cut or uncut 2-point loop sequences [the index x (y) indicates whether
the down-most (uppermost) loop sequence is cut, x ¼ c (y ¼ c), or uncut, x ¼ u (y ¼ u)], one obtains the equation system

�loopcc
aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ ¼ ½1� e��loopðy1�y0;j ~b1� ~b0jÞ� þG

Z y0��

y1þ�
dy2

Z
d2b2½1� e��loopðy1�y2;j ~b1� ~b2jÞ�

� ½�loopcc
aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞðe�2�net

aðjÞjdðkÞ�2�net
dðkÞjaðjÞ � 1Þ � �

loopuc
aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞ

� ð1� e
��net

aðjÞjdðkÞ Þe��net
aðjÞjdðkÞ�2�net

dðkÞjaðjÞ � (B5)

�loopcu
aðjÞjdðkÞðy1;y0; ~b1; ~b0jY; ~bÞ¼G

Z y0��

y1þ�
dy2

Z
d2b2½1�e��loopðy1�y2;j ~b1� ~b2jÞ�½�loopcu

aðjÞjdðkÞðy2;y0; ~b2; ~b0jY; ~bÞ

�ðe�2�net
aðjÞjdðkÞ�2�net

dðkÞjaðjÞ �1Þþ�loopuu
aðjÞjdðkÞðy2;y0; ~b2; ~b0jY; ~bÞð1�e

��net
aðjÞjdðkÞ Þe��net

aðjÞjdðkÞ�2�net
dðkÞjaðjÞ � (B6)

�
loopuc
aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ ¼ G

Z y0��

y1þ�
dy2

Z
d2b2½1� e��loopðy1�y2;j ~b1� ~b2jÞ�½�loopcc

aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞ

� ð1� e
��net

dðkÞjaðjÞ Þe�2�net
aðjÞjdðkÞ��net

dðkÞjaðjÞ þ �
loopuc
aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞðe��net

aðjÞjdðkÞ�2�net
dðkÞjaðjÞ

þ e
�2�net

aðjÞjdðkÞ��net
dðkÞjaðjÞ � e

�2�net
aðjÞjdðkÞ�2�net

dðkÞjaðjÞ � 1Þ� (B7)

�loopuu
aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ ¼ ½1� e��loopðy1�y0;j ~b1� ~b0jÞ� þG

Z y0��

y1þ�
dy2

Z
d2b2½1� e��loopðy1�y2;j ~b1� ~b2jÞ�

� ½��
loopcu
aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞð1� e

��net
dðkÞjaðjÞ Þe�2�net

aðjÞjdðkÞ��net
dðkÞjaðjÞ þ �

loopuu
aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞ

� ðe��net
aðjÞjdðkÞ�2�net

dðkÞjaðjÞ þ e
�2�net

aðjÞjdðkÞ��net
dðkÞjaðjÞ � e

�2�net
aðjÞjdðkÞ�2�net

dðkÞjaðjÞ � 1Þ�; (B8)

where the omitted arguments of the eikonals �net
aðjÞjdðkÞ, �

net
dðkÞjaðjÞ are the same as in Eqs. (B3) and (B4).

APPENDIX C

In case of nucleus-nucleus scattering, different cut and uncut Pomerons from the same irreducible graph may couple to
different projectile and target nucleons. We start again from the contributions of fanlike cuts of net fans, Fig. 5, for which
we obtain
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2�̂fan
AjBðy1; ~b1jY; ~bÞ ¼

XA
m¼1

2�loop

pðjAmÞðy1; j ~b1 � ~bAmjÞ þG
Z y1��

�
dy2

Z
d2b2ð1� e��loopðy1�y2;j ~b1� ~b2jÞÞ

� f½ðe2 ��fan
AjBðy2; ~b2jY; ~bÞ � 1Þe�2�net

AjBðy2; ~b2jY; ~bÞ�2�net
BjAðY�y2; ~b� ~b2jY; ~bÞ � 2 ��fan

AjBðy2; ~b2jY; ~bÞ�
� 2½ðe~�fan

AjBðy2; ~b2jY; ~bÞ � 1Þe��net
AjBðy2; ~b2jY; ~bÞ�2�net

BjAðY�y2; ~b� ~b2jY; ~bÞ � ~�fan
AjBðy2; ~b2jY; ~bÞ�

þ ð1� e��net
AjBðy2; ~b2jY; ~bÞÞ2e�2�net

BjAðY�y2; ~b� ~b2jY; ~bÞg (C1)

2~�fan
AjBðy1; ~b1jY; ~bÞ ¼ G

Z y1��

�
dy2

Z
d2b2ð1� e��loopðy1�y2;j ~b1� ~b2jÞÞfð1� e��net

BjAðY�y2; ~b� ~b2jY; ~bÞÞe��net
BjAðY�y2; ~b� ~b2jY; ~bÞ

� ½ðe2 ��fan
AjBðy2; ~b2jY; ~bÞ � 1Þe�2�net

AjBðy2; ~b2jY; ~bÞ � 2ðe~�fan
AjBðy2; ~b2jY; ~bÞ � 1Þe��net

AjBðy2; ~b2jY; ~bÞ þ ð1� e��net
AjBðy2; ~b2jY; ~bÞÞ2�

þ 2½ðe~�fan
AjBðy2; ~b2jY; ~bÞ � 1Þe��net

AjBðy2; ~b2jY; ~bÞ��net
BjAðY�y2; ~b� ~b2jY; ~bÞ � ~�fan

AjBðy2; ~b2jY; ~bÞ�g; (C2)

where 2�̂fan
AjB corresponds to cut graphs where the handle of

the fan is cut, 2~�fan
AjB—to the ones where it is uncut, and

2 ��fan
AjB ¼ 2�̂fan

AjB þ 2~�fan
AjB is the total contribution of fanlike

cuts of net fans; the dependence of the eikonals on the
coordinates and eigenstates of all the nucleons is not shown
explicitly.

We are going to proceed like in Appendix A, expanding
��fan
AjB, �̂

fan
AjB, and ~�fan

AjB as

�� fan
AjBðy1; ~b1jY; ~bÞ ¼

XA
m¼1

��fan
pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ (C3)

�̂ fan
AjBðy1; ~b1jY; ~bÞ ¼

XA
m¼1

�̂fan
pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ; (C4)

~�fan
pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ ¼ ��fan

pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ
� �̂fan

pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ (C5)

and approximating the dependence on the coordinates and
eigenstates of all the Aþ B� 1 projectile and target nu-
cleons but the current one by some factors.

Adding (C1) to (C2), substituting the decompositions
(A3) and (C3)–(C5), and using the identities

exp

�
2
XA
m¼1

��fan
pðjAmÞ

�
� 1 ¼ XA

m¼1

ðe2 ��
fan

pðjAmÞ � 1Þe2
P

A
l¼mþ1

��fan

pðjA
l
Þ

(C6)

exp

�XA
m¼1

~�fan
pðjAmÞ

�
� 1 ¼ XA

m¼1

ðe~�fan

pðjAmÞ � 1Þe
P

A
l¼mþ1

~�fan

pðjA
l
Þ

(C7)

�
1�exp

�
�XA

m¼1

�net
pðjAmÞ

��
2¼ XA

m¼1

½ð1�e
��net

pðjAmÞ Þ2e�2
P

m�1
l¼1

�net

pðjA
l
Þ

þ2ð1�e
��net

pðjAmÞ Þð1�e
�Pm�1

l¼1
�net

pðjA
l
Þ Þe�

P
m�1
l¼1

�net

pðjA
l
Þ �; (C8)

we obtain

XA
m¼1

2 ��fan
pðjAmÞðy1;j ~b1� ~bAmj; . . .Þ¼

XA
m¼1

8<
:2�loop

pðjAmÞðy1;j ~b1� ~bAmjÞ

þG
Z y1��

�
dy2

Z
d2b2ð1�e��loopÞ

�½ðe2ð ��
fan

pðjAmÞ��net

pðjAmÞÞ �e
�2�net

pðjAmÞ Þe2
P

A
l¼mþ1

ð ��fan

pðjA
l
Þ��net

pðjA
l
ÞÞ

�ðZðmÞ
AjBÞ2�2 ��fan

pðjAmÞþð1�e
��net

pðjAmÞ Þ2ðZðmÞ
AjBÞ2

þ2ð1�e
��net

pðjAmÞ ÞZðmÞ
AjBð1�ZðmÞ

AjBÞ�
9=
;; (C9)

where the arguments of the eikonals in the integrand are

the same as in (A5) and ZðmÞ
AjB is defined in (A6).

Comparing (C9) to (A5), we obtain

�� fan
pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ ¼ �net

pðjAmÞðy1; j ~b1 � ~bAmj; . . .Þ:
(C10)

Now, substituting (A3), (C3)–(C5) into (C1), using
(C6)–(C8) and (C10), and doing the same approximation
as in (A7), we obtain
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�̂fan
AjBðy1; ~b1jY; ~bÞ¼

XA
m¼1

�̂fan
pðjAmÞðy1;j ~b1� ~bAmj;

ZðmÞ
AjBðy1; ~b1;Y; ~b;fjA;kB; ~bA; ~bBgÞ;

ẐðmÞ
A ðy1; ~b1;Y; ~b;fjA;kB; ~bA; ~bBgÞ;

ZBðY�y1; ~b� ~b1;Y; ~b;fkB;jA; ~bB; ~bAgÞÞ;

(C11)

where we introduced

Ẑ ðmÞ
A ðy1; ~b1; Y; ~b; fjA; kB; ~bA; ~bBgÞ

¼ exp

�
� XA

l¼mþ1

�̂fan
pðjA

l
Þðy1; j ~b1 � ~bAl j; ZðlÞ

AjB; Ẑ
ðlÞ
A ; ZBÞ

�

(C12)

ZAðy1; ~b1; Y; ~b; fjA; kB; ~bA; ~bBgÞ

¼ exp

�
�XA

l¼1

�net
pðjA

l
Þðy1; j ~b1 � ~bAl j; ZðmÞ

AjBÞ
�

(C13)

and �̂fan
pðjAmÞ is defined by the equation

�̂fan
pðjÞðy1;b0;Z1;Z2;Z3Þ¼�

loop
pðjÞ ðy1;b0ÞþG

Z y1��

�
dy2

�
Z
d2b2ð1�e��loopðy1�y2;j ~b0� ~b2jÞÞ

�½ð1�e
��̂fan

pðjÞðy2;b2;Z1;Z2;Z3ÞÞZ1Z2Z3

� �̂fan
pðjÞðy2;b2;Z1;Z2;Z3Þþð1�e

��net
pðjÞðy2;b2;Z1ÞÞ

�Z1Z3ð1�Z2Þ�: (C14)

In a similar way we can obtain contributions of other
subsets of cut net-fan graphs, defined in Appendix B, and
apply them to decompose partial opacities for various
macro-configurations of nucleus-nucleus collisions (as de-
fined in Fig. 6) in the form resembling binarylike nucleon-
nucleon collisions [cf. (A10) and (A11)]:

��ðiÞ
ABðs; b; fjA; kB; ~bA; ~bBgÞ

¼ XA
m¼1

XB
n¼1

��ðiÞ
mnðs; b; fjA; kB; ~bA; ~bBgÞ; (C15)

which satisfy

X11
i¼1

��ðiÞ
mnðs; b; fjA; kB; ~bA; ~bBgÞ

¼ �ðmnÞ
AB ðs; b; fjA; kB; ~bA; ~bBgÞ; (C16)

with�ðmnÞ
AB being defined in (A13). Such a decomposition is

a useful technical trick for the MC implementation of the
approach. Each term in the decomposition corresponds to
an inelastic rescattering process between a given pair ðmnÞ
of the projectile and target nucleons but generally involves
additional inelastic rescatterings on other nucleons of the
two nuclei.
For example, for the configuration defined by the graphs

in the 1st square bracket in Fig. 6 one obtains

��ð1Þ
mn ¼ G

2

Z Y��

�
dy1

Z
d2b1f½ð1� e

�2�net

pðjAmÞ Þe�2
P

m�1
l¼1

�net

pðjA
l
Þ � 2�net

pðjAmÞe
�2

P
A
l¼1

�net

pðjA
l
Þ �½ð1� e

�2�net

pðkBn Þ Þe�2
P

n�1
i¼1

�net

pðkB
i
Þ

� 2�net
pðkBn Þe

�2
P

B
i¼1

�net

pðkB
i
Þ � � 2½ð1� e

�2�net

pðjAmÞ Þe�2
P

m�1
l¼1

�net

pðjA
l
Þ � 2�net

pðjAmÞe
�2

P
A
l¼1

�net

pðjA
l
Þ �½ðe~�fan

pðkBn Þ � 1Þ

� e

P
B
i¼nþ1

~�fan

pðkB
i
Þ � ~�fan

pðkBn Þ�e
�PB

i¼1
�net

pðkB
i
Þ � 2½ðe~�fan

pðjAmÞ � 1Þe
P

A
l¼mþ1

~�fan

pðjA
l
Þ � ~�fan

pðjAmÞ�e
�PA

l¼1
�net

pðjA
l
Þ ½ð1� e

�2�net

pðkBn Þ Þ

� e
�2

P
n�1

i¼1
�net

pðkB
i
Þ � 2�net

pðkBn Þe
�2

P
B

i¼1
�net

pðkB
i
Þ �g: (C17)

Using (C16), we can easily write down the absorptive
nucleus-nucleus cross section:

�abs
ABðsÞ¼

Z
d2b

��YA
m¼1

YB
n¼1

� X1
Nmn¼0

½P11
i¼1

��ðiÞ
mn�Nmn

Nmn!

�e��ðmnÞ
AB

ðs;b;fjA;kB; ~bA; ~bBgÞ
�
�YA

m¼1

YB
n¼1

�e��ðmnÞ
AB

ðs;b;fjA;kB; ~bA; ~bBgÞ
	
A

	
B

¼
Z
d2bhh1�e�

P
A
m¼1

P
B
n¼1

�ðmnÞ
AB

ðs;b;fjA;kB; ~bA; ~bBgÞiAiB; (C18)

which can be applied for a MC treatment of inelastic
nucleus-nucleus (hadron-nucleus) collisions. It is

worth stressing again that partial opacities ��ðiÞ
mn generally

correspond not only to an inelastic rescattering between
mth projectile and nth target nucleons but involve also
inelastic interactions with (mþ 1)th, . . ., Ath projectile
and (nþ 1)th, . . ., Bth target nucleons.

APPENDIX D

The relations of Appendix B allow one to reconstruct the
cut Pomeron structure for a cut net-fan contribution. For
simplicity, we shall illustrate the procedure neglecting the
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production of large rapidity gaps at central rapidities, i.e.
neglecting the contributions of Pomeron loops and the ones
of fanlike cuts of net fans, which leave the handle of the fan
uncut. Thus, we use 2 ��fan

aðjÞjdðkÞ ¼ 2�̂fan
aðjÞjdðkÞ, 2~�

fan
aðjÞjdðkÞ ¼ 0

and the representation of Fig. 19 takes the form (see Fig. 22)

2 ��fan
aðjÞjdðkÞðy1; ~b1jY; ~bÞ¼2 ��P

aðjÞjdðkÞðy1; ~b1jY; ~bÞ

þG
Z y1��

�
dy0

Z
d2b0�Pcc

aðjÞjdðkÞðy1;y0; ~b1; ~b0jY; ~bÞe�2�net
dðkÞjaðjÞ

�
2
4 X1

�m0¼2

ð2 ��fan
aðjÞjdðkÞÞ �m

0

�m0!
e
�2�net

aðjÞjdðkÞ þð1�e
��net

aðjÞjdðkÞ Þ2
3
5;

(D1)

where the omitted arguments of the eikonals in the integrand
are the same as in (B1) and the 1st term in the rhs,

2 ��P
aðjÞjdðkÞðy1; ~b1jY; ~bÞ, is the contribution of a t-channel

sequence of cut Pomerons, exchanged between the vertex

ðy1; ~b1Þ and the projectile hadron, with the multi-Pomeron
vertices which couple neighboring Pomerons to each other
being connected to at least one uncut projectile or target net

fan. Similarly, 2�Pcc

aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ defines the con-
tribution of such a cut Pomeron sequence exchangedbetween

the vertices ðy1; ~b1Þ and ðy0; ~b0Þ. The two contributions are
defined by recursive equations [cf. (B3) and (B5)]

��P
aðjÞjdðkÞðy1; ~b1jY; ~bÞ

¼ �P
aðjÞðy1; b1Þ þG

Z y1��

�
dy2

Z
d2b2

� �Pðy1 � y2; j ~b1 � ~b2jÞ ��P
aðjÞjdðkÞðy2; ~b2jY; ~bÞ

� ½e�2�net
aðjÞjdðkÞðy2; ~b2jY; ~bÞ�2�net

dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ � 1�
(D2)

�Pcc

aðjÞjdðkÞðy1; y0; ~b1; ~b0jY; ~bÞ ¼ �Pðy1 � y0; j ~b1 � ~b0jÞ

þG
Z y0��

y1þ�
dy2

Z
d2b2�

Pðy1 � y2; j ~b1 � ~b2jÞ

� �Pcc

aðjÞjdðkÞðy2; y0; ~b2; ~b0jY; ~bÞ
� ½e�2�net

aðjÞjdðkÞðy2; ~b2jY; ~bÞ�2�net
dðkÞjaðjÞðY�y2; ~b� ~b2jY; ~bÞ � 1�: (D3)

Examples of diagrams generated by Eq. (D2) are depicted in
Fig. 23. The corresponding piece of secondary hadron pro-
duction is represented by a single chain of particles produced

between the projectile hadron and the vertex ðy1; ~b1Þ, as
defined by the 1st graph in the rhs of the figure (single cut
Pomeron exchange). All the other graphs in the rhs have the
same particle production pattern and describe absorptive
corrections to the process due tovirtual (elastic) rescatterings
on the projectile and target hadronsof intermediate partons of
the underlying parton cascade.
Using Eq. (D1), one can easily generate the cut structure

for the contribution 2 ��fan
aðjÞjdðkÞðy1; ~b1jY; ~bÞ. With the proba-

bility w1P¼ ��P
aðjÞjdðkÞðy1; ~b1jY; ~bÞ= ��fan

aðjÞjdðkÞðy1; ~b1jY; ~bÞ, the
particle production pattern is the one of a single cut
Pomeron exchange between the projectile hadron and the

vertex ðy1; ~b1Þ. In the opposite case, sampled with the
probability 1� w1P, one generates the rapidity y0 and

transverse vector ~b0 of the new multi-Pomeron vertex—
according to the integrand of the 2nd term in the rhs of
Eq. (D1). Then, with the partial probability

wgap

¼ ð1�e
��net

aðjÞjdðkÞ Þ2
ð1�e

��net
aðjÞjdðkÞ Þ2þðe2 ��fan

aðjÞjdðkÞ �1�2 ��fan
aðjÞjdðkÞÞe�2�net

aðjÞjdðkÞ

the corresponding piece of the final state consists of a
single chain of secondaries produced in the rapidity inter-

val ½y1; y0� [single cut Pomeron exchange between ðy1; ~b1Þ
and ðy0; ~b0Þ], with the projectile hadron being separated
from the particles produced by a LRG. Alternatively,
with the probability 1� wgap, one obtains a fanlike struc-

ture for the particle production pattern. In addition to the
above-mentioned chain of secondaries, produced in the
interval ½y1; y0�, secondary particles emerge from �m0 � 2

cut net fans exchanged between the vertex ðy0; ~b0Þ and the

1 1
y ,b

1 1
y ,b

n’>0/

1 1
y ,b

m’>2/
_

/m’>0

1 1
y ,b

n’>0/
= ...y’,b’+ ...

net

...
...

net

+
...

net

/m’>2

...y’,b’

net
......

net

FIG. 22 (color online). Recursive representation for the con-
tribution of fanlike cuts of net fans, Pomeron loops and central
rapidity gaps neglected.

...

= + ...+

a

d

y ,b
1 1

+++

FIG. 23 (color online). Examples of cut diagrams corresponding to a single t-channel sequence of cut Pomerons exchanged between

the vertex ðy1; ~b1Þ and the projectile hadron.
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projectile hadron. In such a case, one generates the number
of cut net fans �m0 according to the Poisson distribution with
the mean 2 ��fan

aðjÞjdðkÞ (rejecting the cases �m0 � 1) and ap-

plies the above-discussed procedure recursively for each of
the �m0 cut net fans.

Taking into consideration Pomeron loops and central
rapidity gaps, the procedure remains qualitatively similar,
being then based on Eqs. (B1)–(B8). The difference com-
pared to the above-discussed treatment is that instead of
t-channel sequences of cut Pomerons (as exemplified in
Fig. 23) one generally obtains cut t-channel sequences of
Pomerons and Pomeron loops, which are connected to each
other by multi-Pomeron vertices coupled to uncut net fans.
Hence, a similar algorithm is applied to reconstruct the cut
Pomeron structure of those cut loop sequences.

APPENDIX E

To illustrate the effect of zigzaglike cut contributions, let
us consider the simplest cut graphs of that kind shown in
Fig. 24(a) and 24(b). The contribution of the graph in
Fig. 24(a) is

��̂zz
adðjkÞðs; bÞ ¼ 8G2

Z
d2b1d

2b2
Z Y�2�

�
dy1

�
Z Y��

y1þ�
dy2�

P
aðjÞðY � y1; j ~b� ~b1jÞ

� �P
aðjÞðY � y2; j ~b� ~b2jÞ�P

dðkÞðy1; b1Þ�P
dðkÞðy2; b2Þ

� �Pðy2 � y1; j ~b2 � ~b1jÞ; (E1)

and the one of the graph in Fig. 24(b) is defined by the same

expression up to a sign, �~�zz
adðjkÞðs; bÞ ¼ ���̂zz

adðjkÞðs; bÞ.
The diagram in Fig. 24(b) provides a (negative) screening
correction to the eikonal configuration with two cut
Pomerons. On the other hand, the one in Fig. 24(a) intro-
duces a new process, with the weight being equal to the one
of the mentioned screening contribution, and with the
particle production pattern being almost identical to the
one of Fig. 24(b); the only difference arises from the cut
Pomeron exchanged between the vertices ðy1; b1Þ and
ðy2; b2Þ. Thus, the combined effect of these two graphs is
to provide additional particle production in the rapidity
interval ½y1; y2�. Hence, to account for the contributions of
the graphs of Fig. 24 to secondary particle production, one
has to select final state configurations with just two cut

Pomerons exchanged and, with the probability wzz ¼
��̂zz

adðjkÞðs; bÞ=ð�ð2PÞ
adðjkÞðs; bÞ [�ð2PÞ

adðjkÞðs; bÞ being the partial
weight of the two cut Pomerons process] to add an addi-
tional cut Pomeron exchange between the vertices ðy1; b1Þ
and ðy2; b2Þ, with the rapidity and transverse coordinates of
the vertices being generated according to the integrand of

Eq. (E1). At sufficiently high energies ��̂zz
adðjkÞðs; bÞ>

�ð2PÞ
adðjkÞðs; bÞ due to the faster energy rise of the enhanced

graph contributions. A simple effective procedure would
then be to consider wzz as the mean number of additional
Pomerons to be added to the initial configuration.
The general treatment of zigzaglike cut graphs follows

the above-discussed logic. We restrict ourselves with the
set of zigzaglike cut graphs which provide nonzero con-
tribution to inclusive particle spectra and split it into two
subsets whose contributions are equal up to a sign:

�̂zz
adðjkÞðs; bÞ ¼ � ~�zz

adðjkÞðs; bÞ, where �̂zz
adðjkÞ can be writ-

ten as

�̂zz
adðjkÞðs;bÞ¼

Z
d2b1d

2b2
Z Y�2�

�
dy1

�
Z Y��

y1þ�
dy22�

zz
adjjkðy1;y2; ~b1; ~b2jY; ~bÞ: (E2)

The particle production pattern is almost identical for the

contributions �̂zz
adðjkÞ and ~�zz

adðjkÞ, except that the former

contains a cut sequence of Pomerons and Pomeron loops
exchanged between the vertices ðy1; b1Þ and ðy2; b2Þ (with
internal multi-Pomeron vertices in the sequence being
generally coupled to uncut projectile and/or target net
fans) while the same sequence remains uncut in the latter
contribution. Thus, the combined effect of both subsets of
graphs is to add additional cut Pomerons resulting from
this cut loop sequence. For brevity, we shall not discuss the
corresponding technical implementation.

y ,b
1 1

2
y ,b
2 2

y ,b
2

y ,b1 1

(a) (b)

FIG. 24 (color online). Lowest order zigzaglike cut diagrams.
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