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Three-quark nucleon interpolating fields in QCD have well-defined SU; (3) X SU(3) and U4(1) chiral
transformation properties, viz. [(6,3) ® (3,6)], [(3,3) ® (3,3)], [(8, 1) ® (1, 8)], and their mirror images;
see [H. X. Chen, V. Dmitrasinovi¢, A. Hosaka, K. Nagata, and S. L. Zhu, Phys. Rev. D 78, 054021 (2008)].
It has been shown (phenomenologically) in [H. X. Chen, V. Dmitrasinovi¢, and A. Hosaka, Phys. Rev. D
81, 054002 (2010)] that mixing of the [(6, 3) @ (3, 6)] chiral multiplet with one ordinary (naive) and one
mirror field belonging to the [(3,3) @ (3, 3)], [(8, 1) ® (1, 8)] multiplets can be used to fit the values of the
isovector (gff)) and the flavor-singlet (isoscalar) axial coupling (gff)) of the nucleon and then predict the
axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive
such mixing from an effective Lagrangian, we construct all SU;(3) X SU(3) chirally invariant non-
derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons’
masses. It turns out that there are (strong) selection rules: for example, there is only one nonderivative
chirally symmetric interaction between J = 1 fields belonging to the [(6,3) @ (3, 6)] and the [(3,3) ®
(3, 3)] chiral multiplets, that is also U, (1) symmetric. We also study the chiral interactions of the [(3, 3) ®
(3,3)]and [(8, 1) ® (1, 8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal
nonderivative chiral SU;(3) X SUx(3) interaction of this type, that also explicitly breaks the U,(1)
symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses
and fit two lowest-lying observed nucleon (resonance) masses, thus predicting the third (/ = 1,1 = %) A
resonance, as well as one or two flavor-singlet A hyperon(s), depending on the type of mixing. The

effective chiral Lagrangians derived here may be applied to high density matter calculations.
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L. INTRODUCTION

Axial current coupling constants of the baryon flavor-
octet are well known; see Ref. [1]. The zeroth (timelike)
components of these axial currents are generators of the
SU,;(3) X SUg(3) chiral symmetry that is one of the fun-
damental symmetries of QCD. The general flavor SU;(3)
symmetric form of the nucleon axial current contains
two free parameters, called F and D couplings, that are
empirically determined as F = 0.459 = 0.008 and D =
0.798 £ 0.008, see Ref. [1]. Another, perhaps separate,
yet equally important piece of information is the flavor-

singlet axial coupling ggo) = 0.33 = 0.08 of the nucleon
[2,3].

Recent studies [4,5] point toward baryon chiral mixing
(of [(6,3) ® (3,6)] withthe [(3,3) ® (3,3)],[(8, 1) ® (1, 8)]
chiral multiplets [6]) as a possible mechanism underlying
the baryons’ axial couplings. This finding is in line with the
old current algebra results of Gerstein and Lee [7] and of
Harari [8,9], updated to include recently measured values
of F and D couplings, Ref. [1], and extended to include the
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flavor-singlet coupling ggo) of the nucleon, which was not
considered in the mid-1960s at all, presumably due to the
lack of data. Our own starting point was the study of the
QCD interpolating fields’ chiral properties [10—12].

The next step is to try and reproduce this phenomeno-
logical mixing starting from a chiral effective model inter-
action, rather than per fiat. As the first step in that direction
we must look for a dynamical source of mixing. One such
mechanism is the simplest chirally symmetric nonderiva-
tive one-(o, 7)-meson interaction Lagrangian; nonderiva-
tive because that induces baryon masses via the o-baryon
coupling.

We construct all SU;(3) X SUg(3) chirally invariant
nonderivative one-meson-baryon interactions and then
use them to calculate the mixing angles in terms of bary-
ons’ masses. It turns out that there are severe chiral selec-
tion rules at work here. For example, we show that only the
mirror field [(3, 3) ® (3, 3)] can be coupled to the [(6, 3) ®
(3,6)] baryon chiral multiplet by nonderivative terms;
whereas the ordinary (naive) multiplet [(3, 3) @ (3, 3)] re-
quires one (or generally an odd number of) derivative(s).
Moreover, this interaction also conserves the U,(1) sym-
metry. This is interesting, as the mixing with a mirror
baryon field of this type seems preferable from the point
of view of the two-flavor phenomenological study, Ref. [4].
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We note that all but one of the SU;(3) X SUR(3) sym-
metric interactions, viz. the [(3,3)® (3,3)]—[(8 1) &
(1,8)], also conserve the U,(1) symmetry. This means
that explicit U, (1) symmetry breaking may occur in bary-
ons only in so far as the SU;(3) X SUR(3) symmetry is
explicitly broken, with the exception mentioned above.
This is in stark contrast with the SU;(2) X SUg(2) case,
where all of the interaction terms have both the U, (1)
symmetry-conserving and the Uy (1) symmetry-breaking
version [4,13]. In this sense, the three-flavor chiral sym-
metry is more restrictive and consequently more instructive
than the two-flavor one.

The conventional models of (linearly realized) chiral
SU;(3) X SUR(3) symmetry, Refs. [14-19], on the other
hand appear to fix the F and D parameters at either (F = 0,
D = 1), which case goes by the name of [(3,3) @ (3, 3)],
or at (F=1, D=0), which case goes by the name
of [(8,1)® (1,8)] chiral representation. Both of these
chiral representations suffer from the shortcoming that
F+D=1,+# g(3) = 1.267 without derivative couplings.
But, even with derivative interactions, one cannot change
the value of the vanishing coupling, i.e. of F =0, in
[(3,3)®(3,3)], or of D=0, in [(8 1) ® (1, 8)]. Rather,
one can only renormalize the nonvanishing coupling to
1.267. This is perhaps the most troublesome problem of
the linear realization chiral SU;(3) X SUg(3) symmetric
Lagrangians as it has far-reaching consequences for the
kaon and hyperon interactions, hypernuclear physics, and
nuclear astrophysics of collapsed stars [20,21].

Another perhaps equally important and difficult problem
is that of the flavor-singlet axial coupling of the nucleon
[2,3]. This is widely thought of as being disconnected from
the F, D problem, but we have already shown (see
Refs. [4,5]) that the chiral mixing of three-quark interpo-
lating fields casts some new light on this problem. Namely,

the flavor-singlet axial coupling turns out to be g(o) =
(3F — D), i.e., a function of the flavor SU(3) octet (F, D)

coefficients and thus proportional to the eighth flavor

component of the SU(3) symmetric axial coupling g( ) =

75(3F D), so long as one mixes only three-quark inter-

polating fields. In other words, the ratio of these two
measured quantities is fixed at v/3 in the three-quark as-
sumption, so one must go beyond this approximation in
order to break the deadlock.

Even though an awareness of this mixing has been
around for more than 40 years [14-16,22], the SU; (3) X
SUx(3) chiral interactions necessary to describe such chi-
ral mixing(s) have not been considered in print [23], let
alone derived. The present paper serves to provide a dy-
namical model of chiral mixing that is the ““best’” approxi-
mation to the phenomenological solution of both the (F, D)
and the flavor-singlet axial coupling problems, assuming
only three-quark baryon interpolating fields. We found two
simple solutions/fits [26]: one that conserves the U,(1)
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symmetry and another one that does not. This goes to
show that the “QCD U,(1) anomaly”’ may, but need not,
be the underlying source of the ‘“‘nucleon spin problem”
[2,3], as was once widely thought [18]. In all likelihood the
U,(1) anomaly provides only a (relatively) small part of
the solution, the largest part coming from the chiral struc-
ture (“‘mixing”’) of the nucleon.

One immediate application of our results ought to be in
high density matter calculations, where only one baryon
chiral multiplet ([(3,3) ® (3,3)]) and its interaction with
mesons have been used for some time now [20,21].

The present paper consists of five parts: after the present
introduction, in Sec. II we define the SU(3) X SU(3) chiral
transformations of three-quark baryon fields and of the
spinless mesons, with special emphasis on the SU(3) phase
conventions. In Sec. III we construct the SU, (3) X SUx(3)
chirally invariant interactions. In Sec. IV we apply chiral
mixing formalism to the hyperons’ axial currents and then
use the chiral interactions to reproduce the mixing angles.
In this way we determine the masses of the admixed states.
Finally, in Sec. V we discuss the results and offer a sum-
mary and an outlook on future developments.

II. PRELIMINARIES: CHIRAL
TRANSFORMATIONS OF
MESONS AND BARYONS

A. Chiral transformations of (3,3) ® (3, 3)
spinless mesons

We follow the same definition of chiral transformation in
Ref. [12]:

)\0
U)y: g— eXP<17 )q =gq + 8q,
A
SUQB)s: g — exp(z— )q =g + 8%,
2
(D)
U(l): g — eXP(Ws*%)‘I =q + 854,

A N
SUB)a: ¢ — GXP(WSE' b)q =g+ 6%

We define the scalar and pseudoscalar mesons in the SU(3)
space as

= gaAipqp (2)

= qaAipiYs4s 3)

where the index a goes from 0 to 8, and the zero compo-

nent of Gell-Mann matrices is A° = \/%1.

The nucleon fields belong to the chiral representation of
(3, 3) @ (3, 3), and their combination transforms as
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5§(Ub + iysm?) = —iysbd (o€ + iysT©),
5l5;(¢7b — iysm’) = iysh*dp (0 — iysT),

where d ;. and f,;. are defined to contain the O index,
A9, /\b} — 2dabc/\c) [A9 )\b] — Zifabc/\c' 5)

We note here that in these equations we do not have the
54" factors which are necessary in the usual equation

{A%, AP} = 249 )¢ + gaab, 6)
where
(@b=1,...,8) 7
|
AT I
M2 NN
A 00 0 10
M 05 5 00
w =0 0 0o o0 %
M 00 0 0%
M’ 00 0 00
\Zz) 00 0 0 0
\0 0 0 0 0

In this basis,

M' = oy + iysmn,, M? =af +iysm",

M3 = ag + i7577'0, M* = a, +iysm,

M’ = k" + iysKT, M® =k~ +iysk—, (9
M7 = k% + iysK°, M8 = R0 + iysKP,
M® = fo + iysms.

We have classified the baryon interpolating fields in our
previous paper [12]. We found that the baryon interpolating
fields N¢ = N{ + N5 belong to the chiral representation
(81)®(1,8); A and N2 = N{ — N belong to the chiral
representation (3,3) @ (3,3); N and AL belong to the
chiral representation (6,3) ® (3,6); and A%, belong to
the chiral representation (10, 1) ® (1, 10). Here N¢ and
N§ are the two independent kinds of nucleon fields. N{
contains the “scalar diquark™ and NS contains the “pseu-
doscalar diquark.” Moreover, we calculated their chiral
transformations in Ref. [12]. In the following sections,
we will use these baryon fields together with one meson
field to construct the chiral invariant Lagrangians.

o o o O

(= e N )

PHYSICAL REVIEW D 83, 014015 (2011)

The nonzero f and d coefficients are

abc  fob¢ abc  d®¢ abc d’° abc debe
123 1 000 +/2/3 118 1/4/3 355 12
147 12 011 2/3 146 12 366 -1/2
156 —1/2 022 2/3 157 12 377  —1)2
246 112 033 2/3 228 1//3 448 —1/(24/3)
257 112 044 2/3 247 —1/2 558 —1/(24/3)
345 112 055 2/3 256 12 668 —1/(24/3)
367 —1/2 066 +2/3 338 1//3 778 —1/(2/3)
458 /3/2 077 2/3 344 12 888 —1/\3

678 /3/2 088

\®)
o~
W

To simplify our calculations sometimes we use the
“physical” basis, whose definitions are

J

o+ iys"\
ol + iysm!
o2 + iysm?
o+ iysm
ot +iysmt | (8)
o’ + iysm
6

S~
S O O o o ©

o O O o o O

[\S)

ol +iysm

-
- O O O O O o o o

N—

ol +iysm’

SRS NS
5

o8 + i'y5778)

oSl

B. Chiral transformations of baryons
1. Chiral transformations of [(6,3) ® (3, 6)] baryons

The baryon field N5y = (N, A,,)" belongs to the chiral
representation [(6, 3) ® (3, 6)],

N!' = p, N? =n, N3 =31,
N* =30 N> =3~ N =E?
N =E", N8 = Ag, N° =ATH
’ (10)
NlO — A+ Nll — AO) N12 — A—’
N13 — 2+ Nl4 — 20 NlS — 2*
N16 — =0 N17 — E— N18 =0
and we can write out their chiral transformation as
82Nus) = ivsbFig Nag)
2 2
— ivpe D) +35FGs A Te10 | [ N T
=15 LTTu lFa A s ( )
/3 (8/10) 35(10) M
where the matrices ng), F‘(‘S), F?IO)’ and ng /10) are calcu-

lated in our previous paper [5].
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2. Chiral transformations of [(3, 3) ® (3, 3)] baryons

This chiral representation contains the flavor-octet and
singlet representations 3® 3 =8® 1 ~Ng = (A, N_)":

N' = A, N? = p, N3 =n,
N*=3%, N> =30, N =37, (12)
N'=E%  N:=E", N =A

and their chiral transformations are

5157N(9) = i’y5baF‘(l9)N(9)

2ra
0 4Ty,

= i’)’Sba
2t
NELHTR

(;}1 ) (13)

3. Chiral transformations of [(8,1) @ (1, 8)] baryons

This chiral representation [(8, 1) ® (1, 8)] contains the
flavor-octet representation 8 ® 1 =8 ~Ng = N,. The
chiral transformation is

52N(8) = i')’sbaF(as)N(g). (14)

4. Chiral transformations of [(10,1) & (1, 10)] baryons

This chiral representation [ (10, 1) @ (1, 10)] contains the
flavor decuplet representation 10 ® 1 = 10 ~N(jg) = A ..
The chiral transformation is

621\’(10) = i’ysbaF?lo)N(IO)- (15)

III. CHIRAL INTERACTIONS

In this section we propose a new method for the
construction of Ny = 3 chiral invariants that differs from
the one proposed for Ny = 2 in Ref. [18] and used in
Refs. [4,13].

A. Diagonal interactions: Mass terms
1. Chiral [(6, 3) ® (3, 6)] baryons’ diagonal interactions

Our aim is to construct a chiral invariant Lagrangian,

Na

(IS)MCNb Cabc (16)

(18) ~(18)

where the indices a and b run from 1 to 18, and the index ¢
just runs from 1 to 9. By performing the chiral transforma-
tion to this Lagrangian, we can obtain many equations. For
example we have

PHYSICAL REVIEW D 83, 014015 (2011)

_ 5 .
6§(pM2nC(11282)) = EC(llzg)an(lysbl)n + e

- V2 e
SLAM?nC({y?) = —?cg?glnMZ(wsbl)n +e,
2 ,
S AMPA~Cl?) = \/;C(Zig’zﬁMz(l)’sbﬁn +e (4D
1
SLAM nCEY) = —= CRY M iysbn + - -,

\/§ (18)

_ 1 o
5;(nM9nC(21289)) = \/—EC(Zf%nMZ(z%bl)n + e
These are all the fields that are transformed to
iaiM?(iysb,)n. If the Lagrangian (16) is chiral invariant,
this sum should be zero,

122_\/-2—

2 1 1
%C(IS) C10,2,2+J;Cz,12,2+_3c(21281)+_6(:229 =0.

3 8) (18) J3 J6 (18)
(18)

Solving these equations for Cff’gc) together with the
Hermiticity condition, we find that there is only one solu-
tion. The uniqueness of the solution is guaranteed by the
fact that there is only one way to form the chiral singlet
combination out of the baryon field [(6, 3) ® (3, 6)] and the
meson field [(3,3) ® (3, 3)]. This solution can be written

out much more easily using D(Clg) in the following form:

g(l8)1\7?18)(a-c + iYSWC)(D(L‘]g))abNé)lg)’ (19)

where g(;3) is the coupling constant, and the matrices D(;3)
are solved to be

Do :L<18><8 0 )
W\ 0 —2X1xp )

2 _ 1
( Dfy) +5Ff Ne Tls/10) )

(20)

Dijg) = _ L ta

__21xa
V3 7 (8/10) EF(lo)

Besides the Lagrangian (16), its mirror part,
a8 NV{ig) (0 = 175 Wc)(D(CIS))abNé?ISm)’ @b

is also chiral invariant. Using these solutions, and perform-
ing the chiral transformation, we can obtain the following
relation:

+ D)

t o
Fit D (18)

(18)(18) Flig) = dapeDiyg) = 0, (22)

where F(“] 8) and Dé’l g) are defined in the previous Egs. (11)
and (20). )

The solution in the physical basis (NflS)MCNf’lg)Cf{’SC))
can be obtained by the following relations:
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bl — (PO
CEIIS) B (D(18))ﬂb’

Cfllbg:;) = (Dslg))ub;
C?lbgg) = (D?lg))ab,
1
2
i _(ab2 abd\ — 2
\/_z( C(lg) + C(lg)) - (D(lg))ab,
1
2
i _(abs ab6by — 5
ﬁ( C(lg) + C(lg)) - (D(lg))ab,
1
2

i a a
\/_i(_c(lbg) + C(lbgg)) = (Dzlg))ab-

ab2 ab4d\ — 1
(C(IS) + C(IS)) - (D(ls))ab’

(23)

b5 b6\ — 4
(Cﬁg) + C?]g) - (D(lg))ab,

ab7 ab8y — 6
(C(lg) + C(]g)) - (D(lg))ub;

2. Chiral [(3, 3) ® (3, 3)] baryons’ diagonal interactions

Following the same procedure of the previous section,
we find that the Lagrangian Nz’g)M"Né’g)Cf‘g”)" cannot be
chiral invariant, which means that their is no solution
for Cilglgc. However, we can still get a chiral invariant
Lagrangian through different fields. There are two possible
ways:

(1) We use the meson field o — iys7®,

5§(Ub — iysm?) = iysbdyp(0° — iysm©). (24)

(2) We use the mirror field of N(g),

8Nom) = —i¥sbFiy Niom)

_ /2
0 Ve

= i')/sba
2t
_\/;Tua/e) —Df,

N(9m)-

(25)

B De(18)e(33)e33)’
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Then we can construct the chiral invariant Lagrangian,

Y b b
N, M N, Ci° (26)
or its mirror part
Y ‘N (Cabe
N, (M*)N, ©Co)" (27)

Assuming that they are Hermitian, we find that there is
only one solution for C?gb)c. The solution for the coefficients

Cf’gb)c in these two Lagrangians is the same, and it can be
written out in the following form:

80Ny (7 + iysm) Dl ) 5N,y (28)

where the solution is

Do =L< —2 01><8)
O B\ g 1gis
1 a (29)
0 %T(l/i%)
D?9) = 1 TTa —p¢ .
Yo (1/9) ®)

The uniqueness of the solution is guaranteed by the fact
that there is only one way to form the chiral singlet
combination out of the baryon field [(3,3) @ (3,3)] and

the meson field [(3, 3) ® (3, 3)]. The coefficients C(“gb)c can

be similarly obtained like Eq. (23). From this Lagrangian,
we can obtain another relation,

atyb b W|a c
FD4 + DYy FY +d, Dy = 0. (30)

3. Chiral [(8,1) ® (1, 8)] baryons’ diagonal interactions

Simply adding one [(3,3) ® (3, 3)] meson field to two
[(8,1) ® (1, 8)] baryon fields cannot produce a chirally
invariant Lagrangian. By adding two [(3,3) ® (3, 3)] me-
son fields, however, there are several possible ways to
construct chirally invariant Lagrangians [25]. First we
can write out the group structures

—((1DHe@1))e (@ De11)—(1L1ed1) (1
—(2x(@De18)e(BNe18)—2X(LDe11) (2
—(4X%X(88(88)®(88e(88))—4x(1,L)e(11) (3). (31)

Here we just give the Lagrangian for the simplest case 1,
which is M™“M“N{ ysN{,, + H.c. The others can be
obtained by using M, M*, N(g), and Ng,,,) as well as related

coefficients d ;. and f ..

4. Chiral [(10, 1) ® (1, 10)] baryons’ diagonal interactions

We find that simply adding one [(3, 3) ® (3, 3)] meson
field to two [(10, 1) ® (1, 10)] baryon fields cannot produce
a chirally invariant Lagrangian.
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B. Chiral mixing interactions

1. Chiral mixing interaction
[(6,3)®(3,6)]-[(33)e@33)]

The mixing of [(6,3) & (3, 6)] with [(3,3) & (3,3)] (we
note that this is a mirror baryon) together with a meson
field can be a chiral singlet. So from this section we will
study the five nontrivial off-diagonal Lagrangians.

The simple form made from the naive baryons
Nuy ~[(63)@(3,6)] and Ny ~[(33)e(33)],

Nfg)MCN(b]S)C?g”/Clg) +H.c. cannot be chiral invariant. We

need to use the mirror field N, ~[(3,3) ® (3, 3)] (mir),
and find the following form of field
]\7 a

- +H.c. (32)

ca7b be
MEN{ig Co)s)

as well as its mirror part can be chiral invariant. Again we
turn to the following form:

g(g/lg)N?gm)(O'c + inWC)(ng/lg))abNZ’IS) +Hc (33)

We find that the only solution is

170 0
TO :_< 1x8 1><10)’ 34
O J6\1gxs  Ogxio 4
_ 1 Te 0
a - (1/8) 1X10
T(9/18) - ( ?Fa 1 ) (35)
370 V3 7 (8/10)

The coefficients Cf‘gb/"lg) can be similarly obtained as in
Eq. (23), and we have the following relation:

at a c —
— F4IT? + Tf’9/18)F(18) - dabcT(g/lg) =0. (36)

9) 7 (9/18)

2. Chiral mixing interaction
[(6,3)®(3,6)]-[(81) e (138)]
The mixing of a mirror baryon [(3,6) @ (6,3)] (mir)
with [(8, 1) ® (1, 8)] together with a meson field can be a
chiral singlet, and we find the following form of field

]\7 ?S)MCNIJ Cabc

asmClo1s) T H.c. (37)

and its mirror part can be chiral invariant. Again we turn to
the basis

g(g/lg)N?S)(O'C + i’YSWC)(ng/lg))abNagm) + H.c. (38)

and the only solution is

1
T?s/ls) = ?(lxxs» 0g10), 39)

1 1
Tl = (‘ 2D T o Koy (40)

1
- 7§T<8/1o>)'
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The coefficients Cz’gb/clg) can be similarly obtained as in
Eq. (23). And we have the following relation:

_ Fa‘rTb

b _
® L) T Tig/i9F(s) T dave (g = 0. (4D

3. Chiral mixing interaction

The mixing of [(3,3) @ (3,3)] with [(8,1) ® (1, 8)] to-
gether with a meson field can be a chiral singlet, and we
find that there are two possibilities. One is the following
form of Lagrangian:

N &M CNé’g)C‘(lg”fg) + H.c. (42)
and its mirror part can be chiral invariant. Again we turn to
the basis

88/9) N (0 + iysm) (T 0) NGy, + Hee. (43)

and the only solution is

1
T?8/9) = \/_a(osxp Igxs), (44)

1 1 1
a — ta a a
Té ) = (—T D¢ +-F (45)

J6 amaV® T3 (8))'

The coefficients Cf‘gb/“g) can be similarly obtained like
Eq. (23). and we have the following relation:

_ FaTT

b _ b
® Xs/0) — Ts/0)Fo) T dancT

/9F ) 0. (46)

c =
(8/9)

The other possibility is the following form of
Lagrangian, and the mixing of [(3,3)® (3,3)] with
[(L 8) @ (8 1)] (mir)

Y b (ab
N f’gm)McN(g)CE‘8 ) T He. 47

This and its mirror image part can both be chiral invariant.
Again we turn to the particle basis

g(B)Nzlgm)(O'c + l.'yS’?TC)(T(CB))abe)g) + H.c. (48)

The only solution is

1
TY = —(0gxy, Isxs), 49
B \/6( gx1> Lgxs) (49)

1 1 1

— ta __
Th = (jg Tiisr 3 Pls ~ 3 F?s))'
Since we find that this is the only case which violates the
U4 (1) symmetry, we use the subscript B. The coefficients
Cfg%) can be similarly obtained as in Eq. (23), and we have

(50)

the following relation:

Fal

b _ mbyRa
atTh — T4F

@)+ dup Ty = 0. 51)
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4. Chiral mixing interaction
[(6,3) @ (3,6)]-[(10,1) @ (1,10)]

For completeness’ sake we also show the [(6,3) @
(3,6)]-[(10,1) ® (1,10)] chiral mixing interaction. The
[(10,1) ® (1,10)] decuplet baryon field can only mix
with [(3,6) @ (6,3)] (mir) to compose a chiral singlet,
and we find the following form of Lagrangian:

N¢ MNP, Céb

(10) + H.c.

(52)

(18m) (10/18)

and its mirror part can be chiral invariant. Again we turn to
the basis

g(lO/lS)N?m)(O-C + iYSWC)(T(Clo/ls))abNéjlgm) + H.c. (53)

and the only solution is

PHYSICAL REVIEW D 83, 014015 (2011)

1
T?IO/IS) = %(OIOXS’ Li0x10), 54)
a J— '|'a a
Tliopie) = ( \/§T(8/10)’ 3F(1o)> (55)

: b
The coefficients Cfg /Cg)

Eq. (23). and we have the following relation:

can be similarly obtained like

— Fet T?

(10) T (10/18) + T

F¢

(10/18)™ (18) +td

ahc =0. (56)

(10/18)

C. Brief summary of interactions

Altogether we have the following form of chiral invari-
ant Lagrangian:

053 0559 0513 0510
_ _ _ _ 093 8(9)D?9) 8(9/18)T?9/18) 0910
L=(Ngm Nom Nasm Noaom)| (0 +iysm?) . ta .
188 g(g/]g)T(g/]g) g(l8/18)D(13) 01510
00xs 0109 010x18 010x10
055 g(8/9)T?8/9) g(s/ls)ng/lg) 0510 Ngm)
# ta
PN YOS 099 0918 09510 Nom)
+ (0 = iysm?) . ta N e (57)
g(S/lS)T(8/18) 059 01515 &0/18) L (10/18) (1s)
0503 010x9 8(10/18)T?10/18) 010x10 Naom
and its mirror part is also chiral invariant,
Ogxg 0559 0513 05510
. . o o Ooxs 80P 8oy Thong  Ooxio
Loy = (Ngmy Nom Nasmy Noaom)| (0 = iysm?) , . , .
188 g(9/18)T(9/18) g(lS/lS)D(IS) 01510
0108 010x9 010x18 010x10
Ogcs 88/ Lisr  &s/19 /19 05510 N
I ta
) g(g/g)T(8/9) 0959 09518 09510 N
+ (0% + iysm?) . . . ta N
g(8/18)T(8/18) 0159 01515 8o/18) L (lo/18) (18m)
0503 010x9 80/18 T(0/18) 010x10 Nao)

Besides these, there is another single piece of Lagrangian
which is also chiral invariant,

‘E(B) = g(B)N(gm)(O'a - i’ySWa)T?B)N(g,n) + H.C.,

together with its mirror part

.E (Bm) = ng)N(gm)((]‘a + i’)/57Ta)T?B)N(9) + H.c.

At the same time, we have also proven that this is the only
possible case. Moreover, we can easily verify that this
Lagrangian is also invariant under U, (1) chiral transfor-
mation, except L) and L,,. All this information is
listed in Table I. Besides these Lagrangians, we still have
the naive combinations m(g)N@m)ysN(g), m(g)N(gm)’ySN(g),
m(lS)NUSm)?’SN(lS)’ and m(10)N10m)¥5N(10)- There are no
meson fields, but these Lagrangians are still chiral
SU;(3) X SUR(3) invariant and chiral U(1), invariant.

014015-7
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TABLE I. Allowed chiral invariant terms with one meson field. The \ denotes that the symmetries are conserved, while x denotes

they are not.

(SU4(3), Ua(1)) (1,8) ® (8 1) [mir] (3,3) ® (3, 3) [mir] 6,3)®(3,6) (1,10) ® (10, 1) [mir]
(1,8) @ (8,1) [mir] N/A (- ) () N/A
3,3) @ (3,3) [mir] (s V) (s V) (CA) N/A
(6,3)e(3,6) (s> ) () (V) ()
(1,10) ® (10, 1) [mir] N/A N/A . ) N/A
(SUL(3), U4(1)) B De18) (3,3e33) (3,6) @ (6,3) [mir] (10,1) ® (1, 10)
8 1e(18) N/A (s V) (s> V) N/A
33 e33) () (5 1) G \) N/A
(3,6) ® (6,3) [mir] V) () (s> V) ()
(10,1) ® (1, 10) N/A N/A W, N/A
(SUL(3), U4(1)) 8 1o (1,8 (1,8) @ (8, 1) [mir]

(33833 N/A (. x)

(3,3)® (3, 3) [mir] W, x) N/A

TABLE II. Allowed chirally invariant terms without meson field (the so-called mirror-mass terms). The \ denotes that the

symmetries are conserved, while x denotes they are not.

(SUL(3), U,(1) 81,8 33233 (3,6) ® (6, 3) [mir] (10,1) ® (1, 10)
(1,8) @ (8, 1) [mir] (AN N/A N/A N/A
(3,3) @ (3,3) [mir] N/A () N/A N/A
(6,3)®(3,6) N/A N/A (V) N/A
(1,10) ® (10, 1) [mir] N/A N/A N/A ()

This information is listed in Table II. These results stand in
marked contrast to the two-flavor case [4,13], where the
SU;(2) X SUR(2) symmetric interactions have both a
U,(1) symmetry-conserving and a Uy(l) symmetry-
breaking version. Thus, the three-flavor chiral symmetry
is more restrictive than the two-flavor one.

IV. CHIRAL MIXING

In this section we establish the phenomenologically
preferable mixing pattern(s) and then we use the allowed
chiral interactions to reproduce some of them. First we
summarize the salient features of chiral mixing and axial
couplings from Ref. [5].

There are three admissible scenarios (i.e. choices of
pairs of chiral multiplets admixed to the [(6,3) & (3, 6)]

one that lead to real mixing angles) when fitting the gf)

and gf) that yield the values of F and D. Similarly, when

we fit gf) and gﬁf), or equivalently F and D, we predict the

values for gg)) and gf).

This is due to the fact that all three-quark baryon fields
satisfy the relation gg)) =3F—-D= \/ggf). Manifestly,

in this way one cannot satisfy both ggo)expt' = 0.33 £0.08
and gflxpt_ = 0.34 £ 0.07. Thus we are left with two pos-

sible scenarios:

(1) Fit gg)) and gf) and predict F and D. In Ref. [5] we
found that there are three possible mixing patterns.
Now the chiral selection rules from Sec. III allow
only two of them: the case III-I mixing (see
Table IID), [(6,3)® (3,6)]-[(3,3)® (3,3)]-[(3,3) ®
(3,3)]; and the case IV-I mixing, [(6,3)®
(3,6)]-[(1,8) @ (8 1)]-[(3,3) ® (3,3)]. However, the
latter mixing violates U, (1) symmetry.

TABLE III. The Abelian and the non-Abelian axial charges and the non-Abelian chiral multiplets of J* = %, Lorentz representation

(%, 0) nucleon, and A fields; see Refs. [4,10,11,13].

Case Field gV o e F D SUL(3) X SUR(3)
I N_=N,—-N, -1 +1 -1 0 +1 33933
Il N, =N, +N, +3 +1 +3 +1 0 8 1e(1,8)
I N (N +1 -1 +1 0 -1 33933
v N (N™) -3 ~1 -3 -1 0 (1,8)® (8, 1)
0 d,N* +1 +3 +1 +2 +1 6,3)® (3,6)
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(2) Fit g2 and g ) and predict g . Since we have

(0) =3 g(g) for all the three-quark nucleon fields
[12] the results here can be obtained by simple
refitting of the previous case. Fitting (F, D) has
not been a problem, so we leave this exercise out
of this paper because it generally overpredicts the

(0) by a factor of roughly +/3 = 1.73.

Thus we determine the mixing angles in Sec. IVA, which

we then translate into statements about the admixed fields’

masses in Sec. IV B. We note here that the relation g( ) =

T (3F — D) is a general SU(3) result valid for octet fields,

whereas g(o) = 3F — D is a result that depends on our
specific choice of three-quark interpolating fields being
admixed to the (6,3) ® (3,6) one. The latter relation
changes when one considers “‘exotic” interpolating fields,
such as certain five-quark (pentaquark) ones, for example,
and that allows a simultaneous fit of ggo) , gf), and g(g)
which topic is beyond the scope of this paper.

A. Phenomenology of the axial coupling constants

A basic feature of the linear chiral realization is that the
axial couplings are determined by the chiral representa-
tions. For the nucleon (proton and neutron), the three-quark
chiral representations of SU;(3) X SUR(3), (8, 1) & (1, 8),
(3,3)®(3,3), and (6, 3) ® (3, 6) provide the nucleon iso-
vector axial coupling gf) =1, 1, and 5/3 respectively.
Therefore, the mixing of chiral (8, 1)@ (1,8), (3,3)®
(3,3), and (6,3) @ (3, 6) nucleons leads to the axial cou-
pling

1.267 = gA(l/ZO)COS 20 + gA()1 1/z)sm 20

_ 0 S
= gA(]/z’O)coszﬁ + gsmzﬂ, (58)

where gf()(l /2),0) Tepresents the coupling of either 81e
(1,8) or (3,3)®(3,3), and gf()ly(l /2 Tepresents the cou-
pling of (6,3) & (3, 6). The coupling 8513()1,(1 /) is needed
because only the coupling of (6,3) @ (3, 6) is larger than
the experimental value 1.267. We list the results of the
mixing angles for all the four cases in Table IV. Three-

quark nucleon interpolating fields in QCD have well-
defined U,(1) chiral transformation properties (see

TABLE IV. The values of the baryon isoscalar axial coupling constant predicted from the naive mixing and g

PHYSICAL REVIEW D 83, 014015 (2011)

Table III) that can be used to predict the flavor-singlet
axial coupling g A mlx and the F and D values

o _ (0 2 (0) )
8 A mix. gA((l/Z) 00870 + 84y (17210

= g A((l /2),0)00320 + sin26, (59)

_ 2 (1) )
F = F1/2,0€08°0 + F(; { 5)sin"0,

2
= F(a/m0c08’0 + 3sin0, (60)

D = D((l/z)’O)COSZQ + D(l,(l/z))sinzﬂ
= D((l/z)yo)COSZG + sin20. (61)

The mixing angle 6 is extracted from Eq. (58), where we
used the bare F and D values for different chiral multiplets
as listed in Table III. Because of the different (bare)

non-Abelian g(3) and Abelian g( ) axial couplings (see
Table III), the mixing formulas Eq. (59) give substantially
different predictions from one case to another; see
Table IV. We can see in Table IV that the two best candi-

dates are cases I and IV, with g(o) = —0.2 and g&o) =04,
respectively, the latter being within the error bars of the

measured value g =0.33 % 0.08 [2.28]. Selection

rules from Sec. III allow the case III and the case IV.
And so the case IV is the best candidate so long as we
consider just the mixing of two nucleon fields [4].
Manifestly, a linear superposition of any three fields
(except for the mixtures of cases II, III, and IV above,
which yield complex mixing angles) gives a perfect fit to
the central values of the experimental axial couplings

gff’lxpt = 0.33 £0.08 and g(3) = 1.267 and predicts

A expt.

the F and D values, or vice versa: one may fit g(3) and
gi\g), (or equivalently F" and D) and thus predict gif”. This
has been done in Ref. [5], where there were three allowed
cases: I-11, I-1II, and I-IV. The selection rules from Sec. 111
indicate that only two of them are possible in the one-
meson approximation: (1) the case I-III and (2) the case
I-IV. In the former case the U, (1) symmetry is conserved,
whereas in the latter the U, (1) is violated.

Such a three-field admixture introduces two new free
parameters, besides the already introduced mixing angles,
e.g. 3 and 6,(= 0) (which we may set to vanish in the

(©)
A expt.

= 1.267; compare

with gAeXp[ = 0.33 = 0.03 = 0.05, F = 0.459 = 0.008, and D = 0.798 = 0.008, leading to F/D = 0.571 % 0.005; Ref. [1].

Case gz(:)expt. 9,- gAO)mlx \/ggi(f:‘nix F D F/D
1 1.267 39.3° —0.20 —0.20 0.267 1 0.267
1I 1.267 39.3° 2.20 2.20 0.866 0.401 2.16
11T 1.267 67.2° 1.00 1.00 0.567 0.700 0.81
v 1.267 67.2° 0.40 0.40 0.417 0.850 0.491
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present approximation). For the case I-III (we shall call it
here case III-I for reasons soon to be clarified) we have the
relative/mutual mixing angle 63; = ¢, as the two nucleon
fields III and I mix due to the off-diagonal interaction
Eq. (43). Thus we find two equations with two unknowns
of the general form

%sinze + cos26(g"Y(I)cos? o + g&) (Nsin?g) = 1.267,

(62)

sin26 + cos20(g§))(HI)cos2¢ + gg))(l)sinzgo)
= (0.33 = 0.08. (63)

The solutions to these equations (the values of the mixing
angles 6, ¢) provide, at the same time, input for the
prediction of F and D,

2
cos 20(F(Il)cos?¢ + F(I)sin’¢) + gsinzﬁ =F, (64)

cos 20(D(Il)cos’>¢ + D(I)sin’@) + sin’§ = D.  (65)

The values of the mixing angles (6, ¢) obtained from this
straightforward fit to the baryon axial coupling constants
are shown in Table V. We also show the result of the case

PHYSICAL REVIEW D 83, 014015 (2011)

I-IV as well as IV-I in this table. Besides these cases, the
cases I-II and II-I can also be used to produce the experi-
mental gg)) and gf), which are however not allowed from

Sec. II1.

B. Baryon masses

The next step is to try and reproduce this phenomeno-
logical mixing starting from a model interaction, rather
than per fiat. As the first step in that direction we must
look for a dynamical source of mixing. One such mecha-
nism is the simplest chirally symmetric nonderivative
one-(o, 7)-meson interaction Lagrangian, which induces
baryon masses via its o-meson coupling. Chiral symmetry
is spontaneously broken through the “condensation” of the
sigma field o — oy = (o)) = f,, which leads to the dy-
namical generation of baryon masses, as can be seen from
the linearized chiral invariant interaction Lagrangians,
Egs. (19) and (28).

In this section, we study the masses of the octet baryons.
There are altogether six types of octet baryon fields: N
[N, N_ [contained in N(g)] and N, [contained in Ng)],
as well as their mirror fields N, [N(g,,1, N [contained in
Noml, N}, [contained in N(;g,,]. The nucleon mass matrix
is already in a simple block-diagonal form when the nu-
cleon fields form the following mass matrix:

0 8(8/9) 8©8/18)  M@g)Ys5 8B 0
8s/o) 8o/ 8wy & MO)Ys 0
1 _| & 8 8(18/18) 0 0 mg)Ys
M=—RN m(8/18) (9//18) / 0 . ' (66)
J6 ®Ys 8 / 8w Swy
&  M©97Ys 8@8/9) 8099 8918
% I* !
0 0 mag)Ys 8i/18)  8(9/18)  8(18/19)
|
where represented by an isovector-Dirac spinor field Al, (i =
1,2,3).
N = (N, N', N,y No N_, N, 6n 2

Since there are three nucleon fields as well as their mirror
fields, there can be a nonzero phase angle. However, for
simplicity, we assume all the axial couplings are real.

C. Masses due to [(6,3) ® (3, 6)]-[(3,3) ® (3, 3)]
mixing
We use the results of Sec. III: the chirally invariant
diagonal, Egs. (19) and (28), and off-diagonal, Eq. (33),
meson-baryon-baryon interactions involving
(B, A) € (3,3) @ (3,3) [mir],
(o,m) € (3,3) @3 3).

Here all baryons have spin 1/2, while the isospin of B, and
B, is 1/2 and that of A is 3/2. The A field is then

In writing down the Lagrangians, Egs. (19), (28), and
(33), we have implicitly assumed that the parities of By, B>,
A, and A are the same. In principle, they are arbitrary,
except for the ground state nucleon, which must be even.
For instance, if B, has odd parity, the first term in the
interaction Lagrangian, Eq. (33), must include another 5
matrix [30]. Here we assume the ground state nucleon is
contained in either [(6,3) ® (3,6)] or [(3,3) ® (3,3)], and
so at least one of B; and B, has even parity. Next we
consider all possible cases for the parities of B,, A, and
A. The results are similar to the two-flavor ones shown in
Refs. [4,13] (because we assumed good SU(3) symmetry
here).

Having established the mixing interaction, Eq. (33), as
well as the diagonal terms, Eqgs. (19) and (28), we calculate
the masses of the baryon states, as functions of the pion
decay constant/chiral order parameter and the coupling

constants g ~ g, &2 ~ &(18)> and g3 ~ 89/18)»

014015-10



BARYON FIELDS WITH ... . IIl. INTERACTIONS ...

PHYSICAL REVIEW D 83, 014015 (2011)

TABLE V. The values of the mixing angles obtained from the simple fit to the baryon axial coupling constants and the predicted
values of axial F and D couplings. The experimental values are F = 0.459 = 0.008 and D = 0.798 =+ 0.008, leading to F/D =
0.575 £ 0.005 and gf) = 0.33 = 0.01; Ref. [29]. The most recent analysis of experimental values leads to F = 0.477 = 0.001 and
D = 0.835 = 0.001 and gf) = 0.344 = 0.001 in Ref. [1]. Note that these values are more than 20 away from the old ones, and that the

new F,D add up to F + D = 1.312 # 1.269 = 0.002. Also gfflxm = 0.33 = 0.08.
Case gt gl gl 0 @ F D F/D
I-11T 1.267 033 +0.08 0.19*+0.05 50.7° +1.8° 23.9° £2.9° 0.399 £0.02 0.868 = 0.02  0.460 = 0.04
1I-1 1.267 033 =£0.08 0.19*=0.05 50.7° £1.8° 66.1° =2.9° 0399 *0.02 0.868 +0.02 0.460 = 0.04
-1V 1.267 033 +0.08 0.190.05 63.2° £4.0° 54° *+23° 0.399 = 0.02  0.868 = 0.02  0.460 = 0.04
IV-1 1.267 033 +0.08 0.19*0.05 63.2° +4.0° 36° *£23° 0.399 =0.02 0.868 + 0.02  0.460 = 0.04
Loy =—g(BioB; —2AdA) + -, g, — YN+ DN = &)
_ - . 4= -
.[:(18) = _gQ(Bz(TBz - 2A10'Al) + e, (69) (N —-N+ A)
L) = —83(B1oBy) + -+ -. _VCN - MNQN"+ A) (75)
(=N+N"+A) ~
Altogether we have
_J=Q2N = A)Q2N* - A)
L=, B)(5 8)( B+ 20, 1,4A R Y ey
8 82 /\ B
(N+N"+A)
We diagonalize the mass matrix and express the mixing
angle in terms of diagonalized masses (an26, = J2N — A)2N* + A)
(N —N*—=A)
N(N*) = cosfB; + sinfB,, .
. . (71) . J@N + A)2N* — A)
N*(N) = —sinfB; + cosfB,. = N-NTA) (77
We find the following double-angle formulas for the mix- .
ing angles 6, ... g between B and B, in the eight different (an20. — v—Q2N — A)2N* - A)
parities scenarios: ! (N+ N"—A)
J—2N — A)2N* — A)
— e = — , 78
tan26, = V=N + A)QN" + A) (N+N"—=A) (78)
! (N + N* + A)
_ J—(z(x i I/ﬁ(iNA; N o an2g, — YON — DOV 7 8)
(N —N*—=A)
_J@N = AN+ A) (79)
tan26, = V2N + A)2N* — A) (N=-N"=A)
2 *
(N —N*+A) where N, N*, A, and A represent the masses of the corre-
IN F MNON® — A sponding particles. The four angles correspond to the eight
= _ w ]\)li vy ), (73)  possible parities: 0;, (N**, AT, A"); 6,, (N*7, AT, A");
a 6,  (N*T,AT AT 6, (NFTLATAT) 6s,
(]:zl*+) jx(+) Ai)’ 969 ()N*7; A4+) Ai(); 07’ (N*+) —/)\7) Ai;;
and 6g, (N*7, A=, A7), where * indicate the parity of
tan20. = V=N + AN + A) the state. Note that the angles 6, 63, and 05 are necessarily
3 (N + N*+ A) imaginary so long as the A, A, and N* masses are physical
- (positive), and that the reality of the mixing angle(s) im-
= — V-(0N - A?(ZN _ A)’ (74)  poses stringent limits on the A, N* resonance masses in
(N+N*—A) other cases, as well.
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In the present study we have three model parameters g,
g>, and g3, which can be determined by different set of
inputs. We can use two baryon masses and the mixing
angle as inputs and predict the third baryon mass (inverse
prediction). We use the Egs. (71)—(79) for the (double)
mixing angles 6, g together with the two observed nu-
cleon masses and the mixing angle § = 67.2° as shown in
Table IV to predict the A masses shown in the Table VI.

We see that only the (N*~, A™) parity combination leads
to a realistic prediction of the baryon masses. Otherwise, at
least one of the predicted baryon masses is off by a factor
of order two. Indeed, the case (N*?, AF', AP") = (—, —, +)
predicts the (odd-parity) SU(3) flavor-singlet A at
1140 MeV, somewhat below the measured value
(1405 MeV) and A(2330), the nearest known candidate
state being the (Particle Data Group [PDG] four star in
Ref. [31]) P5;(1910) resonance. It is curious that the flavor-
singlet A(1140) state lies (considerably) below the flavor-
octet state N*(1535) even in the good flavor SU(3)
symmetry limit; the predicted mass difference might/ought
to be improved by introducing explicit SU(3) symmetry
breaking strange-up/down quark mass difference.

D. Masses due to [(6,3) ® (3,6)]-[(3,3) ® (3,3)]-[(3,3) ®
(3, 3)] mixing

To improve our analysis, we may add a third chiral
multiplet nucleon field. As in the previous Sec. III, we
consider baryon fields

(B1, Ay) € (3,3) @ (3,3) [mir],
(B,,A) €(6,3)®(3,6),
(B3, A\y) € 3,3) @ (3,3).

(80)

As discussed above, the case III-I allows one to reproduce
the experimental couplings gfqo) and gf). To study this
mixing, we need to use the previous Lagrangian, Eq. (69),

as well as the new ones
'£29) = _g4(B30'B3 - 2/_\10'[\1) + .- °

_ _ (81)
Loy = —8sfaB1Bs — &sfzMiAy + - -

PHYSICAL REVIEW D 83, 014015 (2011)

each other through the naive combinations m(g)]\_/ om)YsN©)-
Chiral symmetry is spontaneously broken through the con-
densation of the sigma field o — o, = (o)) = f,, which
leads to the dynamical generation of baryon masses,

81 85 83 B,
L=—-f.(B,B3B))| g5 g+ O B;

g 0 g B,

o -2 A o
—fwml,Az)( S8 )( 1)+2ngq,A’A’.
85 —2g4 Az

(82)

To solve this system in its full generality seems both too
complicated and not very useful. However, since gq of
g6B3B, vanishes, we only need five conditions to solve
this system. Therefore, we just use the three nucleon can-
didates N(940), N(1440), and N*(1535) as well as the two
mixing angles #° = 63.2° and ¢ = 36°. Finally we find
that there are two possibilities as shown in Table VII.

Once again, the odd-parity A option appears as the better
one. Now, the first flavor-singlet A lies at 1370 MeV,
substantially closer to 1405 MeV than before. A second
flavor-singlet A lies at 1850 MeV, very close to the (three
star PDG, Ref. [31]) Py, (1810) resonance. This is our best
candidate in the [(6,3)® (3,6)]-[(3,3) ® (3,3)]-[(3,3) ®
(3, 3)] mixing scenario.

E. Masses due to [(6,3) ® (3,6)]-[(1,8) & (8,1)]
mixing
We can also study the baryon masses due to [(6,3) &
(3,6)]-[(1, 8) & (8,1)] mixing

B, €(1,8)(81)[mir] (B, A)E(6,3)®(3,6). (83)
Having established the mixing interaction Eq. (38), as well
as the diagonal terms Eq. (19), we calculate the masses of
the baryon states, as functions of the pion decay constant/

chiral order parameter and the coupling constants
82 ~ &as) and g3 ~ gs/15);

L) = —8:(ByoB, — 2AT gAY + - - -,

that follow from Eq. (28), where the third nucleon field Bj is _ (84)

a mirror image of B;. We note that B; and B; couple with L/ = —g3(B1oBy) + - .

TABLE (3)71. The values of the A baryon masses predicted from the isovector axial coupling gﬁflmx’ = gil)expt' = 1.267 and gf)mm =

0.4vs. g expe = 0.33 £ 0.08.

(N*P, AP, AP") (N, N*) A (MeV) Aexpr. (MeV) A (MeV) A (MeV)
(=, + +) N(940), R(1535) 2330 2330 1910
(= —,+) N(940), R(1535) 1140 1405 2330 1910
(=, +, -) N(940), R(1535) 2330 1140
(+,—,—) N(940), R(1440) 2030, 2730 2030, 2730
(= — ) N(940), R(1535) 1140 1405 1140
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TABLE VII.
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(1) (1)

The values of the A and A baryon masses predicted from the isovector axial coupling g, i = & exp. = 1.267 and

¢V =0.33%0.08 due to [(6,3) ® (3,6)]-[(3 3) ® (3, 3)-[(3 3) ® (3, 3)] mixing.

A mix.
No. g 8 8 84 8s A7 (MeV) Al (MeV) A" (MeV)
1 —4.7 8.4 —34 29 9.8 1370~ 1850 2170~
2 -7.2 4.6 79 9.1 —4.2 19407 2430~ 1200~
Note that g, ~ g is zero now. We diagonalize the mass J=CN —A)2N" — A)
matrix and express the mixing angle in terms of diagonal- tan26; = (N +N*— A) , 1)
ized masses. We find the following double-angle formulas
for the mixing angles 6, ... 4 between B, and B, in the four _
different parities scenarios: tan20, = V2N — A)2N* + A) 92)

. VNN*

tan20, = —2i N EN

, A= -=2(N"+N), (83

2+/NN*
tan202 = 1\,*7

s A =2(N* — N),
= (N = N)

(86)

NN*
tan20; = —2i

iS2 A= 2(N* +N),
N+ N

87)

tan260, = Z*ﬂ, A = —2(N* — N),
N* =N

where N, N*, and A represent the masses of the corre-
sponding particles. The four angles correspond to the
four possible parities: 6, (N**, A*); 0,, (N*7, A™); 65,
(N**,A7); and 6,4, (N*~, A™), where * indicate the parity
of the state. Note that only 6, leads to a physical result. We
can use the mixing angle § = 67.2° and the nucleon mass
940 MeV to predict the excited nucleon mass and A mass;
see Table VIII. This gives predictions of no practical value.
To get a practically useful result, we need to add one of the
two-meson interaction Lagrangians from Sec. IIT A 3, and
thus a nonzero g, term,

(88)

£(8) = —%BIUZBI + .-

w

and we have four new different parities scenarios,

V=N +A)QN*+A)

tan26, = NTN T4 , (39)
JCN + A)QRN* — A)
tan260, = 0
an26, N-NTDd) (90)
TABLE VIII.

) =

0
g0 = &l = 1267 and )

A mix.

(N —N*—A)

Note that only €, is imaginary for positive baryon masses,
i.e. unphysical. We can use the mixing angle § = 67.2°
and the two nucleon masses to predict the A mass; see
Table IX. The nearest known candidate for the A(2330)
state is the (four star PDG, Ref. [31]) P3;(1910) resonance.

F. Masses due to [(6,3) ® (3,6)]-[(1,8) ® (8 )]-[(3,3) @
(3, 3)] mixing
To improve our analysis, we can add a third field, and
altogether we consider

B, € (1,8) ® (8 1) [mir], (B, A) €(6,3)®(3,6)

(93)

(B;, A) € (3,3) @ (3,3). (94)

As discussed above, the case IV-1 is possible to produce the
experimental couplings g&o) and gf) , although this is U,(1)
violated. To study this mixing, we need to use the previous
Lagrangian, Eq. (84), as well as the new ones

'EEQ) = _g4(B30'B3 — 2[_\0'/\) + o .
L = —gsBioBy+ -+,

that follow from Eqgs. (28) and (48). Chiral symmetry is
spontaneously broken through the condensation of the
sigma field o — o, = (o)) = f,, which leads to the dy-
namical generation of baryon masses,

__ _ (8 & &3 B,
L =—f.(B,Bs,By)| g5 &4+ O B;
g 0 g B,

+ 24 f AN + 2g,f ATAL (96)

The values of the A baryon masses predicted from the isovector axial coupling
=04vs. g =0.33+0.08 due to [(6,3)® (3,6)]

A expt.

[(1, 8) ® (8, 1)] mixing without additional two-meson interactions.

(N*P, A" N N*

Nexpr (MeV)

AMeV) Ay (MeV)

(= +) N(940) 5320

8760
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TABLE IX. The values of the A baryon masses predicted
from the isovector axial coupling gilfnix_ = g&l)expt = 1.267 and

g = 04vs. g\ =0.33£008 due to [(6,3) @ (3,6)]
[(1, 8) @ (8,1)] mixing with additional two-meson interactions.
(N*P, AP") (N, N*) A (MeV) Ay (MeV)
(=, +) N(940), R(1535) 2330 1910
(+,—) N(940), R(1440) | 2030, 2730
(= ) N(940), R(1535) 1140

Since g of g¢B3B, vanishes, we only need five conditions
to solve this system. Therefore, we may use the three
lowest-lying nucleon states N(940), N(1440), and
N*(1535) as well as the two mixing angles 6° = 50.7°
and ¢ = 66.1°. Finally we find that there are two real
possibilities as shown in Table X. Once again, the two
odd-parity A options appear as the best ones. First, even-
parity flavor-singlet A(1580), lies very close to the (three
star PDG, Ref. [31]) Py;(1600) resonance. Second, the
odd-parity flavor-singlet A lies at 1850 MeV, also very
close to the (three star PDG, Ref. [31]) S;;(1800) reso-
nance. These are our best candidates in the [(6,3) ®
(3,6)]-[(1,8) @ (8, 1)] mixing scenario, that shows that
this option is open.

G. Baryon masses and chiral restoration

Note that, starting from the above mass formulas one
may study the behavior of baryon masses in the chiral
restoration limit, i.e. as f, — 0. We do not wish to go
into this subject in any depth here, except to point out
several more-or-less immediate consequences of our
results.

First we note that in the two-flavor case one often finds
nucleon parity doublets in the chiral restoration limit
f»— 0 [4]. That, however, is generally a consequence of
the assumptions made about the number and kind of chiral
multiplets that are being mixed. If one assumes, as in our
studies above, that more than two multiplets are mixed,
then, of course, there will be no parity doublets, but triplets,
or generally as many states as there are admixed multiplets.
Moreover, if there are more than two degenerate states,
such as in our studies above, then at least two will have the
same parity, i.e. the concept of ““parity doublets™ ceases to
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be meaningful and “parity multiplets” ought to be intro-
duced. Finally, if two different flavor SU(3) multiplets
form one chiral multiplet, such as the 8 and 10 in the
[(6,3) & (3, 6)], then the two-flavor SU(3) multiplets may
form a mass-degenerate ‘‘parity doublet” in the chiral
restoration limit, even though most of the states in such
doublets do not have the same flavor quantum numbers.

Various conjectures have been made about the potential
relation between the observed parity doublets high in the
baryon spectrum and chiral symmetry restoration, espe-
cially the restoration of the (otherwise explicitly broken)
U,(1) symmetry (see Ref. [32] and references therein).
Our results above viz. that there are two basic allowed
scenarios that differ in the U, (1) (non)symmetry of their
interactions, show immediately that the U, (1) symmetry
need not play a role in the baryon spectra. In this regard we
agree with the conclusions of Refs. [32,33], which used
only a two-flavor model, however. Such conclusions were
also previously reached in the two-flavor case in Ref. [13]
and in Ref. [34], only in the more restricted case of just one
SU(2) parity doublet and without mirror fields. The first,
limited, attempts at the three-flavor case were made in
Refs. [17,18].

V. SUMMARY AND OUTLOOK

We have used the results of our previous paper [5] to
construct the SU; (3) X SUg(3) chiral invariant interac-
tions based on the phenomenological facts regarding the
baryon axial currents, of the chiral [(6,3) ® (3, 6)] multi-
plet mixing with other nonexotic baryon field multiplets,
such as the [(3,3)® (3,3)] and [(8, 1) ® (1, 8)].

The existence of these multiplets is not limited to three-
quark interpolators: they are present in the SU(3); X
SU(3) Clebsch-Gordan series for the five-quark interpo-
lating fields, as well as the seven-quark ones, etc. Indeed,
these are the only nonexotic chiral multiplets, as they
consist of only nonexotic flavor SU(3) multiplets. The
“ordinary” (vector) SU(3) multiplet content of a chiral
multiplet is determined by the Clebsch-Gordan series
for the tensor product of the right- and left-SU(3) multip-
lets: thus 1©8€(3,3); 8€(8,1); 8a10 € (6,3).
Introducing multiple fields with identical chiral contents
would lead to double counting, however. That is to say that
the effects of multiquark fields are implicitly accounted

(1) (1)

TABLE X. The values of the A and A baryon masses predicted from the isovector axial coupling g, iy = 8aexp. = 1.267 and
gV =0.33 % 0.08 and the mass fit to N(940), N(1440) and N*(1535).

No. 81 82 83 84 8s AP (MeV) AP (MeV)
1 4.6 8.0 —1.8 —6.1 9.7 15807 2070~
2 —8.4 4.3 7.1 10.6 —2.4 2750~ 1124~
3 —1.3 10.2 2.1 —-2.5 9.8 640" 2660~
4 —8.7 8.1 73 7.1 29 1850~ 21107
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for, unless these fields differ from the ones we assumed in
some respect other than the non-Abelian chiral multiplet.
Introduction of exotic chiral multiplets, on the other hand,
would lead to exotic flavor SU(3) multiplets in the spec-
trum, which are absent experimentally, however. Thus, we
may conclude that these three chiral multiplets, together
with their mirror images, are the only ones consistent with
the present experimental knowledge, and that no additional
chiral mixing is phenomenologically allowed, without fur-
ther explanation.

The results of the three-field (“‘two-angle’) mixing are
curious insofar as all phenomenologically permissible com-
binations of interpolating fields lead to the same F, D
values, that are in reasonable agreement with experiment.
This (unexpected) equivalence of results is a consequence

of the relation ggo) = 3F — D between the flavor-singlet

axial coupling gg)) and the (previously unrelated) flavor-
octet I and D values. That relation is a benchmark feature
of the three-quark interpolating fields and any (potential)
departures from it may be attributed to interpolating fields
with a number of quarks that is higher than three.

We constructed all SU;(3) X SUg(3) chirally symmet-
ric baryon-one-meson interactions that mix the three basic
baryon chiral multiplets (and their mirror images). All of
these interactions, with only one exception, obey the U, (1)
symmetry as well. We used these interactions to relate the
mixing angles to the masses of physical (““mixed’’) bary-
ons. Then we tried to reproduce the phenomenological
mixing angles based on observed baryon spectra. Once
the number of admixed fields exceeds three there is too
much freedom, i.e. too many mixing angles, in the most
general form of such a mixing procedure to be constrained
by only three measured numbers. That assumption can be
relaxed, if/when more detailed studies become necessary
if/when new observables are measured in the future.

For the purpose of simplification we used the two
lowest-lying nucleon states and then fit the phenomeno-
logical values of the mixing angles and thus predicted (at
least) one high-lying resonance, which we then searched
for in the PDG tables; Ref. [31]. This has led us to (at least)
two allowed scenarios. In this way we have made the first
tentative assignments of observed baryon states to chiral
multiplets. As explained above, this procedure does not
necessarily lead to unique results, however. The two basic
allowed scenarios differ primarily in the number of pre-
dicted flavor-singlet A hyperons and in the U,(1) (non)
symmetry of their interactions. At this moment in time we
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have no reason to prefer one solution to another, other than
aesthetic ones, such as the U, (1) symmetry breaking.

Manifestly, the good U, (1) symmetry limit is sufficient
to reproduce the nucleon axial couplings and the low-lying
spectrum, as shown in the first scenario ([(6,3)®
(3,6)]-[(3,3) @ (3,3)]-[(3,3) ® (3,3)] mixing), but it is
not necessary, as shown in the second scenario ([(6, 3) ®
(3,6)]-[(1,8) ® (8,1)]-[(3, 3) ® (3, 3)] mixing). This result
stands in contrast to the two-flavor case [4,13], where all
SU;(2) X SUR(2) symmetric interactions have both a
U,(1) symmetry-conserving and a Uy(l) symmetry-
breaking version. Thus, the three-flavor chiral symmetry
is more restrictive and consequently more instructive than
the two-flavor one.

One of our conclusions follows as a simple corollary of
this result: the mass degeneracy of opposite-parity baryon
resonances is not necessarily a consequence of the explicit
U, (1) symmetry restoration in agreement with the conclu-
sions drawn from the two-flavor model calculations;
Refs. [32,33]. Moreover, the parity doubling need be nei-
ther one of, nor the only, consequence(s) of the sponta-
neous SU; (3) X SUR(3) symmetry restoration.

This result also shows that the U, (1) anomaly in QCD
may still, but need not, be the underlying source of the spin
problem [2], as was once widely thought [18]. In all like-
lihood it provides only a relatively small part of the solu-
tion, the largest part coming from the chiral structure of the
nucleon.

The main line of applications of these results lies in the
nonzero density/temperature physics: all previous attempts
(see Refs. [19,21]) included only the [(3,3) @ (3,3)]
baryon chiral multiplet, which naturally led to axial cou-
plings that differ from the measured ones. Another step,
left for the future, is to include the explicit chiral symmetry
breaking.
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