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The transverse charge density in the pion can be represented as a dispersion integral of the imaginary

part of the pion form factor in the timelike region. This formulation incorporates information from eþe�

annihilation experiments and allows one to reconstruct the transverse density much more accurately than

from the spacelike pion form factor data alone. We calculate the transverse density using an empirical

parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of�10%

at a distance b� 0:1 fm, and significantly better at larger distances. The density is found to be close to

that obtained from a zero-width � meson pole over a wide range and shows a pronounced rise at small

distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its

partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires

a substantial presence of pointlike configurations in the pion’s partonic wave function, which can be

probed in other high-momentum transfer processes.
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I. INTRODUCTION

Learning to describe the structure and interaction of
hadrons on the basis of QCD is one of the main objectives
of nuclear physics. An essential step in this program is to
understand the structure of the pion, a nearly massless
excitation of the QCD vacuum with pseudoscalar quantum
numbers. The pion plays a central role in nuclear physics as
the carrier of the long-range force between nucleons and a
harbinger of spontaneous symmetry breaking. The impor-
tance of the pion has been recognized by intense experi-
mental and theoretical activity aimed at measuring its
properties and understanding its structure. The pion elec-
tromagnetic form factor F�ðtÞ was measured at spacelike
momentum transfers through pion-electron scattering [1,2]
and pion electroproduction on the nucleon [3–6]; new
measurements in the region jtj � few GeV2 are planned
with the Jefferson Lab 12 GeV Upgrade [7]. In the timelike
region the modulus of the (complex) pion form factor,
jF�ðtÞj, was determined in a series of eþe� experiments
[8–12]; see Ref. [13] for a compilation of the older data.

The concept of transverse densities [14], whose proper-
ties were explored in several recent works [15,16], pro-
vides a model-independent way to relate the form factors
of hadrons to their fundamental quark/gluon structure in
QCD. Defined as the 2-dimensional Fourier transforms of
the elastic form factors, the transverse densities describe
the distribution of charge and magnetization in the plane
transverse to the direction of motion of a fast hadron; see
Ref. [17] for a review. They are closely related to the parton
picture of hadron structure in high-energy processes and
correspond to a reduction of the generalized parton distri-
butions (or GPDs) describing the distribution of quarks/
antiquarks with respect to longitudinal momentum and

transverse position [18,19]. It is therefore natural to at-
tempt to interpret the pion form factor data in terms of the
transverse charge density in the pion. In particular, the
density at small transverse distances b � 1 fm places
constraints on the probability of pointlike configurations
(or PLCs) in the pion, i.e., q �q configurations in the partonic
wave function of a transverse size much smaller than the
typical hadronic radius [20]. Such configurations play an
important role in high-momentum transfer reactions in-
volving pions, such as the pion transition form factor
��� ! �0 [21,22] or pion production in large-angle scat-
tering processes [23]. They are essential for the physics of
the color transparency phenomenon predicted by QCD
[24,25], which is studied in high-energy pion dissociation
on nuclear targets [26,27] and electromagnetic pion knock-
out [28,29] and is closely related to the existence of facto-
rization theorems for hard meson production processes.
The dynamical origin of PLCs—whether they are gener-
ated through perturbative QCD interactions with large-size
configurations or by nonperturbative mechanisms—
remains a subject of intense study.
The transverse charge density in the pion is defined as

the 2-dimensional Fourier transform of the spacelike pion
form factor,

��ðbÞ ¼
Z 1

0

dQ

2�
QJ0ðQbÞF�ðt ¼ �Q2Þ; (1)

where F� is regarded as a function of the invariant mo-
mentum transfer t. The function ��ðbÞ gives the probabil-
ity that charge is located at a transverse separation b from
the transverse center of momentum, with

R
d2b��ðbÞ ¼ 1.

The definition Eq. (1) may in principle be used to calculate
the charge density directly from the spacelike form factor
data. In the nucleon case, where the spacelike form factors
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can be extracted directly from the measured eN elastic
scattering cross section and are known up to rather large
momentum transfers, this approach has been quite success-
ful; see Ref. [30] for an assessment of the uncertainties. In
the pion case the spacelike form factor at momentum
transfers above Q2 > 0:25 GeV2 was extracted only indi-
rectly in electroproduction experiments on the nucleon
Nðe; e0�ÞN0, with substantial model dependence, and is
known only poorly at higher Q2, rendering such a program
difficult. However, for the pion one has another avenue for
evaluating the transverse density, based on a dispersion
representation for the pion form factor. Noting that the
singularities of F�ðtÞ as an analytic function of t are
confined to a cut along the positive real axis starting at
t ¼ 4m2

�, the form factor can be expressed as [31]

F�ðtÞ ¼
Z 1

4m2
�

dt0

t0 � t� i0

ImF�ðt0Þ
�

: (2)

The asymptotic behavior expected from perturbative QCD,
F�ðtÞ � �sðtÞ=jtj for t ! 1, allows the use of an unsub-
tracted dispersion relation [32]. Substitution of Eq. (2) in
Eq. (1) leads to the result [33]

��ðbÞ ¼
Z 1

4m2
�

dt

2�
K0ð

ffiffi
t

p
bÞ ImF�ðtþ i0Þ

�
: (3)

This representation of the charge density as a dispersion
integral over the imaginary part (or spectral function) of
the timelike pion form factor has an interesting ‘‘filtering’’
property. The exponential dropoff of the modified Bessel
function K0 at large arguments causes the integrand of
Eq. (3) to decrease exponentially at large t and ensures
that only values

ffiffi
t

p � 1=b in the spectral function are
effectively sampled at a given distance b. In the nucleon
case the timelike form factor is measurable only at
t > 4m2

N , and Eq. (3) is not useful for calculating the
transverse density from data (it is, however, very useful
for theoretical analysis; for example, the chiral large-
distance component of the nucleon charge density at
b�m�1

� can be obtained from the calculable strength of
the two-pion cut in the nucleon form factor near threshold
[33]). In the pion case the physical region for the timelike
form factor starts at t ¼ 4m2

�, covering the entire range of
the dispersion integral, and Eq. (3) becomes a practical
method for calculating the charge density at all values of b.
High-quality eþe� annihilation data exist for values of t up
to�1 GeV2, so that we hope to be able to determine ��ðbÞ
accurately for values of b at least down to values of
b� 1 GeV�1 ¼ 0:2 fm.

The imaginary part of the pion form factor ImF�ðtÞ
entering in the dispersion representation Eq. (3) is not
measured directly in annihilation experiments. The
eþe� ! �þ�� cross section is proportional to jF�ðtÞj2,
and model-dependent input is generally needed to deter-
mine the phase. In the region of the �meson resonance this
problem was studied extensively long ago and is under

good theoretical control. The phase of the first higher
resonance �0 is strongly constrained by the dispersion
integrals (sum rules) for the pion charge and the measured
charge radius. At larger values of t arguments based on
perturbative QCD and local duality provide some guid-
ance. Combined with the filtering property of the disper-
sion integral Eq. (3), these constraints strongly reduce the
model dependence in the transverse density at b * 0:1 fm.
Our estimates below show that this way of constructing
��ðbÞ gives substantially more accurate results than use of
the spacelike pion form factor data alone.
In this article we calculate the transverse charge density

in the pion in the dispersion representation Eq. (3) using an
empirical parametrization of the timelike pion form factor
based on eþe� annihilation and spacelike form factor data
[34]. We find that the density is determined to an accuracy
of �10% at transverse distances b� 0:1 fm, and substan-
tially better at larger values. We thus obtain a precise
2-dimensional image of the fast-moving pion, which can
be interpreted in terms of its partonic structure in QCD. In
particular, the density exhibits a pronounced rise at small
b, as was observed earlier—although with much lower
precision—in an analysis based on the spacelike pion
form factor [16]. Using experimental information on the
quark density in the pion, we argue that such singular
behavior of the charge density cannot be explained by
large-size, x ! 1 configurations in the pion’s partonic
wave function and must therefore be attributed to PLCs.
Our result thus places constraints on the probability
of PLCs in the pion, which can be probed in other
high-momentum-transfer processes involving pions.
The plan of this paper is as follows. In Sec. II we briefly

describe the main features of the pion form factor in the
timelike region and the elements of the parametrization of
Ref. [34]. In Sec. III we calculate the transverse charge
density and investigate its uncertainties at small distances.
The implications for the pion’s partonic structure and the
presence of PLCs are discussed in Sec. IV. Section V
discusses the possible role of chiral dynamics in the pion
transverse density at large distances. A summary and sug-
gestions for further studies are presented in Sec. VI.

II. TIMELIKE FORM FACTOR
PARAMETRIZATION

In the energy region
ffiffi
t

p
& 1 GeV the measured pion

form factor jF�ðtÞj2 is dominated by the � meson reso-
nance, with clearly visible effects of �-! mixing (see
Ref. [34] for a summary of the data). Theoretical support
for � dominance at the amplitude level comes from the
observation that the 2� channel accounts for most of the
annihilation cross section, which allows one to relate
the pion form factor to the �� scattering amplitude via
elastic unitarity. In this region the form factor is success-
fully described by the Gounaris-Sakurai (GS) amplitude
[35], which is derived from an effective range expansion
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of the �� phase shift and has the correct analytic structure.
The neglect of certain off-shell terms / ðt�m2

�Þ in the GS
amplitude leads to a Breit-Wigner (BW) type parametriza-
tion with energy-dependent width; this simplified form
also describes the jF�ðtÞj2 data in the region

ffiffi
t

p
&

1 GeV but does not respect the analytic properties of the
form factor (it has a spurious branch cut singularity at
t ¼ 0). We shall employ the full GS parametrization in
our studies here.

Above the � region, data for jF�ðtÞj2 exist up to energiesffiffi
t

p
& 3 GeV. Because of the many hadronic channels in

the total cross section, the phase of the form factor at these
energies is much more uncertain. In the region of the first
higher resonance �0 the phase is constrained by the sum
rules for the pion charge and the charge radius, which
require partial compensation of the spectral strength in
the � meson region. At higher energies theoretical con-
straints come from the asymptotic behavior predicted by
perturbative QCD, which demands strong cancellations
between higher resonances in a resonance-based descrip-
tion, as indeed found in dual resonance models.

In the present study we use the timelike pion form factor
parametrization of Ref. [34], which describes the high-
energy region by a pattern of resonances consistent with
the QCD asymptotic behavior. The parameters were deter-
mined by a detailed analysis of the timelike data up toffiffi
t

p
& 3 GeV. The continuation of these parametrizations

to t < 0 also describes the spacelike form factor in accor-
dance with the data, including the recent JLab data up to
jtj ¼ 2:45 GeV2 [6], which appeared after publication of
Ref. [34].

A brief description of the elements of the parametriza-
tion of Ref. [34] is provided here; for details we refer to the
original article and references therein. The first four �
meson resonances are included as specific states with
masses up to 2.0 GeV (�-! mixing is taken into account
for the lowest resonance). These resonances are described
by the GS form, which incorporates the proper threshold
behavior of the widths and has the correct analytic prop-
erties [36]. In addition, an infinite series of higher excita-
tions is included via an ansatz [37] based on the dual
resonance model. Its continuation to the spacelike region
exhibits a smooth behavior with a power-law asymptotics
as jtj1��, with � ¼ 2:1–2:3. The imaginary part of the
form factor obtained with the GS parametrization [34] is
shown in Fig. 1(a) (solid line). One clearly sees the domi-
nance of the � meson pole in the region

ffiffi
t

p
< 1 GeV, and

the alternating sign of successive resonance contributions
at larger values of

ffiffi
t

p
, as expected from theoretical

considerations.
To estimate the uncertainty in the imaginary part, we

have taken the quoted variances of the fit parameters of
Ref. [34] and studied the statistical variation of the imagi-
nary part, assuming uncorrelated errors. The resulting
�1� error band is shown in Fig. 1(a) (dotted lines). The

variance in the � meson mass region is at the few percent
level. At energies above 1 GeV it becomes substantially
larger, reaching close to 100% at

ffiffi
t

p ¼ 2 GeV. Note that in
this energy region our uncorrelated estimate likely repre-
sents an upper bound on the uncertainty; for example,
correlations between the statistical fluctuations of the cou-
pling and width of the second resonance would consider-
ably reduce the overall fluctuations of the imaginary part
near

ffiffi
t

p � 1:4 GeV. For energies above 3 GeV we cannot
reliably estimate the relative uncertainty of the imaginary
part in this way, as the couplings of the resonances in this
region are dictated by the dual resonance model, and the
data in this region are very poor. However, the imaginary
part in this region is expected to be very small and
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FIG. 1. (a) Solid line: the imaginary part of the pion form
factor obtained from the fit of Ref. [34] (GS parametrization), as
a function of

ffiffi
t

p
. Shown here is the function

ffiffi
t

p
ImF�ðtÞ=�,

which effectively enters in the dispersion integral over
ffiffi
t

p
,

Eq. (3). Dotted lines: �1� error resulting from the uncorrelated
uncertainties of the fit parameters. The threshold energyffiffi
t

p ¼ 2m� is indicated by the vertical line. (b) The weight factor
K0ð

ffiffi
t

p
bÞ in the dispersion representation of the transverse charge

density Eq. (3), as a function of
ffiffi
t

p
, for several values of b.

Shown are the functions normalized to unity at the thresholdffiffi
t

p ¼ 2m�.

PION TRANSVERSE CHARGE DENSITY FROM TIMELIKE . . . PHYSICAL REVIEW D 83, 013006 (2011)

013006-3



contributes negligibly to the charge density at b > 0:1 fm
(see below), so that its relative uncertainty is not important
for our purposes. We emphasize that we use the parame-
trization of Ref. [34] only as an effective representation of
ImF�ðtÞ in the energy range

ffiffi
t

p
< 3 GeV, and that our

conclusions do not depend on the particular
ffiffi
t

p ! 1
asymptotic behavior imposed by the dual resonance model.

III. TRANSVERSE DENSITYAND ITS
UNCERTAINTY

We now use the timelike form factor parametrization to
evaluate the transverse charge density in the pion and
estimate its uncertainty. It is instructive to study first the
distribution of strength in the dispersion integral Eq. (3).
The imaginary part ImF�ðtÞ is weighted with the modified
Bessel function K0ð

ffiffi
t

p
bÞ, which exponentially suppresses

energies
ffiffi
t

p � 1=b. Figure 1(b) shows this weight factor as
a function of

ffiffi
t

p
for several values of b, normalized to the

same value at threshold
ffiffi
t

p ¼ 2m�, i.e., the ratio

K0ð
ffiffi
t

p
bÞ=K0ð2m�bÞ: (4)

One sees that the effective distribution of strength in
ffiffi
t

p
strongly changes with the distance b. At b ¼ 0:1 fm a
noticeable contribution to the dispersion integral comes
from the region

ffiffi
t

p
> 1 GeV, where the parametrization

of ImF�ðtÞ shows considerable uncertainty [see Fig. 1(a)].
At b ¼ 0:5 fm these contributions are largely suppressed,
resulting in almost perfect ‘‘vector meson dominance’’ in
the dispersion integral. Finally, going to distances as large
as b� 2 fm, one begins to suppress also the �mass region
and emphasizes the near-threshold region of the form
factor,

ffiffi
t

p � 2m� � few m�.
In order to quantify the accuracy of the calculated

transverse density we need to study the numerical conver-
gence of the dispersion integral at large values of

ffiffi
t

p
.

Figure 2 shows the percentage deviation of ��ðbÞ from
the full result as a function of a cutoff applied to the upper
limit of the

ffiffi
t

p
integral in Eq. (3) (here the integral is

evaluated with the central value of the GS parametrization
as shown in Fig. 1). One sees that at b ¼ 0:1 fm the regionffiffi
t

p
> 3 GeV accounts for only about �1% of the total

integral, meaning that even a drastic change of ImF�ðtÞ
in this region by a factor 2–3 would change the density
only by �2–3% [38]. The error in the density is thus
dominated by the mass region 1<

ffiffi
t

p
< 3 GeV, where

we have estimated the uncertainty of ImF�ðtÞ in Sec. II.
With a �100% uncertainty at

ffiffi
t

p ¼ 2 GeV, where the
integral has converged to within �4% of its value, we
expect an uncertainty of the density of (at least) �4%.
Surprisingly, even for much smaller distances the regionffiffi
t

p
> 3 GeV seems to contribute relatively little to the

dispersion integral; see the curve in Fig. 2 for b�
0:02 fm. While the integral requires larger values of

ffiffi
t

p
to converge, the contribution from

ffiffi
t

p
> 3 GeV is still only

�2%, and the overall uncertainty can be estimated from

that of the region 1<
ffiffi
t

p
< 3 GeV. At larger distances

b� 0:5 fm, the integral has fully converged already atffiffi
t

p � 1 GeV, and the overall uncertainty is dominated by
the low-energy region

ffiffi
t

p
< 1 GeV. In this region the

parameter errors in the fit are so small that the model
dependence of the parametrizations (details of �-! mix-
ing, � line shape) can no longer be neglected in establish-
ing the overall error.
Given the dominance of energies

ffiffi
t

p
< 3 GeV in the

dispersion integral, we can evaluate the density with the
parametrization of Ref. [34] and estimate its uncertainty
from the parameter error band shown in Fig. 1 The result is
displayed in Fig. 3. The quoted 1� error in ImF�ðtÞ trans-
lates into an uncertainty of ��ðbÞ of �ð1:5; 7; 13Þ% at
b ¼ ð0:5; 0:1; 0:02Þ fm. The density is thus determined
much more accurately, and down to much smaller dis-
tances, than from the spacelike pion form factor data
alone [16].
A welcome feature of the dispersion representation of

the charge density, Eq. (3), is that the kernel K0ð
ffiffi
t

p
bÞ is a

positive function. As a result, an upper or lower bound on
the spectral function ImF�ðtÞ directly provides a corre-
sponding bound on ��ðbÞ, greatly simplifying the error
analysis. (A method to estimate the uncertainty of the
charge density as the Fourier transform of the spacelike
form factor was described in Ref. [30].)
An additional source of uncertainty in the charge density

at small distances are recent data on the timelike pion form
factor at large values of t that were not included in the fit of
Ref. [34]. The CLEO measurement [12] at

ffiffi
t

p ¼ 3:67 GeV
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FIG. 2. Percentage deviation from the full result for the dis-
persion integral Eq. (3), as a function of the upper limit of

ffiffi
t

p
, for

b ¼ 0:5 fm (solid line), 0.1 fm (dashed line), and 0.02 fm (dotted
line). The integrand is evaluated using the GS parametrization of
Ref. [34].
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reports a value of jF�j¼0:075�0:008ðstatÞ�0:005ðsystÞ,
much larger than the value 0.034 provided by the GS
parametrization of Ref. [34]. We see no simple way to
modify the parametrization to account for this datum.
Indeed, Ref. [34] argues that increasing the absolute value
of the form factor by a factor of �2 at large

ffiffi
t

p
is not

possible. In particular, the article states that it is implau-
sible for the form factor obtained on the basis of a dual
resonance parametrization to reach values jF�ðtÞj2 � 0:01
at

ffiffi
t

p ¼ 2:5–3 GeV (as would correspond to the new da-
tum, assuming powerlike t-dependence) without conflict-
ing with the spacelike data and especially with QCD
predictions [39].

One possibility is that the error of the CLEO result is
larger than estimated in Ref. [12]. Another possibility is
that there is a new mechanism providing a strong coupling
to two pions at high energies. Here we only wish to make a
rough assessment of the potential impact of this new datum
on the transverse density. To this end, let us assume the
existence of an ‘‘additional’’ �� resonance at

ffiffi
t

p ¼ mR �
3:67 GeV, described by the GS form, whose coupling cR to
the virtual photon is related to the measured pion form
factor as

jF�ðmRÞj ¼ cRmR=�R: (5)

Taking the width �R to be�20% of the mass, as it is for the
�meson, we obtain a coupling cR ¼ 0:015 from the CLEO

measurement. Such an addition gives a negligible contri-
bution to jF�ðtÞj at the values of

ffiffi
t

p
for which most of the

data entering in the parametrization [34] were taken; for
example, it provides a�1% contribution to jF�ðtÞj at

ffiffi
t

p ¼
1 GeV. The ‘‘extra’’ contribution to the charge density
from such a resonance would be þð0:04; 4; 16Þ% at b ¼
ð0:5; 0:1; 0:02Þ fm (see Fig. 3). If we added this uncer-
tainty to the one estimated previously from the error of the
parametrization for

ffiffi
t

p
< 1 GeV, we would conclude that

the density is determined to ð�1:5; þ11�7; þ39�16Þ%
at the quoted values of b. This is surely a conservative
estimate, as at least part of the uncertainty in the unmeas-
ured high-t region is already included in the parametriza-
tion error. A larger value of the width of the hypothetical
resonance would lead to a proportionately larger contribu-
tion to ��ðbÞ, but would have to be reconciled with the
precise data for jF�j in the mass region

ffiffi
t

p
& 1 GeV.

We conclude that the new CLEO data have only a modest
impact on the transverse density at distances �0:1 fm, but
may cause substantial modifications at smaller distances.
Figure 4 shows the transverse density obtained from the

dispersion integral on a logarithmic scale, which allows
one to see the exponential falloff at larger distances. For
comparison we also show the density obtained from a
single resonance of zero width at the � meson mass m�,

with a coupling chosen to ensure unit charge (i.e., the
vector meson dominance model)

��ðbÞzero-width ¼ ðm2
�=2�ÞK0ðm�bÞ: (6)

One sees that the dispersion result is very close to the zero-
width � form for all distances 0:1< b< 1 fm and can be

0
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FIG. 3. Transverse charge density in the pion, ��ðbÞ. Solid
line: dispersion integral Eq. (3) evaluated with the GS form
factor parametrization [34] [see Fig. 1(a)]. Dotted lines: 1� error
resulting from the quoted uncertainty of the parametrization [see
Fig. 1(a)]. Dashed line: density resulting from a heavy resonance
with mass mR ¼ 3:67 GeV and width �R ¼ 0:2 mR, providing a
rough assessment of the impact of the CLEO timelike form
factor data [12] (for details, see text).
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represented by the latter within the estimated errors (at
larger values of b the spectral strength near threshold
becomes important; see Sec. V). What is more, the disper-
sion result follows the zero-width � curve down to much
smaller distances, being only a few percent smaller down
to b ¼ 0:01 fm. This shows that there are very strong
cancellations between the effective poles parametrizing
the high-mass continuum. As we just demonstrated, there
is considerable uncertainty in the dispersion result for the
density at such small distances. However, there is the
intriguing possibility that the density might effectively be
described by vector meson dominance down to distances
significantly smaller than the inverse � meson mass,
m�1

� ¼ 0:25 fm.

In Fig. 5 we show a 3-dimensional rendering of the
transverse charge density, which conveys also the informa-
tion on the supporting area and thus gives an impression of
the true physical shape of the fast-moving pion as seen by
an electromagnetic probe. Our dispersion approach pro-
vides a data-based image of the pion’s transverse structure
at small distances with unprecedented precision. One
clearly sees the strong rise of the transverse density toward
the center. This remarkable observation calls for a micro-
scopic explanation in terms of the pion’s partonic structure.

IV. IMPLICATIONS FOR PION PARTONIC
STRUCTURE

The results of our empirical study of the transverse
charge density have interesting implications for the par-
tonic structure of the pion in QCD. The transverse charge

density puts constraints on the possible distribution of
transverse sizes of configurations in the pion’s partonic
wave function. A useful quantity to consider is the integral
of the transverse charge density up to a given distance,

PðbÞ �
Z

d2b0�ðb� b0Þ��ðb0Þ; (7)

which determines the cumulative probability for configu-
rations contributing to the transverse density at the distance
b. The probability obtained from our dispersion result for
the charge density (cf. Figs. 3 and 4) is shown in Fig. 6,
together with that obtained from a zero-width � meson
pole [cf. Eq. (6)],

PðbÞzero-width ¼ m�bK1ðm�bÞ: (8)

The probability reaches 1=2 at b ¼ 0:33 fm, a value some-
what smaller than the root of the mean squared (RMS)

transverse radius, hb2i1=2� ¼ 0:53 fm. This is to be ex-
pected, as large-size configurations are counted with a
higher weight in the average of b2 than the median. The
RMS transverse radius calculated from our dispersion in-
tegral for the charge density agrees very well with the value
extracted from the slope of the low-t pion form factor
measured in �e scattering experiments, hr2i� ¼ ð3=2Þ	
hb2i� ¼ 0:439� 0:008 fm2 [1,2], as was already noted in
the discussion of the fit to the timelike form factor data in
Ref. [34].
To understand how the transverse charge density is

related to the partonic structure it is necessary to recall
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FIG. 5 (color online). Three-dimensional rendering of the
transverse charge density in the pion, as obtained from the
dispersion integral Eq. (3) evaluated with the GS form factor
parametrization of Ref. [34]; cf. Figs. 3 and 4.
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FIG. 6. Probability accumulation Eq. (7) in the transverse
density (cf. Figs. 3 and 4). Solid line: dispersion integral (GS
parametrization). Dashed line: zero-width � meson pole. The
arrow indicates the experimental RMS transverse charge radius.
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the relationship between the coordinate b and the physical
transverse size of configurations in the fast-moving pion.
The coordinate b measures the distance between a con-
stituent—say, a quark q—and the transverse center of
momentum of the pion. If the quark carries longitudinal
momentum fraction x, and the remnant system R carries
1� x, the transverse center of momentum of the pion is at
xrq þ ð1� xÞrR, where rq;R denotes the transverse posi-

tion of the quark and the center of momentum of the
remnant system. The transverse separation of the quark
from the remnant system is thus given by

r � jrq � rRj ¼ b=ð1� xÞ: (9)

Figure 7 illustrates this relation for a q �q configuration, in
which the remnant system consists of a single antiquark. In
the transverse charge density one considers the charge-
weighted density of constituents at a given b, which is
obtained as the average over configurations with different
x and physical size r in the partonic wave function.
Equation (9) now implies that the charge density at values
of b much smaller than the typical hadronic size, Rhad �
1 fm, can arise from two different classes of configura-
tions:

(I) Small physical size r � Rhad and non-exceptional
values of x, i.e., not close to 1 (PLCs). One expects
the elementary q �q configuration to account for a
significant fraction of these configurations, as the
emission of gluons and creation of additional q �q
pairs are suppressed in small-size color-singlet con-
figurations. The existence of such PLCs is required
by the nonzero value of the pion weak decay matrix
element, parametrized by the constant f�, where the
axial current operator annihilates a q �q pair in a point
in space [21].

(II) Large physical size r� Rhad and extreme momen-
tum fractions x� 1� b=Rhad (end point configura-
tions). These are generally not just q �q
configurations, as soft gluon radiation is not sup-
pressed in large-size configurations. The probability
of such configurations determines the behavior of
the parton densities in the pion at large values of x.

As with all analysis of partonic structure, the distinction
between the two classes of configurations depends on the
resolution scale Q2. Standard leading- logQ2 evolution
degrades the parton momentum fractions and reduces the
probability of end point configurations. The total charge
density resulting from the sum of all configurations is of
course scale-independent, being the matrix element of a
conserved current.
We can estimate the possible contribution of large-size

x ! 1 configurations to the transverse density at small b in
a simple phenomenological model, using information on
the quark distribution in the pion at large x extracted from
fits to �N Drell-Yan data [40]. Our basic assumption here
is that the physical transverse size of large-x configurations
in the pion tends toward a finite value of the order of the
typical hadronic size. Generalizing the expression obtained
from the overlap of light-cone wave functions of individual
configurations, we model the x-and b-dependent charge
density (i.e., the charge-weighted quark GPD) arising from
large-x configurations as

��ðx; bÞlarge-size ¼ q�ðxÞ fðr ¼ b=ð1� xÞÞ
ð1� xÞ2 ; (10)

where q�ðxÞ is the valence quark distribution in the pion
[41] and fðrÞ describes the distribution over physical
transverse sizes r, with a range of the order of the typical
hadronic size, normalized such that

R
d2rfðrÞ ¼ 1;

Eq. (10) thus satisfies
R
d2b��ðx; bÞ ¼ q�ðxÞ. The trans-

verse charge density ��ðbÞ arising from large-size configu-
rations is then given by the integral of the density Eq. (10)
over x. In calculating this integral we impose the physical
requirement that the transverse size r of the configuration
be larger than some critical r0. This limits the range of x in
the integral to values x > 1� b=r0, where it is assumed
that b < r0. We thus consider the ‘‘conditional’’ large-size
contribution to the density defined as

��ðbjr > r0Þ ¼
Z 1

1�b=r0

dx��ðx; bÞlarge-size: (11)

To evaluate this contribution to the charge density at small
b, we use the parametrization of the pion quark density of
Ref. [42]. The size distribution fðrÞ we take to be of
Gaussian form, fðrÞ ¼ expð�r2=R2Þ=ð�R2Þ, where the
parameter R2 ¼ hr2i� defines the average squared radius
and is of the order of the typical hadronic size�1 fm2. For
a loosely bound q �q state with hxi� ¼ 1=2 one would have
hr2i� ¼ hb2=ð1� xÞ2i� 
 4hb2i�; a natural choice is
therefore R2 ¼ 4hb2i�;exp ¼ 1:16 fm2. Figure 8 shows the

contribution to the charge density from configurations with
r > r0 ¼ 0:2 fm estimated with this model, for two values
of Q2. One sees that it accounts only for at most �20% of
the total transverse density at b ¼ 0:1 fm, and even less at
smaller distances. We thus conclude that large-size con-
figurations with x ! 1 play only a minor role in the pion

1 −x

b / (1 − )xr =
b

x

FIG. 7. Transverse distances in a q �q configuration of the pion’s
partonic wave function: b is the distance between the quark and
the transverse center of momentum, r the distance between the
q and �q.
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transverse charge density at small b, and that most of it can
be attributed to PLCs.

The small-b behavior of the large-size contribution to
the charge density in our model can formally be related to
the power behavior of the quark distribution in the pion for
x ! 1. In the limit of small b the integral in Eq. (11)
extends over a narrow range of x close to 1. If the quark
distribution vanishes as q�ðxÞ � ð1� xÞ�, one easily
shows that the density Eq. (11) scales as ��ðbjr > r0Þ �
b��1 for b ! 0. The change in the small-b behavior with
Q2 seen in Fig. 8 reflects the effect of QCD evolution on
the exponent �. Note, however, that even in the low-Q2

region where �< 1 the large-size contribution in our
model is substantially smaller than the total density ob-
tained from the dispersion integral.

In sum, our estimate shows that large-size x ! 1 con-
figurations cannot account for the strong rise of the trans-
verse density at small b, and that it is therefore reasonable
to interpret the empirical density in terms of PLCs in the
pion’s partonic wave function. In q �q configurations of
small size, it is expected that the wave function peaks at
x ¼ 1=2, which implies that the physical transverse size of
the most likely configurations is r 
 2b. With the plausible
assumption that the small-size configurations in the pion
are mostly q �q, we would conclude from Fig. 6 that there
is a probability of 12% (29%) for configurations with
b < 0:1 fm (0.2 fm), and thus with q �q separation r &
0:2 fm (0.4 fm). In reality, some of these small-size con-
figurations are q �qþ gluons or qq �q �q , requiring a detailed
model-dependent analysis. Even so, our result for the

charge density places strong constraints on the pion’s
partonic structure at small distances. The study of dynami-
cal models of PLCs in the pion and their comparison with
the empirical charge density will be the subject of future
work.

V. LONG-RANGE PION STRUCTURE AND
CHIRAL DYNAMICS

To complete our study of the empirical transverse charge
density in the pion we briefly want to comment on the
possible role of chiral dynamics at large transverse dis-
tances. At b * m�1

� ¼ 1:5 fm the weighting factor
K0ð

ffiffi
t

p
bÞ in the dispersion integral Eq. (3) emphasizes the

near-threshold region
ffiffi
t

p � 2m� � few m� [see Fig. 1(b)],
where the imaginary part of the form factor is governed by
chiral dynamics and calculable from first principles. In
leading order of the chiral expansion, the imaginary part
near threshold results from the pion loop graph with the
�� 4-point coupling and is given by [43–45]

��1 ImF�ðtþ i0Þ ¼ ðt� 4m2
�Þ3=2

6ð4�f�Þ2
ffiffi
t

p : (12)

Substitution of this result in Eq. (3) allows one to derive the
leading expð�2m�bÞ asymptotic behavior of the pion
charge density at large distances; see Ref. [33] for details.
Numerical analysis shows that the contribution from
Eq. (12) to the charge density is negligible compared to
the nonchiral density resulting from

ffiffi
t

p �m� for all but the

largest distances, reaching only �30% of the dispersion
result at b ¼ 2 fm. In the nucleon isovector charge density
the chiral component was found to become comparable to
the nonchiral density at distances b� 1:7 fm [33]; the
reason for its diminished role in the pion charge density
is that the triangle graph involving the �N Yukawa cou-
pling (see Fig. 1 of [33]), which gave the main contribution
in the nucleon case, is absent for the pion. Account of
higher-order chiral corrections does not substantially
change the magnitude of the chiral component [45]. We
conclude that the transverse charge density in the pion is
dominated by the � meson mass region for all distances of
practical relevance, b < 2 fm.

VI. SUMMARYAND DISCUSSION

This paper shows how the pion form factor in the time-
like region can be used to determine the transverse charge
density. The timelike data greatly augment the meager
information available from spacelike pion form factor
measurements; in particular, in the region of high momen-
tum transfers jtj> 1 GeV2 conjugate to short transverse
distances. Given the energy reach of the timelike form
factor data, and the theoretical uncertainties involved
in separating the real and imaginary parts, we estimate
that ��ðbÞ is determined to an accuracy of �10% at
b ¼ 0:1 fm, and substantially better at larger distances.

0

2

4

6

0 0.05 0.1 0.15

ρ π
(b

) 
 [

fm
-2

]

b  [fm]

r  > r0  =  0.2 fm

Dispersion integral (GS)

Large-size, Q2 = 1 GeV2

30 GeV2

FIG. 8. Dashed/dotted line: contribution of large-size configu-
rations with r > r0 to the transverse charge density in the pion,
as estimated in the model defined by Eqs. (10) and (11), for
r0 ¼ 0:2 and two values of Q2. Solid line: density obtained from
the dispersion integral, cf. Fig. 3.
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The transverse density obtained from the full dispersion
integral turns out to be surprisingly close to that obtained
from a single zero-width � meson pole over a wide range.
The empirical transverse density shows a strong rise at
small distances, which points to a substantial presence of
PLCs in the pion’s partonic wave function and puts strong
constraints on the pion GPD.

In the work reported here we limited ourselves to a
phenomenological analysis of the transverse density based
on an existing parametrization of the timelike pion form
factor data. Our results suggest several directions for fur-
ther studies, both theoretical and empirical.

The striking similarity of the empirical transverse den-
sity to the simple vector meson dominance model over a
wide region of b should have a dynamical explanation.
Possible approaches to addressing this question are local
quark-hadron duality or the dual resonance picture of QCD
in the large-Nc limit.

The strong rise of the pion’s transverse charge density at
small distances calls for an explanation in terms of dynami-
calmodels of the pion’s partonic structure. The keyquestion
is whether the required PLCs in the pion could be explained
as the result of perturbative QCD interactions with large-
size configurations, or whether nonperturbative interactions
play an essential role. Of particular interest for addressing
this question are models which implement the nonperturba-
tive short-distance scale associated with the spontaneous
breaking of chiral symmetry in QCD such as the instanton
vacuum model, which is known to give a reasonable de-
scription of the spacelike pion form factor at intermediate
momentum transfers Q2 � few GeV2 [46,47].

The dispersion result for the transverse charge density
at distances b� 0:1 fm depends sensitively on the phase
of the pion form factor in the region of the lowest excited
� states,

ffiffi
t

p ¼ 1–3 GeV. While the alternating sign of
the coupling of successive resonances is suggested by
theoretical considerations, it would be worthwhile to at-

tempt independent experimental tests of this key assump-
tion. This could be done through coherent photo- or
electroproduction of two pions on nuclear targets, which
can be analyzed in the spirit of the generalized vector
meson dominance model; see Ref. [48] and references
therein. Such measurements become feasible with the
12 GeV Upgrade of Jefferson Lab.
The recent CLEO data [12], which are difficult to ex-

plain in the dual resonance framework commonly used to
parametrize the high-energy region of the pion form factor,
may have a significant effect on the charge density at
distances b < 0:1 fm. Confirmation of this experimental
result and more data in the energy region

ffiffi
t

p ¼ 3–4 GeV
would certainly be welcome. It would be interesting to
explore ways to include these data in a dispersion analysis
with more general parametrizations of the imaginary part.
The new application of the timelike pion form factor

described here once more underscores the importance of
analyticity in relating observables measured in different
kinematic regions. It would be helpful if phenomenologi-
cal parametrizations of the form factors such as [34] em-
ployed a framework which strictly respects analyticity,
e.g., by using analytic functions like the GS form, or by
parametrizing only the spectral strength on the physical cut
and generating the real part by a dispersion integral.
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