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We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-

finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One

of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls

the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically

crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter

quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into

individual integral equations for its various form factors. In particular, the scalar form factor is obtained

from an approximate version of the ‘‘one-loop dressed’’ integral equation, and its numerical impact turns

out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the

constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a

mass in the range of (750–962) MeV.
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I. INTRODUCTION

The dynamical mechanism responsible for chiral sym-
metry breaking (CSB) in QCD has been the focal point of
extensive research during several years [1–15]. The study
of CSB in the continuum involves almost invariably some
version of the Schwinger-Dyson equation (SDE) for the
quark propagator (gap equation). This nonlinear integral
equation has a notoriously rich structure, being extremely
sensitive to the details of its kernel; the latter is composed
by the various nonperturbative ingredients entering into the
gap equation, most notably the gluon propagator and the
quark-gluon vertex. As is well-known, the gap equation
displays ‘‘critical’’ behavior: the support of the kernel
throughout the entire range of integration must exceed a
certain critical value in order to generate nontrivial solu-
tions for the quark propagator [3]. Given that most of this
support originates from the infrared region, i.e., around the
QCD mass scale of a few hundred MeV, the study of CSB
through the gap equation furnishes stringent probes on the
various methods and models aiming towards a quantitative
description of the nonperturbative sector of QCD.

In recent years, a large number of independent large-
volume lattice simulations have furnished highly nontrivial
information on the infrared (IR) behavior of two funda-
mental ingredients of pure Yang-Mills theories, namely,
the (quenched) gluon and ghost propagators, for both
SUð2Þ and SUð3Þ [16–21]. In particular, these simulations
have firmly established that (in the Landau gauge) the
QCD gluon propagator and the ghost dressing function
are IR finite and nonvanishing [22–24].

Given that the lattice is expected to capture reliably the
full nonperturbative information contained in the gluon
and ghost propagators, it is natural to explore their con-
sequences for CSB. To that end, in this article we use
lattice results for these Green’s functions as inputs for the
gap equation, and study the emerging CSB pattern for
quarks (fundamental representation) and for fermions in
the adjoint representation. Specifically, we will employ the
lattice data of [18], given that they perform SUð3Þ simula-
tions for both the gluon and the ghost propagators. As it
will become clear from the results presented in the main
body of the paper, the analysis carried out here may be
regarded as a serious test of the robustness of the afore-
mentioned lattice results, and can serve as a characteristic
example of the rich phenomenology that one may extract
with them.
The detailed implementation of the idea described above

is far from straightforward, mainly due to the complicated
structure of the gap equation, which makes it difficult to
determine its exact dependence on the aforementioned
lattice ingredients (propagators). In fact, of particular im-
portance for the self-consistency of the whole picture is the
role played by the ghost sector (see, e.g. [11], and refer-
ences therein). The way the ghost sector enters into the gap
equation is through the fully-dressed quark-gluon vertex.
Specifically, recall that, in virtually all treatments, the
fully-dressed quark-gluon vertex is not obtained from the
corresponding dynamical equation (the SDE of the vertex),
but is rather expressed in terms of the quark propagator,
such that its Slavnov-Taylor identity (STI) is automatically
satisfied (this procedure is known as the ‘‘gauge tech-
nique’’ [25]). The STI itself contains explicit reference to
both the ghost dressing function and the so-called ‘‘quark-
ghost scattering kernel’’ [26]; the latter is given by its own
dynamical equation, and, as we will see, its numerical
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impact to the solutions obtained from the gap equation is
quite important. If, instead, one were to ‘‘Abelianize’’ this
part of the problem by assuming that the quark-gluon
vertex satisfies a QED-like Ward identity rather than the
correct (non-Abelian) STI, the resulting gap equation
would contain the gluon propagator as its sole ingredient,
a fact that would lead to an apparent incompatibility, in the
sense that the kernel would not exceed the critical value
(no CSB), or would fail to generate realistic constituent
quark masses [6,7,10,15].

The main results of the present article may be summa-
rized as follows:

(a) The non-Abelian Ansatz for the full quark-gluon
vertex depends explicitly on the ghost-dressing-function
and the quark-ghost scattering kernel; the latter quantity
has a rather complicated Dirac structure [27], being com-
posed by four independent form factors [see Eq. (2.10)]. As
a consequence, the corresponding expressions for the form
factors appearing in the Lorentz decomposition for the
longitudinal part of the quark-gluon vertex [see Eq. (3.1)]
are modified (with respect to the case where the quark-
ghost scattering kernel is set to its tree-level value); their
full form is presented in Eq. (3.5). As a result, the gap
equation acquires a more complicated structure, given in
Eqs. (3.9) and (3.10). To the best of our knowledge, both
Eq. (3.5) and Eqs. (3.9) and (3.10) appear for the first time
in the literature.

(b) The quark-ghost scattering kernel satisfies its own
dynamical equation, which may be decomposed into indi-
vidual integral equations for the various form factors enter-
ing into the gap equation. In turn, these integral equations
depend, among other quantities, on the quark propagator, a
fact which converts the full treatment of the problem into
the solution of a complicated system of various coupled
integral equations.

(c) In order to make the above system of equations more
tractable, without compromising its main features, we
retain only the dependence of the gap equation on the
scalar form factor of the quark-ghost scattering kernel,
discarding all other form factors. In addition, we choose
a very particular kinematic configuration, which further
simplifies the corresponding integral equation that deter-
mines the aforementioned quantity. The final ‘‘one-loop
dressed’’ equation is given in Eq. (3.16), and constitutes, to
the best of our knowledge, a novel result. For the actual
calculation of the scalar form factor we will use on the rhs
of Eq. (3.16) the lattice results of [18], and then substitute
the result (shown in Fig. 6) into the gap equation.

(d) A well-known endemic shortcoming of all ap-
proaches based on the gauge-technique is that the trans-
verse (i.e. identically conserved) part of the (quark-gluon)
vertex remains largely undetermined; this fact, in turn,
distorts the cancellations of overlapping divergences, the
multiplicative renormalizability of the Green’s functions in
question, and their compliance with the renormalization

group (RG). The construction of the appropriate transverse
piece has been carried out in detail for the case of QED
[28], but no real progress has been made in a non-Abelian
context. As is common practice, the aforementioned prob-
lem is remedied by multiplying (by hand) the kernel of the
gap equation by an appropriate functions, which restores
the desired properties. For the case at hand, the simplest
quantity that accounts for the missing dynamics is the full
ghost-dressing-function. As we will explain in the corre-
sponding subsection, this choice is dictated by the STI
satisfied by the quark-gluon vertex, and enforces the cor-
rect RG behavior of the dynamical (running) mass obtained
from the gap equation. It should be stressed that the in-
clusion of the dressing-function has a considerable numeri-
cal impact on the obtained CSB solution, boosting up the
quark mass to phenomenologically acceptable values.
(e) After substituting all necessary ingredients compris-

ing its kernel, the resulting gap equation is finally solved
numerically, for two different cases. First, we study fermi-
ons in the fundamental representation (quarks), obtaining a
quark mass that in the IR is about 300 MeV. Second, we
consider CSB with fermions in the adjoint representation;
the latter are particularly interesting, due to the clear sepa-
ration between chiral symmetry restoration and deconfine-
ment they display [29–31]. The corresponding mass
obtained for the adjoint fermions is within the range
(750–962) MeV, depending on the details of the quark-
gluon vertex used. These values are not too far from what
one would expect naively, given the enhancement of 9=4
produced to the kernel of the adjoint gap equation due to the
ratio of the Casimir eigenvalues of the two representations.
The article is organized as follows. In Section II, we

introduce the necessary notation, and review the general
the structure of the gap equation. In Section III, we first
construct an Ansatz for the quark-gluon vertex which
makes full reference on the quark-ghost scattering kernel,
and use this vertex to derive the corresponding gap equa-
tion. Then, the ‘‘one-loop dressed’’ approximation for the
scalar part of the quark-ghost scattering kernel is set up,
and the improvements necessary for restoring the correct
RG properties are discussed in detail. In Section IV, we
present the main results of this work. In particular, after
briefly reviewing the recent lattice results on the gluon and
ghost propagators that enter into the gap equation, we
proceed to the numerical solution of the gap equation. In
Section V, we discuss our results and comment on possible
future directions. Finally, in an Appendix we analyze for
completeness the structure of the gap equation within the
framework of the pinch technique (PT) [32–34] or, equiv-
alently, the background field method (BFM) [35].

II. GENERAL STRUCTURE OF THE
GAP EQUATION

In this section, we will introduce the basic definitions
and ingredients necessary for the study of the quark SDE
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(gap equation). Then, we will give a special emphasis in
the construction of a general Ansatz for full fermion-gluon
vertex, where its non-Abelian character will be kept intact.
Finally, we will incorporate it into the gap equation and
explore its effects.

A. Definitions and ingredients

Let us first introduce the necessary notation. In covariant
gauges, the inverse of the full quark propagator in the
Minkowski space has the general form [26]

S�1ðpÞ ¼ p�m� �ðpÞ; (2.1)

wherem is the bare current quark mass, and�ðpÞ the quark
self-energy. It is common practice to decompose �ðpÞ, in
terms of a Dirac vector component, Aðp2Þ, and a scalar
component, Bðp2Þ, which allow us to define the dynamical
quark mass function as being the ratio Mðp2Þ ¼
Bðp2Þ=Aðp2Þ, explicitly we have [9]

S�1ðpÞ ¼ Aðp2Þp� Bðp2ÞI ¼ Aðp2Þ½p�Mðp2ÞI�;
(2.2)

where I is the identity matrix, and the term A�1ðp2Þ is often
referred to in the literature as the ‘‘fermion wave func-
tion’’. Note that, the fermion acquires a dynamical mass as
long as Bðp2Þ is different from zero. Therefore, the CSB
will be signaled when we obtain Bðp2Þ � 0.

In addition, the gluon propagator���ðqÞ in the covariant
renormalizable (R�) gauges, has the form

���ðqÞ ¼ �i

�
P��ðqÞ�ðq2Þ þ �

q�q�

q4

�
; (2.3)

where � denotes the gauge-fixing parameter, and

P��ðqÞ ¼ g�� � q�q�=q
2; (2.4)

is the usual transverse projector. In this work, we are
particularly interested in the Landau gauge which is
reached when � ¼ 0. Moreover, the full ghost propagator
Dðq2Þ and its dressing function Fðq2Þ are related by

Dðq2Þ ¼ iFðq2Þ
q2

: (2.5)

An essential ingredient in our study is the fermion-gluon
vertex, represented in Fig. 1, and given by

�a
�ðp1; p2; p3Þ ¼ gTa��ðp1; p2; p3Þ; (2.6)

with Ta (a ¼ 1; 2; . . . ; N2 � 1) being the generators of the
group SUðNÞ where the fermions are assigned. The matri-
ces Ta are Hermitian and traceless, generating the closed
algebra

½Ta; Tb� ¼ ifabcTc; (2.7)

where fabc are the (totally antisymmetric) structure con-
stants. In the case of SUð3Þ, and for fermions in the
fundamental representations (quarks), we have that Ta ¼
�a=2, where �a are the Gell-Mann matrices. When fermi-
ons are in the adjoint, ðTaÞbc ¼ �ifabc.
The vertex ��ðp1; p2; p3Þ satisfies the fundamental STI

[26]

p
�
3 ��ðp1; p2; p3Þ ¼ Fðp3Þ½S�1ð�p1ÞHðp1; p2; p3Þ

� �Hðp2; p1; p3ÞS�1ðp2Þ�; (2.8)

where the fermion-ghost scattering kernel Hðp1; p2; p3Þ is
defined diagrammatically in Fig. 2, and is written as

Haðp1; p2; p3Þ ¼ TaHðp1; p2; p3Þ: (2.9)

The kernel Hðp1; p2; p3Þ and the ‘‘conjugated’’
�Hðp2; p1; p3Þ have the following Lorentz decomposition
[27] (note the change p1 $ p2 in the arguments of the
latter)

Hðp1; p2; p3Þ ¼ X0Iþ X1p1 þ X2p2 þ X3 ~���p
�
1 p

�
2 ;

�Hðp2; p1; p3Þ ¼ �X0I� �X2p1 � �X1p2 þ �X3 ~���p
�
1 p

�
2 ;

(2.10)

where the form factors Xi are functions of the momenta,
Xi ¼ Xiðp1; p2; p3Þ, and we use the notation �Xiðp; r; qÞ �
Xiðr; p; qÞ and ~��� � 1

2 ½��; ��� (Note the difference be-

tween ~��� and the usually defined ��� ¼ i
2 ½��; ���).

B. The renormalized gap equation

The SDE for the fermion propagator is diagrammatically
represented in Fig. 3. Using the momenta flow and Lorentz
indices indicated in Fig. 3, the gap equation can be written
as

S�1ðpÞ ¼ p�m� Crg
2
Z
k
�½0�
� SðkÞ��ð�p; k; qÞ���ðqÞ;

(2.11)FIG. 1. The full fermion-gluon vertex.

FIG. 2. Diagrammatic representation of the fermion-ghost
scattering kernel Hðp1; p2; p3Þ.
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where q � p� k,
R
k � �2"ð2�Þ�d

R
ddk, with d ¼ 4� �

the dimension of space-time, and �½0�
� is the fermion-gluon

vertex at tree level. Cr is the Casimir eigenvalue of the
given fermion representation (r ¼ F for the fundamental,
and r ¼ A for the adjoint). More specifically, for the gauge
group SUð3Þ, we have CA ¼ 3 and CF ¼ 4=3. Note that,m
is a current fermion mass, the same appearing in the QCD
Lagrangian, and in case of m � 0 in Eq. (2.11), the chiral
symmetry is explicitly broken. In this work, we will con-
sider the casem ¼ 0, i.e., the chiral symmetry is kept intact
at the Lagrangian level.

All quantities appearing in Eq. (2.11) are unrenormal-
ized; they are related to their respective renormalized
counterparts, denoted with a subscript ‘‘R’’, through the
relations [36]

SRðp;�Þ ¼ Z�1
F ð�ÞSðpÞ;

�Rðq;�Þ ¼ Z�1
A ð�Þ�ðqÞ;

FRðq;�Þ ¼ Z�1
c ð�ÞFðqÞ;

��
Rðp; k; q;�Þ ¼ Z1ð�Þ��ðp; k; qÞ;

gRð�Þ ¼ Z�1
g ð�Þg ¼ Z�1

1 Z1
FZ

1=2
A g;

(2.12)

where ZF, ZA, Zc, Z1, and Zg are the corresponding renor-

malization constants, and � is the renormalization point
chosen. In particular, in the ‘‘momentum subtraction’’
(MOM) scheme, usually employed in the SDE analysis,
the renormalization conditions imposed are that at �, the
corresponding Green’s functions assume their tree-level
values, e.g., ARðp ¼ �;�Þ ¼ 1, ��1

R ðq ¼ �;�Þ ¼ �2,
and FRðq ¼ �;�Þ ¼ 1.

Substituting Eqs. (2.12) into Eq. (2.11), we obtain

S�1
R ðp;�Þ¼ZFp�Z1Crg

2
R

Z
k
��SRðk;�Þ

��R�ð�p;k;q;�Þ���
R ðq;�Þ: (2.13)

In addition, the STIs of Eq. (2.8) impose the all-order
constraint

Z1 ¼ Z�1
c ZFZ

�1
H ; (2.14)

where ZH is the renormalization constant needed for the
quark-ghost kernel, i.e., H ¼ Z�1

H HR.

Now, in the Landau gauge, both the quark self-energy
and the quark-ghost kernel are finite at one-loop, and
therefore, no infinite renormalization constants need be
introduced at that order. Of course, this does not exclude
the possibility that, depending on the renormalization
scheme adopted, a finite renormalization constant may be
needed. For example, the one-loop self-energy emerging
from the textbook toy field theory 	3 (in d ¼ 4) has an
ultraviolet divergence that can be absorbed into a redefini-
tion of the mass (mass renormalization); however, in the
‘‘on-shell’’ scheme, the requirement that the residue of the
renormalized propagator must be equal to unity forces one
to introduce, in addition, a finite wave-function renormal-
ization constant. Another well-known case is the ghost-
gluon vertex, again in the Landau gauge. At one-loop this
vertex is finite, but it is only under the additional assump-
tion of the so-called Taylor kinematic limit (vanishing
incoming ghost momentum) [37] when one is actually
permitted (within the MOM scheme) to set the correspond-
ing renormalization constant equal to unity.
For the case at hand (i.e. gap equation in the Landau

gauge within the traditionally adopted MOM scheme), one
exploits the fact that, for asymptotically large momenta,
the finite one-loop quantities do indeed approach their tree-
level values, and sets directly ZF ¼ ZH ¼ 1. This is a good
approximation provided that one can choose the renormal-
ization point � (for all other divergent quantities, e.g.
gluon self-energy) in the deep ultraviolet. However, this
may not be always possible; in particular, in the present
analysis the allowed values of � are restricted by the
ultraviolet reach of the lattice (given that we will use lattice
ingredients inside the gap equation). Thus, the realistic
values employed for � cannot exceed 4.5 GeV; this, in
turn, may introduce minor corrections, which, for the
purposes of this analysis, we will neglect.
Under this proviso, we will set ZF ¼ ZH ¼ 1, and there-

fore, from Eq. (2.14) we obtain Z1 ¼ Z�1
c , i.e., at one-loop

the quark-gluon vertex renormalizes as the inverse the
ghost propagator. Imposing the above approximation in
the Eq. (2.13), we obtain

S�1ðpÞ ¼ p� Z�1
c Crg

2
Z
k
��SðkÞ��ð�p; k; qÞ���ðqÞ;

(2.15)

FIG. 3. The SDE for the fermion propagator given by Eq. (2.11). The gray blobs represent the fully-dressed gluon and quark
propagators, while the black blob denotes the dressed fermion-gluon vertex.
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where we have suppressed � the subscript ‘‘R’’ to avoid
notation clutter.

III. INFLUENCE OF THE GHOST SECTOR
ON THE GAP EQUATION

In this rather lengthy and technical section we study in
detail how the ghost sector enters into the gap equation. To
that end, in Sec. III Awe will use the STI to determine the
dependence of the form factors of the longitudinal part of
the quark-gluon vertex on the corresponding form factors
Xi appearing in the Dirac decomposition of the quark-ghost
scattering kernel, given in Eq. (2.10). Then, we will use the
resulting vertex in order to derive the most general expres-
sion for the gap equation, displaying the dependence on all
form factors Xi. In Sec. III B we derive the ‘‘one-loop
dressed’’ expression for the scalar form factor X0, which
is the only one that will be considered in the ensuing
analysis. The modifications introduced into some standard
forms of the quark-gluon vertex vertex, and the form of the
gap equations obtained with them are presented in
Sec. III C. Finally, the adjustments necessary in order to
enforce the correct RG properties of the gap equation are
discussed in Sec. III D.

A. The full fermion-gluon vertex

The most general Lorentz decomposition for the longi-
tudinal part of the vertex ��ðp1; p2; p3Þ can be written as

[27]

��ðp1; p2; p3Þ ¼ L1�� þ L2ðp1 �p2Þðp1 � p2Þ�
þ L3ðp1 � p2Þ� þ L4 ~���ðp1 � p2Þ�;

(3.1)

where Li are the form factors, whose dependence on the
momenta has been suppressed, in order to keep a compact
notation, i.e., Li ¼ Liðp1; p2; p3Þ. The tree-level expression

is recovered setting L1 ¼ 1 and L2 ¼ L3 ¼ L4 ¼ 0; then,

�½0�
� ðp1; p2; p3Þ ¼ ��.

Because of the fact that the behavior of the vertex
��ðp1; p2; p3Þ is constrained by the STI of Eq. (2.8), the

form factors Li’s appearing into the Eq. (3.1) will be given
in terms of the form factors Xi’s of Eq. (2.10).
More specifically, using the standard decomposition of

S�1ðpÞ expressed in Eq. (2.2), it is relatively straightfor-
ward to demonstrate that the right-hand side (rhs) of
Eq. (2.8) becomes

p
�
3 ��ðp1; p2; p3Þ ¼ Fðp3Þ½C0Iþ C1p1 þ C2p2

þ C3 ~���p
�
1 p

�
2�; (3.2)

with

C0 ¼ �Aðp1Þðp2
1X1 þ p1 � p2X2Þ þ Aðp2Þ

� ðp2
2
�X1 þ p1 � p2

�X2Þ � Bðp1ÞX0 þ Bðp2Þ �X0;

C1 ¼ Aðp1Þðp1 � p2X3 � X0Þ � p2
2Aðp2Þ

� �X3 � Bðp1ÞX1 � Bðp2Þ �X2;

C2 ¼ Aðp2Þðp1 � p2
�X3 � �X0Þ � p2

1Aðp1Þ
� X3 � Bðp1ÞX2 � Bðp2Þ �X1;

C3 ¼ Aðp2Þ �X2 � Aðp1ÞX2 � Bðp1ÞX3 þ Bðp2Þ �X3: (3.3)

On the other hand, contracting Eq. (3.1) with p�
3 , we have

p
�
3 ��ðp1;p2;p3Þ¼ ðp2

2�p2
1ÞL3Iþ½ðp2

2�p2
1ÞL2�L1�p1

�½ðp2
2�p2

1ÞL2þL1�p2

�2L4 ~���p
�
1 p

�
2 : (3.4)

Equating the right-hand sides of Eq. (3.2) and (3.4), we can
express the Li’s in terms of the functions A, B, and Xi’s.
Specifically,

L1 ¼ Fðp3Þ
2

fAðp1Þ½X0 þ ðp2
1 � p1 � p2ÞX3� þ Aðp2Þ½ �X0 þ ðp2

2 � p1 � p2Þ �X3�g

þ Fðp3Þ
2

fBðp1ÞðX1 þ X2Þ þ Bðp2Þð �X1 þ �X2Þg;

L2 ¼ Fðp3Þ
2ðp2

2 � p2
1Þ
fAðp1Þ½ðp2

1 þ p1 � p2ÞX3 � X0� � Aðp2Þ½ðp2
2 þ p1 � p2Þ �X3 � �X0�g

þ Fðp3Þ
2ðp2

2 � p2
1Þ
fBðp1ÞðX2 � X1Þ þ Bðp2Þð �X1 � �X2Þg;

L3 ¼ � Fðp3Þ
p2
2 � p2

1

fAðp1Þðp2
1X1 þ p1 � p2X2Þ � Aðp2Þðp2

2
�X1 þ p1 � p2

�X2Þ þ Bðp1ÞX0 � Bðp2Þ �X0g;

L4 ¼ Fðp3Þ
2

fAðp1ÞX2 � Aðp2Þ �X2 þ Bðp1ÞX3 � Bðp2Þ �X3g: (3.5)

Wewill next insert into Eq. (2.15) the general quark-gluon vertex of Eq. (3.1) with the expressions for the form factors Li

given in Eq. (3.5). Defining p1 ¼ �p, p2 ¼ k, and p3 ¼ q and taking appropriate traces, it is straightforward to derive the
following expressions for the integral equations satisfied by Aðp2Þ and Bðp2Þ
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p2Aðp2Þ ¼ p2 � Z�1
c Crg

2

�Z
k

L1ð2p�p� � k � pg��Þ þ 2ðk2 þ p2ÞL2p�p�

A2ðk2Þk2 � B2ðk2Þ ���ðqÞAðk2Þ

þ
Z
k

p � ðkþ pÞL4g�� � 2ðL3 þ L4Þp�p�

A2ðk2Þk2 � B2ðk2Þ ���ðqÞBðk2Þ
�
; (3.6)

Bðp2Þ¼Z�1
c Crg

2

�Z
k

2ðL4�L3Þp�p��k � ðkþpÞL4g��

A2ðk2Þk2�B2ðk2Þ ���ðqÞAðk2Þþ
Z
k

L1g��þ4L2p�p�

A2ðk2Þk2�B2ðk2Þ �
��ðqÞBðk2Þ

�
: (3.7)

Using that, for the gluon propagator in the Landau gauge, �
�
�ðqÞ ¼ �i3�ðqÞ, and p�p��

��ðqÞ ¼ �ihðp; kÞ�ðqÞ,
where

hðp; kÞ � ½k2p2 � ðk � pÞ2�
q2

; (3.8)

we can cast the gap equation in the form

p2AðpÞ ¼ p2 þ iZ�1
c Crg

2

�Z
k

2½ðL1 þ ðk2 þ p2ÞL2�hðp; kÞ � 3ðk � pÞL1

A2ðk2Þk2 � B2ðk2Þ �ðqÞAðk2Þ

þ
Z
k

3p � ðkþ pÞL4 � 2ðL3 þ L4Þhðp; kÞ
A2ðk2Þk2 � B2ðk2Þ �ðqÞBðk2Þ

�
; (3.9)

BðpÞ ¼ �iZ�1
c Crg

2

�Z
k

2ðL4 � L3Þhðp; kÞ � 3k � ðkþ pÞL4�
A2ðk2Þk2 � B2ðk2Þ �ðqÞAðk2Þ þ

Z
k

3L1 þ 4hðp; kÞL2

A2ðk2Þk2 � B2ðk2Þ�ðqÞBðk
2Þ
�
: (3.10)

The general form of the gap equation reported in
Eqs. (3.9) and (3.10) reduces to a standard expression
used in the literature, after assuming tree-level values for
the quantityHðp1; p2; p3Þ, and neglecting the effects of the
ghost-dressing. Specifically, substituting in Eq. (3.5) X0 ¼
�X0 ¼ 1 and Xi ¼ �Xi ¼ 0, for i � 1, and Fðp3Þ ¼ 1, we
obtain the following expressions

L1 ¼ Aðp1Þ þ Aðp2Þ
2

; L2 ¼ Aðp1Þ � Aðp2Þ
2ðp2

1 � p2
2Þ

;

L3 ¼ Bðp1Þ � Bðp2Þ
p2
1 � p2

2

; L4 ¼ 0;
(3.11)

which give rise to the so-called Ball-Chiu (BC) vertex [38],

��
BCðp1; p2; p3Þ

¼ Aðp1Þ þ Aðp2Þ
2

�� þ ðp1 � p2Þ�
p2
1 � p2

2

�
�
½Aðp1Þ � Aðp2Þ�p1 � p2

2
þ ½Bðp1Þ � Bðp2Þ�

�
:

(3.12)

Then, the straightforward implementation of these simpli-
fications into Eqs. (3.9) and (3.10) leads to the form of the
gap equation employed in various works [see, e.g.,
Eqs (20)–(21) in [8]; note that their hðp; qÞ is twice that
of Eq. (3.8)].

B. The ‘‘one-loop dressed’’ approximation for X0

In order to evaluate Eqs. (3.9) and (3.10) further, it is
necessary to determine the behavior of the form factors Xi

entering into the definition of the Li through the Eq. (3.5).
From Eq. (2.10), one can projected out the form factors

Xi in the following way

X0 ¼ TrfHg
4

;

X1 ¼ p2
2 Trfp1Hg � ðp1 � p2ÞTrfp2Hg

4½p2
1p

2
2 � ðp1 � p2Þ2�

;

X2 ¼ p2
1 Trfp2Hg � ðp1 � p2ÞTrfp1Hg

4½p2
1p

2
2 � ðp1 � p2Þ2�

;

X3 ¼
Trf~�
�p



1p

�
2Hg

4½ðp1 � p2Þ2 � p2
1p

2
2�
:

(3.13)

It is clear from the diagrammatic representation given in
Fig. 2 that Hðp1; p2; p3Þ, and its form factors given in
Eq. (3.13), depend among other things, on the fully-dressed
quark propagator. Therefore, the treatment of the full gap
equation given in Eqs. (3.9) and (3.10) boils down to a
complicated system of several coupled integral equations.
In order to make the problem at hand technically more
tractable, we will only retain one of the form factors given
in Eq. (3.13), and study it in an approximate kinematic
configuration, which simplifies the resulting structures
considerably. Specifically, we will only consider the form
factor X0, and assume that p1 ¼ p2 � p, and p ¼ �p3=2,
so that X0 ¼ �X0.
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Note that the momentum p3 coincides with the momen-
tum of the gluon in the gap equation; therefore we will
denote p3 ¼ q, and p ¼ �q=2. To obtain a nonperturba-
tive estimate for X0, we will study the ‘‘one-loop dressed’’
contribution given by the diagram of Fig. 4.

Denoting the full gluon-ghost vertex by Gab
� ¼ �abG�,

the expression for X½1�
0 reads

X½1�
0 ðp; p; qÞ ¼ 1� i

�
1

4

�
CAg

2

2

�
Z
k
���ðkÞDðk� pÞG� TrfSðkþ qÞ��g:

(3.14)

To evaluate this further, we will use the following ap-
proximations: (i) G� will be replaced by its tree-level
value, G� ¼ ðk� pÞ�. Note that, since the full ���ðkÞ is
transverse (Landau gauge), only the p� part survives.

(ii) For the vertex ��, we will use a slightly modified

Ansatz than that of Eq. (3.12) [3,12,39], in order to reduce
the algebraic complexity of the resulting equation.

Specifically, we will use as our starting point the Ansatz

��ðq;�k� q; kÞ ¼ 1

2

�
½Aðkþ qÞ þ AðqÞ���

þ k�

k2
½Aðkþ qÞ � AðqÞ�ð2qþ kÞ

�
;

(3.15)

which satisfies the STI of Eq. (2.8) in the chiral limit,B ¼ 0,
and with the ghost sector switched off (F ¼ H ¼ 1).
Since the second term on the rhs of Eq. (3.15) is proportional
to k�, it vanishes when inserted into (3.14), again due to the

transversality of ���ðkÞ, a fact that simplifies considerably
the resulting expressions.

According to the procedure discussed in the next section
[see Eq. (3.22)], we will improve the Ansatz of Eq. (3.15)
by multiplying it by FðkÞ, but keeping H ¼ 1. Under these
approximations, and after setting p ¼ �q=2, Eq. (3.14)
becomes (in Euclidean space)

X½1�
0 ðqÞ¼1þCAg

2

8

Z
k

�
q2�ðq �kÞ2

k2

�
�ðkÞD

�
�
kþq

2

�
FðkÞ AðkþqÞ½AðkþqÞþAðqÞ�

A2ðkþqÞðkþqÞ2þB2ðkþqÞ :

(3.16)

We will finally approximate Aðkþ qÞ ¼ AðqÞ ¼ 1, and
Bðkþ qÞ ¼ 0, then we obtain

X½1�
0 ðqÞ ¼ 1þ 1

4
CAg

2q2
Z
k
½1� fðk; qÞ��ðkÞFðkÞ

� Fðkþ qÞ
ðkþ qÞ4 ; (3.17)

where

fðk; qÞ � ðk � qÞ2
k2q2

: (3.18)

After carrying out the integral on the rhs of Eq. (3.17) one

obtains an approximate expression for X½1�
0 ðqÞ in terms of

�ðkÞ and FðkÞ; the result will be reported in Sec. IV. Note
that if we had multiplied Eq. (3.15) not only by FðqÞ but
also by X½1�

0 ðqÞ, as is done in Eq. (3.22), then, instead of

simply computing the integral of Eq. (3.17), one would
have to deal with the more difficult task of solving an

integral equation for the unknown X½1�
0 ðqÞ.

C. The gap equation with ghost-improved
quark-gluon vertices

There are two basic forms of the ‘‘Abelianized’’ quark-
gluon vertex usually employed in the literature: (i) the BC
vertex, denoted by �

�
BC, whose closed form is given in

Eq. (3.12); and, (ii) the so-called Curtis and Pennington
(CP) vertex [40], to be denoted by �

�
CP. These two vertices

differ by a transverse (automatically conserved term),
namely

�
�
CPðp1; p2; p3Þ ¼ �

�
BCðp1; p2; p3Þ þ �

�
T ðp1; p2; p3Þ;

(3.19)

with

�
�
T ðp1; p2; p3Þ ¼ ��ðp2

2 � p2
1Þ � ðp1 � p2Þ�ðp1 þp2Þ
2dðp1; p2Þ

� ½Aðp2Þ � Aðp1Þ�; (3.20)

where

dðp1; p2Þ ¼ 1

p2
1 þ p2

2

�
ðp2

2 � p2
1Þ2

þ
�
B2ðp2Þ
A2ðp2Þ

þ B2ðp1Þ
A2ðp1Þ

�
2
�
: (3.21)

FIG. 4. Diagrammatic representation of the quark-ghost scat-
tering kernel, Hð�q=2;�q=2; qÞ, at one-loop.
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Evidently, under the approximations employed, the ghost

effects due to Fðp3Þ and X½1�
0 ðp3Þ may be incorporated

into these two vertices through simple multiplication

of their form factors by Fðp3ÞX½1�
0 ðp3Þ. Denoting their

‘‘ghost-improved’’ versions by ���
CPðp1; p2; p3Þ and

���
CPðp1; p2; p3Þ, respectively, we have
���
BCðp1; p2; p3Þ ¼ Fðp3ÞX½1�

0 ðp3Þ��
BCðp1; p2; p3Þ;

��
�
CPðp1; p2; p3Þ ¼ Fðp3ÞX½1�

0 ðp3Þ��
CPðp1; p2; p3Þ:

(3.22)

Notice that, one recovers the vertex used in Ref. [11] by

setting X½1�
0 ðqÞ ¼ 1 in the above equations.

Substituting the form factors of ���
BCðp1; p2; p3Þ into

Eqs. (3.9) and (3.10), we arrive at the following coupled
system for Aðp2Þ and Bðp2Þ

Aðp2Þ ¼ 1þ Crg
2Z�1

c

Z
k

K0ðp� kÞ
A2ðk2Þk2 þ B2ðk2ÞK

BC
A ðk; pÞ;

(3.23)

Bðp2Þ ¼ Crg
2Z�1

c

Z
k

K0ðp� kÞ
A2ðk2Þk2 þ B2ðk2ÞK

BC
B ðk; pÞ;

(3.24)

where the kernel K0ðqÞ corresponds to the part that is not
altered by the tensorial structure of the quark-gluon vertex,
namely

K 0ðqÞ ¼ �ðqÞFðqÞX½1�
0 ðqÞ; (3.25)

while the parts that are affected,KBC
A ðk; pÞ andKBC

B ðk; pÞ,
are given by [8]

KBC
A ðk; pÞ ¼ Aðk2Þ

2p2
½Aðk2Þ þ Aðp2Þ�½3p � k� 2hðp; kÞ� � 2Bðk2Þ�Bðk2; p2Þ hðp; kÞ

p2
� Aðk2Þ�Aðk2; p2Þ

�
�
k2 � ðk � pÞ2

p2
þ 2

k � p
p2

hðp; kÞ
�
;

KBC
B ðk; pÞ ¼ 3

2
Bðk2Þ½Aðk2Þ þ Aðp2Þ� þ 2½Bðk2Þ�Aðk2; p2Þ � Aðk2Þ�Bðk2; p2Þ�hðp; kÞ; (3.26)

where hðp; kÞ is given by Eq. (3.8) and

�Aðk2; p2Þ � Aðk2Þ � Aðp2Þ
k2 � p2

;

�Bðk2; p2Þ � Bðk2Þ � Bðp2Þ
k2 � p2

:

(3.27)

Similarly, the effect of the vertex ���
CPðp1; p2; p3Þ is to

replace the kernelsKBC
A ðk; pÞ andKBC

B ðk; pÞ appearing in
Eqs. (3.23) and (3.24) by KCP

A ðk; pÞ and KCP
B ðk; pÞ, re-

spectively, where

KCP
A ðk; pÞ ¼ KBC

A ðk; pÞ þ 3k � p
2p2

Aðk2Þ�Aðk2; p2Þ

� ðk2 � p2Þ2
d � ðk; pÞ ;

KCP
B ðk; pÞ ¼ KBC

B ðk; pÞ þ 3

2
Bðk2Þ�Aðk2; p2Þ

� ðk2 � p2Þ2
dðk; pÞ : (3.28)

Note that the above equations are written in the
Euclidean space. Specifically, the Wick rotation was
performed by setting p2 ¼ �p2

E, �Eðp2
EÞ ¼ ��ð�p2

EÞ,
Að�p2

EÞ ¼ AEð�p2
EÞ, and Bð�p2

EÞ ¼ BEð�p2
EÞ.

Therefore, �Aðk2; p2Þ, �Bðk2; p2Þ, and hðp; kÞ change
the sign under Wick rotation. For the integration measure,

we used
R
k ¼ i

R
kE
; as a last step, we have suppressed the

subscript ‘‘E’’ everywhere.

D. Asymptotic behavior and renormalization
group properties

The study of the ultraviolet (UV) behavior of the dy-
namical quark mass, Mðp2Þ, predicted by the coupled
system formed by Eqs. (3.23) and (3.24), reveals the need
of one final adjustment. Specifically, as is well known, the
correct UV behavior for Mðp2Þ is given by [1,2]

M ðxÞ ¼ c

x

�
ln

�
x

�2

��
�f�1

; (3.29)

where c is a �-independent constant, related to the chiral
condensate h �qqi� by [8]

c ¼ � 4�2�f

3
h �qqi�

�
ln

�
�2

�2

����f

; (3.30)

and the mass anomalous dimension is given by �f ¼
9Cr=ð11CA � 3=2CrnfÞ. For the fundamental representa-

tion, we have Cr ¼ 4=3 and then �f ¼ 12=ð11CA � 2nfÞ.
Equivalently, we can rewrite it in terms of the first coeffi-
cient b ¼ ð11CA � 2nfÞ=ð48�2Þ of the QCD  function,

where �f ¼ 3CF=ð16�2bÞ.
On the other hand, after setting Z1 ¼ 1 and X½1�

0 ¼ 1,
neglecting�Aðk2; p2Þ and�Bðk2; p2Þ, and setting Aðp2Þ ¼
Aðk2Þ ! 1, the asymptotic equation that the system (3.23)
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and (3.24) yields for Mðp2Þ is given, after the standard
angular approximation, by

M ðp2Þ ¼ 3Crg
2

16�2

�
�ðp2ÞFðp2Þ

Z p2

0
dk2Mðk2Þ

þ
Z 1

p2
dk2�ðk2ÞFðk2ÞMðk2Þ

�
: (3.31)

In order to verify whether indeed Mðp2Þ of Eq. (3.29)
satisfies Eq. (3.31), we substitute Mðp2Þ into the rhs of
Eq. (3.31), together with the one-loop gluon propagator

��1ðp2Þ ¼ p2

�
1þ �1g

2 ln

�
p2

�2

��
; (3.32)

where �1 ¼ ð133 CA � CrnfÞ=32�2, and the one-loop ghost

dressing function

F�1ðp2Þ ¼
�
1þ 9

4

CAg
2

48�2
ln

�
p2

�2

��
: (3.33)

After performing the above substitutions, it is straightfor-
ward to see that for asymptotic large values of p2, the
dominant contribution comes from the first integral, and
that the solution of Eq. (3.31) is indeed of the form given in
(3.29), but with one important difference: the anomalous
dimension assumes the value �f ¼ 36Cr=ð35CA � 6CrnfÞ,
instead of the correct value given above. Note that the
difference is due to the non-Abelian contributions (gluons);
setting CA ¼ 0, the two values coincide.

The reason for this discrepancy can be traced back to a
typical ambiguity, intrinsic to the gauge-technique.
Specifically, the standard procedure of constructing a ver-
tex based on the requirement that it should satisfy the
correct STI, leaves the transverse (i.e. automatically con-
served) part of the vertex undetermined [25,28]. While, in
the presence of mass gaps, the infrared dynamics appear to
be largely unaffected, this ambiguity is known to modify
the ultraviolet properties of the SD equations [25].
Essentially, failing to provide the correct transverse part
leads to the mishandling of overlapping divergences,
which, in turn, compromises the multiplicative renormaliz-
ability of the resulting SD equations. The construction of
the appropriate transverse part is technically complicated
even for QED [40], and its generalization to a non-Abelian
context is still pending. Given the expectation that the
restoration of the transverse part should not affect
the infrared dynamics, the usual short-cut employed in
the literature is to account approximately for the missing
pieces by modifying (by hand) the SDE in question.

Specifically, for the case at hand, the correct asymptotic
behavior for Mðp2Þ may be restored by carrying out in
Eqs. (3.23) and (3.24), the replacement

Z�1
c KA;Bðk; pÞ ! KA;Bðk; pÞFðp2Þ; (3.34)

given that, for large p2, the perturbative (one-loop) expres-
sion for Fðp2Þ is given by Eq. (3.33).
It is straightforward to verify that, with this modifica-

tion, Eq. (3.31) yields the correct value for �f. Note that

even though, strictly speaking, one needs to supply only the
asymptotic form given in (3.33), it is natural to assume that
the nonperturbative completion of this formula will be
given by Eq. (4.3), namely, the full Fðp2Þ.
At first sight, it would seem that the modification intro-

duced in Eq. (3.34) amounts to the counter-intuitive re-
placement Z�1

c ! Fðp2Þ, i.e., trading a (cutoff-dependent)
constant for a (�-dependent) function of p2 [11]. Even
though from the operational point of view this is indeed
what happens, the idea behind is slightly more subtle. A
more intuitive way to interpret Eq. (3.34) is that the corre-
sponding kernels are modified due to the presence of the
(unknown) transverse parts, whose additional contributions
must be such that, when properly renormalized, will effec-
tively amount to the replacement given in Eq. (3.34).
Needless to say, it would be very important to determine
the precise mechanism that leads to these modifications,
but this is at present beyond our powers.
It is instructive to understand from a slightly different

(but ultimately equivalent) point of view why the (mini-
mal) factor that must be supplied to Eq. (3.31) is indeed
Fðp2Þ. The argument relies on the (expected) RG-
invariance of the mass function Mðp2Þ. Specifically, let
us for the moment assume that the underlying theory is
QED, and set F ¼ 1 into Eq. (3.31). Then, Mðp2Þ is
RG-invariant, because, in QED, due to the Abelian Ward
identities, the product g2� appearing on the rhs of
Eq. (3.31) is RG-invariant. In the case of QCD this is no
longer true in general; instead, in the R�-type of gauges the

corresponding RG-invariant combination is given by
g2�F2 [11,41]. Therefore, the simplest way to convert
the product g2�F into an RG-invariant combination is to
multiply it by F, which restores the RG-invariance of
Mðp2Þ.

IV. NUMERICAL ANALYSIS

In this section we will first review some of the recent
lattice data for the gluon propagator �ðqÞ and the ghost
dressing-function FðqÞ. Then, we will substitute them into

Eq. (3.17), in order to obtain an estimate for X½1�
0 ðqÞ. With

all necessary ingredients [�ðqÞ, FðqÞ, and X½1�
0 ðqÞ] avail-

able, we proceed to solve numerically the coupled system
formed by the integral Eqs. (3.23) and (3.24) when the non-
Abelian modifications of the BC and CP vertices are
implemented. We will solve the corresponding equations
both for fermions in the fundamental (quarks) and in the
adjoint representations; for the former case we will use the
numerical results obtained to compute the pion decay
constant and the quark condensate.
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A. Nonperturbative ingredients: gluon and ghost
propagators from lattice and the form factor X½1�

0 ðqÞ
In this subsection we will comment on the nonperturba-

tive form of the three basic Green’s functions entering into

the gap equation, namely �ðqÞ, FðqÞ, and X½1�
0 ðqÞ.

We start by showing on the left panel of Fig. 5 the lattice
data for gluon propagator obtained in [18]. The lattice data
presented there correspond to a SUð3Þ quenched lattice
simulation, where �ðqÞ is renormalized at � ¼ 4:3 GeV.
In this plot, we clearly see the appearance of a plateau in
the deep IR region. The IR finiteness of the gluon propa-
gator has been long associated with the dynamical genera-
tion of an effective gluon mass [22,32,42]. In fact, the
above set of lattice data can be accurately fitted in terms
of the following physically motivated expression [43]

��1ðq2Þ ¼ m2ðq2Þ þ q2
�
1þ 13CAg

2
1

96�2

� ln

�
q2 þ �1m

2ðq2Þ
�2

��
; (4.1)

with m2ðq2Þ given by

m2ðq2Þ ¼ m4

q2 þ �2m
2
; (4.2)

where the fitting parameters arem ¼ 520 MeV, g21 ¼ 5:68,
�1 ¼ 8:55, and �2 ¼ 1:91. The parameter m acts as a
physical mass scale, whose function is to regulate the per-
turbative RG logarithm; so, instead of diverging at the
Landau pole, the logarithm saturates at a finite value [43].
In addition, for large values of q2, we recover the one-loop
expression of the gluon propagator in the Landau gauge
given by Eq. (3.32). Note that, contrary to conventional

masses, dynamically generated masses display a nontrivial
dependence on themomentum transfer q2 [32]. In particular,
m2ðq2Þ assumes a nonzero value in the IR, and drops rapidly
in the UV in a way consistent with the operator product
expansion [44–46].
On the right panel of Fig. 5, we show the lattice results

for FðqÞ obtained from [18]; evidently, FðqÞ saturates in
the deep IR at the constant value [22,23]. The ghost dress-
ing function is also renormalized at � ¼ 4:3 GeV, and the
data can be accurately fitted by the expression

F�1ðq2Þ ¼ 1þ 9

4

CAg
2
2

48�2
ln

�
q2 þ �3m

2ðq2Þ
�2

�
; (4.3)

where the dynamical mass is given by Eq. (4.2) changing
the parameter �2 ! �4. The fitting parameters are
g22 ¼ 8:57, m ¼ 520 MeV, �3 ¼ 0:25, and �4 ¼ 0:68.
Just as for the fit for the gluon propagator given in

Eq. (4.1), the fit of Eq. (4.3) has the advantage of
(i) connecting smoothly the IR and UV regions by means
of a unique expression, and (ii) being physically motivated,
in the sense that the underlying physical reason for the
observed finiteness, namely, the dynamical gluon mass
generation, is made manifest through the presence of the
parameterm in the argument of the perturbative logarithm.
To be sure, other fitting alternatives for the ghost dress-

ing function can be found in the literature, as, for example,
in [47]; this latter fitting has the advantage of providing a
more accurate description of the deep infrared region, at
the expense of having to resort to a ‘‘piecewise fitting’’ in
order to connect with the UV region. In any case, it is
unlikely that the fitting details will affect appreciably the
numerical results of the present work.

FIG. 5 (color online). Lattice results for the gluon propagator, �ðqÞ, and ghost-dressing, FðqÞ, obtained in Ref. [18] and
renormalized at � ¼ 4:3 GeV. Left panel: The continuous line represents the gluon lattice data fitted by Eq. (4.1) when
m ¼ 520 MeV, g21 ¼ 5:68, �1 ¼ 8:55, and �2 ¼ 1:91. Right panel: The lattice data for FðqÞ fitted by Eq. (4.3) using g22 ¼ 8:57,
m ¼ 520 MeV, �3 ¼ 0:25, and �4 ¼ 0:68.
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The last ingredient to be determined is the form factor

X½1�
0 ðqÞ. We proceed substituting the fit for lattice data for

�ðqÞ and FðqÞ presented in Fig. 5 into Eq. (3.17). Then, for
determining the integral given by Eq. (3.17), we should fix
the value of g2ð�2Þ. We adopt the same procedure of
Ref. [43], where it was found that the perturbative tail of
effective coupling, determined from the lattice data, is
compatible with four-loop perturbative calculation at
MOM scheme, presented in [48]. More specifically, we
use 
ð�2Þ ¼ g2ð�2Þ=4� ¼ 0:295. The numerical result

for X½1�
0 ðqÞ is shown in the Fig. 6, and it can be fitted by

a2 þ a1 � a2
1þ ðq2=q20Þp

; (4.4)

where a1 ¼ 1:0, a2 ¼ 1:27, q20 ¼ 0:027 GeV2 and,

p ¼ 1:0 when q2 � 0:202 GeV2; while for q2 >
0:202 GeV2, we choose a1 ¼ 1:40, a2 ¼ 1:0, q20 ¼
0:45 GeV2 and, p ¼ 0:63.

X½1�
0 ðqÞ shows a maximum located in the intermediate

momentum region (around 450 MeV), while in the UVand

IR regions X½1�
0 ðqÞ ! 1. Although this peak is not very

pronounced (notice the small scale in y-axis), we will see
soon that it is essential for providing to the kernel of the
gap equation the enhancement required for the generation
of phenomenologically compatible constituent quark
masses.

B. Chiral symmetry breaking in the fundamental
representation and the pion decay constant

We now proceed to the solution of the coupled system of
integral equations defined by the Eqs. (3.23) and (3.24).
Note that, in addition, and in accordance to the discussion
given in Sec. III D, we carry out the substitution

FðqÞ ! F2ðqÞ; (4.5)

in the Eq. (3.25). In other words, the kernelK0ðqÞ appear-
ing on the rhs of Eqs. (3.25) and (3.24) will assume the final
form

K 0ðqÞ ¼ �ðqÞF2ðqÞX½1�
0 ðqÞ: (4.6)

Before solving the system formed by Eqs. (3.23) and
(3.24) with K0ðqÞ given by Eq. (4.6), it is instructive to
study the numerical impact that each of the functions
composing K0ðqÞ has on the value of the resulting quark
mass.
The results of this exercise are presented in Fig. 7, where

on the left panel we show the support that K0ðqÞ receives
when we turn on one by one the Green’s functions that
compose it. Without a doubt, the biggest numerical con-
tribution comes from the ghost dressing function, Fðq2Þ.
Nonetheless, one should not underestimate the effect

caused by the scattering kernel, X½1�
0 ðqÞ, which is respon-

sible for a considerable contribution to the dynamical mass
generation, as presented on the right panel of Fig. 7. On this
panel, we show the corresponding dynamical quark masses
that are obtained solving the system of Eqs. (3.25) and
(3.24) when K0ðqÞ assumes one of the four forms pre-
sented in the left panel. Notice that, neitherK0ðqÞ ¼ �ðqÞ
nor K0ðqÞ ¼ �ðqÞFðqÞ furnish the right amount of sup-
port necessary to trigger chiral symmetry breaking. The
chiral symmetry is only broken whenK0ðqÞ ¼ �ðqÞF2ðqÞ
and, phenomenologically compatible values are only ob-

tained when the effects of X½1�
0 ðqÞ are incorporated in the

K0ðqÞ. It is important to mention that, although X½1�
0 ðqÞ

does not provide a sizable support for K0ðqÞ in the deep
IR, the small contribution it furnishes in the intermediate
region is enough for increasing the mass from Mð0Þ ¼
190 MeV to Mð0Þ ¼ 295 MeV. This result is consistent
with previous observations in the literature [9,49], stating
that the support crucial for quark generation originates
from the intermediate region of the integration momenta.
Let us now return to the solution of the system formed by

Eqs. (3.23) and (3.24). Substituting �ðq2Þ, Fðq2Þ, and

X½1�
0 ðqÞ into Eqs. (3.23) and (3.24), with the modification

of Eq. (4.6), and fixing the Casimir eigenvalue in the
fundamental representation i.e., Cr ¼ CF ¼ 4=3, we deter-
mine numerically the unknown functions Aðp2Þ and Bðp2Þ.
On the left panel of Fig. 8, the red dashed-line represents

the numerical result for the quark wave function A�1ðp2Þ.
As we can see, for large values of p2, the function Aðp2Þ
goes to 1, in agreement with the discussion presented in the
Sec. III D. In the opposite limit, A�1ðp2Þ develops a plateau
saturating in a finite value around 0.85.
The red dashed-line in the right panel of Fig. 8 repre-

sents the corresponding dynamical quark mass Mðp2Þ,
obtained as the ratio Bðp2Þ=Aðp2Þ. One clearly sees
that Mðp2Þ freezes out and acquires a finite value in the
IR, while in the UV, it shows the expected perturbative

FIG. 6 (color online). Numerical result for the form factor

X½1�
0 ðqÞ of the quark-ghost scattering kernel given by Eq. (3.17)

when 
ð�2Þ ¼ 0:295.
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behavior given by Eq. (3.29) and represented by the blue
dotted-dashed curve.

For the sake of comparison, we also solve numerically
the coupled system when the non-Abelian version of the
CP vertex is employed. As we can see from the continuous
black curve of Fig. 8, the qualitative behavior of the results
obtained with the CP vertex is very similar to that obtained
with the BC vertex. Note that both vertices generate phe-
nomenologically acceptable values for Mð0Þ. More spe-
cifically, for the BC vertex we obtain Mð0Þ ¼ 294 MeV

while for the CP vertex, the value is slightly higher
Mð0Þ ¼ 307 MeV.
Once the behavior of the dynamical quark mass is

determined, one may attempt to reproduce some of the
phenomenological parameters that depend directly on it.
Such a parameter is the pion decay constant f�, which
measures the ‘‘strength’’ of the CSB. The pion decay
constant is defined through the axial-vector transition am-
plitude for an on-shell pion, h0jAa�

5 ð0Þj�bðkÞi ¼
if�k

��ab. Making use of the method developed by

FIG. 8 (color online). Left panel: The numerical solution for the quark wave-function A�1ðp2Þ in the fundamental representation
when the non-Abelian versions of BC (red dashed curve) and CP (black continuous curve) vertices. are employed Right panel: The
numerical solution for the dynamical quark massMðp2Þ. The red dashed curve represents the dynamical mass generated when the BC
vertex is used, while the black continuous line is the solution found with the CP vertex.

FIG. 7 (color online). Left panel: The individual contribution of the ingredients composing K0ðqÞ. The green dotted-dashed line
represents the case where K0ðqÞ ¼ �ðqÞ, the blue dotted line the case where K0ðqÞ ¼ �ðqÞFðqÞ, in the red dashed curve K0ðqÞ ¼
�ðqÞF2ðqÞ and, finally the black continuous line represents the case where K0ðqÞ assumes the full form used in our calculation

K0ðqÞ ¼ �ðqÞF2ðqÞX½1�
0 ðqÞ. Right panel: The corresponding dynamical quark mass generated when we use in Eqs. (3.23) and (3.24)

the different forms of K0ðqÞ are shown in the left panel.
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Pagels and Stokar [50], and Cornwall [51], �f� can be
expressed in terms of the dynamical quark mass as

�f 2
� ¼ 3

4�2

Z 1

0
dy

MðyÞ
½yþM2ðyÞ�2

�
MðyÞ � y

2

dMðyÞ
dy

�
:

(4.7)

Substituting in the above equation the numerical solu-
tions for Mðp2Þ presented in the Fig. 8, we obtain �f� ¼
64:3 MeV for the case of the BC vertex, while with the CP
vertex we get �f� ¼ 68 MeV. These values should be
compared to the experimental value f� ¼ 93 MeV [52].
Evidently, the obtained values underestimate �f� by almost
30%. The origin of this suppression could possibly be
traced back to some of the approximation used for the
quark-quark-pion proper vertex [51]. Some improved ver-
sions of Eq. (4.7) can be found in the literature; in particu-
lar, we will employ the expression of [53], where a
correction term is added to Eq. (4.7). More specifically,

f2� ¼ �f2� þ �f2�; (4.8)

with

�f2�¼ 3

4�2

Z 1

0
dy

�
y3
�
dMðyÞ
dy

�
2

�y2M2ðyÞ
�
dM2ðyÞ

dy

�
�y2M2ðyÞdMðyÞ

dy

�
: (4.9)

Adding this term to the expression of Eq. (4.7), we obtain
f� ¼ 76:4 MeV for the case of the BC vertex, and f� ¼
80:6 MeV for the CP vertex. Although the results are still
below the experimental value, the correction added clearly
contributes in the right direction.

Finally, we will compute the quark condensate, which
plays the role of the order parameter for dynamical CSB.

The quark condensate at scale of � ¼ 1 GeV2 is given
by [9]

h �qqið1 GeV2Þ ¼ � 3

4�2

Z �

0
dy

yMðyÞ
AðyÞ½yþM2ðyÞ� :

(4.10)

Substituting again the solution Mðp2Þ and Aðp2Þ pre-
sented in Fig. 8 into Eq. (4.10), we obtain h �qqið1 GeV2Þ ¼
ð211 MeVÞ3 when the BC vertex is employed, and h �qqi�
ð1 GeV2Þ ¼ ð217 MeVÞ3. This value should be compared
to the typical value of the quark condensate h �qqi�
ð1 GeV2Þ ¼ ð229� 9 MeVÞ3 [54].

C. Chiral symmetry breaking in the adjoint

Next we will solve the same system of integral equations
formed by Eqs. (3.23) and (3.24) for both BC and CP
kernels, given by Eqs. (3.26) and (3.28), respectively,
with the Casimir eigenvalue in the adjoint representation,
i.e., Cr ¼ CA ¼ 3.
When one switches from the fundamental to the adjoint

representation, the overall effect in the gap equation is an
enhancement factor of 9=4 due to the difference in the
corresponding Casimir eigenvalues. Of course, due to the
nonlinear nature of the gap equation, the wave function
A�1
adj ðp2Þ and the adjoint mass Madjðp2Þ are not obtained

from their quark counterparts through simple multiplica-
tion by 9=4.
The numerical results for the adjoint representation are

shown in the Fig. 9. On the left panel, we compare the
fermion wave functions, A�1

adj ðp2Þ, when we use the modi-

fied BC and CP vertices. As expected, both solutions dis-
plays the right asymptotic behavior while in the IR limit
the fermion wave functions saturate in smaller values

FIG. 9 (color online). Left panel: The numerical solution for the fermion wave-function A�1
adj ðp2Þ in the adjoint representation when

the modified BC vertex (dotted red curve) and the modified CP vertex (black continuous curve) are employed. Right panel: The
numerical solution for the dynamical fermion massMadjðp2Þ. The dotted red curve represents the dynamical mass generated when the

BC vertex is used. The black continuous line is the solution obtained with the CP vertex.
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compared to those of the fundamental representation. In
addition, we can notice that in the adjoint, A�1

adj ðp2Þ does
not display anymore a minimum as it does in the funda-
mental representation.

On the right panel, we show the fermion dynamical mass
Madjðp2Þ. We see that the infrared saturation of Madjðp2Þ
occurs for higher values compared to the values of Mðp2Þ
in the fundamental. In particular, when the modified BC
vertex is employed, one obtains Madjð0Þ ¼ 750 MeV,

while for the CP vertex Madjð0Þ ¼ 962 MeV. Clearly we

can see that the latter values are higher than 9=4Mð0Þ. In
addition, it is interesting to notice that the adjoint repre-
sentation is more sensitive to the change from the BC to the
CP vertex, since the difference between the results ob-
tained with the both vertices is much more pronounced
here than in the fundamental representation.

V. DISCUSSION AND CONCLUSIONS

In this article we have studied the CSB pattern that
emerges when the gap equation is combined with the
available lattice data for the gluon and ghost propagators
[18]. Particular attention has been paid to the way the ghost
sector enters into the gap equation. In particular, a com-
plete Ansatz for the longitudinal part of the quark-gluon
vertex has been constructed, which, in addition to the
ghost-dressing-function [11], captures the full dependence
on the various form factors composing the quark-ghost
scattering kernel. This new vertex has been used to derive
a more complete version of the gap equation, containing
additional contributions from the quark-ghost scattering
kernel. This latter quantity satisfies its own dynamical
equation, which is coupled to the gap equation in a com-
plicated way.

In order to reduce the complexity of the problem, we
have restricted ourselves to the interplay of the gap equa-
tion with the only the scalar part, X0, of the quark-ghost
scattering kernel, deriving its ‘‘one-loop dressed’’ expres-
sion. The form factor X0 was then determined from this
latter expression, for a special momentum configuration,
using the lattice data for the gluon and ghost propagators
appearing in it. The resulting expression for X0, shown in
Fig. 6, reaches its maximum at a momentum of a few
hundred MeV, where it displays a 25% enhancement com-
pared to its tree-level value. We emphasize that the nu-
merical effect of including X0 into the gap equation is
rather sizable; indeed, as can be seen from Fig. 7, it
accounts for about 30% of the final result for the quark
mass.

Finally, all ingredients are substituted into the gap equa-
tion, which is solved for the case of quarks (fundamental
representation), and for fermions in the adjoint representa-
tion. The quark mass obtained is about 300 MeV, in good
agreement with phenomenology, and is rather insensitive
to the details of the quark-gluon vertex employed (BC vs
CP). The corresponding mass obtained for the adjoint

fermions displays a stronger dependence on the form of
this vertex, varying between (750–962) MeV.
In our opinion, and as already stated in the Introduction,

the present work can be viewed as yet another example of
the type of fruitful interplay between the two basic non-
perturbative tools that explore the infrared domain of QCD,
namely, the lattice and the SDEs. In fact, this general
philosophy has been put forth in a number of earlier works,
as, for example, in [23,41].
It is important to emphasize that there is a crucial

complementarity between using lattice data as input into
the gap equation, and, at the same time, employing an
Ansatz for the vertex that captures suitably the dependence
on quantities such as the ghost-dressing-function and the
quark-ghost scattering kernel. Indeed, the additional de-
pendence on the ghost sector stemming from the vertex
would be insufficient for getting the correct CSB if one
were not to use the lattice results, which capture fully the
underlying dynamics, displaying a sizable enhancement
with respect to other nonperturbative approaches.
Similarly, no realistic CSB pattern can be obtained if one
were to substitute the lattice ingredients into the gap equa-
tion obtained from a less elaborate quark-gluon vertex, i.e.,
one that fails to include the effects due to the quark-ghost
scattering kernel. Thus, at least within our framework, it is
the interplay between these two points that finally provides
an adequate description of CSB.
Amplifying on the previous point, let us mention that the

SDE analysis presented in [22], even though it reproduces
qualitatively the lattice results, and most importantly ac-
counts for the observed IR finiteness of the gluon propa-
gator and the ghost-dressing-function, it underestimates
the size of both quantities by a significant amount.
Clearly, it is an important challenge for the SDE approach
of the PT-BFM formalism [22,42,55] to eliminate the
aforementioned quantitative discrepancy. Perhaps the
most obvious step would be to extend the analysis of
[22] beyond the ‘‘one-loop dressed’’ approximation, given
that there is no a priori guarantee that the omitted ‘‘two-
loop dressed’’ contributions are numerically depreciable.
Needless to say, from the technical point of view, such an
attempt would constitute a formidable task.
Another possible source of enhancement for the Green’s

functions in question may be related to the nontrivial
structure of the vacuum, and, in particular, with the pres-
ence of solitonic structures, such as vortices or monopoles.
These classic field configurations are closely linked to the
mechanisms of confinement [56] and CSB [57], and are
known to affect the shape and size of the fundamental
Green’s functions of the theory [58]. A particularly in-
structive example of how to include such effects at the
level of the SDEs has been presented in [59].
An additional point worth mentioning is related with the

fact that the lattice ingredients that we have been using
(gluon propagator and ghost dressing-function) are obtained
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from quenched simulations (no dynamical quarks). Even
though from the conceptual point of view the procedure of
using quenched results to obtain dynamical properties of
quarks may seem, strictly speaking, inconsistent, it is not
clear whether the inclusion of quark loops will modify
appreciably the present results. To be sure, the inclusion
of, say, two active flavors, will modify the ultraviolet tail of
the effective charge, as dictated by the (perturbative) 
function, providing approximately a 10% increase with
respect to the quenched case. However, such an increase
may be easily compensated by a slight modification in the
IR or intermediate region. Therefore, a careful analysis must
be carried out before being able to estimate the effect of the
(un)quenching on the gap equation. In fact, the formalism
developed in the present article lends itself for such a task, at
least at the level of the SDE that the gluon self-energy
satisfies. In particular, the vertex constructed in Sec. IIIA
constitutes a crucial ingredient for the nonperturbative
evaluation of the quark loop that contributes to the gluon
self-energy; indeed, using, for example, a tree-level version
of this vertex would invariably violate the transversality of
the answer. Given that results of unquenched simulations for
the gluon and ghost propagators are also available (see, e.g.,
[13]), we hope to embark into such a detailed study in the
near future.
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APPENDIX A: THE GAP EQUATION IN THE
PT-BFM LANGUAGE

Given the recent reformulation of the SD series within
the PT-BFM framework [42,55,60], it is conceptually in-
teresting to reexpress the gap equation using the PT-BFM
terminology. Let us stress from the beginning, however,
that, unlike what happens in the case of the gluon self-
energy [55], where the corresponding SD equation in the
PT-BFM formalism is vastly different from the conven-
tional one, the gap equations obtained within both formal-
isms are completely identical.

Let us start the discussion by pointing out that the PT
quark-self-energy coincides with the conventional one in
the Feynman gauge, both perturbatively (to all orders), as
well as nonperturbatively. The reason has been explained
in detail in the related literature; here it should suffice to
mention that in the Feynman gauge, there are no pinching
momenta, and all three-gluon vertices appearing in the
quark-self-energy are ‘‘internal’’, in the sense that all
legs are irrigated by virtual momenta, and, therefore,
they should not undergo the standard PT decomposition,

a key ingredient in the construction of the PT gluon self-
energy. An equivalent way of saying this in the BFM
language [35] is that, unlike gauge fields, fermionic fields
are not split into a background and a quantum component.
Therefore, the BFM fermion propagators are the same as
the conventional ones (in all gauges). However, given that
all nonperturbative ingredients we will use come from
lattice simulations in the Landau gauge, the gap equation
we study here is not the genuine PT gap equation. Away
from the Feynman gauge, one must switch to the BFM
language, or, equivalently, to the generalized PT. In any
case, the central result remains the same: the gap equation
in the Landau gauge is the same as the conventional one.

The PT-BFM gluon self-energy, denoted by �̂, behaves
in many aspects as that of QED; in particular, the product

g2�̂ is RG-invariant (for any choice of the BFM gauge-
fixing parameter). Of course, the propagator appearing in

Eq. (2.15) is not �̂ but rather the conventional �; indeed,
background field propagators do not propagate inside
loops, only quantum ones. However, there exists a set of
powerful identities that allows one to establish some im-
portant connections [41,61,62]. Specifically,

�ðq2Þ ¼ ½1þGðq2Þ�2�̂ðq2Þ;
F�1ðq2Þ ¼ 1þGðq2Þ þ Lðq2Þ:

(A1)

The functionsGðq2Þ and Lðq2Þ are the two form factors of a
particular two-point function, denoted by ���ðqÞ, defined
as [55,63]

���ðqÞ ¼ �ig2CA

Z
k
Hð0Þ

��Dðkþ qÞ���ðkÞH��ðk; qÞ

¼ g��Gðq2Þ þ
q�q�

q2
Lðq2Þ: (A2)

It turns out that the function Lðq2Þ is subleading both in
the IR and in the UV; therefore, for the purposes of this
argument can be safely neglected [41]. Then, the combi-
nation of the two identities in (A1) leads to the approxi-
mate relation

�̂ðq2Þ ¼ �ðq2ÞF2ðq2Þ; (A3)

leading to exactly the same conclusion as before.
Finally, the above discussion may be recast in the more

intuitive language of an effective (running charge), tradi-
tionally employed in QED-inspired studies of QCD. From

the (dimensionful) RG-invariant quantity g2�̂ introduced
above, one may define a nonperturbative effective charge,
denoted by 
ðq2Þ, as

g2�̂ðq2Þ ¼ 4�
ðq2Þ
q2 þm2ðq2Þ ; (A4)
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where m2ðq2Þ is the momentum-dependent dynamical
gluon mass, whose value in the deep IR is about
(500–700) MeV. Using Eq. (A3), and after implementing
Eq. (3.34), the alternative (and completely equivalent)
form of Eq. (3.23) reads [6,7] (setting q � p� k)

Aðp2Þ ¼ 1þ 4�Cr

Z
k


ðq2Þ
q2 þm2ðq2Þ

KAðk; pÞ
A2ðk2Þk2 þ B2ðk2Þ ;

(A5)

with an exactly analogous expression for Bðp2Þ. Note that
finally there is no explicit reference to Fðq2Þ, because it has
all been absorbed into the definition of the effective charge

ðq2Þ. The RG-invariance of this equation can be easily
established, given that both 
ðq2Þ, the gluon mass m2ðq2Þ,
are RG-invariant. The final inclusion of the X½1�

0 into

Eq. (A5) is straightforward.
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