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In a recent paper, we have shown that the way of gauge-invariant decomposition of the nucleon spin is

not necessarily unique, but there still exists a preferable decomposition from the observational viewpoint.

What was not complete in this argument is a fully satisfactory answer to the following questions. Does the

proposed gauge-invariant decomposition, especially the decomposition of the gluon total angular

momentum into its spin and orbital parts, correspond to observables which can be extracted from high-

energy deep-inelastic-scattering measurements ? Is this decomposition not only gauge invariant but also

Lorentz frame independent, so that it is legitimately thought to reflect an intrinsic property of the nucleon?

We show that we can answer both of these questions affirmatively by making full use of a gauge-invariant

decomposition of the covariant angular-momentum tensor of QCD in an arbitrary Lorentz frame.
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I. INTRODUCTION

The so-called ‘‘nucleon spin puzzle’’ is still one of the
most fundamental problems in hadron physics [1,2]. In the
past few years, there have been several remarkable pro-
gresses from the observational point of view. First, a lot of
experimental evidence has been accumulated, which indi-
cates that the gluon polarization inside the nucleon is likely
to be small [3–6]. At the least, it seems now widely
accepted that the UAð1Þ-anomaly motivated explanation
of the nucleon spin puzzle is disfavored. Second, the quark
spin fraction or the net longitudinal quark polarization �q
has been fairly precisely determined through high-statistics
measurements of the deuteron spin structure function by
COMPASS [7,8] and the HEREMES group [9]. According
to these analyses, the portion of the nucleon spin coming
from the intrinsic quark spin is around 1=3. These obser-
vations necessarily attract a great deal of interest in the role
of orbital angular momenta of the quark and gluon field
inside the nucleon.

When one talks about the spin contents of the nucleon,
however, one cannot be unconcerned with the unsettled
theoretical issues concerning the decomposition of the
nucleon spin. An especially difficult problem here is the
decomposition of the gluon total angular-momentum into
its intrinsic spin and orbital parts. Most people believe that
the polarized gluon distribution function is an observable
quantity from high-energy deep-inelastic-scattering (DIS)
measurements [10,11]. On the other hand, it is often
claimed that there is no gauge-invariant decomposition of
the gluon total angular momentum into its spin and orbital
parts [12,13]. Undoubtedly, this latter statement is closely
connected with another observation that there is no gauge-
invariant local operator corresponding to the 1st moment of
the polarized gluon distribution in the standard framework
of operator-product expansion. Since the gauge principle is

one of the most important principle of physics, which
demands that only gauge-invariant quantities are measur-
able, how to reconcile these two conflicting observations
is a fundamentally important problem in the physics of
nucleon spin.
As the first step of the program, which aims at clearing

up the state of confusion, we have recently investigated the
relationship between the known decompositions of the
nucleon spin [14]. We showed that the gauge-invariant
decomposition advocated by Chen et al. [15,16] can be
viewed as a nontrivial extension of the gauge-variant de-
composition given by Jaffe and Manohar [12], so as to
meet the gauge-invariance requirement of each term of the
decomposition. However, we have also pointed out that
there is another gauge-invariant decomposition of the nu-
cleon spin, which is closer to the Ji decomposition, while
allowing the decomposition of the gluon total angular
momentum into the spin and orbital parts. After clarifying
the reason why the gauge-invariant decomposition of the
nucleon spin is not unique, we emphasized the possible
superiority of our decomposition to that of Chen et al. on
the ground of observability. To be more concrete, we
developed an argument in favor of Ji’s proposal to obtain
a full decomposition of the nucleon spin [17]. It supports
the widely accepted experimental project, in which one
first determines the total angular momentum of quarks and
gluons through generalized-parton-distribution (GPD)
analyses and then extracts the orbital angular-momentum
contributions of quarks and gluons by subtracting the
intrinsic spin parts of quarks and gluons, which can be
determined through polarized DIS measurements.
Unfortunately, our argument lacks a finishing touch in
the respect that we did not give a rigorous proof that the
quark and gluon intrinsic spin contributions in our gauge-
invariant decomposition in fact coincides with the quark
and gluon polarizations extracted from the polarized DIS
analyses. Another question, which is not unrelated to the
above problem, is as follows. Since our gauge-invariant*wakamatu@phys.sci.osaka-u.ac.jp
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decomposition as well as that of Chen et al. are given in a
specific Lorentz frame, we could not give a definite answer
to the question whether these decompositions have a
frame-independent meaning or not. The purpose of the
present paper is to solve these remaining problems. We
will show that these questions can be solved simulta-
neously, by making full use of a gauge-invariant decom-
position of covariant angular-momentum tensor of QCD in
an arbitrary Lorentz frame.

The plan of the paper is as follows. In Sec. II, we show
that we can make a gauge-invariant decomposition of the
covariant angular-momentum tensor of QCD in an arbi-
trary Lorentz frame, even without fixing gauge explicitly.
Next, in Sec. III, the nucleon forward matrix element of the
Pauli-Lubansky vector expressed in terms of the covariant
angular-momentum tensor and the nucleon momentum is
utilized to obtain a gauge- and frame-independent decom-
position of the nucleon spin. In Sec. IV, we clarify the
relation between our decomposition and the high-energy
DIS observables. The summary and conclusion of our
analyses are then given in Sec. V.

II. GAUGE-INVARIANT DECOMPOSITION OF
COVARIANTANGULAR-MOMENTUM

TENSOR OF QCD

Following Jaffe and Manohar [12], we start with a
Belinfante symmetrized expression for the QCD energy-
momentum tensor given by

T�� ¼ T��
q þ T��

g ; (1)

where

T
��
q ¼ 1

2
�c ð��iD� þ ��iD�Þc ; (2)

T
��
g ¼ 2TrðF��F�

� � 1
4g

��F2Þ: (3)

Here, T�� is conserved, @�T
�� ¼ 0, symmetric, T�� ¼

T��, and gauge invariant. The QCD angular momentum
tensor M��� is a rank-3 tensor constructed from T�� as

M��� � x�T�� � x�T��: (4)

M��� is conserved, @�M
��� ¼ 0, and gauge-invariant, if

T�� is symmetric and conserved. Another noteworthy
property of M���, which was emphasized by Jaffe and
Manohar, is that it has no totally antisymmetric part, which
means that it satisfies the identity

�����M
��� ¼ 0; (5)

or equivalently

M��� þM��� þM��� ¼ 0: (6)

As shown in [12], by using the identity

�c ðx��� � x���ÞiD�c � �c��ðx�iD� � x�iD�Þc
¼ ����� �c���5c � 1

2@�½ðx������ � x������Þ
� �c���5c �; (7)

the quark part of M��� can gauge invariantly be decom-
posed in the following way:

M���
q ¼ 1

2�
���� �c���5c þ �c��ðx�iD� � x�iD�Þc ;

(8)

up to a surface term. In remarkable contrast, it is a wide-
spread belief that the gluon part ofM��� cannot be gauge-
invariantly decomposed into the intrinsic spin and orbital
angular-momentum contributions [12,13]. The gauge-
invariant version of the decomposition of M��� given in
the paper by Jaffe and Manohar is therefore given as

M��� ¼ M���
q þM���

g þ total divergence; (9)

with

M���
q ¼ 1

2�
���� �c���5c þ �c��ðx�iD� � x�iD�Þc ;

(10)

M���
g ¼ 2Tr½x�F��F�

� � x�F��F�
��

� 1
2 TrF

2½x�g�� � x�g���: (11)

Note that this is essentially the covariant version of the Ji
decomposition [13]. It should also be noted that the 2nd

term of M���
g contributes only to Lorentz boosts, so that it

has nothing to do with nucleon spin decomposition.
Somewhat surprisingly, however, basically by following

the idea proposal by Chen et al. [15,16], we can make a

gauge-invariant decomposition of M
���
g , at least formally.

The idea is to decompose the gluon field into two parts as

A� ¼ A
�
phys þ A

�
pure; (12)

with A�
pure a pure-gauge term transforming in the same way

as the full A� does, and always giving null field strength,
and A

�
phys a physical part of A� transforming in the same

manner as F�� does, i.e., covariantly. That is, the two
important properties of this decomposition is the condition
for the pure-gauge part of the field,

F��
pure � @�A�

pure � @�A�
pure � ig½A�

pure; A�
pure� ¼ 0; (13)

and the gauge transformation properties of the two parts:

A�
physðxÞ ! UðxÞA�

physðxÞU�1ðxÞ; (14)

A�
pureðxÞ ! UðxÞ

�
A�
pureðxÞ þ i

g
@�

�
U�1ðxÞ: (15)

As a matter of course, these conditions are not enough to
uniquely fix gauge. To uniquely fix gauge, Chen et al.
proposed to impose some additional gauge-fixing condition,
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which is a generalization of the Coulomb gauge condition in
the case of QED. (The detail of the gauge-fixing problem is
discussed also in recent research [18,19].) Alternatively, one
can take the light-cone gauge with some appropriate bound-
ary condition for the gauge field. In either case, these extra
gauge-fixing procedures necessarily break the Lorentz sym-
metry. Fortunately, we find it possible to accomplish a
gauge-invariant decomposition of a covariant rank-3 tensor
M��� based on the above conditions (13)–(15) only, while
postponing a concrete gauge-fixing procedure until the later
stage. The usefulness of such covariant formulation should
become apparent if one tries to compare the relation be-
tween the nucleon spin decomposition in different gauges
and in different Lorentz frames.

Now, we explain the derivation of a gauge-invariant
decomposition of M��� in some detail, since this decom-
position plays a central role in our following discussion.
First, by using the identity

F�� � @�A� � @�A� � ig½A�; A�� ¼ D�A� � @�A�;

(16)

with D� � @� � ig½A�; �� being the covariant derivative
for the adjoint representation of color SUð3Þ, one can
easily prove the identity

x�F��F�
� � x�F��F�

�

¼ F��ðx�D�A
� � x�D�A

�Þ � F��ðx�@� � x�@�ÞA�:

(17)

This gives

x�F��F�
� � x�F��F�

�

¼ F��ðx�D�A
�
phys � x�D�A

�
physÞ � F��ðx�@�

� x�@�ÞAphys
� þ F��ðx�D�A

�
pure � x�D�A

�
pureÞ

� F��ðx�@� � x�@�ÞApure
� : (18)

The sum of the 3rd and 4th terms can be transformed in the
following way:

F��½ðx�D�A
�
pure � x�D�A

�
pureÞ � ðx�@� � x�@�ÞApure

� �
¼ F��½x�ðD�A

�
pure � @�Apure

� Þ
� x�ðD�A

�
pure � @�Apure

� Þ�
¼ F��fx�ð@�A�

pure � @�Apure
� � ig½Apure

� ; A�
pure�

� ig½Aphys
� ; A�

pure�Þ � x�ð@�A�
pure � @�Apure

�

� ig½Apure
� ; A�

pure� � ig½Aphys
� ; A�

pure�Þg
¼ �igF��ðx�½Aphys

� ; A�
pure� � x�½Aphys

� ; A�
pure�Þ: (19)

Here, we have used the pure-gauge condition (13) for the
pure-gauge part of A�. Adding up the 2nd term of (18) to
the above sum, we obtain

� F��ðx�@� � x�@�ÞAphys
� � igF��ðx�½Aphys

� ; A�
pure�

� x�½Aphys
� ; A�

pure�Þ ¼ �F��fx�ð@� � ig½A�
pure; A

phys
� �Þ

� x�ð@� � ig½A�
pure; A

phys
� �Þg

¼ F��ðx�D�
pureA

phys
� � x�D�

pureA
phys
� Þ: (20)

Here, we have introduced the pure-gauge covariant de-
rivative by

D�
pure � @� � ig½A�

pure; ��: (21)

As a consequence of the manipulation above, we obtain a
fairly simple relation:

x�F��F�
� � x�F��F�

�

¼ F��ðx�D�A
�
phys � x�D�A

�
physÞ

� F��ðx�D�
pureA

phys
� � x�D�

pureA
phys
� Þ: (22)

Now, making use of the relation D�F
�� ¼ @�F

�� �
ig½A�; F

���, it is straightforward to prove the identity:

@�TrðF��x�A��F��x�A�Þ
¼TrfðD�F

��Þðx�A��x�A�Þ�F��ðx�D�A
��x�D�A

�Þ
þF��A��F��A�g: (23)

It is also obvious from the above derivation that a similar
identity holds even though we replace the fields A� and A�

above by their physical parts, i.e., A�
phys and A�

phys:

@�TrðF��x�A�
phys � F��x�A�

physÞ
¼ TrfðD�F

��Þðx�A�
phys � x�A�

physÞ
� F��ðx�D�A

�
phys � x�D�A

�
physÞ

þ F��A�
phys � F��A�

physg: (24)

Combining (22) and (24), we thus find the relation

Trðx�F��F�
� � x�F��F�

�Þ
þ @�TrðF��x�A�

phys � F��x�A�
physÞ

¼ TrfðD�F
��Þðx�A�

phys � x�A�
physÞ � F��ðx�D�

pure

� x�D�
pureÞAphys

� þ F��A�
phys � F��A�

physg: (25)

After all these steps, we eventually arrive at the following
decomposition for the QCD angular-momentum tensor [we
call it decomposition (I)]:

M��� ¼ M���
q�spin þM���

q�OAM þM���
g�spin þM���

g�OAM

þM
���
boost þ total divergence; (26)

where

M���
q�spin ¼ 1

2�
���� �c���5c ; (27)

M
���
q�OAM ¼ �c��ðx�iD� � x�iD�Þc ; (28)
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M���
g�spin ¼ 2Tr½F��A�

phys � F��A�
phys�; (29)

M
���
g�OAM ¼ �2Tr½F��ðx�D�

pure � x�D�
pureÞAphys

� �
þ 2Tr½ðD�F

��Þðx�A�
phys � x�A�

physÞ�; (30)

M
���
boost ¼ �1

2 TrF
2ðx�g�� � x�g��Þ: (31)

In the above decomposition,M���
q�spin andM

���
q�OAM, respec-

tively, correspond to the spin and orbital angular-

momentum (OAM) parts of quarks, while M���
g�spin and

M���
g�OAM to the spin and orbital angular-momentum parts

of gluons. (At the quantum level, there is some delicacy in

the identification of the term M
���
q�spin with the intrinsic

quark spin part. This will be discussed in the next section.)

We have already pointed out that the termM���
boost contributes

only to the Lorentz boots. An important feature of the above
decomposition (26) ofM��� is that each piece is separately
gauge invariant. Since this is already obvious for the quark
part, let us confirm it below for the less trivial gluon part.

The gauge invariance of theM���
g�spin and the 2nd term of

M���
g�OAM can easily be convinced if one remembers the

covariant transformation property (14) of the physical part
of A� as well as the covariant transformation property of
the field strength tensor F��. Less trivial is the 1st term of

the gluon orbital partM���
g�OAM. We first notice that, under a

gauge transformation, D�
pureA

phys
� transform as

D�
pureA

phys
� � @�A

phys
� þ ig½A�

pure; A
phys
� � ! @�ðUA

phys
� U�1Þ

� ig

�
U

�
A�
pure þ i

g
@�

�
U�1; UA

phys
� U�1

�

¼ Uð@�Aphys
� � ig½A�

pure; A
phys
� �ÞU�1

¼ UD�
pureA

phys
� U�1: (32)

This means that D�
pureA

phys
� transforms covariantly under a

gauge transformation. The gauge invariance of the 1st term

of M
���
g�OAM should be almost obvious from this fact.

Altogether, this confirms the fact that each term of decom-
position (I) is in fact separately gauge invariant.

Note that the gluon orbital angular-momentum contri-

bution M���
g�OAM consists of two terms. Using the QCD

equation of motion

ðD�F��Þa ¼ �g �c��T
ac ; (33)

the 1st term of M���
g�OAM can also be expressed in the form,

2TrfðD�F
��Þðx�A�

phys � x�A�
physÞg

¼ �g �c��ðx�A�
phys � x�A�

physÞc : (34)

Undoubtedly, this term is a covariant generalization of the
‘‘potential angular-momentum’’ a la Konopinski [20] as

pointed out in our previous paper [14]. Since this term is
solely gauge invariant, one has a freedom to combine it
with another gauge-invariant term, for example, with the
quark orbital angular-momentum term of decomposition
(I). This leads to another gauge-invariant decomposition of
M��� given as [this will be called decomposition (II)]

M0��� ¼ M
0���
q�spin þM

0���
q�OAM þM

0���
g�spin þM

0���
g�OAM

þM
0���
boost þ total divergence; (35)

where

M
0���
q�spin ¼ 1

2�
���� �c���5c ; (36)

M
0���
q�OAM ¼ �c��ðx�iD�

pure � x�iD�
pureÞc ; (37)

M0���
g�spin ¼ 2Tr½F��A�

phys � F��A�
phys�; (38)

M
0���
g�OAM ¼ �2Tr½F��ðx�D�

pure � x�D�
pureÞAphys

� �; (39)

M0���
boost ¼ �1

2 TrF
2ðx�g�� � x�g��Þ: (40)

Noteworthy here is the fact that the intrinsic spin parts are
just the same in decompositions (I) and (II) for both of
quarks and gluons, i.e.,

M
0���
q�spin ¼ M

���
q�spin; (41)

M0���
g�spin ¼ M���

g�spin; (42)

whereas the orbital parts are critically different for both of
quarks and gluons, i.e.,

M0���
q�OAM � M���

q�OAM; (43)

M
0���
g�OAM � M

���
g�OAM; (44)

although it holds that the sum of the quark and gluon
orbital angular momenta precisely coincides in the two
decompositions, i.e.,

M
0���
q�OAM þM

0���
g�OAM ¼ M

���
q�OAM þM

���
g�OAM: (45)

One might think that decomposition (II) can be thought of
as a covariant generalization of the gauge-invariant decom-
position of Chen et al. [15,16]. Actually, the gauge is not
definitely fixed yet in our treatment. We still have complete
freedom to choose any desired gauge compatible with the
decomposition of the gluon field into its physical and pure-
gauge parts. By choosing a ‘‘generalized Coulomb gauge’’
advocated by Chen et al. in a suitable Lorentz frame, the
above decomposition would in fact reduce to that of
Chen et al. On the other hand, if one takes the light-cone
gauge with some residual gauge degrees of freedom,
decomposition (II) reproduces the gauge-invariant decom-
position of the nucleon spin proposed by Bashinsky and
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Jaffe [21], which was proposed on the basis of the
light-cone-gauge formulation of parton distribution func-
tions. (For confirmation of this statement above, see the
discussion in Sec. IV.) On the other hand, we already know
that the Chen decomposition reduces to the Jaffe-Manohar
decomposition after a particular gauge fixing. Then, the
above argument altogether indicates that the known three
decompositions, i.e., those of Jaffe and Manohar, of
Bashinsky and Jaffe, and of Chen et al. are all contained
in our decomposition (II) so that they are gauge equivalent.
In other words, they are the same decomposition from the
physical viewpoint.

We have pointed out that, in decompositions (I) and (II)
of the angular-momentum tensor, the difference exists only
in the orbital parts. Here, let us look into a simpler quark
part more closely. What appears in our decomposition (I) is
a covariant generalization of the so-called ‘‘dynamical’’ or
‘‘mechanical’’ orbital angular momentum of quarks. On
the other hand, what appears in decomposition (II) is a
nontrivial gauge-invariant extension of the ‘‘canonical’’
orbital angular momentum. This difference is of crucial
physical significance, since, as emphasized in our previous
paper [14], the dynamical orbital angular momentum is a
measurable quantity, whereas the canonical one is not. In
fact, the common knowledge of standard electrodynamics
tells us that the momentum appearing in the equation of
motion with the Lorentz force is the so-called dynamical
momentum � ¼ p� qA with the full gauge field, not
the canonical momentum p or its nontrivial extension
p� qApure. To convince it, let us consider the motion of

a charged particle with mass m and a charge e (e < 0 for
the electron) under the influence of static electric and
magnetic field given as [22]

E ¼ �r	; B ¼ r�A: (46)

The Hamiltonian, which describes the motion of the
charged particle, is given by

H ¼ �2

2m
þ e	; (47)

with

� � p� eA: (48)

The equation of motion for this charged particle becomes

m
d2x

dt2
¼ d�

dt
¼ e

�
Eþ 1

2

�
dx

dt
� B�B� dx

dt

��
: (49)

This equation of motion dictates that the momentum ac-
companying the mass flow of a charged particle is the
dynamical momentum � ¼ p� eA containing the full
gauge field A, not the canonical momentum p or its non-
trivial extension p� eApure. Similarly, the angular mo-

mentum accompanying the mass flow of a charge particle
is the dynamical orbital angular momentum x�� ¼ x�
ðp� eAÞ, not x� p or x� ðp� eApureÞ.

In the subsequent sections, we try to make the above
statement on the observability of our decomposition more
concrete first for the quark part. The analysis is then
extended to the gluon part to accomplish a complete de-
composition of the nucleon spin.

III. FRAME INDEPENDENCE OF OUR
NUCLEON SPIN DECOMPOSITION

Our discussion in this section is based on our recom-
mendable decomposition (I) of the QCD angular-
momentum tensor M��� given in (26)–(31). The nucleon
spin sum rule is obtained by evaluating the forward matrix
element of the tensor M012 in the equal-time quantization,
or that of the tensor Mþ12 in the light-cone quantization.
This gives the normalization condition

hP; sjM012jP; si=hP; sjP; si ¼ 1
2; (50)

in the equal-time quantization, or

hP; sjMþ12jP; si=hP; sjP; si ¼ 1
2; (51)

in the light-cone quantization. Here, jP; si stands for a
plane-wave nucleon state with momentum P� and spin

s�. An alternative method to obtain the nucleon spin sum

rule is to evaluate the forward matrix element of the
helicity operator [23]

W�s� ¼ J � P̂ ¼ J � P
jPj ; (52)

where

W� ¼ � 1

2
ffiffiffiffiffiffi
P2

p �����J��P�; (53)

with J�� ¼ M0��, is the Pauli-Lubansky vector [24],
while P� and s� are the momentum and the spin vector

of the nucleon satisfying the relations :

P2 ¼ M2; s2 ¼ �1; P � s ¼ 0: (54)

The normalization condition in this case is

hP; sjW�s�jP; si=hP; sjP; si ¼ 1
2: (55)

In either case, for the spin decomposition of the nucleon,
we need to know the forward matrix element of each term
of the right-hand side of (26). We first consider the forward

matrix element of M���
q�spin. Although we have naively

called this term the intrinsic quark spin contribution to
M���, there is some delicacy. As first recognized by
Jaffe and Manohar [12], and later elaborated in [25,26],
�c���5c ¼ Að0Þ

� is the flavor-singlet axial current and it

enters M��� in the form 1
2 �

����Að0Þ
� . However, Jaffe and

Manohar also noticed the fact that M��� should have no
totally antisymmetric part. This observation, combined
with the fact that the total derivative term has no forward
matrix element, leads to the conclusion that the forward
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matrix element ofM��� cannot have a term proportional to
�����. This means that the term of this form coming from

M
���
q�spin ¼ 1

2 �
����Að0Þ

� must exactly be canceled by a simi-

lar term coming from the ‘‘orbital piece’’ of M���. First,
we shall verify this fact explicitly for the quark part of
M���. Later, we will show that a similar situation occurs
also for the gluon part. In general, the forward matrix

element of M���
q�spin is specified by the flavor-singlet axial

charge að0Þq as

hP; sjM���
q�spinð0ÞjP; si ¼ Mað0Þq �����s�: (56)

It is a widely known fact that, at the quantum level, an
ambiguity arises, due to the UAð1Þ anomaly of QCD, con-
cerning the relation between the flavor-singlet axial charge
and the net quark polarization �q (or the net contribution
of the intrinsic quark spin to the nucleon spin). In the most
popular factorization (or renormalization) scheme, i.e., in

the MS scheme, að0Þq can just be identified with �q. On the
other hand, there is another class of renormalization

scheme called the Adler-Bardeen schemes, in which að0Þq

is given by að0Þq ¼ �q� 2nfð�s=4
Þ�g with �g the net

gluon polarization, and nf the number of quark flavors. An

advantage of the Adler-Bardeen scheme is that �q is
completely scale independent. Nonetheless, there is no
compelling reason to stick to this scheme. Without any

loss of generality, we can choose theMS scheme, in which

the forward matrix element of M
���
q�spin gives the net quark

spin contribution to the nucleon spin through the
previously-mentioned sum rule.

Next, we investigate the forward matrix element of the

quark orbital angular-momentum part M���
q�OAM. This part

of the current takes a general form of

M���ðxÞ ¼ x�O��ðxÞ � x�O��ðxÞ; (57)

so that the evaluation of its forward matrix element needs
some care. The method is well known and is given by the
following limiting procedure [12]:

hP; sjM���ð0ÞjP; si
¼ lim

�!0
i

@

@��

�
Pþ �

2
; s

��������O��ð0Þ
��������P� �

2
; s

�

� ð� $ �Þ: (58)

(More sound formulation of this limiting procedure with
use of wave packets instead of plane waves was later
elaborated in [25,26].) To make use of the above formula,

we first note that M
���
q�OAM can be expressed as

M���
q�OAM ¼ x�O��

2 � x�O��
2 ; (59)

with

O��
2 ¼ �c��iD�c : (60)

It is important to recognize that this rank-2 tensor O
��
2

entering M
���
q�OAM is different from the quark part of the

QCD energy-momentum tensor

T
��
q ¼ 1

2
�c�f�iD�gc ; (61)

by the effect of symmetrization. (Here we use the notation

af�b�g ¼ a�b� þ a�b� and a½�b�� ¼ a�b� � a�b�.)
Then, while the nonforward matrix element of T

��
q is

characterized by three form factors as

�
Pþ�

2
; s

��������T��
q ð0Þ

��������P� �

2
; s

�

¼ Aqð�2ÞP�P� þ Bqð�2Þ
2M

Pf���g���s�P�i��

þ Cqð�2ÞM2g�� þOð�2Þ; (62)

the nonforward matrix element of O
��
2 can contain extra

terms which are antisymmetric in � and � as

�
Pþ�

2
; s

��������O��
2 ð0Þ

��������P� �

2
; s

�

¼ Aqð�2ÞP�P� þ Bqð�2Þ
2M

Pf���g���s�P�i��

þ
~Bqð�2Þ
2M

P½�������s�P�i��

þMDqð�2Þ�����s�i�� þ Cqð�2ÞM2g�� þOð�2Þ:
(63)

(The above parametrizations of the nucleon matrix ele-
ments of rank-2 tensors were criticized in the paper by
Bakker, Leader, and Trueman [25]. They argue that, if T��

transforms as a second-rank tensor, its nonforward matrix
elements do not transform covariantly. Only by first factor-
ing out the wave functions, i.e., the Dirac spinors in the
case of nucleon matrix elements, the relevant function
sandwiched by the initial and final wave functions trans-
form covariantly. Nevertheless, they themselves confirmed
that, despite this problem of the parametrization of the
nucleon nonforward matrix elements, the treatment of
Jaffe and Manohar give just the correct answer at least
for the longitudinal spin sum rule of the nucleon, which is
of our current interest. For the sake of simplicity, we
therefore follow the treatment of Jaffe and Manohar at
the cost of complete stringency.)
Now, a key observation of our nucleon spin decomposi-

tion is as follows. As shown by Shore and White [26], the
two rank-2 tesnsors T��

q and O��
2 are not completely inde-

pendent. They are related through the following identity:

x�T
��
q � x�T

��
q ¼ x�O

��
2 � x�O

��
2 þ 1

2�
���� �c���5c

þ total divergence: (64)
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By evaluating the forward matrix element of this identity,
one can prove that all the form factors, appearing in (62) and
(63), are not independent but obey the following relation:

~B qð0Þ ¼ 0; 2Dqð0Þ ¼ að0Þq : (65)

As a consequence, we find that the forward matrix element

of M���
q�OAM is given by

hP; sjM���
q�OAMð0ÞjP; si ¼

Bqð0Þ
2M

Pf���g���P�s�

� ð� $ �Þ �Mað0Þq �����s�:

(66)

As emphasized in [12] and explicitly shown in [26], the
axial-charge term, which is totally antisymmetric in the
indices �, �, �, cancels in the forward matrix elements of

M
���
q�spin plus M

���
q�OAM to give

hP; sjM���
q�spinð0Þ þM

���
q�OAMð0ÞjP; si

¼ Bqð0Þ
2M

Pf���g��P�s� � ð� $ �Þ: (67)

It can be shown that Bqð0Þ just coincide with the total

angular momentum Jq carried by the quark fields,

Bqð0Þ ¼ Jq: (68)

Now we turn to the discussion of much more difficult
gluon part. Despite a lot of efforts, whether the total gluon
angular momentum Jg can be gauge-invariantly decom-

posed into the spin and orbital parts is still a controversial
problem. That it is possible at the formal level has been
shown in a series of paper by Chen et al. [15,16] and has
been confirmed in our recent paper [14]. However, these
decompositions were achieved in a particular Lorentz
frame. What we are looking for here is a Lorentz covariant
formulation. An advantage of Lorentz covariant formula-
tion is that we can make clear the relation between the
nucleon spin decompositions obtained in different Lorentz
frames. Furthermore, as we shall see shortly, it also turns
out to reveal an important physics, which was masked in a
noncovariant formulation. We first look into the forward
matrix element of our gluon-spin operator

M���
g�spin ¼ 2Tr½F��A�

phys � F��A�
phys�

¼ 2Tr½F��A�
phys þ F��A�

phys�: (69)

We first emphasize that this operator is gauge invariant, so
that it is delicately different from the gauge-variant current

M
���
ðgÞ ðspinÞ � 2Tr½F��A� þ F��A��; (70)

which was naively identified with the gluon-spin operator
in the paper by Jaffe and Manohar [12]. In the same paper,

however, they pointed out a very interesting fact.
According to them, the analogy with the quark part would

have led us to expect M
���
ðgÞ ðspinÞ to be

�����K� ¼ 2Tr½F��A� þ A�F�� þ A�F���
þ 2igTrA�½A�; A��; (71)

which is totally antisymmetric in the three indices �, �, �.
Here

k� � �S

2

K� ¼ �S

2

����� TrA

�

�
F�� � 2

3
A�A�

�
(72)

is the gauge-variant Chern-Simons current, whose diver-
gence is related to the well-known topological charge
density of QCD as

@�k� ¼ �S

2

TrF�� ~F��: (73)

Owing to the symmetry difference, �����K� and

K���
ðgÞ ðspinÞ are not in the same representation of the

Lorentz group [12]. The former belongs to ð12 ; 12Þ, while
the latter contains ð12 ; 32Þ � ð32 ; 12Þ in addition to ð12 ; 12Þ.
Historically, several authors advocated to use the forward
matrix element of the topological current to define the

gluon axial charge að0Þg ð0Þ or the gluon polarization �g
[27–29]. (See also reviews [30,31].) However, some au-
thors soon recognized that the gauge-variant nature of the
topological current k� prevents this attempt [26,32,33].

The argument goes as follows. The nonforward matrix
element of the topological current k� is characterized by
two form factors as�

Pþ�

2
; s

��������k�
��������P� �

2
; s

�

¼ 2Ms�að0Þg ð�2Þ þ��ð� � sÞpgð�2Þ þOð�2Þ: (74)

Naively thinking, the 2nd term of the above equation
would vanish in the forward limit �� ! 0, so that one
might expect that

hP; sjk�jP; si ¼ 2Ms�að0Þg ð0Þ (75)

with the identification að0Þg ð0Þ ¼ �s
4
�g. However, it was

soon recognized that the gauge-variant current k� couples
to an unphysical Goldstone mode and the form factor
pgð�2Þ has a massless pole [32,33]. The structure of this

pole depends on the adopted gauge. It turns out that the
forward matrix element of the topological current is sin-
gular in general gauges. Although the matrix element is
finite in the generalized axial gauges, n � A ¼ 0, its value
still depends on the ways of taking the forward limit� ! 0
so that it is indefinite.
Now, we go back to our gauge-invariant operator

M���
g�spin. It is instructive to rewrite M���

g�spin in the form

that contains the topological current in itself as
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M���
g�spin ¼ �����K� � 2TrfðF�� þ ig½A�; A��ÞA�g

� 2TrfF��A�
pure þ F��A�

pureg: (76)

One might think that this manipulation is a little artificial.
Note, however, that it resembles the operation in the
quark part, in which the totally antisymmetric part
1
2 �

���� �c���5c is separated from the total quark contri-

bution M���
q . An important difference with the quark case

is that each term of (76) is not separately gauge invariant.
Nonetheless, the left-hand side of (76) is gauge invariant
by construction, so that it is logically obvious that the
gauge dependencies of the three terms in the right-hand
side should exactly be canceled. The argument above then

indicates that the nonforward matrix element of M���
g�spin

can be specified by gauge-independent three form factors
as

�
Pþ �

2
; s

��������M���
g�spinð0Þ

��������P��

2
; s

�

¼ 2M

�
�S

4


��1
að0Þg ð�2Þ�����s� þ vgð�2Þ�������ð� � sÞ

þ wgð�2Þ��ð��s� ���s�Þ þOð�2Þ: (77)

Now, an important difference with the past argument is

that, since M
���
g�spin is manifestly gauge invariant, there

should be no massless pole in either of the form factors
vgð�2Þ and wgð�2Þ. This means that the terms containing

vgð�2Þ and wgð�2Þ vanish in the forward limit and the

forward matrix element of M���
g�spin is unambiguously

given by

hP; sjM���
g�spinð0ÞjP; si ¼ 2M

�
�s

4


��1
að0Þg ð0Þ�����s�

¼ 2M�g�����s�: (78)

In short, although our gluon-spin operator is not neces-
sarily totally antisymmetric in the indices�, �, and �, only
the totally antisymmetric part survives in its forward ma-
trix element. Although this seems somewhat mysterious, it
certainly is a consequence of the logical reasoning ex-
plained above.

Our remaining task now is to evaluate the forward

matrix element of M
���
g�OAM. We first remember the fact

that M
���
g�OAM can be expressed in the form

M���
g�OAM ¼ x�O��

5 � x�O��
5 ; (79)

with

O
��
5 ¼ �2Tr½F��D�

pureA
phys
� � þ 2Tr½ðD�F

��ÞA�
phys�:

(80)

This should be compared with the net gluon contribution to
M���, which can be expressed as

M���
g ¼ x�T��

g � x�T��
g ; (81)

where T
��
g is the gluon contribution to the symmetric QCD

energy-momentum tensor given by (3). There is a simple

relation between M���
g and M���

g�OAM, however. That is, as

is clear from (25), aside from the boost term, M
���
g is

different from the sum of M���
g�spin and M���

g�OAM only by a

total divergence as

M
���
g � boost ¼ M

���
g�spin þM

���
g�OAM þ total divergence:

(82)

Note that this is a key relation in our gauge-invariant
decomposition of the gluon total angular momentum into
its spin and orbital parts.
Now, we can proceed just in the same way as in the

quark part. The nonforward matrix element of T
��
g ð0Þ and

O��
5 ð0Þ are parametrized as

�
Pþ�

2
; s

��������T��
g ð0Þ

��������P� �

2
; s

�

¼ Agð�2ÞP�P� þ Bgð�2Þ
2M

Pf���g���s�P�i��

þ Cgð�2ÞM2g�� þOð�2Þ; (83)

and

�
Pþ�

2
;s

��������O��
5 ð0Þ

��������P��

2
;s

�

¼Agð�2ÞP�P�þBgð�2Þ
2M

Pf���g���s�P�i��

þ
~Bgð�2Þ
2M

P½�������s�P�i��þMDgð�2Þ�����i��s�

þCgð�2ÞM2g��þOð�2Þ: (84)

By using the limiting procedure (58), we thus have in the
forward limit

hP; sjM���
g ð0ÞjP; si ¼ Bgð0Þ

2M
Pf���g���s�P� � ð� $ �Þ;

(85)

and

hP;sjM���
g�OAMð0ÞjP;si

¼Bgð0Þ
2M

Pf���g���s�P��ð�$�Þþ
~Bgð0Þ
2M

P½�������s�P�

�ð�$�Þ�2MDgð0Þ�����s�; (86)

while we recall that

hP; sjM���
g�spinð0ÞjP; si ¼ 2M�����s��g: (87)
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Then, in consideration of the fact that the total divergence
term does not contribute to the forward matrix element, the
relation (82) together with (85)–(87), demands that

Dgð0Þ ¼ �g; ~Bgð0Þ ¼ 0: (88)

We are then led to the desired result

hP; sjM���
g�spinð0ÞjP; si ¼ 2M�g�����s�; (89)

hP; sjM���
g�OAMð0ÞjP; si ¼

Bgð0Þ
2M

Pf���g���s�P�

� ð� $ �Þ � 2M�g�����s�;

(90)

which gives a gauge-invariant decomposition of Jg into the

spin and orbital parts. Again, the totally antisymmetric
terms in the indices �, �, � cancel in the forward matrix

element of the sum of M
���
g�spin and M

���
g�OAM to give

hP; sjM���
g�spinð0Þ þM

���
g�OAMð0ÞjP; si

¼ Bgð0Þ
2M

Pf���g��P�s� � ð� $ �Þ: (91)

Let us summarize at this point what we have found. We
found that

hP; sjM���jP; si
¼ hP; sjM���

q�spinjP; si þ hP; sjM���
q�OAMjP; si

þ hP; sjM���
g�spinjP; si þ hP; sjM���

g�OAMjP; si
þ boost: (92)

with

hP; sjM���
q�spinð0ÞjP; si ¼ M�q�����s�; (93)

hP; sjM���
q�OAMð0ÞjP; si

¼ Bqð0Þ
2M Pf���g���s�P� � ð� $ �Þ �M�q�����s�;

(94)

hP; sjM���
g�spinð0ÞjP; si ¼ 2M�g�����s�; (95)

hP; sjM���
g�OAMð0ÞjP; si

¼ Bgð0Þ
2M

Pf���g���s�P� � ð� $ �Þ � 2M�g�����s�:

(96)

We emphasize again that this is a completely gauge-
invariant decomposition. Inserting the above decomposi-
tion into the equation hP; sjW�s�jP; si=hP; sjP; si ¼ 1=2

[23], one gets

1
2 ¼ Sq þ Lq þ Sg þ Lg ¼ Jq þ Jg; (97)

with

Sq ¼ 1
2�q; (98)

Lq ¼ Bqð0Þ � 1
2�q; (99)

Sg ¼ �g; (100)

Lg ¼ Bgð0Þ � �g: (101)

This means that the individual contributions to the spin of
the nucleon is invariant under the wide class of a Lorentz
transformation that preserves the helicity of the nucleon. In
this sense, we are now able to say that our decomposition
of the nucleon spin is not only gauge-invariant but also
basically Lorentz frame independent. A remaining impor-
tant question is therefore as follows. Can we give any
convincing argument to show the observability of the
above decomposition? A central task here is to verify
whether the above gluon-spin term Sg can in fact be

identified with the 1st moment of the polarized gluon
distribution determined by high-energy polarized DIS
analyses. We try to answer this question in the next section.

IV. OBSERVABILITY OF OUR NUCLEON
SPIN DECOMPOSITION

It is a widely-known fact that the quark and gluon total
angular momenta, i.e., Jq and Jg, can in principle be

extracted from GPD analyses [13–17]. Let us first confirm
that our decomposition is compatible with this common
wisdom. Here, we closely follow the analysis by Shore and
White [26]. We start with the standard definition of unpo-
larized GPDs for quark and gluons given as

fqðx;�;tÞ¼
Z dz�

2

eiðxþð�=2ÞÞPþz�

�
�
Pþ1

2
�

�������� �c ð0Þ�þLgð0;z�Þc ðz�Þ
��������P�1

2
�

�
;

xPþfgðx;�;tÞ¼
Z dz�

2

eiðxþð�=2ÞÞPþz�

�
�
Pþ1

2
�

��������2Tr½Fþ�ð0ÞLgð0;z�ÞFþ
� ðz�Þ

��������P�1

2
�

�
;

(102)

where t ¼ �2, while Lgða; bÞ ¼ Pe�ig
R

a

b
A�ds is the stan-

dard gauge link. It is an easy exercise to derive the follow-
ing 2nd moment sum rules for fqðx; �; tÞ and fgðx; �; tÞ:
Z 1

�1
xfqðx; �; tÞdx ¼

�
Pþ �

2

�������� �c ð0Þ�þDþc ð0Þ
��������

� P� �

2

�
=ðPþÞ2; (103)
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Z 1

�1
xfgðx; �; tÞdx ¼

�
Pþ �

2

��������2Tr½Fþ�ð0ÞFþ
� ð0Þ�

��������
� P� �

2

�
=ðPþÞ2: (104)

The operators appearing in the right-hand side of (103)
and (104) are, respectively, the þþ component of the
quark and gluon parts of the QCD energy-momentum
tensor. Especially simple here is the forward limit t ! 0,
� ! 0. In this limit, fqðx; �; tÞ and fgðx; �; tÞ reduce to the

standard parton distribution functions of quarks and glu-
ons, i.e., fqðxÞ and fgðxÞ. Then, remembering that the

nonforward nucleon matrix elements of Tþþ
q and Tþþ

g

are parametrized as�
Pþ �

2
; s

��������Tþþ
q=g ð0Þ

��������P� �

2
; s

�

¼ Aq=gð�2ÞPþPþ þ Bq=gð�2Þ
M

Pþ�þ���s�P�i��

þ Cq=gð�2ÞM2gþþ þOð�2Þ; (105)

we can easily get the following sum rules:

Z 1

�1
xfqðxÞdx ¼ Aqð0Þ; (106)

Z 1

�1
xfgðxÞdx ¼ Agð0Þ: (107)

These quantities are nothing but the momentum fractions
hxiq and hxig carried by the quark and gluon fields in the
nucleon. The famous momentum sum rule of QCD

Z 1

�1
x½fqðxÞ þ fgðxÞ�dx ¼ hxiq þ hxig ¼ 1; (108)

then follows from the equation

hP; sjTþþ
q ð0Þ þ Tþþ

g ð0ÞjP; si=ðPþÞ2 ¼ 1: (109)

On the other hand, by differentiating the relations (103)
and (104) before taking the forward limit, we obtain the
identities

� iPþ @

@��

Z 1

�1
xfqðx; 0;�Þdxj�¼0 ¼

Bqð0Þ
M

�þ���s�P�;

(110)

� iPþ @

@��

Z 1

�1
xfgðx; 0;�Þdxj�¼0 ¼

Bgð0Þ
M

�þ���s�P�:

(111)

Here the quantities Bqð0Þ and Bgð0Þ are the forward limits

of the form factors appearing in the nonforward nucleon
matrix element of quark and gluon parts of the QCD
energy-momentum tensor. The fact that they are just pro-
portional to the total angular momenta of quark and gluon
such that [see (97)–(101)]

Jq ¼ 1
2Bqð0Þ; (112)

Jg ¼ 1
2Bgð0Þ; (113)

is the famous Ji sum rule [13–17]. To avoid confusion, we
recall here that the above form factors Bq=gð�2Þ are related
to more familiar form factors Aq=g

20 ð�2Þ and Bq=g
20 ð�2Þ

through the relation Bq=gð�2Þ ¼ Aq=g
20 ð�2Þ þ Bq=g

20 ð�2Þ.
Here, Aq=g

20 ð�2Þ and Bq=g
20 ð�2Þ are, respectively, the 2nd

moments of the unpolarized GPDs Hq=gðx; �;�2Þ and

Eq=gðx; �;�2Þ with � ¼ 0, so that

Bq=gð�2Þ ¼ Aq=g
20 ð�2Þ þ Bq=g

20 ð�2Þ
¼

Z 1

�1
x½Hq=gðx; 0;�2Þ þ Eq=gðx; 0;�2Þ�dx:

(114)

The GPDs are measurable quantities so that Jq and Jg
can, in principle, be determined empirically. Once Jq and

Jg are known, it is clear from our general formula for the

nucleon spin decomposition that the orbital angular mo-
menta Lq and Lg of the quarks and gluons can be extracted

just by subtracting the intrinsic spin parts of the quarks and
gluons, i.e., 12 �q and �g. A remaining critical question is

then as follows. Can the intrinsic quark and gluon-spin
parts defined in our gauge-invariant decomposition of the
nucleon spin be identified with the corresponding quanti-
ties as measured by the high-energy DIS measurements?
This is a fairly delicate question especially for the gluon
polarization �g. However, the importance of this question
should not be dismissed. In fact, only in the case in which
we could affirmatively answer this question, would we
attain a sound theoretical basis for a completely mean-
ingful gauge-invariant decomposition of the nucleon spin.
To answer the raised question, it is useful to remember

the investigation by Bashinsky and Jaffe [21], which can be
thought of as a nontrivial generalization of the light-cone-
gauge formulation of parton distribution functions. The
reason why we pay special attention to the formulation
of Bashinky and Jaffe is twofold. The first reason is, of
course, that their light-cone-gauge formulation of the par-
ton distribution functions and the corresponding 1st mo-
ments just fits our program, which aims at finding the
relation between the gluon-spin term in our decomposition
and high-energy deep-inelastic-scattering observables.
Another important reason, although not unrelated to the
first, is that we want to show explicitly the fact that the
numerical value of the gluon-spin term in the Bashinsky-
Jaffe decomposition just coincides with that of the gluon-
spin term of our more general decomposition. (To avoid
confusion, however, we emphasize once again that the
orbital angular-momentum parts of quark and gluons in
the Bashinsky-Jaffe decomposition are never related to the
corresponding terms in our recommendable decomposition
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(I) by any gauge transformation. See the discussion later
for more detail.)

Starting with the standard light-cone-gauge formulation
of parton distribution functions, Bashinsky and Jaffe in-
vented a method of constructing gauge-invariant quark and
gluon distributions describing abstract QCD observables
and applied this formalism for analyzing angular-
momentum contents of the nucleon. In addition to the
known quark and gluon polarized distribution functions,
they gave a definition of gauge-invariant distributions for

quark and gluon orbital angular momentum. According
to their notation, these distribution functions for the
quark and gluon spin and orbital angular momenta are
given by

f�qðxBjÞ ¼ 1

2

ffiffiffi
2

p
Z

d��eixBjPþ��hPjc y
þð0Þ�5cþð��ÞPi;

(115)

fLq
ðxBjÞ ¼

R
d��eixBjPþ��hPjR d2x?c y

þðx?Þðx1iD2 � x2iD1Þcþðx? þ ��ÞjPi
2


ffiffiffi
2

p ðRd2x?Þ ; (116)

f�gðxBjÞ ¼ 1

4


Z
d��eixBjPþ��hPjFþ�ð0Þ�þ�

�
�A�ð��ÞjPi; (117)

fLg
ðxBjÞ ¼ i

R
d��eixBjPþ��hPjR d2x?Fþ�ðx?Þðx1iD2 � x2iD1ÞA�ðx? þ ��ÞjPi

4
ðR d2x?Þ : (118)

Here, cþ � 1
2�

��þc , and

D i ¼ @i � igAi (119)

denotes the residual gauge covariant derivative corre-
sponding to the residual gauge degrees of freedom remain-
ing after taking the light-cone gauge Aþ ¼ 0. The 1st
moments of these distribution functions becomes

�q ¼ 1ffiffiffi
2

p
Pþ hPjc y

þð0Þ�5cþð0ÞjPi; (120)

Lq ¼ 1ffiffiffi
2

p
PþðR d2x?Þ

�
P

��������
Z

d2x?c y
þðx?Þðx1iD2

� x2iD1Þcþðx?Þ
��������P

�
; (121)

�g ¼ 1

2Pþ hPjFþ�ð0Þ�þ�
�
�A�ð0ÞjPi; (122)

Lg ¼ 1

2PþðR d2x?Þ
�
P

��������
Z

d2x?Fþ�ðx?Þðx1iD2

� x2iD1ÞA�ðx?Þ
��������P

�
: (123)

One might notice here the resemblance of this decompo-
sition to our decomposition (II). To see it more closely,
we take the nucleon matrix element of M0��� in (35) with
� ¼ þ, � ¼ 1, � ¼ 2:

hP; sjM0þ12ð0ÞjP; si
¼ hP; sjM0þ12

q�spinð0ÞjP; si þ hP; sjM0þ12
q�OAMð0ÞjP; si

þ hP; sjM0þ12
g�spinð0ÞjP; si þ hP; sjM0þ12

g�OAMð0ÞjP; si;
(124)

where

M0þ12
q�spin ¼ 1

2
�c�3�5c ¼ c y

þ�5cþ; (125)

M0þ12
q�spin ¼ �c�þðx1iD2

pure � x2iD1
pureÞc

¼ 2c y
þðx1iD2

pure � x2iD1
pureÞcþ; (126)

M0þ12
g�spin ¼ 2Tr½Fþ2A1

phys � Fþ1A2
phys�

¼ 2Tr½Fþ��þ�
�
�A

phys
� �; (127)

M0þ12
g�OAM ¼ �2Tr½Fþ�ðx1D2

pure � x2D1
pureÞAphys

� �: (128)

Here, we have omitted the boosts and total derivative
terms, which are irrelevant in our discussion here.
The above perfect correspondence indicates the follow-

ing. The residual gauge covariant derivative Di ¼ @i �
igAi appearing in the orbital parts of the Bashinsky-Jaffe
decomposition is critically different from the standard
covariant derivative containing the full gauge field. The
field Ai contained in Di would rather correspond to the
pure-gauge part A

pure
i in our general framework. (This fact

will soon be confirmed in more explicit form.) This means
that the quark and gluon orbital angular momenta appear-
ing in the Bashinsky-Jaffe decomposition are basically the
canonical ones not the dynamical ones. In fact, we have
already pointed out in Sec. II that the Bashinsky-Jaffe
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decomposition and the Chen et al. decomposition fall into
the same category in the sense that they are both nontrivial
gauge-invariant extensions of the gauge-variant Jaffe-
Manohar decomposition. As repeatedly emphasized, this
is not our recommendable decomposition, since no prac-
tical experimental process is known for measuring the
above distribution functions for the quark and gluon orbital
angular momenta and the corresponding 1st moments.

Despite this fact, one should clearly recognize the fact
that the quark and gluon-spin terms in decomposition (II)
are exactly the same as those of our recommendable de-
composition (I), i.e.,

M
0���
q�spin ¼ M

���
q�spin; (129)

M
0���
q�spin ¼ M

���
q�spin: (130)

We therefore concentrate on the relationship between the
quark and gluon-spin terms in the Bashinsky-Jaffe decom-
position and those of our gauge-invariant decomposition
(I). There is no problem with the quark spin part. In fact,
this term is trivially gauge-invariant in itself and it has been
long known that it can be measured through polarized DIS
measurements. The quark spin term in our decomposition
precisely coincides with this measurable quantity.

The gluon-spin part is a little more delicate, however. In
fact, it is often claimed that there is no gauge-invariant
decomposition of gluon total angular-momentum into its
spin and orbital parts. Since the fundamental gauge prin-
ciple dictates that observables must be gauge-invariant, one
might suspect whether �g is really an observable quantity
or not. To clear up these unsettled issues, we first recall
that, in our gauge-invariant decomposition of the covariant
angular-momentum tensor, we do not actually need to fix
gauge explicitly. Only conditions necessary in our decom-
position is that A

�
pure in A� ¼ A

�
phys þ A

�
pure satisfies

the pure-gauge requirement, F
��
pure � @�A�

pure � @�A
�
pure �

ig½A�
pure; A�

pure� and the appropriate gauge transformation

properties (14) and (15) of A
�
phys and A

�
pure. (The fact is that

A
�
phys basically contains only the gauge-independent and

physics-containing part common to all gauges that resides
on the physical plane [19].)

Now, assume that we impose the light-cone gauge con-
dition Aþ ¼ 0, while leaving the freedom of residual
gauge transformation retaining Aþ ¼ 0. Comparing (123)
and (128), it must be clear by now that the gluon-spin terms
in the Bashinsky-Jaffe decomposition can be thought of as
the ‘‘light-cone-gauge fixed form’’ of our more general
expression. However, careful readers might notice a deli-
cate difference between the two expressions (123) and
(128). In the gluon-spin term in our decomposition, what

enters is Aphys
� , i.e., the physical part of A�, whereas the full

gauge field A� enters in the�g term of the Bashinsky-Jaffe

decomposition. As such, the fully gauge-invariant nature of
the�g term in the Bashinsky-Jaffe decomposition is not so

obvious, which is a source of confusion. Now wewill show
that the full gauge field A� in this �g term can be replaced

by its physical part Aphys
� without any approximation.

(Although not so clearly written, this fact was already
recognized in the paper by Bashinsky and Jaffe [21].)
The proof goes as follows. Following Bashinsky and

Jaffe [21], we introduce the Fourier decomposition of
A�ð�Þ � ALC

� ð�Þ as

A�ð�Þ ¼
Z dkþ

2

e�ikþ�� ~A�ðkþ; ~�Þ; (131)

where

~� ¼ ð�þ; �1; �2Þ ¼ ð�þ; �?Þ: (132)

There still remains a residual gauge symmetry. In fact, the
condition Aþ ¼ 0 is preserved by a gauge transformation,
the parameters of which do not depend on the coordinate

��. Under such a gauge transformation, ~A�ðkþ; ~�Þ trans-
forms as

~A �ðkþ; ~�Þ ! Uð~�Þ
�
~A�ðkþ; ~�Þ þ 2
i
ðkþÞ

g
@�

�
U�1ð~�Þ:

(133)

Here the inhomogeneous term appears only at kþ ¼ 0.

This motivates them to split the fields ~A�ðkþ; ~�Þ into two
parts as

~A �ðkþ; ~�Þ ¼ 2

ðkþÞA�ð~�Þ þ ~G�ðkþ; ~�Þ; (134)

which, respectively, transform as

~G�ðkþ; ~�Þ ! Uð~�Þ ~G�ðkþ; ~�ÞU�1ð~�Þ; (135)

A �ð~�Þ ! Uð~�Þ
�
A�ð~�Þ þ i

g
@�

�
U�1ð~�Þ; (136)

under the residual gauge transformation that does not
depend on ��. The decomposition is unique if one requires

the boundary condition ~G�ðkþ; ~�Þjkþ¼0 � 0 [21]. In the
coordinate space, this corresponds to the decomposition

A�ð�Þ ¼ A
phys
� ð�Þ þ A

pure
� ð�Þ; (137)

with

Aphys
� ð�Þ �

Z dkþ

2

e�ikþ�� ~G�ðkþ; ~�Þ; (138)

A
pure
� ð�Þ �

Z dkþ

2

e�ikþ��

2

ðkþÞA�ð~�Þ ¼ A�ð~�Þ
¼ A�ð�þ; �?Þ: (139)

A noteworthy fact here is that the pure-gauge part of A�ð�Þ
does not depend on the coordinate ��. By making use of it,
one can easily convince that these two parts transform in
the following way:
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A
phys
� ð�Þ ! Uð~�ÞAphys

� ð�ÞU�1ð~�Þ; (140)

A
pure
� ð�Þ ! Uð~�Þ

�
A
pure
� ð�Þ þ i

g
@�

�
U�1ð~�Þ; (141)

under the residual gauge transformation. This transforma-
tion rules just confirm our previous statement on the cor-
respondence

A � $ Apure
� ;

Di ¼ @i � gAi $ D
pure
i ¼ @i � gA

pure
i :

More precisely, A� can be thought of as a special case of
our more general quantity A

pure
� after choosing the light-

cone gauge. This implies that the gluon-spin term in our
general (gauge-invariant) decomposition in fact reduces to
the corresponding piece of the Bashinsky-Jaffe decompo-
sition given in the light-cone gauge.
Now we return to the expression for the polarized gluon

distribution function f�gðxÞ;

f�gðxÞ ¼
1
4


R
d2�? R

d�� R
d��e�ixPþ��hPjFþ�ð�Þ�þ�

�
�A�ð�þ ��ÞjPiR

d2�? R
d�� ; (142)

with

� ¼ ð�þ; ��; �?Þ; ~� ¼ ð�þ; �?Þ: (143)

Noting the fact that Apure
� ð�Þ ¼ A�ð~�Þ does not depend on ��, the contribution of the pure-gauge part is given by

f�gðxÞ ¼

ðxÞ
2Pþ

R
d2�? R

d��hPjFþ�ð�Þ�þ�
�
� ~A�ð~�ÞjPiR

d2�? R
d�� : (144)

Using the relation Fþ�ð�Þ ¼ @
@�� A

�ð�Þ that holds in the light-cone gauge, we therefore find that

Z
d��hPjFþ�ð�Þ�þ�

�
�Að~�ÞjPi ¼

Z
d��hPj @

@�� A�ð�Þ�þ�
�
�Að~�ÞjPi ¼ hPj½A�ð�� ¼ þ1Þ

� A�ð�� ¼ �1Þ��þ�
�
�A�ð~�ÞjPi �

Z
d��

�
P

��������A�ð�Þ�þ�
�
� @

@�� A�ð~�Þ
��������P

�

¼ hPj½A�ð�� ¼ þ1Þ � A�ð�� ¼ �1Þ��þ�
�
�A�ð~�ÞjPi; (145)

since @
@�� A�ð~�Þ ¼ 0. In the light-cone gauge, the above surface term does not vanish, because either A�ð�� ¼ þ1Þ or

A�ð�� ¼ �1Þ or both remains finite. Nonetheless, as pointed out in [21], the surface term does not contribute to the
polarized gluon distribution f�GðxÞ, since
Z þ1

�1
d��hPjFþ�ð�Þ�þ�

�
�A�ð~�ÞPi=

Z þ1

�1
d�� ¼ hPj½A�ð�� ¼ þ1Þ � A�ð�� ¼ �1Þ��þ�

�
�A�ð~�ÞjPi=

Z þ1

�1
d��

¼ 0: (146)

On the other hand, the contribution of the physical part of A� is given as

f�gðxÞ ¼
1
4


R
d2�? R

d�� R
d��eixPþ�2hPjFþ�ð�Þ�þ�

�
�Aphys

� ð�þ ��ÞjPiR
d2�? R

d�� : (147)

Using the translational invariance

hPjFþ�ð�Þ�þ�
�
�Aphys

� ð�þ ��ÞjPi
¼ hPjFþ�ð0Þ�þ�

�
�A

phys
� ð��ÞjPi; (148)

we therefore obtain

f
phys
�g ðxÞ¼ 1

4


�
Z
d��eixPþ��hPjFþ�ð0Þ�þ�

�
�Aphys

� ð��ÞjPi:
(149)

The corresponding 1st moment becomes
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�g ¼
Z 1

�1
f
phys
�G ðxÞdx

¼ 1

2Pþ hPjFþ�ð0Þ�þ�
�
�Aphys

� ð0ÞjPi: (150)

Note that this precisely takes the same form as our�g term

�g ¼ hP; sjMþ12
g�spinð0ÞP; si=2Pþ

¼ 1

2Pþ hPjFþ�ð0Þ�þ�
�
�Aphys

� ð0ÞjPi: (151)

Needless to say, A
phys
� in (150) should be interpreted as a

gauge fixed form of more general A
phys
� in (151) after taking

the light-cone gauge. With this understanding, it is clear
now that the numerical value of the gluon-spin term in the
Bashinsky-Jaffe decomposition precisely coincides with
that of the gluon-spin term in our more general decom-
position. (This is just what is meant by the gauge invari-
ance.) To put it in another way, the gluon-spin part in our
gauge-invariant decomposition precisely reduces to the 1st
moment of the polarized gluon distribution accessed by
high-energy DIS measurements. It is widely recognized
that there is no gauge-invariant local operator correspond-
ing to the 1st moment of the polarized gluon distribution in
the standard operator-product expansion. However, it
should be clear by now that there is no conflict between
this general statement and our finding above. The decom-
position of the gauge field A� into its physical and pure-
gauge parts is generally a nonlocal operation so that A

phys
�

is not a local operator. (This is true not only for the light-
cone gauge but also for the generalized Coulomb gauge
advocated by Chen et al.) Now we can definitely say that
the gluon-spin contribution to the nucleon spin measured
by high-energy DIS measurements just coincide with the
quantity appearing in our general decomposition of the
nucleon spin discussed in the previous sections, so that it
can be given a manifestly gauge-invariant and practically
frame-independent meaning.

At this point, it may be useful to summarize some of the
important lessons that we have learned from the present
investigation. First, as repeatedly emphasized, the way of
gauge-invariant decomposition of the nucleon spin is not
necessarily unique. We showed that there are basically two
independent decompositions of the nucleon spin, i.e., de-
composition (I) specified by (26) and decomposition (II)
specified by (35). Decomposition (II) contains three known
decompositions of the nucleon spin, i.e., those of Jaffe and
Monahar, of Bashinsky and Jaffe, and of Chen et al. We
can say that all these decompositions are physically
equivalent in the sense that they are all obtained from
more general decomposition (II) by means of suitable
gauge fixing. On the other hand, the physical content of
decomposition (I) is critically different from decomposi-
tion (II). Decomposition (I) contains the famous Ji decom-
position, although the former allows the decomposition of
the total gluon angular momentum into its intrinsic spin

and orbital parts, which was given up in the latter. For
pedagogical reason, we think it useful to summarize this
state of affairs in conceptual figures as illustrated in Fig. 1.
The superiority of decomposition (I) over decomposi-

tion (II) is that both of the quark and gluon orbital angular
momenta can be related to concrete high-energy observ-
ables. In fact, after confirmation of the frame independence
of our nucleon spin decomposition, we can now work in an
arbitrary Lorentz frame. Then, the following identity must
hold for the quark orbital angular momentum in decom-
position (I):

Lq ¼ hp " jM012
q�OAMjp "i

¼ 1

2

Z 1

�1
x½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ�dx

� 1

2

Z 1

�1
�qðxÞdx; (152)

where

M012
q�OAM ¼ �c

�
x� 1

i
D

�
3
c : (153)

(Note that the parton distribution functions and the polar-
ized PDF appearing in the right-hand side of (152) are the
Lorentz-frame-independent quantities.) This identity
means that the quark orbital angular momentum Lq in

decomposition (I) precisely coincides with the difference
of the 2nd moment of the unpolarized GPD Hqðx; 0; 0Þ þ
Eqðx; 0; 0Þ and the 1st moment of the longitudinally polar-
ized quark distribution �qðxÞ, which are both observables.
Furthermore, this Lq is given as a proton matrix element of

the dynamical orbital angular momentum of quarks, i.e.,
x� 1

i D ¼ x� 1
i ðr � igAÞ not the canonical orbital an-

gular momentum x� 1
i r or its gauge-invariant extension

x� 1
i Dpure ¼ x� 1

i ðr � igApureÞ [17].
Similarly, for the gluon orbital angular momentum Lg in

decomposition (I), the following identity must hold

Decomposition (I) Decomposition (II)

Bashinsky-Jaffe

Jaffe-Manohar

Chen et al.

Ji

FIG. 1 (color online). Schematic picture of two independent
gauge-invariant decompositions of nucleon spin and the relation
with the known decompositions.
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Lg ¼ hp " jM012
g�OAMjp "i

¼ 1

2

Z 1

�1
x½Hgðx; 0; 0Þ þ Egðx; 0; 0Þ�dx

�
Z 1

�1
�gðxÞdx; (154)

where

M012
g�OAM¼2Tr½Ejðx�DpureÞ3Aphys

j �
þ2Tr½�ðx�AphysÞ3�: (155)

One confirms that the gluon orbital angular momentum in
decomposition (I) just coincides with the difference of the
2nd moment of the gluon GPD Hgðx; 0; 0Þ þ Egðx; 0; 0Þ
and the 1st moment of the longitudinally polarized gluon
distribution �gðxÞ. What is noteworthy here is that the
relevant gluon orbital angular-momentum operator enter-
ing in this identity consists of two terms. The 1st piece is a
gauge-invariant extension of the canonical orbital angular
momentum of gluons. (It is physically equivalent to the
usual canonical orbital angular momentum appearing, for
instance, in the Jaffe-Manohar decomposition.) The 2nd
piece is nothing but the potential angular-momentum term
discussed in some detail in our previous paper [14]. In view
of the analogous situation for the quark part, it would be
legitimate now to call the sum of these two pieces, i.e., the
whole part of M012

g�OAM in (155), the dynamical orbital

angular momentum of the gluon field.
Before ending this section, we think it instructive to call

attention to some other recent investigations related to the
nucleon spin decomposition. As emphasized above, the
quark orbital angular momentum extracted from the com-
bined analysis of the unpolarized GPDs and the longitudi-
nally polarized quark distribution functions is the
dynamical orbital angular momentum not the canonical
one or its nontrivial gauge-invariant extension. At least
until now, we have had no means to extract the canonical
orbital angular momentum purely experimentally, which
also means that the difference between the dynamical and
canonical orbital angular momenta is not a direct experi-
mental observable. Nevertheless, it is not impossible to
estimate the size of this difference within the framework
of a certain model. In fact, Burkardt and BC estimated the
difference between the orbital angular momentum ob-
tained from the Jaffe-Manohar decomposition and that
obtained from the Ji decomposition within two simple
toy models, and emphasize the possible importance of
the vector potential in the definition of the orbital angular
momentum [34]. The difference between the above two
orbital angular momenta is nothing but the potential an-
gular momentum in our terminology.

Also noteworthy is recent phenomenological investiga-
tions on the role of orbital angular momenta in the nucleon

spin. In a recent paper, we have pointed out possible
existence of a significant discrepancy between the lattice
QCD predictions [35,36] for Lu � Ld (the difference of the
orbital angular momenta carried by up- and down-quarks
in the proton) and the prediction of a typical low energy
model of the nucleon, for example, the refined cloudy-bag
model [37]. It is an open question whether this discrepancy
can be resolved by the strongly scale-dependent nature of
the quantity Lu � Ld especially in the low Q2 domain as
claimed in [38], or whether the discrepancy has a root (at
least partially) in the existence of two kinds of quark
orbital angular momenta as indicated in [39,40]. (See
also [41,42] for details.)

V. SUMMARYAND CONCLUSION

When discussing the spin structure of the nucleon, color
gauge invariance has often been a cause of controversy. For
instance, it is known that the polarized gluon distribution in
the nucleon can be defined in terms of a nucleon matrix
element of the gauge-invariant correlation function. On the
other hand, one is also aware of the fact that there is no
gauge-invariant local operator corresponding to the 1st
moment of the polarized gluon distribution in the standard
operator-product expansion. Undoubtedly, this seemingly
conflicting observation has a common root as the familiar
statement that there is no gauge-invariant decomposition of
the gluon total angular momentum into its spin and orbital
parts. Inspired by the recent proposal by Chen et al., we
find it possible to make a gauge-invariant decomposition of
the covariant angular-momentum tensor of QCD in an
arbitrary Lorentz frame. Based on this fact, we could
show that our decomposition of the nucleon spin is not
only gauge-invariant but also practically frame indepen-
dent. We have also succeeded in establishing that each
piece of our nucleon spin decomposition just corresponds
to the observable extracted through combined analyses of
the GPD measurements and the polarized DIS measure-
ments, thereby supporting the standardly accepted experi-
mental program aiming at complete decomposition of the
nucleon [43–45]. In particular, the gluon-spin part of our
decomposition precisely coincides with the 1st moment of
the polarized gluon distribution function. In our theoretical
framework, this gluon-spin part of the decomposition is
given as a nucleon matrix element of the gauge-invariant
operator. However, since this operator is generally non-
local, there is no conflict with the knowledge of the stan-
dard operator-product expansion.
From a practical viewpoint, the more important lesson to

be learned from our present theoretical analysis would be
the physical insight into the measurable quark and gluon
orbital angular momenta appearing in our recommendable
decomposition (I). We have confirmed that the quark orbi-
tal angular momentum, which can be extracted as the
difference of the 2nd moment of the unpolarized quark
GPD and the 1st moment of the longitudinally polarized
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quark distribution, is the dynamical quark orbital angular
momentum hx� ðp� gAÞi not the canonical one hx� pi.
Similarly, the gluon orbital angular momentum extracted
as the difference of the 2nd moment of the unpolarized
gluon GPD and the 1st moment of the longitudinally
polarized gluon distribution is not the canonical orbital
angular momentum but the dynamical orbital angular mo-
mentum containing the potential angular momentum term
in our terminology. Even though no experimental process
to directly access to the canonical orbital angular momenta
is known at present, one should clearly keep in mind the

existence of two kinds of orbital angular momenta for both
of quarks and gluons.
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