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Phase diagram of the chiral random matrix model with Uð1ÞA breaking term is studied with the quark

chemical potentials varied independently at zero temperature by taking the chiral and meson condensates

as the order parameters. Although, without the Uð1ÞA breaking term, chiral transition of each flavor can

happen separately responding to its chemical potential, the Uð1ÞA breaking terms mix the chiral

condensates and correlate the phase transitions. In the three-flavor case, we find that there are mixings

between the meson and chiral condensates due to the Uð1ÞA anomaly, which makes the meson condensed

phase more stable. Increasing the hypercharge chemical potential (�Y) with the isospin and quark

chemical potentials ð�I;�qÞ kept small, we observe that the kaon-condensed phase becomes the ground

state and at the larger �Y the pion-condensed phase appears unexpectedly, which is caused by the

competition between the chiral restoration and the meson condensation. The similar happens when�Y and

�I are exchanged, and the kaon-condensed phase becomes the ground state at larger �I below the full

chiral restoration.
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I. INTRODUCTION

The phase diagram of QCD at finite density has long
been challenged from the perspectives on the fundamental
properties of dense matter realized in the core of a compact
star and relativistic heavy-ion collisions. The chiral
symmetry breaking in light quark sector is one of the
crucial features in low-energy QCD which should be
reflected in any effective model. In the massless quark
limit with flavor number Nf ¼ 2 or 3, chiral symmetry

breaking gives rise to continuously degenerate vacua and to
emergence of the massless Nambu-Goldstone bosons as
the most important degrees at low energies. In reality,
nonzero u- and d-quark masses and heavier s-quark mass
lift this degeneracy and explain the observed pseudoscalar
meson spectrum.

A system at finite quark number densities is character-
ized with the quark number chemical potentials�f (f ¼ u,

d, s) in the grand canonical description. The simplest
situation at finite density may be the case with equal
chemical potentials � ¼ �u ¼ �d ¼ �s for all flavors,
where the s-quark density may be suppressed compared
with the u and d quarks due to the mass difference.
However, the quark chemical potentials �f are generally

unequal in various physical situations. There are more
protons than neutrons in nuclei and also in neutron stars
because of the electric charge of protons. In the core of
compact stars in beta equilibrium, the heavy mass of the s
quark may be overcome by the large electric chemical
potential, which may result in the appearance of s-quark
degrees of freedom. In ultrarelativistic heavy-ion collisions
the total strangeness number is constrained to zero.

The phase structure at finite chemical potentials has very
rich theoretical possibilities [1–4]. Historically, in dense

nuclear matter, nucleon superfluidity, pion and kaon con-
densations, and hyperon mixture were studied based on
empirical nucleon interactions and chiral perturbation the-
ory [3]. More recently, color superconductivity was exten-
sively investigated and the kaon-condensed phase acquired
renewed interests there [4]. Possibility of inhomogeneous
phases is also discussed recently1 [5].
Another motivation to consider the phase diagram with

unequal chemical potentials is that one can directly exam-
ine in lattice QCD simulations the Nf ¼ 2 case with finite

isospin and zero quark chemical potentials, �I � ð�u �
�dÞ=2 � 0 and �q � ð�u þ�dÞ=2 ¼ 0, where the mea-

sure for the importance sampling is real. We note that it
may be possible to simulate the Nf ¼ 3 case with �I � 0

and �q ¼ �s ¼ 0, at least in principle.

The ground state at finite isospin chemical potential but
at zero quark number density was studied with the chiral
Lagrangian, which revealed that the pion condensate ap-
pears once �I exceeds half the pion mass m�=2 [6].
Indeed, in the chiral limit, the degenerate ground state is
completely chiral-rotated to the pion-condensed state at
infinitesimal external field �I � 0. Adding a finite quark
mass mq � 0, which makes the pion massive, we have a

competition between the two alignments, h �qqi and h �u�5di
directions for mq and �I, respectively. In the three-flavor

case, kaon condensation appears once the hypercharge
chemical potential �Y exceeds the threshold given by mK

with �I ¼ 0 [7].
The chiral random matrix (ChRM) model is one of the

models which share the chiral symmetry with QCD. Thus,

1The p-wave pion-condensed phase too accompanies inhomo-
geneity [3].

PHYSICAL REVIEW D 83, 014005 (2011)

1550-7998=2011=83(1)=014005(12) 014005-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.014005


it will serve as a useful model providing qualitative
features of the QCD phase diagram. The aim of this paper
is to explore the phase structure of the (ChRM) model,
including the possibilities of the meson condensations, as a
function of the quark chemical potentials �f (f ¼ u, d, s)

at zero temperature.
In the previous work of the ChRM model with two

flavors done in Ref. [8], it was shown that the pion-
condensed phase appears at finite �I above a critical value
�Ic as suggested by [6], whereas it eventually disappears
as�I is further increased, which is understood as the chiral
restoration at high density. It was also indicated that with
small nonzero�I the chiral restoration occurs in two steps:
as �q is increased with (e.g.) negative �I < 0 fixed, the

h �ddi condensate discontinuously decreases first, and then
the h �uui at slightly larger �q. The two- (or three-) step

transition along the�q axis with finite�I and/or�Y is also

observed in the three-flavor case of the ChRM model
[9,10] and in the two and three-flavor cases of the
Nambu–Jona-Lasinio (NJL) model [11–14].

This two-step transition happens evidently because these
models do not include flavor mixing interactions and then
each quark sector independently responds to each quark
chemical potential �f. The Uð1ÞA anomaly in QCD is

known to induce the flavor mixing and tends to unify the
two chiral transitions into one. This is demonstrated in the
NJL model with Uð1ÞA breaking effective interactions,
which results in the usual phase diagram with a single
transition [14].

The Uð1ÞA anomaly effect is indispensable to build a
low-energy effective model of hadrons in medium as well
as in vacuum [15–17]. Although in a conventional ChRM
model the Uð1ÞA anomaly effect is not treated appropri-
ately so as to affect the nature of the chiral transition,
recently we have succeeded in constructing the model in
which the Uð1ÞA breaking term generates the flavor-
number dependence of the transition order [18]. This
model in the massless quark limit shows the second-order
phase transition for Nf ¼ 2, whereas the first-order one for

Nf ¼ 3. We explored the phase diagram of the model in the

T–�q–mq space with h �qfqfi as the order parameter [19].

It seems now quite intriguing to investigate the phase
diagram allowing the pion and kaon condensates in
the ChRM model with Nf ¼ 2 and 3 as a function of the

chemical potentials �f, with emphasis on the role of the

Uð1ÞA anomaly. Similar studies were previously performed
employing the NJL model with Uð1ÞA anomaly effects
[14,20,21]. In Ref. [14], the phase structure for Nf ¼ 2 is

studied only in small �I region below the threshold for the
pion condensation, and the study is extended by including
the pion-condensed phase in Ref. [20]. Ref. [21] deals with
the Nf ¼ 3 case restricted at �I � 0 and �Y ¼ 0, where

the possibility of kaon condensation is ignored.
This paper is organized as follows. After a review of the

QCD phase structure with finite chemical potentials in

Sec. II, we introduce the ChRM model with anomaly
effects in Sec. III. The model phase structure including
the possibility of the mesonic condensation is investigated
analytically and numerically in Secs. IV and V for Nf ¼ 2

and 3, respectively. Sec. VI is devoted to a summary.

II. QCD WITH QUARK CHEMICAL POTENTIALS

In this section, we briefly review the symmetry breaking
pattern of QCD with nonzero quark chemical potentials.
The QCD partition function with Nf quark flavors at finite

temperature and chemical potential is regarded as the
average of the Dirac operators with non-Abelian gauge
field action SYM:

ZQCD ¼
Z

DA
YNf

f

detðDð�fÞ þmfÞe�SYM ; (1)

whereDð�fÞ ¼ ��ð@� � igA� þ B��fÞ is the (Euclidean)
Dirac operator for a flavor f andmf is the mass. The quark

number chemical potential �f is introduced independently

for each quark flavor f with a constant Lorentz vector
B� ¼ ð0; 0; 0; 1Þ.
In the massless limit mf ¼ 0 with zero chemical

potential �f ¼ 0, the classical QCD Lagrangian possesses

UðNfÞL � UðNfÞR chiral symmetry, which is broken down

to Uð1ÞB � SUðNfÞL � SUðNfÞR at the quantum level due

to the axial anomaly. The Uð1ÞB invariance results in the
quark number conservation. Nonperturbative QCD dynam-
ics is believed to break this symmetry spontaneously to
Uð1ÞB � SUðNfÞV, generating a large part of the nucleon

mass and the light pions as the Nambu-Goldstone (NG)
boson. In reality, nonzero quark mass term acts as an
external field to select the ordinary vacuum state with
nonzero h �qqi condensate out of the nearly degenerate
vacua.
The chiral symmetry of QCD is intact at finite quark

number chemical potential as far as it is flavor singlet,
which is usually assumed in the context of finite density
QCD. Once the flavor-nonsinglet potential is set nonzero, it
gives a stress on the flavor symmetric ground state in
addition to the quark mass term. Symmetry breaking pat-
tern in this situation has been studied most conveniently
with the chiral Lagrangian [6,7].
Let us consider the Nf ¼ 2 case with the small u- and

d-quark massesmu ¼ md. At zero chemical potential there
appear nearly degenerate vacua connected with each other
by the SUð2Þ � SUð2Þ ’ Oð4Þ transformation, and the true
ground state aligns to the direction of the quark mass term
with SUð2ÞV invariance. When the isospin chemical poten-
tial �I ¼ ð�u ��dÞ=2 is applied, this invariance explic-
itly breaks down to Uð1Þ 2 SUð2ÞV around the 3rd isospin
axis. The mass m and the potential �I compete to fix the
ground state. For �I > m�=2, a new class of the degener-
ate vacua appears with nonzero pion field and the ground
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state spontaneously breaks the U(1) symmetry, which is
accompanied by the appearance of an NG boson. This
symmetry breaking pattern is summarized as follows:

U ð1ÞB � SUð2ÞV !�I�0
Uð1ÞB � Uð1Þ !�c cond

Uð1ÞB: (2)

For Nf ¼ 3, we consider the 2þ 1 flavor case, where

the quark masses mu ¼ md � ms and the chemical poten-
tials �u � �d � �s in general. In this case, all flavor
symmetry is broken explicitly leaving only Uð1Þ � Uð1Þ �
Uð1Þ invariance, which represents the conservation of each
flavor. Once (e.g.) �d�5s meson condensate is formed in
addition to the nonzero chiral condensates, the symmetry is
spontaneously broken down to Uð1Þ � Uð1Þds, where
Uð1Þds leaves the condensate h �d�5si invariant. We also
find one NG mode corresponding to the spontaneous
breaking of U(1).2 The symmetry breaking pattern is

Uð1ÞB � SUð3ÞV !�f�0
Uð1Þ � Uð1Þ

� Uð1Þ !K cond
Uð1Þ � Uð1Þds: (3)

III. RANDOM MATRIX MODEL

The chiral random matrix model [24,25] is constructed
based on the idea that the spontaneous breaking of the
chiral symmetry is dominated by the low-lying Dirac
eigenmodes, as is manifest in the Banks-Casher relation
between the chiral condensate and the spectral density
near zero [26]. The Dirac operator D is then truncated to
be a matrix within the restricted space spanned by the
(quasi-) zero modes, and the matrix elements are treated
as random variables. Explicitly, in the representation where
�5 ¼ diagð1;�1Þ, we have

D ¼ 0 iRþ C
iRy þ CT 0

� �
; (4)

where R is a rectangular complex randommatrix and C is a
nonrandom matrix responsible for the effects of tempera-
ture and chemical potentials. Note that the block structure
follows from the chiral symmetry f�5; Dg ¼ 0.

When the matrix R is not square but rectangular, the
Dirac operator D has j�j exact zero eigenvalues with j�j
being the difference between the numbers of the rows and
the columns of R. This is the realization of the index
theorem for the topological charge and the number of exact
zero modes in ChRMmodel. Hence, in order to include the
anomaly effects, we need to deal with the nonsquare matrix
properly. To this end, we categorize the zero modes into
two species, the near-zero modes and the topological
zero modes [18]. The former are assumed to be N left-
and N right-handed low-lying modes generated in gluon

dynamics, while the latter are interpreted as the modes,
each of which is localized near one of Nþ instantons or N�
anti-instantons in a gauge field configuration. Then the size
of the matrix R is taken as ðN þ NþÞ � ðN þ N�Þ, and the
topological charge of the configuration is � ¼ Nþ � N�.
We take the number of the near-zero modes 2N and the
mean number of the topological zero modes hN�i to be
proportional to the four-volume V of the system.
Concerning the matrix C, which represents the medium

effects, we introduce the effective temperature T and
chemical potential �f for a flavor f in the near-zero

mode sector, while they are set to zero in the topological
zero mode sector [18,25]:

Cf ¼
ð�f þ iTÞ1N=2 0 0

0 ð�f � iTÞ1N=2 0
0 0 0

0
@

1
A: (5)

In the near-zero mode sector, �f � iT may be interpreted

as the contributions from the two lowest Matsubara fre-
quencies. The Dirac operator D with nonzero chemical
potential �f � 0 is no longer antihermitian, though the

partition function is invariant under �f $ ��f. We stress

here the fact that the absence of the medium effects in the
topological zero mode sector resolves the unphysical sup-
pression of the topological susceptibility of the original
ChRM model (see discussion in [27,28]). This form of Cf

may be understood physically as the fact that a topological
zero mode localized near an (anti-) instanton is rather
insensitive to the medium effects.
Using the Dirac operator (4), we define the partition

function of the ChRM model with fixed Nþ and N� as

ZNþ;N� ¼
Z

dRe�N�2trRRy YNf

f¼1

detðDð�fÞ þmfÞ; (6)

with a Gaussian weight for the matrix R. The typical scale
of the chiral symmetry breaking is fixed by the parameter
�. The complete partition function is obtained by summing
over the numbers of topological zero modes Nþ and N�
with a distribution function PðN�Þ as

ZRM ¼ X
Nþ;N�

PðNþÞPðN�ÞZNþ;N� : (7)

The Poisson distribution would be appropriate for PðN�Þ
in a dilute instanton system [16]. Adopting the Poisson
distribution, however, one finds that the effective potential
becomes unbounded from below [29]. Instead, we choose
PðN�Þ to be a binomial distribution [18]

PðN�Þ ¼ �N
N�

� �
pN�ð1� pÞ�N�N� (8)

with parameters � and p. The binomial distribution models
the situation that if we divide the four-volume V into �N
cells, an instanton appears in one of the cells with the
probability p, barring double occupancy. In other words,

2It is known that the numbers of the broken generators and the
NG bosons can differ in some cases, e.g., feromagnetism, kaon-
condensed phase with �I ¼ 0, etc. [22,23].
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we introduced a repulsive interaction among instantons.
This modification results in a bounded effective potential
with a stable ground state [18].

After the standard bosonization manipulation, we can
express the partition function at T ¼ 0 as

ZRMðM; �̂Þ ¼
Z

dSe�2N� (9)

with the effective potential

�ðS;M; �̂Þ ¼ �2

2
trSyS

� 1

2
logdet

SþM �̂

�̂ Sy þMy

" #

� �

2
logj� detðSþMÞ þ 1j2; (10)

where the bosonic field S 2 CNf�Nf is the order parameter

matrix corresponding to the bifermion field Sfg � �c f
Rc

g
L,

and M ¼ diagðmu;md; . . . ; mNf
Þ and �̂ ¼ diagð�u;

�d; . . . ; �Nf
Þ are the mass and the chemical potential

matrices, respectively. The term involving the parameters
� and � ¼ p=ð1� pÞ breaks the Uð1ÞA symmetry
S ! Sei� even in the M ¼ 0 limit [15,16]. In the thermo-
dynamic limit, N ! 1, the ground state is found as a
solution of the saddle point equation @�=@Sfg ¼ 0.

Using the solution �S, the chiral condensate can be com-
puted for a flavor f as

h �c fc fi ¼ @

@mf

�ð �S;M; �̂Þ ¼ ��2 �Sff: (11)

By generalizing the mass matrix to the source matrix

M ¼ ðsa þ ipaÞ�a=
ffiffiffi
2

p
with the generators �a normalized

trð�a�bÞ ¼ 2�ab, other scalar (chiral) and pseudoscalar
(meson) condensates are evaluated by differentiating in
sa and pa, respectively.

In the preceding works [18,19], we have studied the
ground state of this model for Nf ¼ 2 and 3 at finite

temperature T and equal chemical potential �. Regarding
the anomaly parameters � and �, we have found that, for
the large anomaly parameters �� * �2, this model does
not show chiral restoration, and therefore we should use the
anomaly parameters in the region which allows the chiral
phase transition. In the chiral limit, the chiral phase tran-
sition at finite T and zero � is found to be second (first)
order for Nf ¼ 2 (3). This flavor-number dependence

comes from the Uð1ÞA anomaly term. Extending to the
� � 0 case, we find that the transition on the T–� plane
changes from the second order to the first order at a
tricritical point as � is increased in the Nf ¼ 2 case. For

Nf ¼ 3, the first-order phase boundary separates the T–�

plane into two regions. With increasing the quark mass, the
thermal transition gets weakened and eventually turns to a
smooth crossover, while the transition at larger � than a

critical point remains of first order. Then the T–� phase
diagram becomes similar to the Nf ¼ 2 case with

small quark masses. For more detailed discussions, see
Refs. [18,19].

IV. PHASE DIAGRAM: Nf ¼ 2 CASE

A. Effective potential

We study the situation where �u � �d with the degen-
erated quark masses mu ¼ md � m. It is convenient to
define the (averaged) quark chemical potential �q and

the isospin chemical potential �I as

�q ¼ 1

2
ð�u þ�dÞ; (12)

�I ¼ 1

2
ð�u ��dÞ: (13)

The order parameter matrix can be parametrized as S ¼
�að	a þ i
aÞ with the U(2) generators �a (a ¼ 0, 1, 2, 3).
The usual ground state breaks the chiral symmetry sponta-
neously, having nonzero chiral condensate	0. At finite �I

the pion-condensed phase where 
1;2 are nonzero may be

favored. Therefore, we adopt here the following Ansatz:

S ¼ 	u i
1 þ 
2

i
1 � 
2 	d

� �
(14)

with real order parameters 	u, 	d, and 
1;2. Notice that

nonzero �I explicitly breaks the SU(2) isospin invariance
down to U(1) invariance generated by �3, and then
	u � 	d in general. Substituting this form into the effec-
tive potential (10), we obtain

� ¼ �2

2
ð	2

u þ	2
d þ 2j
j2Þ

� 1

2
log½ð�u þ�uÞð�d ��dÞ þ j
j2�

� 1

2
log½ð�u ��uÞð�d þ�dÞ þ j
j2�

� �

2
log½�ð�u�d þ j
j2Þ þ 1�2; (15)

where �f ¼ 	f þm. This model reduces to the one

studied in Ref. [8], when the anomaly term is neglected
�� ¼ 0 as it should. Note that the potential depends on 
1

and 
2 only through j
j2 ¼ 
2
1 þ 
2

2 due to the residual U
(1) symmetry. Hereafter, we shall arbitrarily choose the
meson condensate such that 
1 ¼ 0 and 
2 ¼ 
, which
breaks the U(1) invariance. Nonzero 
 ¼ ðh �u�5di �
h �d�5uiÞ=2 signals the pion condensation.
The saddle point equations with respect to 	u, 	d, and


 respectively yield
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@�

@	u

¼ �2	u � 1

2

�
�d ��d

ð�u þ�uÞð�d ��dÞ þ 
2

þ �d þ�d

ð�u ��uÞð�d þ�dÞ þ 
2

�

� ���d

�ð�u�d þ 
2Þ þ 1
¼ 0; (16)

@�

@	d

¼ �2	d � 1

2

�
�u þ�u

ð�u þ�uÞð�d ��dÞ þ 
2

þ �u ��u

ð�u ��uÞð�d þ�dÞ þ 
2

�

� ���u

�ð�u�d þ 
2Þ þ 1
¼ 0; (17)

@�

@

¼ 2�2
� 1

2

�
2


ð�u þ�uÞð�d ��dÞ þ 
2

þ 2


ð�u ��uÞð�d þ�dÞ þ 
2

�

� 2��


�ð�u�d þ 
2Þ þ 1
¼ 0: (18)

Let us first classify the solutions with 
 ¼ 0. Remember
that when �� ¼ 0, the chiral condensates 	u and 	d

decouple from each other. Thus, in the ideal case of m ¼
0, we have four solutions by making combinations of	f ¼
0 and 	f � 0, depending on the values of �f. If �� � 0,

however, the condensate 	d cannot vanish exactly once
	u � 0 because of the flavor mixing, while the trivial
solution 	u ¼ 	d ¼ 0 is still intact. Thus, in the chiral
limit with �� � 0, we expect four types of solutions:
(i) ordinary phase with broken chiral symmetry,
(ii) phase with restored chiral symmetry, (iii) and
(iv) phases with nearly vanishing chiral condensate for
only one of the flavors, u and d. We numerically find that
the transitions between these four phases are of first order,
and hence these four phases remain at small m � 0.

We next consider in what conditions the 
 � 0 solution
appears. To this end, we expand the thermodynamic po-
tential with respect to 
 at the ordinary ground state
@�=@	u;d ¼ 0 and 
 ¼ 0:

�ð
;m;�fÞ ¼ �0ðm;�fÞ þ�2ðm;�fÞ
2 þ � � � : (19)

Then one finds the coefficient �2 up to Oðm;�2
I Þ as

�2 ¼ M2
� � 2�2

I

ð	2
0 ��2

qÞ2
�
1þ �2

q

ð	2
0 ��2

qÞ2�2

��1
; (20)

where 	0 is the scalar condensate at m ¼ �I ¼ 0. We see
that the finite pion massM2

� ¼ m�2=	0 disfavors the pion
condensation, while the finite chemical potential �I

favors it. From the condition �2 ¼ 0, the critical isospin

chemical potential is found to be �2
Ic / M2

� within this
leading approximation.3

When m ¼ 0 i.e. m2
� ¼ 0, infinitesimal �I selects out

the ground state solution of 	u ¼ 	d ¼ 0 and 
 � 0
among the degenerate vacua. We find that from Eq. (18)
the nontrivial solution satisfies the relation


2 ¼ �u�d þ
�
�2 � ��

�
2 þ 1

��1
: (21)

For �� ¼ 0 this recovers the solution of [8]


2
0 ¼ �u�d þ 1

�2
¼ �2

q ��2
I þ

1

�2
: (22)

In the large �2
I region, 


2 > 0 solution disappears and the
U(1) symmetry is restored. The second-order transition
line is given by a hyperbola on the �q–�I plane, obtained

by setting 
 ¼ 0 in Eq. (21). This pion-condensed region is
enlarged by a factor ð1� ��=�2Þ�1 as compared to the
case without anomaly.
Before analyzing the ground state solution numerically,

we remark here the symmetry of the effective potential
(10). First the effective potential is invariant under the
respective charge conjugations �u ! ��u and/or �d !
��d when 
 ¼ 0. In addition, the effective potential (10)
is invariant under u $ d. Reflecting these invariant opera-
tions, the phase diagram has an eightfold structure on the
�u–�d or �q–�I plane. Nonzero condensation 
 of the

charged pion, however, breaks the respective charge con-
jugation symmetry leaving only the simultaneous one
ð�u;�dÞ ! ð��d;��uÞ. Together with the flavor sym-
metry u $ d, a fourfold structure remains in the phase
diagram. On the �q–�I plane, therefore, it is sufficient to

investigate the phase diagram in the first quadrant �q > 0

and �I > 0.

B. Numerical result

In the top panel of Fig. 1, we show the phase diagram on
the �q–�I plane with parameters � ¼ 0:5, � ¼ 1, � ¼ 1,

and m ¼ 0. The dotted lines denotes the first-order phase
transitions with respect to the scalar condensates 	u and
	d when the possibility of the pion condensation is
neglected. In this restricted case, we find around the origin
the ordinary phase where 	u and 	d � 0. Allowing the
pion condensation, we find that it completely covers the
region of the ordinary chirally broken phase and it extends
to the larger j�Ij region, as shown with the solid line in
Fig. 1. Let us look at the small chemical potential region
first. The ordinary phase with nonzero	u ¼ 	d and 
 ¼ 0
and the pion-condensed phases with 
 � 0 are coexisting
along the line �I ¼ 1

2 ð�u ��dÞ ¼ 0 in the chiral limit.

With an infinitesimal �I, however, the ordinary ground
state is totally rotated away to the pion-condensed phase.

3Note that we use a different notation M� for the pion mass in
this model from the physical one m� because the physical unit in
the ChRM model is not fixed.
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This behavior was already found in the chiral sigma model
[6]. This is to be expected because the ChRM model is
similar to the potential term of the chiral sigma model at
small chemical potential �f and small symmetry breaking

m [8]. Next, in the large-�f region in Fig. 1, we see that the

chiral symmetry restoration occurs. Increasing �I with �q

kept small, we find a second-order phase transition from
the pion-condensed phase to the chiral-restored phase. On
the other hand, if we increase �q along with the fixed �I

line, we find a first-order phase transition from the pion-
condensed phase to the phase where one or both of the
chiral condensates	u and	d melt away, depending on the
size of �I. It is remarkable that the phase diagram with

 ¼ 0 reflects the symmetry of ð�q;�IÞ $ ð�I;�qÞ with
ð	u;	dÞ $ ð	d;	uÞ, while in the real ground state with

 � 0, this symmetry no longer exists. As we mentioned,
the phase diagram has the symmetry of ð�q;�IÞ !
ð��q;��IÞ.

In the bottom panel of Fig. 1, we show the result
with m ¼ 0:1 � 0. Generally, finite m acts as an external

alignment field for 	u, 	d � 0. So there is a competition
between the two alignment fields m and �2

I . In a small �I

region, the finite m wins and the ordinary phase with non-
zero	u and	d appears pushing the pion-condensed phase
aside, as shown in Fig. 1. If �I exceeds a critical value
proportional tom�, the pion condensation phase appears. It
is estimated from Eq. (20) with our model parameters as

�Ic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4

0M
2
�=2

q
¼ 0:276 at �q ¼ 0. We here remark the

number of the phase transitions in small �I region where

 ¼ 0. When �q is increased, the system experiences just

one phase transition from the ordinary phase with 	u > 0
and	d > 0 to the symmetric phase with	u � 0 and	d �
0 if j�Ij is sufficiently small. If j�Ij is large but still below
the critical value, we have two transitions between the
ordinary phase and the symmetric phase; e.g., for �I >
0, the first one is from the phase of 	u > 0, 	d > 0 to
	u � 0,	d > 0, and the second is from	u � 0,	d > 0 to
	u � 0, 	d � 0. In the study of the ChRM model without
the anomaly effect in [8], a two-step phase transition is
found. We find that, even with 
 ¼ 0, the anomaly term
mixes the 	u and 	d yielding a one-step transition. This
mechanism is general and is found in an NJL model study
[14]. We expect that this is also the case in QCD. As a
result, we have one triple point and two critical end points4

in the phase diagram shown in the bottom of Fig. 1. (In the
Nf ¼ 3 case, we will find more triple points and critical

end points.) Varying the anomaly parameters � and �, we
have confirmed that the position of the triple point moves
toward the larger �q and �I region as the strength of the

flavor mixing is increased.
Finally, we comment on the large �I region regarding

the possibility of BCS-like condensate. At large �I in
QCD, large Fermi seas of (e.g.) u quark and d quark are
formed, and the attraction between these quarks may form
a pionlike Cooper pair [6]. However, since the ChRM
model neglects the space-time dimensions, the physics of
the Fermi surface does not exist and the superconducting
phase is tricky. For possible extensions of the ChRM
models to deal with the diquark condensates, see
Ref. [30]. In our model without such an extension, we
find a simple termination of the pion-condensed phase at
large j�Ij.

V. PHASE DIAGRAM: Nf ¼ 3 CASE

A. Effective potential

We explore here the phase structure in the 2þ 1 flavor
case with two mass parameters, mu ¼ md � m and ms,
varying three chemical potentials �u, �d, and �s indepen-
dently. They are recast to the quark chemical potential �q,

the isospin chemical potential �I, and the hypercharge
chemical potential �Y defined, respectively, as
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FIG. 1 (color online). Phase diagram for Nf ¼ 2 on �q–�I

plane in the chiral limit (top) and at m ¼ 0:1 (bottom).
Parameters are � ¼ 0:5, � ¼ 1, and � ¼ 1. Nonzero conden-
sates in the respective regions are indicated with the letters 
 and
	u;d. The first (second) order phase boundary is denoted in solid

(dashed) lines. For comparison, the phase boundary in the case
where the meson condensation is ignored is denoted in dotted
line showing the eightfold symmetry.

4A critical end point is the point where a critical line is
truncated by meeting a first-order phase boundary.
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�q ¼ 1

2
ð�u þ�dÞ; (23)

�I ¼ 1

2
ð�u ��dÞ; (24)

�Y ¼ 1

2
ð�u þ�d � 2�sÞ: (25)

Note that �Y ¼ �q ��s in our convention. When �I ¼
�Y ¼ 0, three quark chemical potentials are equal to �q.

At nonzero �I and �Y , we allow the possibilities for the
pion and kaon condensates in addition to the chiral con-
densates. We then apply the following Ansatz for the order
parameter matrix

S ¼
	u 
ud �
su

�
ud 	d 
ds


su �
ds 	s

0
@

1
A; (26)

where	u,	d, and	s are the chiral condensates, 
ud is the
pion condensate, and 
su and 
ds are the kaon condensates.
With this Ansatz, we obtain the effective potential as an
function of six order parameters

� ¼ �0 þ�a; (27)

where �0 is the potential of the conventional ChRM
model [9]

�0 ¼ �2

2
ð	2

u þ	2
d þ	2

s þ 2
2
ds þ 2
2

su þ 2
2
udÞ

� 1

4
logfð�2

u ��2
uÞð�2

d ��2
dÞð�2

s ��2
sÞ

þ ½
4
dsð�2

u ��2
uÞ þ 2
2

ds

2
suð�u�d ��u�dÞ

þ 2
2
dsð�2

u ��2
uÞð�d�s ��d�sÞ

þ ðcyclic perm. of u; d; sÞ�g2; (28)

and �a is the anomaly part5

�a ¼ ��

2
log½�ð�u�d�s þ �u


2
ds þ �d


2
su

þ �s

2
udÞ þ 1�2: (29)

Because � is a function of 
2
ud, 


2
ds, and 
2

su, we always

have a trivial solution 
fg ¼ 0 for the saddle point equa-

tions. On the other hand, once chiral and/or meson con-
densates become nonzero, they act as source terms for the
other chiral condensates owing to the anomaly term �a,
and therefore �f ¼ 0 is no longer a solution.

We confirmed numerically in the ChRM model that two
or more meson condensates do not appear in the ground
state at the same time. If only one type of the meson
condensate 
fg is nonzero, the �0 part of the potential

becomes a sum of two contributions �0 ¼ �fg
0 ð
fg;	f;

	gÞ þ�h
0ð	hÞ, where �fg

0 is nothing but the potential of

the two-flavor (fg) ChRMmodel without anomaly, and�h
0

corresponds to the single-flavor (h) ChRM model. In spite
of this flavor separation, the phase diagram of Nf ¼ 3 is

different from that of Nf ¼ 2 because the anomaly term

introduces the coupling among three flavors, and we have a
competition between the pion ( fg ¼ ud) and the kaon
( fg ¼ ds or su) condensed phases for being the ground
state. Below, we just assume that only one component of
the meson condensates becomes nonzero in the meson
condensed phase and leave its proof as an open issue.6

Preceding the numerical results, let us summarize three
key points for qualitative understanding of the phase
structure.
(I) analogy with the chiral sigma model—As is shown in

Ref. [8], the conventional ChRMmodel for small chemical
potentials and quark masses is equivalent to the zero
momentum part of the chiral Lagrangian. Hence, the phase
structure of the ChRM model in the small chemical poten-
tial region must have a similar structure as the chiral sigma
model. It is known in the sigma model with Nf ¼ 3 that a

second-order phase transition occurs from the ordinary
chirally broken phase to the pion-condensed phase or the
kaon-condensed phase at certain finite �I and �Y . The
critical chemical potential is roughly estimated as �I �
m�=2 and �Y �mK for the pion and kaon condensations,
respectively. There is a competition between the pion and
kaon-condensed phases for finite�I and�Y , and the phase
transition between the two is found to be first-order. We
also remark that the state with two meson condensates
having nonzero values can not be even a meta-stable state
in this analysis.
(II) chiral restoration—In contrast to the chiral sigma

model, the ChRM model includes the chiral restoration
dynamics, which will result in a new kind of competition of
two meson condensed phases in the region at large chemi-
cal potential. To illustrate the situation, let us consider
the case in the chiral limit, where �Y > �I > �q ¼ 0

and the K0-condensed phase 
us � 0 with 	d � 0 is
chosen as the ground state. We now further increase �Y

with �q and �I fixed. This kaon-condensed phase will

simply remain as the ground state in the chiral sigma
model. At sufficiently large �Y , however, chiral or meson
condensates involving the s quark become disfavored and
the chiral symmetry in the s-quark sector will presumably
be restored. Then there is a possibility for the remaining u
and d quarks to form the pion condensate 
ud � 0. We thus
find a competition between the kaon-condensed phase
(
us � 0, 	d � 0) and the pion-condensed phase (
ud �
0, 	s ¼ 0) at large �Y . We will see shortly in this section

5Consequences of the anomaly mixing between the chiral and
diquark condensates are studied in Ref. [31].

6We note that coexistence of the p-wave pion and kaon
condensates in nuclear matter was studied previously [32].
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that the pion-condensed phase is indeed favored at large
�Y . This competition exists also in the NJL model [12],
and we expect that this mechanism is common for the
models exhibiting chiral symmetry restoration at large
chemical potentials.

(III) anomaly effect—Mixing of the order parameters
due to the anomaly tends to unify chiral phase transitions
into a single one as is seen in the case of Nf ¼ 2. In the

absence of the meson condensates, the anomaly term �a

for Nf ¼ 3 reduces to logð��u�d�s þ 1Þ, which couples

three chiral condensates. When one of the chiral conden-
sates melts away, the flavor mixing among the chiral con-
densates becomes small. With finite meson condensates,
however, the anomaly term induces mixing among the
chiral and the meson condensates. For example, once the
pion condensate is formed 
ud � 0 with rotating 	u and
	d away, the mixing term �u�d�s becomes small, but the
term 	s


2
ud in Eq. (29) generates new flavor mixing.

Because of this mixing, the chiral and pion condensates
tend to vary cooperatively as the chemical potentials
change. Furthermore, the anomaly term makes the ground
state with nonzero 	s and 
ud condensates more stable as
the term appears with a minus sign in the effective poten-
tial, which results in the extension of the meson condensed
phase compared to the case without anomaly.

B. Numerical result

We calculated the phase diagram with model parameters
� ¼ 1, � ¼ 0:5, and � ¼ 1 in the chiral limit mu ¼ md ¼
ms ¼ 0 as well as at finite quark masses mu ¼ md ¼ 0:02
and ms ¼ 0:1. We show the phase diagram on the �I–�Y

plane with �q ¼ 0, the �q–�I plane with�Y ¼ 0, and the

�q–�Y plane with �I ¼ 0.

1. �I–�Y plane

We first present the phase diagram on the �I–�Y plane
with zero quark chemical potential �q ¼ 0 in the chiral

limit (top) and at finite quark masses (bottom) in Fig. 2.
Note that the effective potential has the symmetry of�Y $
��Y and, moreover, �I $ ��I if we change u and d
flavors simultaneously. We then present the result only in
the first quadrant.

Let us first focus on the case in the chiral limit. In the
small chemical potential region, we find the pion and kaon-
condensed phases. These two phases are separated by the
first-order phase transition line �I ¼ �Y ; the pion-
condensed phase appears when �I > �Y and otherwise
the kaon condenses. This is also found in the chiral sigma
model [7]. When chemical potentials are increased, we find
that the regions of two mesonic phases are exchanged on
the diagram; the pion-condensed phase appears when�I <
�Y and otherwise the kaon condenses. As already
explained, this peculiar behavior is triggered by the chiral
restoration; these meson condensed phases at the larger
chemical potentials are accompanied by the melting of the

chiral condensate of the remaining flavor. When �Y is
further increased at small �I, the pion-condensed phase
continues indefinitely because 
ud becomes insensitive to
�Y once 	s disappears. On the other hand, 
ud continu-
ously vanishes at some point as �I increases because 
ud,
which has the isospin charge, is affected by �I, whereas
nonzero chiral condensate 	s survives irrespective of �I

for small �Y because it has no isospin.
Without the anomaly term, the vertical straight line of

the second-order transition boundary seen in the large �Y

region in Fig. 2 would extend down to the �I axis. This is
because the effective potential without anomaly �0

becomes the sum of two contributions, the 	s part and
the part involving 	u, 	d, and 
ud, as mentioned before,
unless the kaon condensates have finite values. By com-
parison, we see that the anomaly coupling between 	s and

ud makes the pion-condensed phase more stable and
extended to larger �I region.
When quark masses are set to nonzero, the phase dia-

gram receives two qualitative modifications. One is the
appearance of the chiral condensed phase without any
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FIG. 2 (color online). Phase diagram for Nf ¼ 3 on �I–�Y

plane with �q ¼ 0 in the chiral limit (top) and with nonzero

quark masses mu ¼ md ¼ 0:02, ms ¼ 0:1 (bottom). In the bot-
tom panel, the lower (upper) vertical narrow area represents the
phase with nonzero 	u, 	d, and 	s (	u and 	d). Other
parameters and notations are the same as in Fig. 1.
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meson condensate at small chemical potentials. This is the
same result as in the chiral sigma model. The other is the
configuration change of the four meson condensed phases.
We find that the pion-condensed phase extends from zero
�Y to large �Y , cutting the two kaon-condensed phases
apart. This is because the chiral condensate 	s is more
favored forms > mu ¼ md and the kaon-condensed phases
shrink. In the extended pion-condensed phase, we find a
first-order phase transition in	s, which creates a small gap
in 
ud, too.

2. �q–�I plane

We next show the phase diagram on the �q–�I plane

with �Y ¼ 0 in Fig. 3. In this case, the effective potential
is symmetric in �q $ ��q and in �I $ ��I with

exchange of the u and d quarks. We present the phase
diagram again only in the first quadrant.

Let us focus on the case in the chiral limit (top panel of
Fig. 3). With infinitesimal�I, the ground state becomes the
pion-condensed phase. Unexpectedly, however, we find
that a kaon-condensed phase appears in the region where

�u becomes largest among three chemical potentials. This
phase was not predicted in the chiral Lagrangian analysis.
In this phase, the u-quark chiral condensate melts away
	u � 0, and the remaining d and s quarks form the kaon
condensate 
ds � 0. Note that, becausemK ¼ 0, infinitesi-
mal difference between �d and �s makes the kaon-
condensed phase more stable than the chirally broken
phase without a meson condensate.
The pion and kaon-condensed phases vanish continu-

ously at large �I, respectively, to the phases with 	s and
without any condensate. The kaon-condensed phase
extends to a larger �I region than the pion-condensed
phase. This may be understood from the fact that the
pion condensate with isospin charge 1 is twice as sensitive
to �I as the kaon condensate with isospin 1=2.
With finite quark masses, we observe that two new

phases are added, as is seen in the bottom panel of
Fig. 3. The ordinary chirally broken phase appears in the
small �I and �q region due to finite m�, while finite mK

changes lower chemical potential part of the kaon-
condensed region into the chiral condensed phase with
nonzero 	d and 	s. These two chiral condensed phases
show the second-order phase transitions to the meson con-
densed phases at larger �I, which is consistent with the
chiral Lagrangian analysis [7]. At small �I, we find a
single transition from the broken to the symmetric phase
along the �q axis, owing to the anomaly term.

It would be instructive to compare this phase diagram to
that of Nf ¼ 2 on the �q–�I plane. Although the phase

diagrams are drawn in the same chemical potential space,
inclusion of the third quark flavor changes the phase dia-
gram drastically resulting in a new phase with the kaon
condensation. If we take a limit of ms ! 1 in the Nf ¼ 3

phase diagram, the s quark should decouple and the s-quark
and kaon condensates disappear. This makes the phase
diagram reduce to that of the Nf ¼ 2 case.

3. �q–�Y plane

Finally, we address the phase diagram on the �q–�Y

plane with�I ¼ 0. In Fig. 4, we present the phase diagram
in the chiral limit (top panel) and with finite quark masses
(bottom panel). The effective potential is unchanged under
the simultaneous exchanges of �q $ ��q and �Y $
��Y . Hence, we restrict the phase diagrams in �Y > 0
region. The formation of the kaon condensate breaks the
SU(2) isospin symmetry spontaneously. We choose arbi-
trarily the K0-condensed phase (
ds � 0) as the meson
condensed ground state. Note that no pion-condensed
phase appears in this diagram since we have set j�Ij ¼
0 � m�.
In the chiral limit, the chiral and kaon (pion as well)

condensed phases are degenerated at �q ¼ �Y ¼ 0. With

infinitesimal �Y , the ground state becomes the kaon-
condensed phase, and therefore the isospin symmetry
is broken spontaneously. Assuming the alignment by
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FIG. 3 (color online). Phase diagram for Nf ¼ 3 on �q–�I

plane with �Y ¼ 0 in the chiral limit (top) and with nonzero
quark masses (bottom). In the bottom panel, the horizontal
narrow area is the phase with nonzero 	u, 	d, and 	s.
Parameters and notations are the same as in Fig. 2.
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infinitesimal negative �I, the chiral condensed state is
completely rotated into the K0 condensed state, where
	d ¼ 	s ¼ 0 and 
ds � 0, but the u-quark chiral conden-
sate remains finite 	u � 0. When �q is increased with

�Y ¼ 0, two order parameters 
ds and 	u disappear at the
same time at a critical value. Without the anomaly effect
this phase transition would occur in two steps.

We note that there is a first-order phase boundary inside
of the the kaon-condensed phase 
ds � 0. Across this line,
	u jumps from a nonzero value to zero and 
ds changes
also its value discontinuously. At one end of this line, we
find a triple point where the two kaon-condensed phases
and the 	s � 0 phase coexist. At the other end, we find a
critical end point where two kaon-condensed phases and
the symmetric phase meet.

Let us consider the finite mass effect. Because of the
finite mK, there appears the ordinary chirally broken phase
in the small chemical potential region. The phase transition
to the kaon-condensed phase is of second order. Along the
�q axis, we find the phase transition from the chiral con-

densed phase to the symmetric phase occurs in one step.
The threshold �Y for the two-step phase transition is
relatively small compared to the corresponding value of
�I found in the �q–�I plane (see Fig. 3).

This can be understood as follows: note that without the
flavor mixing, the first-order transitions along the �q axis

would occur at different values of �q when the quark

masses are different. The Uð1ÞA anomaly mixing acts to
bind them together, and there is a critical value for the
anomaly strength above which the phase transitions occur
in one step along the �q axis. The larger mass difference

between u, d quarks and s quark makes this binding of the
chiral transition more fragile against the external field �Y .
This is the reason why we have a smaller threshold value of
�Y compared to the threshold value of �I.
With the mass parameters mu ¼ md ¼ 0:02 and ms ¼

0:1 used in Fig. 4, the threshold value is found to be �c ¼
0:279 . . .when � ¼ 1 is fixed. In Fig. 4,� ¼ 0:5>�c, and
we see the one-step phase transition along the �q axis.

VI. SUMMARY

We have investigated the phase structure of the ChRM
model with 2 and 3 flavors on the plane of the quark
chemical potentials, including the effects of anomaly.
Different chemical potentials for different flavors are real-
ized in general situations because of the quark mass dif-
ferences and electric neutrality, and the chiral condensates
have also different values there. Moreover, when the
chemical potential difference, which is flavor nonsinglet,
becomes large and comparable to the pseudoscalar
meson masses, we have a phase transition to a meson
condensed phase. We obtained a complex structure of the
phase diagram with various orderings at first sight.
Nevertheless, we can understand the diagram qualitatively
based on the following three observations.
The first point is the similarity to the chiral Lagrangian

analysis, which explains the phase structure well below the
chiral restoration. In the chiral limit for Nf ¼ 2, the chiral

condensed phase and the pion-condensed phase are degen-
erated at �I ¼ 0, and an infinitesimal �I rotates the chiral
condensates into the pion condensate. With finite quark
masses the chiral condensed phase survives up to �I �
m�=2, and we find a second-order phase transition to the
pion-condensed phase. In the Nf ¼ 3 case, a similar be-

havior is also found for meson condensations, but in addi-
tion we found a new competition between the pion and
kaon-condensed phases, bounded by a first-order phase
transition.
The second point concerns the chiral restoration, whose

effect is not included in the chiral Lagrangian analysis. For
Nf ¼ 2 and 3, we found that the pion and kaon conden-

sates disappear continuously at large �I and �Y , respec-
tively, while the phase transitions along the�q axis are first

order. The chiral restoration effect explains the peculiar
appearance of the pion and the kaon-condensed phases in
the phase diagram for Nf ¼ 3. In the chiral Lagrangian

analysis, the pion condensation is always favored if �I >
�Y . However, when �I is further increased, the chiral
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in Fig. 2.

H. FUJII AND T. SANO PHYSICAL REVIEW D 83, 014005 (2011)

014005-10



restoration for u quark should occur and the pion conden-
sation melts away. Then, the kaon condensation will be
formed if the difference between�d and�s is larger than a
certain critical value characterized by mK. This argument
also holds in the situation where�I < �Y with exchanging
the pion and kaon condensates. This is a remarkable in-
version of the pion and kaon condensation at high �I or
�Y . Note that the argument does not depend on the details
of the ChRM model. The same inversion may be found in
other models which incorporate the chiral restoration
dynamics, and therefore one may expect this also in QCD.

The third point is about the anomaly effect. The most
important effect is the mixing of the condensates. For
Nf ¼ 2 with finite quark masses, we find a single phase

transition from the chiral condensed phase to the symmet-
ric phase along the �q axis. Without the flavor mixing, the

u and d quarks would show the chiral transitions indepen-
dently at finite�I. But these two phase transitions coalesce
into a single transition via the flavor mixing term due to the
Uð1ÞA anomaly. There is the threshold �I for two-step
phase transition, which becomes large if the anomaly
parameters are increased.

In the case of Nf ¼ 3, the anomaly effect induces the

mixing among not only the chiral condensates but also the
meson condensates, which makes likely that the meson
condensate and the chiral condensate of the remaining
flavor show the discontinuity simultaneously as the chemi-
cal potentials are varied. In the mean-field models without
the anomaly effect, where the flavor mixing is missing, the
chiral phase transitions can happen in multi steps for finite

�I and/or �Y even when the quarks have an equal mass.
We expect that the chiral condensates are strongly corre-
lated in QCD because of the anomaly mixing as well as the
dynamics beyond the mean field, and it is unlikely to have
the multistep chiral restoration in QCD when �q is in-

creased with �I and �Y being not too large. For large �I

and/or �Y , however, there remains a possibility for chiral
restoration to occur in multi steps, as shown in our model
study.
The ChRM model, which discards the space-time

dynamics but keeps the chiral symmetry only, is certainly
a simplified model for QCD and will provide at most
qualitative features of the QCD phase diagram. We have
studied the response of the condensates to the chemical
potentials using this ChRMmodel with the Uð1ÞA anomaly
and found interesting interplay between the chiral and
meson condensates as well as the importance of the
Uð1ÞA anomaly effects. It will be intriguing to confirm
and elaborate the findings of this study by employing other
dynamic and microscopic models for QCD and direct
simulations.
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