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Three-quark nucleon interpolating fields in QCD have well-defined SULð3Þ � SURð3Þ and UAð1Þ chiral
transformation properties, viz. ½ð6; 3Þ � ð3; 6Þ�, ½ð3; �3Þ � ð�3; 3Þ�, ½ð8; 1Þ � ð1; 8Þ�, and their mirror images;

see [H.X. Chen, V. Dmitrašinović, A. Hosaka, K. Nagata, and S. L. Zhu, Phys. Rev. D 78, 054021 (2008)].

It has been shown (phenomenologically) in [H.X. Chen, V. Dmitrašinović, and A. Hosaka, Phys. Rev. D

81, 054002 (2010)] that mixing of the ½ð6; 3Þ � ð3; 6Þ� chiral multiplet with one ordinary (naive) and one

mirror field belonging to the ½ð3; �3Þ � ð�3; 3Þ�, ½ð8; 1Þ � ð1; 8Þ� multiplets can be used to fit the values of the

isovector (gð3ÞA ) and the flavor-singlet (isoscalar) axial coupling (gð0ÞA ) of the nucleon and then predict the

axial F andD coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive

such mixing from an effective Lagrangian, we construct all SULð3Þ � SURð3Þ chirally invariant non-

derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons’

masses. It turns out that there are (strong) selection rules: for example, there is only one nonderivative

chirally symmetric interaction between J ¼ 1
2 fields belonging to the ½ð6; 3Þ � ð3; 6Þ� and the ½ð3; �3Þ �

ð�3; 3Þ� chiral multiplets, that is also UAð1Þ symmetric. We also study the chiral interactions of the ½ð3; �3Þ �
ð�3; 3Þ� and ½ð8; 1Þ � ð1; 8Þ� nucleon fields. Again, there are selection rules that allow only one off-diagonal

nonderivative chiral SULð3Þ � SURð3Þ interaction of this type, that also explicitly breaks the UAð1Þ
symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses

and fit two lowest-lying observed nucleon (resonance) masses, thus predicting the third (J ¼ 1
2 , I ¼ 3

2 ) �

resonance, as well as one or two flavor-singlet � hyperon(s), depending on the type of mixing. The

effective chiral Lagrangians derived here may be applied to high density matter calculations.
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I. INTRODUCTION

Axial current coupling constants of the baryon flavor-
octet are well known; see Ref. [1]. The zeroth (timelike)
components of these axial currents are generators of the
SULð3Þ � SURð3Þ chiral symmetry that is one of the fun-
damental symmetries of QCD. The general flavor SUFð3Þ
symmetric form of the nucleon axial current contains
two free parameters, called F and D couplings, that are
empirically determined as F ¼ 0:459� 0:008 and D ¼
0:798� 0:008, see Ref. [1]. Another, perhaps separate,
yet equally important piece of information is the flavor-

singlet axial coupling gð0ÞA ¼ 0:33� 0:08 of the nucleon

[2,3].
Recent studies [4,5] point toward baryon chiral mixing

(of ½ð6; 3Þ � ð3; 6Þ� with the ½ð3; �3Þ � ð�3; 3Þ�, ½ð8; 1Þ � ð1; 8Þ�
chiral multiplets [6]) as a possible mechanism underlying
the baryons’ axial couplings. This finding is in line with the
old current algebra results of Gerstein and Lee [7] and of
Harari [8,9], updated to include recently measured values
of F andD couplings, Ref. [1], and extended to include the

flavor-singlet coupling gð0ÞA of the nucleon, which was not

considered in the mid-1960s at all, presumably due to the
lack of data. Our own starting point was the study of the
QCD interpolating fields’ chiral properties [10–12].
The next step is to try and reproduce this phenomeno-

logical mixing starting from a chiral effective model inter-
action, rather than per fiat. As the first step in that direction
we must look for a dynamical source of mixing. One such
mechanism is the simplest chirally symmetric nonderiva-
tive one-ð�;�Þ-meson interaction Lagrangian; nonderiva-
tive because that induces baryon masses via the �-baryon
coupling.
We construct all SULð3Þ � SURð3Þ chirally invariant

nonderivative one-meson-baryon interactions and then
use them to calculate the mixing angles in terms of bary-
ons’ masses. It turns out that there are severe chiral selec-
tion rules at work here. For example, we show that only the
mirror field ½ð�3; 3Þ � ð3; �3Þ� can be coupled to the ½ð6; 3Þ �
ð3; 6Þ� baryon chiral multiplet by nonderivative terms;
whereas the ordinary (naive) multiplet ½ð3; �3Þ � ð�3; 3Þ� re-
quires one (or generally an odd number of) derivative(s).
Moreover, this interaction also conserves the UAð1Þ sym-
metry. This is interesting, as the mixing with a mirror
baryon field of this type seems preferable from the point
of view of the two-flavor phenomenological study, Ref. [4].
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We note that all but one of the SULð3Þ � SURð3Þ sym-
metric interactions, viz. the ½ð3; �3Þ � ð�3; 3Þ� � ½ð8; 1Þ �
ð1; 8Þ�, also conserve the UAð1Þ symmetry. This means
that explicit UAð1Þ symmetry breaking may occur in bary-
ons only in so far as the SULð3Þ � SURð3Þ symmetry is
explicitly broken, with the exception mentioned above.
This is in stark contrast with the SULð2Þ � SURð2Þ case,
where all of the interaction terms have both the UAð1Þ
symmetry-conserving and the UAð1Þ symmetry-breaking
version [4,13]. In this sense, the three-flavor chiral sym-
metry is more restrictive and consequently more instructive
than the two-flavor one.

The conventional models of (linearly realized) chiral
SULð3Þ � SURð3Þ symmetry, Refs. [14–19], on the other
hand appear to fix the F andD parameters at either (F ¼ 0,
D ¼ 1), which case goes by the name of ½ð3; �3Þ � ð�3; 3Þ�,
or at (F ¼ 1, D ¼ 0), which case goes by the name
of ½ð8; 1Þ � ð1; 8Þ� chiral representation. Both of these
chiral representations suffer from the shortcoming that

FþD ¼ 1, � gð3ÞA ¼ 1:267 without derivative couplings.

But, even with derivative interactions, one cannot change
the value of the vanishing coupling, i.e. of F ¼ 0, in
½ð3; �3Þ � ð�3; 3Þ�, or of D ¼ 0, in ½ð8; 1Þ � ð1; 8Þ�. Rather,
one can only renormalize the nonvanishing coupling to
1.267. This is perhaps the most troublesome problem of
the linear realization chiral SULð3Þ � SURð3Þ symmetric
Lagrangians as it has far-reaching consequences for the
kaon and hyperon interactions, hypernuclear physics, and
nuclear astrophysics of collapsed stars [20,21].

Another perhaps equally important and difficult problem
is that of the flavor-singlet axial coupling of the nucleon
[2,3]. This is widely thought of as being disconnected from
the F, D problem, but we have already shown (see
Refs. [4,5]) that the chiral mixing of three-quark interpo-
lating fields casts some new light on this problem. Namely,

the flavor-singlet axial coupling turns out to be gð0ÞA ¼
ð3F�DÞ, i.e., a function of the flavor SUð3Þ octet ðF;DÞ
coefficients and thus proportional to the eighth flavor

component of the SUð3Þ symmetric axial coupling gð8ÞA ¼
1ffiffi
3

p ð3F�DÞ, so long as one mixes only three-quark inter-

polating fields. In other words, the ratio of these two

measured quantities is fixed at
ffiffiffi
3

p
in the three-quark as-

sumption, so one must go beyond this approximation in
order to break the deadlock.

Even though an awareness of this mixing has been
around for more than 40 years [14–16,22], the SULð3Þ �
SURð3Þ chiral interactions necessary to describe such chi-
ral mixing(s) have not been considered in print [23], let
alone derived. The present paper serves to provide a dy-
namical model of chiral mixing that is the ‘‘best’’ approxi-
mation to the phenomenological solution of both the ðF;DÞ
and the flavor-singlet axial coupling problems, assuming
only three-quark baryon interpolating fields. We found two
simple solutions/fits [26]: one that conserves the UAð1Þ

symmetry and another one that does not. This goes to
show that the ‘‘QCD UAð1Þ anomaly’’ may, but need not,
be the underlying source of the ‘‘nucleon spin problem’’
[2,3], as was once widely thought [18]. In all likelihood the
UAð1Þ anomaly provides only a (relatively) small part of
the solution, the largest part coming from the chiral struc-
ture (‘‘mixing’’) of the nucleon.
One immediate application of our results ought to be in

high density matter calculations, where only one baryon
chiral multiplet (½ð3; �3Þ � ð�3; 3Þ�) and its interaction with
mesons have been used for some time now [20,21].
The present paper consists of five parts: after the present

introduction, in Sec. II we define the SUð3Þ � SUð3Þ chiral
transformations of three-quark baryon fields and of the
spinless mesons, with special emphasis on the SUð3Þ phase
conventions. In Sec. III we construct the SULð3Þ � SURð3Þ
chirally invariant interactions. In Sec. IV we apply chiral
mixing formalism to the hyperons’ axial currents and then
use the chiral interactions to reproduce the mixing angles.
In this way we determine the masses of the admixed states.
Finally, in Sec. V we discuss the results and offer a sum-
mary and an outlook on future developments.

II. PRELIMINARIES: CHIRAL
TRANSFORMATIONS OF
MESONS AND BARYONS

A. Chiral transformations of ð3; �3Þ � ð�3; 3Þ
spinless mesons

We follow the same definition of chiral transformation in
Ref. [12]:

Uð1ÞV: q ! exp

�
i
�0

2
a0

�
q ¼ qþ �q;

SUð3ÞA: q ! exp

�
i
~�

2
� ~a
�
q ¼ qþ �~aq;

Uð1ÞA: q ! exp

�
i�5

�0

2
b0

�
q ¼ qþ �5q;

SUð3ÞA: q ! exp

�
i�5

~�

2
� ~b

�
q ¼ qþ �

~b
5q:

(1)

We define the scalar and pseudoscalar mesons in the SUð3Þ
space as

�a ¼ �qA�
a
ABqB; (2)

�a ¼ �qA�
a
ABi�5qB; (3)

where the index a goes from 0 to 8, and the zero compo-

nent of Gell-Mann matrices is �0 ¼
ffiffi
2
3

q
1.

The nucleon fields belong to the chiral representation of
ð3; �3Þ � ð�3; 3Þ, and their combination transforms as
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�
~b
5ð�b þ i�5�

bÞ ¼ �i�5b
adabcð�c þ i�5�

cÞ;
�

~b
5ð�b � i�5�

bÞ ¼ i�5b
adabcð�c � i�5�

cÞ;
(4)

where dabc and fabc are defined to contain the 0 index,

f�a; �bg ¼ 2dabc�c; ½�a; �b� ¼ 2ifabc�c: (5)

We note here that in these equations we do not have the
�ab factors which are necessary in the usual equation

f�a; �bg ¼ 2dabc�c þ 4

3
�ab; (6)

where

ða; b ¼ 1; . . . ; 8Þ: (7)

The nonzero f and d coefficients are

abc fabc abc dabc abc dabc abc dabc

123 1 000
ffiffiffiffiffiffiffiffi
2=3

p
118 1=

ffiffiffi
3

p
355 1/2

147 1/2 011
ffiffiffiffiffiffiffiffi
2=3

p
146 1/2 366 �1=2

156 �1=2 022
ffiffiffiffiffiffiffiffi
2=3

p
157 1/2 377 �1=2

246 1/2 033
ffiffiffiffiffiffiffiffi
2=3

p
228 1=

ffiffiffi
3

p
448 �1=ð2 ffiffiffi

3
p Þ

257 1/2 044
ffiffiffiffiffiffiffiffi
2=3

p
247 �1=2 558 �1=ð2 ffiffiffi

3
p Þ

345 1/2 055
ffiffiffiffiffiffiffiffi
2=3

p
256 1/2 668 �1=ð2 ffiffiffi

3
p Þ

367 �1=2 066
ffiffiffiffiffiffiffiffi
2=3

p
338 1=

ffiffiffi
3

p
778 �1=ð2 ffiffiffi

3
p Þ

458
ffiffiffi
3

p
=2 077

ffiffiffiffiffiffiffiffi
2=3

p
344 1/2 888 �1=

ffiffiffi
3

p
678

ffiffiffi
3

p
=2 088

ffiffiffiffiffiffiffiffi
2=3

p

To simplify our calculations sometimes we use the
‘‘physical’’ basis, whose definitions are

M1

M2

M3

M4

M5

M6

M7

M8

M9

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

¼

1 0 0 0 0 0 0 0 0

0 1ffiffi
2

p � iffiffi
2

p 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 1ffiffi
2

p iffiffi
2

p 0 0 0 0 0 0

0 0 0 0 1ffiffi
2

p � iffiffi
2

p 0 0 0

0 0 0 0 1ffiffi
2

p iffiffi
2

p 0 0 0

0 0 0 0 0 0 1ffiffi
2

p � iffiffi
2

p 0

0 0 0 0 0 0 1ffiffi
2

p iffiffi
2

p 0

0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

�0 þ i�5�
0

�1 þ i�5�
1

�2 þ i�5�
2

�3 þ i�5�
3

�4 þ i�5�
4

�5 þ i�5�
5

�6 þ i�5�
6

�7 þ i�5�
7

�8 þ i�5�
8

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

: (8)

In this basis,

M1 ¼ �0 þ i�5�0; M2 ¼ aþ0 þ i�5�
þ;

M3 ¼ a00 þ i�5�
0; M4 ¼ a�0 þ i�5�

�;

M5 ¼ �þ þ i�5K
þ; M6 ¼ �� þ i�5K

�;

M7 ¼ �0 þ i�5K
0; M8 ¼ ��0 þ i�5

�K0;

M9 ¼ f0 þ i�5�8:

(9)

We have classified the baryon interpolating fields in our
previous paper [12]. We found that the baryon interpolating
fields Naþ ¼ Na

1 þ Na
2 belong to the chiral representation

ð8; 1Þ � ð1; 8Þ; � and Na� ¼ Na
1 � Na

2 belong to the chiral
representation ð3; �3Þ � ð�3; 3Þ; Na

� and �P
� belong to the

chiral representation ð6; 3Þ � ð3; 6Þ; and �P
�	 belong to

the chiral representation ð10; 1Þ � ð1; 10Þ. Here Na
1 and

Na
2 are the two independent kinds of nucleon fields. Na

1

contains the ‘‘scalar diquark’’ and Na
2 contains the ‘‘pseu-

doscalar diquark.’’ Moreover, we calculated their chiral
transformations in Ref. [12]. In the following sections,
we will use these baryon fields together with one meson
field to construct the chiral invariant Lagrangians.

B. Chiral transformations of baryons

1. Chiral transformations of ½ð6; 3Þ � ð3; 6Þ� baryons
The baryon fieldNð18Þ ¼ ðN�;��ÞT belongs to the chiral

representation ½ð6; 3Þ � ð3; 6Þ�,
N1 ¼ p; N2 ¼ n; N3 ¼ �þ;

N4 ¼ �0; N5 ¼ ��; N6 ¼ �0;

N7 ¼ ��; N8 ¼ �8; N9 ¼ �þþ;

N10 ¼ �þ; N11 ¼ �0; N12 ¼ ��;

N13 ¼ �þ; N14 ¼ �0; N15 ¼ ��;

N16 ¼ �0; N17 ¼ ��; N18 ¼ �;

(10)

and we can write out their chiral transformation as

�
~b
5Nð18Þ ¼ i�5b

aFa
ð18ÞNð18Þ

¼ i�5b
a

Da
ð8Þ þ 2

3F
a
ð8Þ

2ffiffi
3

p Ta
ð8=10Þ

2ffiffi
3

p Tya
ð8=10Þ

1
3F

a
ð10Þ

0
@

1
A N�

��

 !
; (11)

where the matrices Da
ð8Þ, F

a
ð8Þ, F

a
ð10Þ, and Ta

ð8=10Þ are calcu-

lated in our previous paper [5].
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2. Chiral transformations of ½ð3; �3Þ � ð�3; 3Þ� baryons
This chiral representation contains the flavor-octet and

singlet representations �3 � 3 ¼ 8 � 1 �Nð9Þ ¼ ð�; N�ÞT :

N1 ¼ �0; N2 ¼ p; N3 ¼ n;

N4 ¼ �þ; N5 ¼ �0; N6 ¼ ��;

N7 ¼ �0; N8 ¼ ��; N9 ¼ �8;

(12)

and their chiral transformations are

�
~b
5Nð9Þ ¼ i�5b

aFa
ð9ÞNð9Þ

¼ i�5b
a

0
ffiffi
2
3

q
Ta
ð1=8Þffiffi

2
3

q
Tya
ð1=8Þ Da

ð8Þ

0
B@

1
CA �1

N�

� �
: (13)

3. Chiral transformations of ½ð8; 1Þ � ð1; 8Þ� baryons
This chiral representation ½ð8; 1Þ � ð1; 8Þ� contains the

flavor-octet representation 8 � 1 ¼ 8 �Nð8Þ ¼ Nþ. The

chiral transformation is

�
~b
5Nð8Þ ¼ i�5b

aFa
ð8ÞNð8Þ: (14)

4. Chiral transformations of ½ð10; 1Þ � ð1; 10Þ� baryons
This chiral representation ½ð10; 1Þ � ð1; 10Þ� contains the

flavor decuplet representation 10 � 1 ¼ 10�Nð10Þ ¼ ��	.

The chiral transformation is

�
~b
5Nð10Þ ¼ i�5b

aFa
ð10ÞNð10Þ: (15)

III. CHIRAL INTERACTIONS

In this section we propose a new method for the
construction of Nf ¼ 3 chiral invariants that differs from

the one proposed for Nf ¼ 2 in Ref. [18] and used in

Refs. [4,13].

A. Diagonal interactions: Mass terms

1. Chiral ½ð6; 3Þ � ð3; 6Þ� baryons’ diagonal interactions
Our aim is to construct a chiral invariant Lagrangian,

�N a
ð18ÞM

cNb
ð18ÞC

abc
ð18Þ; (16)

where the indices a and b run from 1 to 18, and the index c
just runs from 1 to 9. By performing the chiral transforma-
tion to this Lagrangian, we can obtain many equations. For
example we have

�1
5ð �pM2nC122

ð18ÞÞ ¼
5

6
C122

ð18Þ �nM
2ði�5b1Þnþ � � � ;

�1
5ð ��M2nC10;2;2

ð18Þ Þ ¼ �
ffiffiffi
2

p
3

C10;2;2
ð18Þ �nM2ði�5b1Þnþ � � � ;

�1
5ð �nM2��C2;12;2

ð18Þ Þ ¼
ffiffiffi
2

3

s
C2;12;2

ð18Þ �nM2ði�5b1Þnþ � � � ;

�1
5ð �nM1nC221

ð18ÞÞ ¼
1ffiffiffi
3

p C221
ð18Þ �nM

2ði�5b1Þnþ � � � ;

�1
5ð �nM9nC229

ð18ÞÞ ¼
1ffiffiffi
6

p C229
ð18Þ �nM

2ði�5b1Þnþ � � � :

(17)

These are all the fields that are transformed to
�nM2ði�5b1Þn. If the Lagrangian (16) is chiral invariant,
this sum should be zero,

5

6
C122

ð18Þ �
ffiffiffi
2

p
3
C10;2;2

ð18Þ þ
ffiffiffi
2

3

s
C2;12;2

ð18Þ þ 1ffiffiffi
3

p C221
ð18Þ þ

1ffiffiffi
6

p C229
ð18Þ ¼ 0:

(18)

Solving these equations for Cabc
ð18Þ together with the

Hermiticity condition, we find that there is only one solu-
tion. The uniqueness of the solution is guaranteed by the
fact that there is only one way to form the chiral singlet
combination out of the baryon field ½ð6; 3Þ � ð3; 6Þ� and the
meson field ½ð3; �3Þ � ð�3; 3Þ�. This solution can be written
out much more easily using Dc

ð18Þ in the following form:

gð18Þ �Na
ð18Þð�c þ i�5�

cÞðDc
ð18ÞÞabNb

ð18Þ; (19)

where gð18Þ is the coupling constant, and the matrices Dð18Þ
are solved to be

D0
ð18Þ ¼

1ffiffiffi
6

p 18�8 0

0 �2� 110�10

 !
;

Da
ð18Þ ¼

Da
ð8Þ þ 2

3F
a
ð8Þ � 1ffiffi

3
p Ta

ð8=10Þ

� 1ffiffi
3

p Tya
ð8=10Þ � 2

3F
a
ð10Þ

0
@

1
A:

(20)

Besides the Lagrangian (16), its mirror part,

gð18Þ �Na
ð18mÞð�c � i�5�

cÞðDc
ð18ÞÞabNb

ð18mÞ; (21)

is also chiral invariant. Using these solutions, and perform-
ing the chiral transformation, we can obtain the following
relation:

F ay
ð18ÞD

b
ð18Þ þDb

ð18ÞF
a
ð18Þ � dabcD

c
ð18Þ ¼ 0; (22)

where Fa
ð18Þ and Db

ð18Þ are defined in the previous Eqs. (11)

and (20).
The solution in the physical basis ( �Na

ð18ÞM
cNb

ð18ÞC
abc
ð18Þ)

can be obtained by the following relations:
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Cab1
ð18Þ ¼ ðD0

ð18ÞÞab;
Cab3

ð18Þ ¼ ðD3
ð18ÞÞab;

Cab9
ð18Þ ¼ ðD8

ð18ÞÞab;
1ffiffiffi
2

p ðCab2
ð18Þ þCab4

ð18ÞÞ ¼ ðD1
ð18ÞÞab;

iffiffiffi
2

p ð�Cab2
ð18Þ þCab4

ð18ÞÞ ¼ ðD2
ð18ÞÞab;

1ffiffiffi
2

p ðCab5
ð18Þ þCab6

ð18ÞÞ ¼ ðD4
ð18ÞÞab;

iffiffiffi
2

p ð�Cab5
ð18Þ þCab6

ð18ÞÞ ¼ ðD5
ð18ÞÞab;

1ffiffiffi
2

p ðCab7
ð18Þ þCab8

ð18ÞÞ ¼ ðD6
ð18ÞÞab;

iffiffiffi
2

p ð�Cab7
ð18Þ þCab8

ð18ÞÞ ¼ ðD7
ð18ÞÞab:

(23)

2. Chiral ½ð3; �3Þ � ð�3; 3Þ� baryons’ diagonal interactions
Following the same procedure of the previous section,

we find that the Lagrangian �Na
ð9ÞM

cNb
ð9ÞC

abc
ð9Þ cannot be

chiral invariant, which means that their is no solution
for Cabc

ð9Þ . However, we can still get a chiral invariant

Lagrangian through different fields. There are two possible
ways:

(1) We use the meson field �a � i�5�
a,

�
~b
5ð�b � i�5�

bÞ ¼ i�5b
adabcð�c � i�5�

cÞ: (24)

(2) We use the mirror field of Nð9Þ,

�
~b
5Nð9mÞ ¼ �i�5b

aFa
ð9ÞNð9mÞ

¼ i�5b
a

0 �
ffiffi
2
3

q
Ta
ð1=8Þ

�
ffiffi
2
3

q
Tya
ð1=8Þ �Da

ð8Þ

0
B@

1
CANð9mÞ:

(25)

Then we can construct the chiral invariant Lagrangian,

�N a
ð9mÞM

cNb
ð9mÞC

abc
ð9Þ (26)

or its mirror part

�N a
ð9ÞðMþÞcNb

ð9ÞC
abc
ð9Þ : (27)

Assuming that they are Hermitian, we find that there is
only one solution forCabc

ð9Þ . The solution for the coefficients
Cabc

ð9Þ in these two Lagrangians is the same, and it can be

written out in the following form:

gð9Þ �Na
ð9mÞð�c þ i�5�

cÞðDc
ð9ÞÞabNb

ð9mÞ; (28)

where the solution is

D0
ð9Þ ¼

1ffiffiffi
6

p �2 01�8

08�1 18�8

 !
;

Da
ð9Þ ¼

0 1ffiffi
6

p Ta
ð1=8Þ

1ffiffi
6

p Tya
ð1=8Þ �Da

ð8Þ

0
@

1
A:

(29)

The uniqueness of the solution is guaranteed by the fact
that there is only one way to form the chiral singlet
combination out of the baryon field ½ð3; �3Þ � ð�3; 3Þ� and
the meson field ½ð3; �3Þ � ð�3; 3Þ�. The coefficients Cabc

ð9Þ can

be similarly obtained like Eq. (23). From this Lagrangian,
we can obtain another relation,

F ay
ð9ÞD

b
ð9Þ þDb

ð9ÞF
a
ð9Þ þ dabcD

c
ð9Þ ¼ 0: (30)

3. Chiral ½ð8; 1Þ � ð1; 8Þ� baryons’ diagonal interactions
Simply adding one ½ð3; �3Þ � ð�3; 3Þ� meson field to two

½ð8; 1Þ � ð1; 8Þ� baryon fields cannot produce a chirally
invariant Lagrangian. By adding two ½ð3; �3Þ � ð�3; 3Þ� me-
son fields, however, there are several possible ways to
construct chirally invariant Lagrangians [25]. First we
can write out the group structures

ðð8; 1Þ � ð1; 8ÞÞ2 � ðð3; �3Þ � ð�3; 3ÞÞ2
! ðð1; 1Þ � ð1; 1ÞÞ � ðð1; 1Þ � ð1; 1ÞÞ ! ðð1; 1Þ � ð1; 1ÞÞ ð1Þ
! ð2� ðð8; 1Þ � ð1; 8ÞÞÞ � ðð8; 1Þ � ð1; 8ÞÞ ! 2� ðð1; 1Þ � ð1; 1ÞÞ ð2Þ
! ð4� ðð8; 8Þ � ð8; 8ÞÞÞ � ðð8; 8Þ � ð8; 8ÞÞ ! 4� ðð1; 1Þ � ð1; 1ÞÞ ð3Þ: (31)

Here we just give the Lagrangian for the simplest case 1,
which is MþaMa �Nb

ð8Þ�5N
b
ð8mÞ þ H:c: The others can be

obtained by usingM,Mþ, Nð8Þ, andNð8mÞ as well as related
coefficients dabc and fabc.

4. Chiral ½ð10; 1Þ � ð1; 10Þ� baryons’ diagonal interactions
We find that simply adding one ½ð3; �3Þ � ð�3; 3Þ� meson

field to two ½ð10; 1Þ � ð1; 10Þ� baryon fields cannot produce
a chirally invariant Lagrangian.
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B. Chiral mixing interactions

1. Chiral mixing interaction
½ð6; 3Þ � ð3; 6Þ�-½ð3; �3Þ � ð�3; 3Þ�

The mixing of ½ð6; 3Þ � ð3; 6Þ� with ½ð3; �3Þ � ð�3; 3Þ� (we
note that this is a mirror baryon) together with a meson
field can be a chiral singlet. So from this section we will
study the five nontrivial off-diagonal Lagrangians.

The simple form made from the naive baryons
Nð18Þ � ½ð6; 3Þ � ð3; 6Þ� and Nð9Þ � ½ð3; �3Þ � ð�3; 3Þ�,
Na

ð9ÞM
cNb

ð18ÞC
abc
ð9=18ÞþH:c: cannot be chiral invariant. We

need to use the mirror field Nð9mÞ � ½ð�3; 3Þ � ð3; �3Þ� ðmirÞ,
and find the following form of field

�N a
ð9mÞM

cNb
ð18ÞC

abc
ð9=18Þ þ H:c: (32)

as well as its mirror part can be chiral invariant. Again we
turn to the following form:

gð9=18Þ �Na
ð9mÞð�c þ i�5�

cÞðTc
ð9=18ÞÞabNb

ð18Þ þ H:c: (33)

We find that the only solution is

T 0
ð9=18Þ ¼

1ffiffiffi
6

p 01�8 01�10

18�8 08�10

� �
; (34)

T a
ð9=18Þ ¼

� 1ffiffi
6

p Ta
ð1=8Þ 01�10

1
3F

a
ð8Þ

1ffiffi
3

p Ta
ð8=10Þ

 !
: (35)

The coefficients Cabc
ð9=18Þ can be similarly obtained as in

Eq. (23), and we have the following relation:

� Fay
ð9ÞT

b
ð9=18Þ þ Tb

ð9=18ÞF
a
ð18Þ � dabcT

c
ð9=18Þ ¼ 0: (36)

2. Chiral mixing interaction
½ð6; 3Þ � ð3; 6Þ�-½ð8; 1Þ � ð1; 8Þ�

The mixing of a mirror baryon ½ð3; 6Þ � ð6; 3Þ� ðmirÞ
with ½ð8; 1Þ � ð1; 8Þ� together with a meson field can be a
chiral singlet, and we find the following form of field

�N a
ð8ÞM

cNb
ð18mÞC

abc
ð9=18Þ þ H:c: (37)

and its mirror part can be chiral invariant. Again we turn to
the basis

gð8=18Þ �Na
ð8Þð�c þ i�5�

cÞðTc
ð8=18ÞÞabNb

ð18mÞ þ H:c: (38)

and the only solution is

T 0
ð8=18Þ ¼

1ffiffiffi
6

p ð18�8; 08�10Þ; (39)

T a
ð8=18Þ ¼

�
� 1

2
Da

ð8Þ þ
1

6
Fa
ð8Þ;�

1ffiffiffi
3

p Ta
ð8=10Þ

�
: (40)

The coefficients Cabc
ð8=18Þ can be similarly obtained as in

Eq. (23). And we have the following relation:

� Fay
ð8ÞT

b
ð8=18Þ þ Tb

ð8=18ÞF
a
ð18Þ þ dabcT

c
ð8=18Þ ¼ 0: (41)

3. Chiral mixing interaction
½ð3; �3Þ � ð�3; 3Þ�-½ð8; 1Þ � ð1; 8Þ�

The mixing of ½ð3; �3Þ � ð�3; 3Þ� with ½ð8; 1Þ � ð1; 8Þ� to-
gether with a meson field can be a chiral singlet, and we
find that there are two possibilities. One is the following
form of Lagrangian:

�N a
ð8ÞM

cNb
ð9ÞC

abc
ð8=9Þ þ H:c: (42)

and its mirror part can be chiral invariant. Again we turn to
the basis

gð8=9Þ �Na
ð8Þð�c þ i�5�

cÞðTc
ð8=9ÞÞabNb

ð9Þ þ H:c: (43)

and the only solution is

T 0
ð8=9Þ ¼

1ffiffiffi
6

p ð08�1; 18�8Þ; (44)

T a
ð8=9Þ ¼

�
1ffiffiffi
6

p Tya
ð1=8Þ;

1

2
Da

ð8Þ þ
1

2
Fa
ð8Þ

�
: (45)

The coefficients Cabc
ð8=9Þ can be similarly obtained like

Eq. (23). and we have the following relation:

� Fay
ð8ÞT

b
ð8=9Þ � Tb

ð8=9ÞF
a
ð9Þ þ dabcT

c
ð8=9Þ ¼ 0: (46)

The other possibility is the following form of
Lagrangian, and the mixing of ½ð3; �3Þ � ð�3; 3Þ� with
½ð1; 8Þ � ð8; 1Þ� ðmirÞ

�N a
ð8mÞM

cNb
ð9ÞC

abc
ð8=9Þ þ H:c: (47)

This and its mirror image part can both be chiral invariant.
Again we turn to the particle basis

gðBÞ �Na
ð8mÞð�c þ i�5�

cÞðTc
ðBÞÞabNb

ð9Þ þ H:c: (48)

The only solution is

T 0
B ¼ 1ffiffiffi

6
p ð08�1; 18�8Þ; (49)

T a
B ¼

�
1ffiffiffi
6

p Tya
ð1=8Þ;

1

2
Da

ð8Þ �
1

2
Fa
ð8Þ

�
: (50)

Since we find that this is the only case which violates the
UAð1Þ symmetry, we use the subscript B. The coefficients
Cabc

ð8=9Þ can be similarly obtained as in Eq. (23), and we have

the following relation:

F ay
ð8ÞT

b
B � Tb

BF
a
ð9Þ þ dabcT

c
B ¼ 0: (51)
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4. Chiral mixing interaction
½ð6; 3Þ � ð3; 6Þ�-½ð10; 1Þ � ð1; 10Þ�

For completeness’ sake we also show the ½ð6; 3Þ �
ð3; 6Þ�-½ð10; 1Þ � ð1; 10Þ� chiral mixing interaction. The
½ð10; 1Þ � ð1; 10Þ� decuplet baryon field can only mix
with ½ð3; 6Þ � ð6; 3Þ� ðmirÞ to compose a chiral singlet,
and we find the following form of Lagrangian:

�N a
ð10ÞM

cNb
ð18mÞC

abc
ð10=18Þ þ H:c: (52)

and its mirror part can be chiral invariant. Again we turn to
the basis

gð10=18Þ �Na
ð10Þð�c þ i�5�

cÞðTc
ð10=18ÞÞabNb

ð18mÞ þ H:c: (53)

and the only solution is

T 0
ð10=18Þ ¼

1ffiffiffi
6

p ð010�8; 110�10Þ; (54)

T a
ð10=18Þ ¼

�
� 1ffiffiffi

3
p Tya

ð8=10Þ;
1

3
Fa
ð10Þ

�
: (55)

The coefficients Cabc
ð8=9Þ can be similarly obtained like

Eq. (23). and we have the following relation:

� Fay
ð10ÞT

b
ð10=18Þ þ Tb

ð10=18ÞF
a
ð18Þ þ dabcT

c
ð10=18Þ ¼ 0: (56)

C. Brief summary of interactions

Altogether we have the following form of chiral invari-
ant Lagrangian:

L ¼ ð �Nð8mÞ �Nð9mÞ �Nð18mÞ �Nð10mÞ Þ

0
BBBBBBBB@
ð�a þ i�5�

aÞ

08�8 08�9 08�18 08�10

09�8 gð9ÞDa
ð9Þ gð9=18ÞTa

ð9=18Þ 09�10

018�8 g	ð9=18ÞT
ya
ð9=18Þ gð18=18ÞDa

ð18Þ 018�10

010�8 010�9 010�18 010�10

0
BBBBBB@

1
CCCCCCA

þ ð�a � i�5�
aÞ

08�8 gð8=9ÞTa
ð8=9Þ gð8=18ÞTa

ð8=18Þ 08�10

g	ð8=9ÞT
ya
ð8=9Þ 09�9 09�18 09�10

g	ð8=18ÞT
ya
ð8=18Þ 018�9 018�18 g	ð10=18ÞT

ya
ð10=18Þ

010�8 010�9 gð10=18ÞTa
ð10=18Þ 010�10

0
BBBBBBB@

1
CCCCCCCA

1
CCCCCCCCA

Nð8mÞ
Nð9mÞ
Nð18Þ
Nð10mÞ

0
BBBBB@

1
CCCCCA; (57)

and its mirror part is also chiral invariant,

LðmÞ ¼ ð �Nð8mÞ �Nð9mÞ �Nð18mÞ �Nð10mÞ Þ

0
BBBBBBBB@
ð�a � i�5�

aÞ

08�8 08�9 08�18 08�10

09�8 g0ð9ÞD
a
ð9Þ g0ð9=18ÞT

a
ð9=18Þ 09�10

018�8 g0	ð9=18ÞT
ya
ð9=18Þ g0ð18=18ÞD

a
ð18Þ 018�10

010�8 010�9 010�18 010�10

0
BBBBBB@

1
CCCCCCA

þ ð�a þ i�5�
aÞ

08�8 g0ð8=9ÞT
a
ð8=9Þ g0ð8=18ÞT

a
ð8=18Þ 08�10

g0	ð8=9ÞT
ya
ð8=9Þ 09�9 09�18 09�10

g0	ð8=18ÞT
ya
ð8=18Þ 018�9 018�18 g0	ð10=18ÞT

ya
ð10=18Þ

010�8 010�9 g0ð10=18ÞT
a
ð10=18Þ 010�10

0
BBBBBBB@

1
CCCCCCCA

1
CCCCCCCCA

Nð8Þ
Nð9Þ
Nð18mÞ
Nð10Þ

0
BBBBB@

1
CCCCCA:

Besides these, there is another single piece of Lagrangian
which is also chiral invariant,

L ðBÞ ¼ gðBÞ �Nð8mÞð�a � i�5�
aÞTa

ðBÞNð9mÞ þ H:c:;

together with its mirror part

L ðBmÞ ¼ g0ðBÞ �Nð8mÞð�a þ i�5�
aÞTa

ðBÞNð9Þ þ H:c:

At the same time, we have also proven that this is the only
possible case. Moreover, we can easily verify that this
Lagrangian is also invariant under UAð1Þ chiral transfor-
mation, except LðBÞ and LðBmÞ. All this information is
listed in Table I. Besides these Lagrangians, we still have
the naive combinations mð8Þ �Nð8mÞ�5Nð8Þ, mð9Þ �Nð9mÞ�5Nð9Þ,
mð18Þ �Nð18mÞ�5Nð18Þ, and mð10Þ �Nð10mÞ�5Nð10Þ. There are no
meson fields, but these Lagrangians are still chiral
SULð3Þ � SURð3Þ invariant and chiral Uð1ÞA invariant.
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This information is listed in Table II. These results stand in
marked contrast to the two-flavor case [4,13], where the
SULð2Þ � SURð2Þ symmetric interactions have both a
UAð1Þ symmetry-conserving and a UAð1Þ symmetry-
breaking version. Thus, the three-flavor chiral symmetry
is more restrictive than the two-flavor one.

IV. CHIRAL MIXING

In this section we establish the phenomenologically
preferable mixing pattern(s) and then we use the allowed
chiral interactions to reproduce some of them. First we
summarize the salient features of chiral mixing and axial
couplings from Ref. [5].

There are three admissible scenarios (i.e. choices of
pairs of chiral multiplets admixed to the ½ð6; 3Þ � ð3; 6Þ�
one that lead to real mixing angles) when fitting the gð0ÞA

and gð3ÞA that yield the values of F and D. Similarly, when

we fit gð3ÞA and gð8ÞA , or equivalently F and D, we predict the

values for gð0ÞA and gð3ÞA .

This is due to the fact that all three-quark baryon fields

satisfy the relation gð0ÞA ¼ 3F�D ¼ ffiffiffi
3

p
gð8ÞA . Manifestly,

in this way one cannot satisfy both gð0ÞA expt: ¼ 0:33� 0:08

and gð8ÞA expt: ¼ 0:34� 0:07. Thus we are left with two pos-

sible scenarios:

(1) Fit gð0ÞA and gð3ÞA and predict F and D. In Ref. [5] we

found that there are three possible mixing patterns.
Now the chiral selection rules from Sec. III allow
only two of them: the case III-I mixing (see
Table III), ½ð6; 3Þ � ð3; 6Þ�-½ð�3; 3Þ � ð3; �3Þ�-½ð3; �3Þ �
ð�3; 3Þ�; and the case IV-I mixing, ½ð6;3Þ �
ð3;6Þ�-½ð1;8Þ � ð8;1Þ�-½ð3; �3Þ � ð�3;3Þ�. However, the
latter mixing violates UAð1Þ symmetry.

TABLE I. Allowed chiral invariant terms with one meson field. The ! denotes that the symmetries are conserved, while x denotes
they are not.

(SUAð3Þ, UAð1Þ) ð1; 8Þ � ð8; 1Þ ½mir� ð�3; 3Þ � ð3; �3Þ ½mir� ð6; 3Þ � ð3; 6Þ ð1; 10Þ � ð10; 1Þ ½mir�
ð1; 8Þ � ð8; 1Þ ½mir� N=A (!, !) (!, !) N=A
ð3; �3Þ � ð�3; 3Þ ½mir� (!, !) (!, !) (!, !) N=A
ð�6; �3Þ � ð�3; �6Þ (!, !) (!, !) (!, !) (!, !)
ð1; 10Þ � ð10; 1Þ ½mir� N=A N=A (!, !) N=A
(SUAð3Þ, UAð1Þ) ð8; 1Þ � ð1; 8Þ ð3; �3Þ � ð�3; 3Þ ð3; 6Þ � ð6; 3Þ ½mir� ð10; 1Þ � ð1; 10Þ
ð8; 1Þ � ð1; 8Þ N=A (!, !) (!, !) N=A
ð�3; 3Þ � ð3; �3Þ (!, !) (!, !) (!, !) N=A
ð�3; �6Þ � ð�6; �3Þ ½mir� (!, !) (!, !) (!, !) (!, !)
ð10; 1Þ � ð1; 10Þ N=A N=A (!, !) N=A
(SUAð3Þ, UAð1Þ) ð8; 1Þ � ð1; 8Þ ð1; 8Þ � ð8; 1Þ ½mir�
ð�3; 3Þ � ð3; �3Þ N=A (!, x)
ð3; �3Þ � ð�3; 3Þ ½mir� (!, x) N=A

TABLE II. Allowed chirally invariant terms without meson field (the so-called mirror-mass terms). The ! denotes that the
symmetries are conserved, while x denotes they are not.

(SUAð3Þ, UAð1Þ) ð8; 1Þ � ð1; 8Þ ð3; �3Þ � ð�3; 3Þ ð3; 6Þ � ð6; 3Þ ½mir� ð10; 1Þ � ð1; 10Þ
ð1; 8Þ � ð8; 1Þ ½mir� (!, !) N=A N=A N=A
ð3; �3Þ � ð�3; 3Þ ½mir� N=A (!, !) N=A N=A
ð�6; �3Þ � ð�3; �6Þ N=A N=A (!, !) N=A
ð1; 10Þ � ð10; 1Þ ½mir� N=A N=A N=A (!, !)

TABLE III. The Abelian and the non-Abelian axial charges and the non-Abelian chiral multiplets of JP ¼ 1
2 , Lorentz representationð12 ; 0Þ nucleon, and � fields; see Refs. [4,10,11,13].

Case Field gð0ÞA gð3ÞA

ffiffiffi
3

p
gð8ÞA F D SULð3Þ � SURð3Þ

I N� ¼ N1 � N2 �1 þ1 �1 0 þ1 ð3; �3Þ � ð�3; 3Þ
II Nþ ¼ N1 þ N2 þ3 þ1 þ3 þ1 0 ð8; 1Þ � ð1; 8Þ
III N0�ðNðmÞ� Þ þ1 �1 þ1 0 �1 ð�3; 3Þ � ð3; �3Þ
IV N0þðNðmÞ

þ Þ �3 �1 �3 �1 0 ð1; 8Þ � ð8; 1Þ
0 @�N

� þ1 þ 5
3 þ1 þ 2

3 þ1 ð6; 3Þ � ð3; 6Þ

CHEN, DMITRASINOVIĆ, AND HOSAKA PHYSICAL REVIEW D 83, 014015 (2011)

014015-8



(2) Fit gð3ÞA and gð8ÞA and predict gð0ÞA . Since we have

gð0ÞA ¼ ffiffiffi
3

p
gð8ÞA for all the three-quark nucleon fields

[12], the results here can be obtained by simple
refitting of the previous case. Fitting ðF;DÞ has
not been a problem, so we leave this exercise out
of this paper because it generally overpredicts the

gð0ÞA by a factor of roughly
ffiffiffi
3

p ¼ 1:73.

Thus we determine the mixing angles in Sec. IVA, which
we then translate into statements about the admixed fields’

masses in Sec. IVB. We note here that the relation gð8ÞA ¼
1ffiffi
3

p ð3F�DÞ is a general SUð3Þ result valid for octet fields,
whereas gð0ÞA ¼ 3F�D is a result that depends on our

specific choice of three-quark interpolating fields being
admixed to the ð6; 3Þ � ð3; 6Þ one. The latter relation
changes when one considers ‘‘exotic’’ interpolating fields,
such as certain five-quark (pentaquark) ones, for example,

and that allows a simultaneous fit of gð0ÞA , gð3ÞA , and gð8ÞA ,
which topic is beyond the scope of this paper.

A. Phenomenology of the axial coupling constants

A basic feature of the linear chiral realization is that the
axial couplings are determined by the chiral representa-
tions. For the nucleon (proton and neutron), the three-quark
chiral representations of SULð3Þ � SURð3Þ, ð8; 1Þ � ð1; 8Þ,
ð3; �3Þ � ð�3; 3Þ, and ð6; 3Þ � ð3; 6Þ provide the nucleon iso-

vector axial coupling gð3ÞA ¼ 1, 1, and 5=3 respectively.

Therefore, the mixing of chiral ð8; 1Þ � ð1; 8Þ, ð3; �3Þ �
ð�3; 3Þ, and ð6; 3Þ � ð3; 6Þ nucleons leads to the axial cou-
pling

1:267 ¼ gð3ÞAð1=2;0Þcos
2
þ gð3ÞAð1;1=2Þsin

2


¼ gð3ÞAð1=2;0Þcos
2
þ 5

3
sin2
; (58)

where gð3ÞAðð1=2Þ;0Þ represents the coupling of either ð8; 1Þ �
ð1; 8Þ or ð3; �3Þ � ð�3; 3Þ, and gð3ÞAð1;ð1=2ÞÞ represents the cou-

pling of ð6; 3Þ � ð3; 6Þ. The coupling gð3ÞAð1;ð1=2ÞÞ is needed

because only the coupling of ð6; 3Þ � ð3; 6Þ is larger than
the experimental value 1.267. We list the results of the
mixing angles for all the four cases in Table IV. Three-
quark nucleon interpolating fields in QCD have well-
defined UAð1Þ chiral transformation properties (see

Table III) that can be used to predict the flavor-singlet

axial coupling gð0ÞAmix: and the F and D values

gð0ÞAmix: ¼ gð0ÞAðð1=2Þ;0Þcos
2
þ gð0ÞAð1;ð1=2ÞÞsin

2


¼ gð0ÞAðð1=2Þ;0Þcos
2
þ sin2
; (59)

F ¼ Fðð1=2Þ;0Þcos2
þ Fð1Þ
ð1;ð1=2ÞÞsin

2
;

¼ Fðð1=2Þ;0Þcos2
þ 2

3
sin2
; (60)

D ¼ Dðð1=2Þ;0Þcos2
þDð1;ð1=2ÞÞsin2


¼ Dðð1=2Þ;0Þcos2
þ sin2
: (61)

The mixing angle 
 is extracted from Eq. (58), where we
used the bare F andD values for different chiral multiplets
as listed in Table III. Because of the different (bare)

non-Abelian gð3ÞA and Abelian gð0ÞA axial couplings (see
Table III), the mixing formulas Eq. (59) give substantially
different predictions from one case to another; see
Table IV. We can see in Table IV that the two best candi-

dates are cases I and IV, with gð0ÞA ¼ �0:2 and gð0ÞA ¼ 0:4,
respectively, the latter being within the error bars of the

measured value gð0ÞA expt: ¼ 0:33� 0:08 [2,28]. Selection

rules from Sec. III allow the case III and the case IV.
And so the case IV is the best candidate so long as we
consider just the mixing of two nucleon fields [4].
Manifestly, a linear superposition of any three fields

(except for the mixtures of cases II, III, and IV above,
which yield complex mixing angles) gives a perfect fit to
the central values of the experimental axial couplings

gð0ÞA expt: ¼ 0:33� 0:08 and gð3ÞA expt: ¼ 1:267 and predicts

the F and D values, or vice versa: one may fit gð3ÞA and

gð8ÞA , (or equivalently F and D) and thus predict gð0ÞA . This

has been done in Ref. [5], where there were three allowed
cases: I-II, I-III, and I-IV. The selection rules from Sec. III
indicate that only two of them are possible in the one-
meson approximation: (1) the case I-III and (2) the case
I-IV. In the former case the UAð1Þ symmetry is conserved,
whereas in the latter the UAð1Þ is violated.
Such a three-field admixture introduces two new free

parameters, besides the already introduced mixing angles,
e.g. 
3 and 
1ð¼ 0Þ (which we may set to vanish in the

TABLE IV. The values of the baryon isoscalar axial coupling constant predicted from the naive mixing and gð3ÞA expt: ¼ 1:267; compare

with gð0ÞAexpt: ¼ 0:33� 0:03� 0:05, F ¼ 0:459� 0:008, and D ¼ 0:798� 0:008, leading to F=D ¼ 0:571� 0:005; Ref. [1].

Case gð3ÞA expt: 
i gð0ÞA mix:

ffiffiffi
3

p
gð8ÞA mix: F D F=D

I 1.267 39.3
 �0:20 �0:20 0.267 1 0.267

II 1.267 39.3
 2.20 2.20 0.866 0.401 2.16

III 1.267 67.2
 1.00 1.00 0.567 0.700 0.81

IV 1.267 67.2
 0.40 0.40 0.417 0.850 0.491
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present approximation). For the case I-III (we shall call it
here case III-I for reasons soon to be clarified) we have the
relative/mutual mixing angle 
31 ¼ ’, as the two nucleon
fields III and I mix due to the off-diagonal interaction
Eq. (43). Thus we find two equations with two unknowns
of the general form

5

3
sin2
þ cos2
ðgð3ÞA ðIIIÞcos2’þ gð3ÞA ðIÞsin2’Þ ¼ 1:267;

(62)

sin 2
þ cos2
ðgð0ÞA ðIIIÞcos2’þ gð0ÞA ðIÞsin2’Þ
¼ 0:33� 0:08: (63)

The solutions to these equations (the values of the mixing
angles 
, ’) provide, at the same time, input for the
prediction of F and D,

cos 2
ðFðIIIÞcos2’þ FðIÞsin2’Þ þ 2

3
sin2
 ¼ F; (64)

cos 2
ðDðIIIÞcos2’þDðIÞsin2’Þ þ sin2
 ¼ D: (65)

The values of the mixing angles ð
; ’Þ obtained from this
straightforward fit to the baryon axial coupling constants
are shown in Table V. We also show the result of the case

I-IV as well as IV-I in this table. Besides these cases, the
cases I-II and II-I can also be used to produce the experi-

mental gð0ÞA and gð3ÞA , which are however not allowed from
Sec. III.

B. Baryon masses

The next step is to try and reproduce this phenomeno-
logical mixing starting from a model interaction, rather
than per fiat. As the first step in that direction we must
look for a dynamical source of mixing. One such mecha-
nism is the simplest chirally symmetric nonderivative
one-ð�;�Þ-meson interaction Lagrangian, which induces
baryon masses via its �-meson coupling. Chiral symmetry
is spontaneously broken through the ‘‘condensation’’ of the
sigma field � ! �0 ¼ h�i0 ¼ f�, which leads to the dy-
namical generation of baryon masses, as can be seen from
the linearized chiral invariant interaction Lagrangians,
Eqs. (19) and (28).
In this section, we study the masses of the octet baryons.

There are altogether six types of octet baryon fields: Nþ
[Nð8Þ], N� [contained in Nð9Þ] and N� [contained in Nð18Þ],
as well as their mirror fields N0þ [Nð8mÞ], N0� [contained in

Nð9mÞ], N0
� [contained in Nð18mÞ]. The nucleon mass matrix

is already in a simple block-diagonal form when the nu-
cleon fields form the following mass matrix:

M ¼ 1ffiffiffi
6

p �N

0 gð8=9Þ gð8=18Þ mð8Þ�5 gB 0
g	ð8=9Þ gð9=9Þ gð9=18Þ g	B mð9Þ�5 0
g	ð8=18Þ g	ð9=18Þ gð18=18Þ 0 0 mð18Þ�5

mð8Þ�5 g0B 0 0 g0ð8=9Þ g0ð8=18Þ
g0	B mð9Þ�5 0 g0	ð8=9Þ g0ð9=9Þ g0ð9=18Þ
0 0 mð18Þ�5 g0	ð8=18Þ g0	ð9=18Þ g0ð18=18Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
N; (66)

where

N ¼ ðN0þ; N0�; N�; Nþ; N�; N0
�ÞT: (67)

Since there are three nucleon fields as well as their mirror
fields, there can be a nonzero phase angle. However, for
simplicity, we assume all the axial couplings are real.

C. Masses due to ½ð6; 3Þ � ð3; 6Þ�-½ð�3; 3Þ � ð3; �3Þ�
mixing

We use the results of Sec. III: the chirally invariant
diagonal, Eqs. (19) and (28), and off-diagonal, Eq. (33),
meson-baryon-baryon interactions involving

ðB1;�Þ 2 ð�3; 3Þ � ð3; �3Þ ½mir�;
ðB2;�Þ 2 ð6; 3Þ � ð3; 6Þ;
ð�;�Þ 2 ð�3; 3Þ � ð3; �3Þ:

(68)

Here all baryons have spin 1=2, while the isospin of B1 and
B2 is 1=2 and that of � is 3=2. The � field is then

represented by an isovector-Dirac spinor field �i, (i ¼
1; 2; 3).
In writing down the Lagrangians, Eqs. (19), (28), and

(33), we have implicitly assumed that the parities of B1, B2,
�, and � are the same. In principle, they are arbitrary,
except for the ground state nucleon, which must be even.
For instance, if B2 has odd parity, the first term in the
interaction Lagrangian, Eq. (33), must include another �5

matrix [30]. Here we assume the ground state nucleon is
contained in either ½ð6; 3Þ � ð3; 6Þ� or ½ð�3; 3Þ � ð3; �3Þ�, and
so at least one of B1 and B2 has even parity. Next we
consider all possible cases for the parities of B2, �, and
�. The results are similar to the two-flavor ones shown in
Refs. [4,13] (because we assumed good SUð3Þ symmetry
here).
Having established the mixing interaction, Eq. (33), as

well as the diagonal terms, Eqs. (19) and (28), we calculate
the masses of the baryon states, as functions of the pion
decay constant/chiral order parameter and the coupling
constants g1 � gð9Þ, g2 � gð18Þ, and g3 � gð9=18Þ,
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Lð9Þ ¼ �g1ð �B1�B1 � 2 ����Þ þ � � � ;
Lð18Þ ¼ �g2ð �B2�B2 � 2 ��i��iÞ þ � � � ;

Lð9=18Þ ¼ �g3ð �B1�B2Þ þ � � � :
(69)

Altogether we have

L ¼ �f�ð �B1; �B2Þ g1 g3
g3 g2

� �
B1

B2

� �
þ 2g1f� ���

þ 2g2f� ��i�i: (70)

We diagonalize the mass matrix and express the mixing
angle in terms of diagonalized masses

NðN	Þ ¼ cos
B1 þ sin
B2;

N	ðNÞ ¼ � sin
B1 þ cos
B2:
(71)

We find the following double-angle formulas for the mix-
ing angles 
1;���;8 between B1 and B2 in the eight different

parities scenarios:

tan2
1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N þ�Þð2N	 þ �

p Þ
ðN þ N	 þ �Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N þ�Þð2N	 þ�

p Þ
ðN þ N	 þ�Þ ; (72)

tan2
2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N þ�Þð2N	 � �

p Þ
ðN � N	 þ �Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N þ�Þð2N	 ��

p Þ
ðN � N	 þ�Þ ; (73)

tan2
3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N þ�Þð2N	 þ �

p Þ
ðN þ N	 þ �Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N ��Þð2N	 ��

p Þ
ðN þ N	 ��Þ ; (74)

tan2
4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N þ �Þð2N	 ��

p Þ
ðN � N	 þ �Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N ��Þð2N	 þ�

p Þ
ð�N þ N	 þ�Þ ; (75)

tan2
5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N ��Þð2N	 � �

p Þ
ðN þ N	 � �Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N þ�Þð2N	 þ�

p Þ
ðN þ N	 þ�Þ ; (76)

tan2
6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N � �Þð2N	 þ�

p Þ
ðN � N	 � �Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N þ�Þð2N	 ��

p Þ
ðN � N	 þ�Þ ; (77)

tan2
7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N ��Þð2N	 � �

p Þ
ðN þ N	 � �Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N ��Þð2N	 ��

p Þ
ðN þ N	 ��Þ ; (78)

tan2
8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N � �Þð2N	 þ�

p Þ
ðN � N	 � �Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N ��Þð2N	 þ�

p Þ
ðN � N	 ��Þ ; (79)

where N, N	, �, and � represent the masses of the corre-
sponding particles. The four angles correspond to the eight
possible parities: 
1, ðN	þ;�þ;�þÞ; 
2, ðN	�;�þ;�þÞ;

3, ðN	þ;��;�þÞ; 
4, ðN	�;��;�þÞ; 
5,
ðN	þ;�þ;��Þ; 
6, ðN	�;�þ;��Þ; 
7, ðN	þ;��;��Þ;
and 
8, ðN	�;��;��Þ, where � indicate the parity of
the state. Note that the angles 
1, 
3, and 
5 are necessarily
imaginary so long as the �, �, and N	 masses are physical
(positive), and that the reality of the mixing angle(s) im-
poses stringent limits on the �, N	 resonance masses in
other cases, as well.

TABLE V. The values of the mixing angles obtained from the simple fit to the baryon axial coupling constants and the predicted
values of axial F and D couplings. The experimental values are F ¼ 0:459� 0:008 and D ¼ 0:798� 0:008, leading to F=D ¼
0:575� 0:005 and gð8ÞA ¼ 0:33� 0:01; Ref. [29]. The most recent analysis of experimental values leads to F ¼ 0:477� 0:001 and

D ¼ 0:835� 0:001 and gð8ÞA ¼ 0:344� 0:001 in Ref. [1]. Note that these values are more than 2� away from the old ones, and that the

new F,D add up to FþD ¼ 1:312 � 1:269� 0:002. Also gð0ÞA expt: ¼ 0:33� 0:08.

Case gð3ÞA expt: gð0ÞA gð8ÞA 
 ’ F D F=D

I-III 1.267 0:33� 0:08 0:19� 0:05 50:7
 � 1:8
 23:9
 � 2:9
 0:399� 0:02 0:868� 0:02 0:460� 0:04
III-I 1.267 0:33� 0:08 0:19� 0:05 50:7
 � 1:8
 66:1
 � 2:9
 0:399� 0:02 0:868� 0:02 0:460� 0:04
I-IV 1.267 0:33� 0:08 0:19� 0:05 63:2
 � 4:0
 54
 � 23
 0:399� 0:02 0:868� 0:02 0:460� 0:04
IV-I 1.267 0:33� 0:08 0:19� 0:05 63:2
 � 4:0
 36
 � 23
 0:399� 0:02 0:868� 0:02 0:460� 0:04
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In the present study we have three model parameters g1,
g2, and g3, which can be determined by different set of
inputs. We can use two baryon masses and the mixing
angle as inputs and predict the third baryon mass (inverse
prediction). We use the Eqs. (71)–(79) for the (double)
mixing angles 
1;...;8 together with the two observed nu-

cleon masses and the mixing angle 
 ¼ 67:2
 as shown in
Table IV to predict the � masses shown in the Table VI.

We see that only the ðN	�;�þÞ parity combination leads
to a realistic prediction of the baryon masses. Otherwise, at
least one of the predicted baryon masses is off by a factor

of order two. Indeed, the case ðN	P;�P0
;�P00 Þ ¼ ð�;�;þÞ

predicts the (odd-parity) SUð3Þ flavor-singlet � at
1140 MeV, somewhat below the measured value
(1405 MeV) and �ð2330Þ, the nearest known candidate
state being the (Particle Data Group [PDG] four star in
Ref. [31]) P31ð1910Þ resonance. It is curious that the flavor-
singlet �ð1140Þ state lies (considerably) below the flavor-
octet state N	ð1535Þ even in the good flavor SUð3Þ
symmetry limit; the predicted mass difference might/ought
to be improved by introducing explicit SUð3Þ symmetry
breaking strange-up/down quark mass difference.

D. Masses due to ½ð6; 3Þ � ð3; 6Þ�-½ð�3; 3Þ � ð3; �3Þ�-½ð3; �3Þ �
ð�3; 3Þ� mixing

To improve our analysis, we may add a third chiral
multiplet nucleon field. As in the previous Sec. III, we
consider baryon fields

ðB1;�1Þ 2 ð�3; 3Þ � ð3; �3Þ ½mir�;
ðB2;�Þ 2 ð6; 3Þ � ð3; 6Þ;
ðB3;�2Þ 2 ð3; �3Þ � ð�3; 3Þ:

(80)

As discussed above, the case III-I allows one to reproduce

the experimental couplings gð0ÞA and gð3ÞA . To study this
mixing, we need to use the previous Lagrangian, Eq. (69),
as well as the new ones

L 0
ð9Þ ¼ �g4ð �B3�B3 � 2 ��1��1Þ þ � � � ;

Lð9=9Þ ¼ �g5f� �B1B3 � g5f� ��1�2 þ � � �
(81)

that follow fromEq. (28), where the third nucleon fieldB3 is
a mirror image of B1. We note that B1 and B3 couple with

each other through the naive combinationsmð9Þ �Nð9mÞ�5Nð9Þ.
Chiral symmetry is spontaneously broken through the con-
densation of the sigma field � ! �0 ¼ h�i0 ¼ f�, which
leads to the dynamical generation of baryon masses,

L ¼ �f�ð �B1; �B3; �B2Þ
g1 g5 g3

g5 g4 0

g3 0 g2

0
BB@

1
CCA

B1

B3

B2

0
BB@

1
CCA

� f�ð ��1; ��2Þ
�2g1 g5

g5 �2g4

 !
�1

�2

 !
þ 2g2f� ��i�i:

(82)

To solve this system in its full generality seems both too
complicated and not very useful. However, since g6 of
g6 �B3B2 vanishes, we only need five conditions to solve
this system. Therefore, we just use the three nucleon can-
didates Nð940Þ, Nð1440Þ, and N	ð1535Þ as well as the two
mixing angles 

 ¼ 63:2
 and � ¼ 36
. Finally we find
that there are two possibilities as shown in Table VII.
Once again, the odd-parity� option appears as the better

one. Now, the first flavor-singlet � lies at 1370 MeV,
substantially closer to 1405 MeV than before. A second
flavor-singlet � lies at 1850 MeV, very close to the (three
star PDG, Ref. [31]) P01ð1810Þ resonance. This is our best
candidate in the ½ð6; 3Þ � ð3; 6Þ�-½ð�3; 3Þ � ð3; �3Þ�-½ð3; �3Þ �
ð�3; 3Þ� mixing scenario.

E. Masses due to ½ð6; 3Þ � ð3; 6Þ�-½ð1; 8Þ � ð8; 1Þ�
mixing

We can also study the baryon masses due to ½ð6; 3Þ �
ð3; 6Þ�-½ð1; 8Þ � ð8; 1Þ� mixing

B12ð1;8Þ�ð8;1Þ ½mir�; ðB2;�Þ2 ð6;3Þ�ð3;6Þ: (83)

Having established the mixing interaction Eq. (38), as well
as the diagonal terms Eq. (19), we calculate the masses of
the baryon states, as functions of the pion decay constant/
chiral order parameter and the coupling constants
g2 � gð18Þ and g3 � gð8=18Þ,

Lð18Þ ¼ �g2ð �B2�B2 � 2 ��i��iÞ þ � � � ;
Lð8=18Þ ¼ �g3ð �B1�B2Þ þ � � � :

(84)

TABLE VI. The values of the � baryon masses predicted from the isovector axial coupling gð1ÞA mix: ¼ gð1ÞA expt: ¼ 1:267 and gð0ÞA mix: ¼
0:4vs. gð0ÞA expt ¼ 0:33� 0:08.

ðN	P;�P0
;�P00 Þ (N;N	) � (MeV) �expt: (MeV) � (MeV) �expt: (MeV)

ð�;þ;þÞ N(940), R(1535) 2330 2330 1910

ð�;�;þÞ N(940), R(1535) 1140 1405 2330 1910

ð�;þ;�Þ N(940), R(1535) 2330 1140

ðþ;�;�Þ N(940), R(1440) 2030, 2730 2030, 2730

ð�;�;�Þ N(940), R(1535) 1140 1405 1140
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Note that g1 � gð8Þ is zero now. We diagonalize the mass

matrix and express the mixing angle in terms of diagonal-
ized masses. We find the following double-angle formulas
for the mixing angles 
1;���;4 between B1 and B2 in the four

different parities scenarios:

tan2
1 ¼ �2i

ffiffiffiffiffiffiffiffiffiffi
NN	p

N	 þ N
; � ¼ �2ðN	 þ NÞ; (85)

tan2
2 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
NN	p

N	 � N
; � ¼ 2ðN	 � NÞ; (86)

tan2
3 ¼ �2i

ffiffiffiffiffiffiffiffiffiffi
NN	p

N	 þ N
; � ¼ 2ðN	 þ NÞ; (87)

tan2
4 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
NN	p

N	 � N
; � ¼ �2ðN	 � NÞ; (88)

where N, N	, and � represent the masses of the corre-
sponding particles. The four angles correspond to the
four possible parities: 
1, ðN	þ;�þÞ; 
2, ðN	�;�þÞ; 
3,
ðN	þ;��Þ; and 
4, ðN	�;��Þ, where� indicate the parity
of the state. Note that only 
2 leads to a physical result. We
can use the mixing angle 
 ¼ 67:2
 and the nucleon mass
940 MeV to predict the excited nucleon mass and � mass;
see Table VIII. This gives predictions of no practical value.
To get a practically useful result, we need to add one of the
two-meson interaction Lagrangians from Sec. III A 3, and
thus a nonzero g1 term,

L ð8Þ ¼ � g1
f�

�B1�
2B1 þ � � � ;

and we have four new different parities scenarios,

tan2
1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N þ�Þð2N	 þ �

p Þ
ðN þ N	 þ �Þ ; (89)

tan2
2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N þ�Þð2N	 � �

p Þ
ðN � N	 þ �Þ ; (90)

tan2
3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð2N ��Þð2N	 � �

p Þ
ðN þ N	 � �Þ ; (91)

tan2
4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2N � �Þð2N	 þ �

p Þ
ðN � N	 � �Þ : (92)

Note that only 
1 is imaginary for positive baryon masses,
i.e. unphysical. We can use the mixing angle 
 ¼ 67:2

and the two nucleon masses to predict the � mass; see
Table IX. The nearest known candidate for the �ð2330Þ
state is the (four star PDG, Ref. [31]) P31ð1910Þ resonance.

F. Masses due to ½ð6; 3Þ � ð3; 6Þ�-½ð1; 8Þ � ð8; 1Þ�-½ð3; �3Þ �
ð�3; 3Þ� mixing

To improve our analysis, we can add a third field, and
altogether we consider

B1 2 ð1; 8Þ � ð8; 1Þ ½mir�; ðB2;�Þ 2 ð6; 3Þ � ð3; 6Þ;
(93)

ðB3;�Þ 2 ð3; �3Þ � ð�3; 3Þ: (94)

As discussed above, the case IV-I is possible to produce the

experimental couplings gð0ÞA and gð3ÞA , although this isUAð1Þ
violated. To study this mixing, we need to use the previous
Lagrangian, Eq. (84), as well as the new ones

L0
ð9Þ ¼ �g4ð �B3�B3 � 2 ����Þ þ � � � ;

LðBÞ ¼ �g5 �B1�B3 þ � � � ;
(95)

that follow from Eqs. (28) and (48). Chiral symmetry is
spontaneously broken through the condensation of the
sigma field � ! �0 ¼ h�i0 ¼ f�, which leads to the dy-
namical generation of baryon masses,

L ¼ �f�ð �B1; �B3; �B2Þ
g1 g5 g3
g5 g4 0
g3 0 g2

0
@

1
A B1

B3

B2

0
@

1
A

þ 2g4f� ���þ 2g2f� ��i�i: (96)

TABLE VII. The values of the � and � baryon masses predicted from the isovector axial coupling gð1ÞA mix: ¼ gð1ÞA expt: ¼ 1:267 and

gð0ÞA mix: ¼ 0:33� 0:08 due to ½ð6; 3Þ � ð3; 6Þ�-½ð�3; 3Þ � ð3; �3Þ�-½ð3; �3Þ � ð�3; 3Þ� mixing.

No. g1 g2 g3 g4 g5 �P
1 (MeV) �P

2 (MeV) �P (MeV)

1 �4:7 8.4 �3:4 2.9 9.8 1370� 1850þ 2170�
2 �7:2 4.6 7.9 9.1 �4:2 1940þ 2430� 1200�

TABLE VIII. The values of the � baryon masses predicted from the isovector axial coupling

gð1ÞA mix: ¼ gð1ÞA expt: ¼ 1:267 and gð0ÞA mix: ¼ 0:4vs. gð0ÞA expt: ¼ 0:33� 0:08 due to ½ð6; 3Þ � ð3; 6Þ�-
½ð1; 8Þ � ð8; 1Þ� mixing without additional two-meson interactions.

ðN	P;�P0 Þ N N	 N	
expt: (MeV) � (MeV) �expt: (MeV)

ð�;þÞ N(940) 5320 8760
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Since g6 of g6 �B3B2 vanishes, we only need five conditions
to solve this system. Therefore, we may use the three
lowest-lying nucleon states Nð940Þ, Nð1440Þ, and
N	ð1535Þ as well as the two mixing angles 

 ¼ 50:7

and � ¼ 66:1
. Finally we find that there are two real
possibilities as shown in Table X. Once again, the two
odd-parity � options appear as the best ones. First, even-
parity flavor-singlet �ð1580Þ, lies very close to the (three
star PDG, Ref. [31]) P01ð1600Þ resonance. Second, the
odd-parity flavor-singlet � lies at 1850 MeV, also very
close to the (three star PDG, Ref. [31]) S01ð1800Þ reso-
nance. These are our best candidates in the ½ð6; 3Þ �
ð3; 6Þ�-½ð1; 8Þ � ð8; 1Þ� mixing scenario, that shows that
this option is open.

G. Baryon masses and chiral restoration

Note that, starting from the above mass formulas one
may study the behavior of baryon masses in the chiral
restoration limit, i.e. as f� ! 0. We do not wish to go
into this subject in any depth here, except to point out
several more-or-less immediate consequences of our
results.

First we note that in the two-flavor case one often finds
nucleon parity doublets in the chiral restoration limit
f� ! 0 [4]. That, however, is generally a consequence of
the assumptions made about the number and kind of chiral
multiplets that are being mixed. If one assumes, as in our
studies above, that more than two multiplets are mixed,
then, of course, there will be no parity doublets, but triplets,
or generally as many states as there are admixed multiplets.
Moreover, if there are more than two degenerate states,
such as in our studies above, then at least two will have the
same parity, i.e. the concept of ‘‘parity doublets’’ ceases to

be meaningful and ‘‘parity multiplets’’ ought to be intro-
duced. Finally, if two different flavor SUð3Þ multiplets
form one chiral multiplet, such as the 8 and 10 in the
½ð6; 3Þ � ð3; 6Þ�, then the two-flavor SUð3Þ multiplets may
form a mass-degenerate ‘‘parity doublet’’ in the chiral
restoration limit, even though most of the states in such
doublets do not have the same flavor quantum numbers.
Various conjectures have been made about the potential

relation between the observed parity doublets high in the
baryon spectrum and chiral symmetry restoration, espe-
cially the restoration of the (otherwise explicitly broken)
UAð1Þ symmetry (see Ref. [32] and references therein).
Our results above viz. that there are two basic allowed
scenarios that differ in the UAð1Þ (non)symmetry of their
interactions, show immediately that the UAð1Þ symmetry
need not play a role in the baryon spectra. In this regard we
agree with the conclusions of Refs. [32,33], which used
only a two-flavor model, however. Such conclusions were
also previously reached in the two-flavor case in Ref. [13]
and in Ref. [34], only in the more restricted case of just one
SUð2Þ parity doublet and without mirror fields. The first,
limited, attempts at the three-flavor case were made in
Refs. [17,18].

V. SUMMARYAND OUTLOOK

We have used the results of our previous paper [5] to
construct the SULð3Þ � SURð3Þ chiral invariant interac-
tions based on the phenomenological facts regarding the
baryon axial currents, of the chiral ½ð6; 3Þ � ð3; 6Þ� multi-
plet mixing with other nonexotic baryon field multiplets,
such as the ½ð3; �3Þ � ð�3; 3Þ� and ½ð8; 1Þ � ð1; 8Þ�.
The existence of these multiplets is not limited to three-

quark interpolators: they are present in the SUð3ÞL �
SUð3ÞR Clebsch-Gordan series for the five-quark interpo-
lating fields, as well as the seven-quark ones, etc. Indeed,
these are the only nonexotic chiral multiplets, as they
consist of only nonexotic flavor SUð3Þ multiplets. The
‘‘ordinary’’ (vector) SUð3Þ multiplet content of a chiral
multiplet is determined by the Clebsch-Gordan series
for the tensor product of the right- and left-SUð3Þ multip-
lets: thus 1 � 8 2 ð3; �3Þ; 8 2 ð8; 1Þ; 8 � 10 2 ð6; 3Þ.
Introducing multiple fields with identical chiral contents
would lead to double counting, however. That is to say that
the effects of multiquark fields are implicitly accounted

TABLE IX. The values of the � baryon masses predicted

from the isovector axial coupling gð1ÞA mix: ¼ gð1ÞA expt ¼ 1:267 and

gð0ÞA mix: ¼ 0:4vs. gð0ÞA expt: ¼ 0:33� 0:08 due to ½ð6; 3Þ � ð3; 6Þ�-
½ð1; 8Þ � ð8; 1Þ� mixing with additional two-meson interactions.

ðN	P;�P0 Þ ðN;N	Þ � (MeV) �expt: (MeV)

ð�;þÞ N(940), R(1535) 2330 1910

ðþ;�Þ N(940), R(1440) 2030, 2730

ð�;�Þ N(940), R(1535) 1140

TABLE X. The values of the � and � baryon masses predicted from the isovector axial coupling gð1ÞA mix: ¼ gð1ÞA expt: ¼ 1:267 and

gð0ÞA mix: ¼ 0:33� 0:08 and the mass fit to Nð940Þ, Nð1440Þ and N	ð1535Þ.
No. g1 g2 g3 g4 g5 �P (MeV) �P (MeV)

1 4.6 8.0 �1:8 �6:1 9.7 1580þ 2070�
2 �8:4 4.3 7.1 10.6 �2:4 2750� 1124�
3 �1:3 10.2 2.1 �2:5 9.8 640þ 2660�
4 �8:7 8.1 7.3 7.1 2.9 1850� 2110�
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for, unless these fields differ from the ones we assumed in
some respect other than the non-Abelian chiral multiplet.
Introduction of exotic chiral multiplets, on the other hand,
would lead to exotic flavor SUð3Þ multiplets in the spec-
trum, which are absent experimentally, however. Thus, we
may conclude that these three chiral multiplets, together
with their mirror images, are the only ones consistent with
the present experimental knowledge, and that no additional
chiral mixing is phenomenologically allowed, without fur-
ther explanation.

The results of the three-field (‘‘two-angle’’) mixing are
curious insofar as all phenomenologically permissible com-
binations of interpolating fields lead to the same F, D
values, that are in reasonable agreement with experiment.
This (unexpected) equivalence of results is a consequence

of the relation gð0ÞA ¼ 3F�D between the flavor-singlet

axial coupling gð0ÞA and the (previously unrelated) flavor-

octet F and D values. That relation is a benchmark feature
of the three-quark interpolating fields and any (potential)
departures from it may be attributed to interpolating fields
with a number of quarks that is higher than three.

We constructed all SULð3Þ � SURð3Þ chirally symmet-
ric baryon-one-meson interactions that mix the three basic
baryon chiral multiplets (and their mirror images). All of
these interactions, with only one exception, obey theUAð1Þ
symmetry as well. We used these interactions to relate the
mixing angles to the masses of physical (‘‘mixed’’) bary-
ons. Then we tried to reproduce the phenomenological
mixing angles based on observed baryon spectra. Once
the number of admixed fields exceeds three there is too
much freedom, i.e. too many mixing angles, in the most
general form of such a mixing procedure to be constrained
by only three measured numbers. That assumption can be
relaxed, if/when more detailed studies become necessary
if/when new observables are measured in the future.

For the purpose of simplification we used the two
lowest-lying nucleon states and then fit the phenomeno-
logical values of the mixing angles and thus predicted (at
least) one high-lying resonance, which we then searched
for in the PDG tables; Ref. [31]. This has led us to (at least)
two allowed scenarios. In this way we have made the first
tentative assignments of observed baryon states to chiral
multiplets. As explained above, this procedure does not
necessarily lead to unique results, however. The two basic
allowed scenarios differ primarily in the number of pre-
dicted flavor-singlet � hyperons and in the UAð1Þ (non)
symmetry of their interactions. At this moment in time we

have no reason to prefer one solution to another, other than
aesthetic ones, such as the UAð1Þ symmetry breaking.
Manifestly, the good UAð1Þ symmetry limit is sufficient

to reproduce the nucleon axial couplings and the low-lying
spectrum, as shown in the first scenario (½ð6; 3Þ �
ð3; 6Þ�-½ð�3; 3Þ � ð3; �3Þ�-½ð3; �3Þ � ð�3; 3Þ� mixing), but it is
not necessary, as shown in the second scenario (½ð6; 3Þ �
ð3; 6Þ�-½ð1; 8Þ � ð8; 1Þ�-½ð3; �3Þ � ð�3; 3Þ� mixing). This result
stands in contrast to the two-flavor case [4,13], where all
SULð2Þ � SURð2Þ symmetric interactions have both a
UAð1Þ symmetry-conserving and a UAð1Þ symmetry-
breaking version. Thus, the three-flavor chiral symmetry
is more restrictive and consequently more instructive than
the two-flavor one.
One of our conclusions follows as a simple corollary of

this result: the mass degeneracy of opposite-parity baryon
resonances is not necessarily a consequence of the explicit
UAð1Þ symmetry restoration in agreement with the conclu-
sions drawn from the two-flavor model calculations;
Refs. [32,33]. Moreover, the parity doubling need be nei-
ther one of, nor the only, consequence(s) of the sponta-
neous SULð3Þ � SURð3Þ symmetry restoration.
This result also shows that the UAð1Þ anomaly in QCD

may still, but need not, be the underlying source of the spin
problem [2], as was once widely thought [18]. In all like-
lihood it provides only a relatively small part of the solu-
tion, the largest part coming from the chiral structure of the
nucleon.
The main line of applications of these results lies in the

nonzero density/temperature physics: all previous attempts
(see Refs. [19,21]) included only the ½ð3; �3Þ � ð�3; 3Þ�
baryon chiral multiplet, which naturally led to axial cou-
plings that differ from the measured ones. Another step,
left for the future, is to include the explicit chiral symmetry
breaking.
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