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We propose a supersymmetric A4 � SUð5Þ model of quasidegenerate neutrinos which predicts the

effective neutrino mass mee relevant for neutrinoless double beta decay to be proportional to the neutrino

mass scale, thereby allowing its determination approximately independently of unknown Majorana phases.

Such a natural quasidegeneracy is achieved by using A4 family symmetry (as an example of a non-Abelian

family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix

proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with� � 90� and

a leptonic CP phase �MNS � 90� arise from the breaking of the A4 family symmetry by the vacuum

expectation values of four ‘‘flavon’’ fields pointing in specific postulated directions in flavor space.
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I. INTRODUCTION

Over the past dozen years or so our knowledge of the
neutrino sector has increased dramatically with the discov-
ery of neutrino mass and mixing in atmospheric and solar
neutrino oscillations, followed by the observation of
terrestrial neutrino oscillations in long baseline neutrino
experiments which have confirmed and refined the earlier
results [1]. Yet, despite this progress, which may even be
termed a ‘‘neutrino revolution,’’ there are many questions
about neutrinos which remain unanswered. Perhaps the
most pressing of these is the origin, nature, and magnitude
of neutrino mass, since neutrino oscillations only provide
information about the squared mass differences between
neutrino species which are independent of the absolute
neutrino mass scale or the nature of the neutrino mass
(i.e. Dirac or Majorana). In the absence of any confirmed
experimental signal from either beta decay end-point ex-
periments or neutrinoless double beta decay experiments,
the most stringent limits on the absolute neutrino mass
scale come indirectly from cosmology where one typically
obtains the limit on the absolute neutrino mass scale ex-
pressed in terms of the lightest neutrino mass as mlightest &

0:2 eV [2]. Thus, there remains the interesting possibility
that neutrinos are quasidegenerate, which one may roughly
define as mlightest > 0:05 eV, where the lower limit is ap-

proximately set equal to the square root of the atmospheric
neutrino mass squared difference.

The current generation of running or planned neutrinoless
double beta decay experiments is capable of discovering
quasidegenerate neutrinos, as defined above, within the next
years. Such a discovery would herald a new neutrino revo-
lution to rival the last one and would lead to an explosion of
interest in theoretical models capable of accounting for

quasidegenerate neutrinos. In general having quasidegener-
ate neutrinos does not lead to a sharp prediction for the
neutrinoless double beta decay observablemee as a function
ofm1 ’ m2 ’ m3 due to the presence of unknown phases in
the neutrino mass matrix [3]. The general conclusion that
unknown phases enter the prediction for mee also remains
valid in models which combine the experimental observa-
tion of (at least approximate) tribimaximal (TB) [4] lepton
mixing with the possibility of a quasidegenerate neutrino
mass spectrum. The reason is that the relevant phases enter-
ing mee are Majorana phases. Allowing for arbitrary
Majorana phases and considering a quasidegenerate neu-
trino mass spectrum and TB mixing, mee can still be in the
approximate interval mee 2 ½mlightest=3; mlightest�.
What would we learn about the origin of neutrino mass

from the discovery of quasidegenerate neutrinos in neutri-
noless double beta decay? Clearly this would imply that
neutrinos are Majorana, and possibly (but not necessarily)
that would indicate that a seesaw mechanism is at work,
but what kind of seesaw mechanism; i.e. is it type I or II?1

There are known examples of type I and type II seesaw
models which can lead to quasidegenerate neutrinos as
well as TB lepton mixing, so clearly quasidegenerate
neutrinos would not distinguish different types of seesaw
mechanism. For example, the supersymmetric (SUSY)
grand unified theory (GUT) based on SOð10Þ with family
symmetry PSLð2; 7Þ proposed in [5] is based on the type II
seesaw mechanism, leads to TB mixing, and allows quasi-
degenerate neutrinos. On the other hand, the SUSY A4

model in [6] based on the type I seesaw mechanism also
leads to TB mixing and allows quasidegenerate neutrinos.
Interestingly, the SUSY A4 � SUð5Þ model with a type I
seesaw mechanism does not favor quasidegenerate neutri-
nos [7], whereas a related model with a type II seesaw
mechanism does allow quasidegenerate neutrinos [8].
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1We shall not consider the type III or further types of seesaw
mechanism in this paper.
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More generally, there is a huge literature on family sym-
metry models based on A4 [9] or other symmetries [10].
However, to our knowledge, in all above examples, quasi-
degenerate neutrinos are subject to the mentioned phase
uncertainties in the prediction of mee as a function of m1.

It is interesting to ask, in what class of theories would we
learn the most about the neutrino mass scale mlightest from

the discovery of a measurement of mee in neutrinoless
double beta decay? Clearly the answer would be those
theories which predict mee uniquely as a function of
mlightest without ambiguities from unknown phases, but

the next question is do such theories exist? Perhaps sur-
prisingly the answer is in the affirmative, and, even more
surprisingly, the class of theories which have this property
turn out to suggest the way that the neutrino mass matrix is
generated, namely, by a usual type I seesaw contribution
with two or three right-handed neutrinos, plus an additional
contribution proportional to the unit matrix. In [11], two of
us proposed a class of theories of exactly this kind which
we referred to as a ‘‘type II upgrade of type I seesaw
models.’’ In this class of models the additional contribution
to the neutrino mass matrix was realized by an additional
type II seesaw. The type I seesaw part of the neutrino mass
matrix, which controls the mass squared differences and
mixing angles, was governed by sequential right-handed
neutrino dominance [12]. The effect of such an additional
unit matrix structure implies that for quasidegenerate neu-
trino masses the Majorana CP phases are small and thus
mee � mlightest. Although the class of models was specified,

no realistic type II upgrade model has ever been proposed.
In this paper we shall propose a model following the idea

of an additional contribution the neutrino mass matrix
proportional to the unit matrix based on A4 family symme-
try with SUð5Þ grand unification. The model contains
tribimaximal neutrino mixing after the A4 family symmetry
is broken as an indirect result of the assumed aligned
‘‘neutrino flavons’’ in the type I seesaw sector via con-
strained sequential dominance [13]. These neutrino flavons
break the A4 symmetry, being assumed to be aligned along
the columns of the TB mixing matrix, but quadratic combi-
nations of the neutrino flavons respect accidentally the
neutrino flavor symmetry as discussed in [14]. Further
‘‘quark flavons’’ are assumed to be misaligned compared
to the neutrino flavons and are, together with the neutrino
flavons, responsible for quark and charged lepton masses
and quark mixings. As expected, due to a possibly large
type II seesaw contribution, or alternatively due to an addi-
tional type I seesaw contribution from an additional triplet
representation of right-handed neutrinos, the model can
naturally predict the neutrinoless double beta decay mass
observable to be approximately equal to the neutrino mass
scale. We also make a detailed fit to quark masses and
mixing using the misaligned quark flavons and show that a
simple ansatz for the phase of one of the misaligned quark
flavons leads to successful quark CP violation. In order for

radiative corrections not to modify too much the TBmixing
for quasidegenerate neutrinos [15], we shall restrict our-
selves to low values of the ratio of Higgs vacuum expecta-
tion values (VEVs) tan�< 1:5. For such low tan�< 1:5, a
viable GUT scale ratio of y�=ys is achieved within SUSY

SUð5Þ GUTs using a Clebsch factor of 9=2, as proposed
recently by two of us in [16]. For the third generation we
use b-�Yukawa coupling unification y�=yb ¼ 1 at the GUT
scale which is viable for low tan� (see, e.g., [17]).
The layout of the remainder of the paper is as follows. In

Sec. II we present the model. In Sec. III we perform a
numerical fit to the quark and charged lepton masses and
quark mixing angles and CP violating phase and discuss
the neutrino masses and lepton mixing angles. Section IV
summarizes and concludes the paper. In Appendix A we
give a renormalizable superpotential and explicit expres-
sions for the effective couplings, and Appendix B contains
a possible vacuum alignment.

II. THE MODEL

In this section, we propose and describe a SUSY GUT
model based on the unified SUð5Þ gauge group as well as
on the family symmetry A4 amended by some discrete
Z2
2 � Z2

4 symmetries and an Uð1ÞR symmetry as specified
in Table I.

A. Symmetries and field content of
the SUð5Þ GUT model

Let us start introducing the model by specifying the field
content and the symmetries. The standard model matter
fields fit nicely into the two representations �5, which we
call F, and 10, which we call T. Explicitly they are given as

Fi ¼ dcR dcB dcG e ��
� �

i;

Ti ¼ 1ffiffiffi
2

p

0 �ucG ucB �uR �dR
ucG 0 �ucR �uB �dB
�ucB ucR 0 �uG �dG
uR uB uG 0 �ec

dR dB dG ec 0

0
BBBBB@

1
CCCCCA

i

;
(2.1)

where the lower indices R, B, and G denote the quark
colors and i ¼ 1; 2; 3 is the family index. In our model,
we consider that the three generations Fi form a triplet
representation 3 of an A4 family symmetry whereas
the three generations Ti form singlets 1 under A4.

2 In the
following, we suppress the A4 indices. In addition, we
consider two right-handed neutrinos, singlets under
SUð5Þ as well as under A4, labeled by N1 and N2.

2We note that in principle any non-Abelian family symmetry
with real triplet representations, like, e.g., SOð3Þ, would in
principle be suitable for the construction of models with addi-
tional contributions to the neutrino mass matrix proportional to
the unit matrix. In this paper we focus on A4 as a specific
example.
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We furthermore consider 15-dimensional Higgs repre-
sentationsH15 and �H15 which contain SUð2ÞL-triplet Higgs
fields that obtain induced VEVs after electroweak symme-
try breaking. H15 induces in this way a type II seesaw
contribution to the neutrino mass matrix which is, to lead-
ing order, proportional to the unit matrix and can increase
the neutrino mass scale without modifying the values for
the leptonic mixing angles.

SUð5Þ is spontaneously broken by the VEV of the ~�23

field, electroweak symmetry is broken by the VEVs of the
Higgs fieldsH5, �H5,H45, and �H45, and A4 is spontaneously
broken by the VEVs of the flavon fields, i.e. the family

symmetry breaking Higgs fields �123, �23, �3, and ~�23.
We comment below on the specific directions in which we
assume A4 to be broken by the flavons.

On top of that, we consider additional ‘‘messenger’’
fields which are heavy and which, after effectively inte-
grating them out of the theory, give rise to higher-
dimensional operators generating the Yukawa coupling
matrices as well as the mass matrix of the gauge singlet
(right-handed) neutrinos Ni.

The field content of our model as well as the symmetries
is specified in Table I. We note that it is always possible to
replace any product of commuting discrete symmetries by a
single Abelian groupUð1Þwith a suitable choice of charges
for the fields, so it is possible to replace the Z2

2 � Z2
4

symmetry by a single Uð1Þ symmetry, with an appropriate
choice of charges. Indeed many models in the literature use
an Abelian Uð1Þ symmetry rather than a product of ZN

symmetries to control the operators. Although this looks
simpler, it should be remarked that, first, an Abelian

symmetry has infinitely many more group elements than
any discrete symmetry, and, second, one must then confront
the question of Goldstone bosons once the assumed global
Abelian symmetry is broken. If the Abelian symmetry is
gauged, one must further complicate the model by ensuring
that it is anomaly-free. Therefore an auxiliary discrete
symmetry, even a large one, has definite advantages over
an Abelian symmetry. Furthermore discrete symmetries are
ubiquitous in string theory constructions. Finally, the
auxiliary discrete symmetry used here is rather a simple
one consisting of a product of Z2 and Z4 parity factors.
Thus we regard the use of the discrete Z2 and Z4 symme-
tries as being a well motivated, simple, and attractive
alternative to the use of an Abelian Uð1Þ symmetry.
We would like to remark that we do not explicitly

consider the full flavor and GUT Higgs sector of the model
and just assume that the SUð5Þ and A4 breaking VEVs are
aligned in the desired directions of field space. We assume
that in these sectors issues like doublet-triplet splitting are
resolved. Without specifying these sectors, a reliable cal-
culation of the proton decay rate must also be beyond the
scope of the present paper. The focus of the present paper is
thus to illustrate that quasidegenerate light neutrino masses
can be realized together with a type II seesaw in a SUð5Þ
GUT framework.
We would furthermore like to remark that in addition to

the type II seesaw contribution there is a possible addi-
tional contribution to the neutrino mass matrix propor-
tional to the unit matrix from the messenger field A1

which is a singlet under SUð5Þ and a triplet under A4.
When it is integrated out, it also induces a contribution to

TABLE I. Representations and charges of the superfields. The subscript i on the fields Ti, Ni,
and Ci is a family index. The flavon fields �i and ~�23 can be associated to a family via their
charges under Z2

2 � Z2
4. The subscripts on the Higgs fields H and �H and extra vectorlike matter

fields A and �A denote the transformation properties under SUð5Þ.
SUð5Þ A4 Z2 Z0

4 Z0
2 Z4 Uð1ÞR

Chiral matter

F �5 3 þ 0 þ 0 1

T1, T2, T3 10, 10, 10 1, 1, 1 þ, þ, � 0, 1, 0 þ, þ, þ 1, 0, 0 1, 1, 1

N1, N2 1, 1 1, 1 þ, þ 0, 1 þ, þ 1, 0 1, 1

Flavons and Higgs multiplets

�23, �123, �3 1 3 þ, þ, � 0, 3, 0 þ, þ,þ 3, 0, 0 0, 0, 0
~�23 24 3 þ 3 � 0 0

H5, �H5 5, �5 1, 1 þ, þ 0, 0 þ, þ 0, 0 0, 0

H15, �H15 15, 15 1, 1 þ, þ 0, 0 þ, þ 0, 0 0, 0

H45, �H45 45, 45 1, 1 þ, þ 0, 0 �, � 0, 0 0, 0

Matterlike messengers

A5, �A5 5, �5 1, 1 þ, þ 1, 3 �, � 0, 0 1, 1

A10, �A10 10, 10 3, 3 þ, þ 0, 0 þ, þ 0, 0 1, 1

A1 1 3 þ 0 þ 0 1

Higgs-like messengers

B, �B 5, �5 1, 1 þ, þ 2, 2 þ, þ 0, 0 0, 2

C1, �C1 1, 1 1, 1 þ, þ 0, 0 þ, þ 2, 2 2, 0

C2, �C2 1, 1 1, 1 þ, þ 2, 2 þ, þ 0, 0 2, 0
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the neutrino mass operator which is proportional to the
unit matrix.

B. The effective A4 � SUð5Þ symmetric superpotential

The renormalizable superpotential resulting from
Table I is given in Appendix A. Integrating out the heavy
messenger superfields denoted by A, B, and C, the
Feynman diagrams in Figs. 1–3 then lead to the effective
nonrenormalizable superpotential terms in the SUð5Þ and
A4 unbroken phase:

WYl
¼

ffiffiffi
2

p
MA10

Fða1�23T1 þ a2�123T2 þ a3�3T3Þ �H5

þ
ffiffiffi
2

p
~a2

MA5

F ~�23T2
�H45; (2.2)

WYu
¼ 1

4

�
a12
M2

A10

T1T2ð�123 ��23Þþ a13
M2

A10

T1T3ð�3 ��23Þ

þ a23
M2

A10

T2T3ð�123 ��3Þ
�
H5þ1

4

�
a33T

2
3 þ

a22
M2

A10

T2
2�

2
123

þ a11
M2

A10

T2
1�

2
23þ

~a22
M2

A5

T2
2
~�2
23

�
H5; (2.3)

WY�
¼ 1

MA10

Fða�1
�23N1 þ a�2

�123N2ÞH5; (2.4)

W�
� ¼ y�H15FF; (2.5)

Wd¼5
� ¼ ��2

F

MA1

FH5FH5; (2.6)

WMR
� ¼ aR11

M2
A10

�2
23N

2
1 þ

aR22

M2
A10

�2
123N

2
2

þ aR12

M2
A10

ð�123 ��23ÞN1N2: (2.7)

After GUT symmetry breaking the SUð2ÞL doublet
components from H5 and H45, respectively, �H5 and �H45

mix and only the light states acquire the SUð2ÞL breaking
VEVs which give the fermion masses, as discussed in
Appendix A where the effective couplings a appearing in
the effective superpotential are also explicitly given.

C. Assumed vacuum alignment

In the following we assume that the VEVs of the A4

breaking flavon fields point in the following directions in
field space such that

FIG. 1. Supergraph diagrams inducing the effective superpotential operators for the down-type quarks and charged leptons.

FIG. 2. Supergraph diagrams inducing the effective superpotential operators for the up-type quarks.
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b1
h�23i
MA10

¼
0

1

�1

0
BB@

1
CCA	23; b2

h�123i
MA10

¼
1

1

1

0
BB@

1
CCA	123;

b3
h�3i
MA10

¼
0

0

1

0
BB@

1
CCA	3:

(2.8)

The bi are defined in Appendix A. These relations also
define the quantities 	123, 	23, and 	3. The breaking of A4

along the field directions of �123 and �23 allows us to
realize tribimaximal neutrino mixing via constrained se-
quential dominance [12]. It is also worth noting that the
flavon VEVs h�123i and h�23i are orthogonal, causing
some of the terms in the superpotential to give a vanishing
contribution to the mass matrices. In the following, we
assume that CP is only broken spontaneously by the VEV

of the flavon ~�23.

For the flavon ~�23 one may suppose a priori a less
constrained alignment:

~b 2

h ~�23i
MA5

¼
0
v
w

0
@

1
A~	23: (2.9)

However empirically we find that the numerical fit to quark
masses and mixings, in particular, quark CP violation,

seems strongly to prefer that the vacuum alignment of

the flavon ~�23 has its second component along the imagi-
nary direction. To simplify the results of the numerical fit
we shall restrict ourselves to the case

v ¼ �i: (2.10)

In some future more ambitious theory one may attempt to
reproduce Eq. (2.10) as a result of some special vacuum
alignment, but here we shall simply regard it as a special
choice, or ansatz, which leads to a successful fit to quark
CP violation.
In Appendix B, we will discuss another possibility,

namely, to realize the flavon ~�23 effectively by splitting

it up into two flavons ~�2 and ~�3, where one gets a purely
real and the other a purely imaginary VEV. For the effec-
tive superpotential in Eqs. (2.2), (2.3), (2.4), (2.5), (2.6),

and (2.7) this would correspond to simply replacing ~�2
23 !

~�2
2 þ ~�2

3 and ~�23
�H45 ! ~�2

�H45 þ ~�3
�H0
5 with an addi-

tional Higgs field H0
5. The field content of this extended

version of the model that now includes also a vacuum
alignment sector is presented in Appendix B in Table IV.
The predictions of the two model variants are identical at
the level of precision discussed here.

FIG. 3. Supergraph diagrams inducing the effective superpotential operators for the neutrino sector.
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III. NUMERICAL FIT TO FERMION
MASSES AND MIXINGS

A. The quark and charged lepton sector

We define our conventions for the Yukawa matrices such
that the operators of the form FT� �H and T2�2H give the
following Yukawa terms in the Lagrangian:

LYuk ¼ �ðY�
dÞijQi

�djHd � ðY�
e ÞijLi �ejHd � ðY�

uÞijQi �ujHu

þ H:c:; (3.1)

where the SUð5Þ relation Yd ¼ YT
e would be fulfilled, if all

Clebsch-Gordan factors were one. The convention we use
here is the same as the one used by the Particle Data Group
[18].

From Eqs. (2.2), (2.3), (2.8), (2.9), and (2.10), the
Yukawa matrix coupling the up-type quarks to the light
up-type Higgs doublet with the b coefficients as defined in
Appendix A is given as

Yu ¼
2b11	

2
23 0 b13	23	3

0 3b22	
2
123 þðw2 � 1Þ~b222~	223 b23	123	3

b13	23	3 b23	123	3 b33

0
B@

1
CA;

(3.2)

whereas the Yukawa matrices coupling the down-type
quarks and charged leptons to the light down-type Higgs
doublet are given as

Yd ¼
0 	23 �	23

	123 	123 þ i~	23 	123 þ w~	23
0 0 	3

0
@

1
A; (3.3)

YT
e ¼

0 c23	23 �c23	23
c123	123 c123	123 þ i~c23~	23 c123	123 þw~c23~	23

0 0 c3	3

0
@

1
A;

(3.4)

where c3, c23, ~c23, and c123 are the Clebsch-Gordan factors
arising from GUT symmetry breaking; see, e.g., [16]. We
have used the orthogonality of h�23i and h�123i and con-
sidered the above described notation for the flavon VEVs.
We note that in the definition for the Yukawa matrices we
have introduced a complex conjugation which here appears
as a phase factor of þi in the 2-2 elements of the down-
type quark and charged lepton Yukawa matrices.

With the given representations of the flavons, we obtain
the following Clebsch-Gordan coefficients:

c123 ¼ 1; c23 ¼ 1; c3 ¼ 1; ~c23 ¼ 9=2: (3.5)

For small values of tan� as we consider, the 1-loop SUSY
threshold corrections are small and, taking the actual ex-
perimental values of the strange quark and muon masses
into account, the GUT scale value of y�=ys prefers ~c23 ¼
9=2, as argued in [16] (see also [19]).

From the charged lepton Yukawa matrix we can derive
the following approximate relations for the eigenvalues:

y� ¼ c3	3; y� ¼ jc123	123 þ i~c23~	23j;
ye ¼ c23	23c123	123

y�
:

(3.6)

Furthermore, since there is no 1–2 mixing from the up
sector, the mixing angle 
12 is approximately given as


CKM12 ¼
�������� 	23
	123 þ i~	23

��������: (3.7)

From those four equations the four 	’s can be calculated
and the relation for the Cabibbo-Kobayashi-Maskawa
(CKM) phase gives at the GUT scale

j tan�CKMj ¼
�������� ~	23
	123

��������� 1:22: (3.8)

The renormalization group (RG) evolution of the measured
value for �CKM gives a GUT scale value of 1.20. So the
value for the CKM phase (based on our assumed vacuum
alignment) is already remarkably good if we only take the
lepton masses and the value for 
12 into account which are
measured to high accuracy.3

For the detailed fit of the model to the data we applied
the following procedure: We have taken the GUT scale
Yukawa matrices from Eqs. (3.2), (3.3), and (3.4) and
calculated their RG evolution down to the scale mtðmtÞ
for tan� ¼ 1:44 and MSUSY ¼ 500 GeV with the REAP

software package [21]. At the low scale we performed a
�2 fit to the quark masses and mixing and charged lepton
masses depending on the parameters of the GUT scale
Yukawa matrices. The fit gave a total �2 of about 3.5 where
we have assumed a relative error of 1% for the charged
lepton masses, and for the other observables we have taken
the experimental errors. Since we have 11 parameters and
13 observables this corresponds to a �2=dof of about 1.6.
This is a good fit since we have neglected theoretical
uncertainties like, e.g., threshold corrections which
could be treated as additional errors on the data lowering
the total �2.
The results for the GUT scale parameters are listed in

Table II. We would like to remark that these parameters
depend on tan� and MSUSY and also are subject to several
theoretical uncertainties. For example, we note that the
Higgs fields H15 and �H15 containing the Higgs triplets of
the type II seesaw mechanism have masses at intermediate

3We would like to remark that with the assumed spontaneous
CP violation, real detYu and detYd, and the small j~	23j ¼
Oð10�4Þ, the model might also provide a solution to the strong
CP problem, along the lines discussed in [20].

4We note that in the minimal supersymmetric standard
model small values of tan� are somewhat constrained due to
bounds on the Higgs mass. However, we emphasize that our
model may well be formulated in the context of the nonminimal
supersymmetric standard model or other nonminimal SUSY
models where tan� of order one can readily be realized without
these constraints.
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energy scale betweenMGUT andMEW. Their effects are not
included in the RG analysis. The effects are small and may
be neglected if y� is small, but they could be sizable if y� is
large.5 Because of the additional theoretical uncertainties
we do not explicitly give the errors on the high energy
parameters or low energy fit results. The important input
parameters for us are the charged lepton masses and quark
mixing angles which have an experimental error much
smaller than these uncertainties.

In Table III the low energy results are shown and com-
pared to experimental data [18,22]. A graphical illustration

is given in Fig. 4. They illustrate that our minimal example
model, with the assumed vacuum alignment of Eqs. (2.8)
and (2.9), can fit well the data. We turn now to the results
for the neutrino sector.

B. The neutrino sector

The neutrino Yukawa matrix is obtained from
Eq. (2.4) as

Y� ¼
0 b�2

	123
b�1

	23 b�2
	123

�b�1
	23 b�2

	123

0
B@

1
CA: (3.9)

Additionally we have a diagonal mass matrix for the two
right-handed neutrinos from Eq. (2.7):

MR ¼ 2bR1
	223 0

0 3bR2
	2123

 !
; (3.10)

and a contribution proportional to the unit matrix coming
from Eqs. (2.5) and (2.6):

TABLE II. The model parameters for tan� ¼ 1:4 and
MSUSY ¼ 500 GeV from a fit to the experimental data [18,22].

Parameter Value

2b11	
2
23 in 10�6 9.62

3b22	
2
123 in 10�4 �1:10

ðw2 � 1Þ~b22~	223 in 10�3 �1:10
b13	23	3 in 10�3 �2:92
b23	123	3 in 10�2 3.21

b33 2.44

	123 in 10�5 5.88

	23 in 10�5 4.30

~	23 in 10�4 �1:61
	3 in 10�2 1.12

w 1.44

TABLE III. Fit results for the quark Yukawa couplings and
mixing and the charged lepton Yukawa couplings at low energy
compared to experimental data [18,22]. A pictorial representa-
tion of the agreement between our fit and experiment can also be
found in Fig. 4.

Quantity [at mtðmtÞ] Model Experiment Deviation

y� in 10�2 1.00 1.00 �0:027%
y� in 10�4 5.89 5.89 �0:029%
ye in 10�6 2.79 2.79 �0:130%
yb in 10�2 1.58 1:58� 0:05 0:086�
ys in 10�4 2.83 2:99� 0:86 �0:184�
yd in 10�6 27.6 15:9þ6:8

�6:6 1:723�

yt 0.938 0:936� 0:016 0:084�
yc in 10�3 3.54 3:39� 0:46 0:318�
yu in 10�6 6.70 7:01þ2:76

�2:30 �0:134�


CKM12 0.2257 0:2257þ0:0009
�0:0010 �0:022�


CKM23 0.0413 0:0415þ0:0011
�0:0012 0:004�


CKM13 0.0036 0:0036� 0:0002 �0:157�

�CKM 1.1782 1:2023þ0:0786
�0:0431 �0:560�

2. 1.5 1. 0.5 0. 0.5 1. 1.5 2.

ye
pred ye

exp in

ypred yexp in

ypred yexp in

yd
pred yd

exp
d

ys
pred ys

exp
s

yb
pred yb

exp
b

yu
pred yu

exp
u

yc
pred yc

exp
c

yt
pred yt

exp
t

12
pred

12
exp

12

13
pred

13
exp

13

23
pred

23
exp

23

CKM
pred

CKM
exp

FIG. 4 (color online). Pictorial representation of the deviation
of our fit from low energy experimental data [18,22] for the
charged lepton Yukawa couplings and quark Yukawa couplings
and mixing parameters. The deviations of the charged lepton
masses are given in percent while all other deviations are given
in units of standard deviations �. The straight blue lines give the
1% (1�) bound while the dashed lines give the 2% (2�) bound.
The red crosses denote our fit results.

5Since the coupling y� gives a contribution proportional to the
unit matrix, it affects only the RG evolution of the mass
eigenvalues but not of the mixing angles. Nevertheless, the
possibility of additional RG effects from y� provides a theoreti-
cal uncertainty in our setup.
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ML ¼
m0 0 0
0 m0 0
0 0 m0

0
@

1
A: (3.11)

Using the seesaw relation

m� ¼ ML � v2
uY�M

�1
R YT

� ; (3.12)

we obtain for the neutrino mass matrix

m� ¼ m0

1 0 0

0 1 0

0 0 1

0
BB@

1
CCAþmI

2

3

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA

þmI
3

2

0 0 0

0 1 �1

0 �1 1

0
BB@

1
CCA (3.13)

with

m0 ¼ c2v
2
u

y� ��15

�15

þ c2v
2
u

��2
F

MA1

;

mI
2 ¼ �v2

u

b2�2

bR2

; and mI
3 ¼ �v2

u

b2�1

bR1

:

(3.14)

In our model we therefore identify the neutrino masses
as m1 ¼ m0, m2 ¼ m0 þmI

2, and m3 ¼ m0 þmI
3, where

without loss of generality we can takem0 to be positive and
real while mI

2; m
I
3 are real but can take either sign. With

jm0j 	 jmI
3j; jmI

2j a quasidegenerate mass spectrum of the

light neutrinos can be explained in a natural way. In the
following, we will mainly restrict ourselves to this case.

From the structure of these matrices we see that we
obtain tribimaximal mixing in the neutrino sector:


�13 ¼ 0; 
�23 ¼ 45�; 
�12 ¼ arcsin
1ffiffiffi
3

p � 35:3�:

(3.15)

From the lepton sector we get the additional mixing
contributions


e13 ¼ 0; 
e23 ¼ 0;

j
e12j ¼
�������� c123	123
c123	123 � i~c23~	23

��������� 4:6�:
(3.16)

There is also a complex phase introduced by the charged
lepton Yukawa matrix which can be calculated in the same
way as in the quark sector:

�e
12 ¼ arctan

~c23~	23
c123	123

� �85:4�: (3.17)

For the approximate calculation of the Maki-Nakagawa-
Sakata (MNS) mixing parameters at the GUT scale we can
use [23]

sMNS
23 � s�23 � 
e23;

sMNS
13 e�i�MNS

13 � 
�13 � s�23

e
12e

�i�e
12 ;

sMNS
12 e�i�MNS

12 � s�12 � c�23c
�
12


e
12e

�i�e
12 ;

(3.18)

where we have already discarded all trivial phases and RG
corrections which we will discuss later. For the total
leptonic mixing angles we obtain


MNS
12 � 35:1�; 
MNS

13 � 3:3�; 
MNS
23 ¼ 45:0�:

(3.19)

For the phases we have �MNS
13 ¼ �� �e

12 � 94:6�,
�MNS
12 ¼ 4:6�, and �MNS

23 ¼ 0� from which the final MNS

phases can be calculated according to [23]

�MNS ¼ �MNS
13 � �MNS

12 � 90:0�;

�1 ¼ 2ð�MNS
12 þ �MNS

23 Þ ¼ 2�MNS
12 � 9:3�;

�2 ¼ 2�MNS
23 ¼ 0�;

(3.20)

where �1 and �2 are the Majorana phases as in the Particle
Data Group parameterization where they are contained in a

diagonal matrix diagðei�1=2; ei�2=2; 1Þ.
We note that with the mixing pattern of our model, i.e.

tribimaximal mixing produced in the neutrino sector, and
charged lepton mixing corrections only from 
e12, the lep-
tonic mixing angles and the Dirac CP phase �MNS satisfy
the lepton mixing sum rule [24]


MNS
12 � 
MNS

13 cosð�MNSÞ � arcsinð1= ffiffiffi
3

p Þ: (3.21)

The approximately maximal CP violation, i.e. �MNS �
90�, affects that although the charged lepton corrections
generate 
MNS

13 � 3:3�, the solar mixing angle remains very

close to its tribimaximal value of arcsinð1= ffiffiffi
3

p Þ. So far, we
have discussed the neutrino mixing parameters at the GUT
scale. To calculate the low energy values we have to take
RG running of the parameters into account.

C. Renormalization group corrections

For a quasidegenerate neutrino mass spectrum, RG cor-
rections to the neutrino parameters can in principle change
the high scale values dramatically. However, as has been
discussed for type II upgraded seesaw models in [11] and
more generally in [21,25], for small tan� and small neu-
trino Yukawa couplings (in our example model they are
much smaller than y�) the corrections to the mixing angles
and CP phases are under control. Setting the small
Majorana phases to zero and with �MNS � 90�, we can
estimate in leading order [21,25]

d
MNS
12

d lnð�=�0Þ
� � y2�

32�2
sinð2
MNS

12 ÞðsMNS
23 Þ2 jm1 þm2j2

�m2
sol

;

(3.22)
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d
MNS
13

d lnð�=�0Þ
� 0; (3.23)

d
MNS
23

d lnð�=�0Þ � � y2�
32�2

sinð2
MNS
23 Þ

� ðcMNS
12 Þ2jm2 þm3j2 þ ðsMNS

12 Þ2jm1 þm3j2
�m2

atm

; (3.24)

where � is the renormalization scale. In the case of
quasidegenerate neutrino masses we can further use the
approximation m3 � m2 � m1 ¼ m0. Integrating these
equations approximately with the parameters on the right
side taken constant and equal to their GUT scale values,
and plugging in these numbers, we obtain the estimated
low energy values of the mixing angles as


MNS
12 jmtðmtÞ � 
MNS

12 jMGUT
þ 0:15�

m2
0

ð0:1 eVÞ2 ; (3.25)


MNS
13 jmtðmtÞ � 
MNS

13 jMGUT
; (3.26)


MNS
23 jmtðmtÞ � 
MNS

23 jMGUT
� 0:01�

m2
0

ð0:1 eVÞ2 : (3.27)

In the last equation, the ‘‘þ’’ applies for a normal neutrino
mass ordering, whereas the ‘‘�’’ applies for an inverse
mass ordering, i.e. the case �m2

atm < 0. It is important to
note that both mass orderings can be realized in our model.
The strong suppression for the RG running of 
MNS

13 is

caused by the particular values of the CP violating phases
in our model. For similar reasons the running of the CP
phases themselves is also suppressed, as can be seen using
the analytical results in [21,25]. In summary, RG correc-
tions are under control in our setup and only cause com-
paratively small corrections to the mixing parameters in
the lepton sector.

In summary, the leptonic mixing parameters in our
model are compatible with the experimental 1� ranges at
low energy which are 
MNS

12 ¼ ð34:5� 1:0Þ�, 
MNS
13 ¼

ð5:7þ3:0
�3:9Þ�, and 
MNS

23 ¼ ð42:3þ5:3
�2:8Þ�, taken from [26], as

long as m0 is smaller than the cosmological bounds
suggest: m0 & 0:2 eV [2].

The values for the leptonic mixing angles and Dirac CP
phase �MNS resulting from our assumed vacuum alignment
and stated in Eqs. (3.19), (3.20), and (3.21) can be tested
accurately by ongoing and future precision neutrino oscil-
lation experiments [27].

D. Predictions for beta decay experiments

The effective mass relevant for neutrinoless double beta
decay is

mee ¼ jm1c
2
12c

2
13e

i�1 þm2s
2
12c

2
13e

i�2 þm3s
2
13e

2i�MNS j;
(3.28)

while the kinematic mass accessible in the single beta
decay end-point experiment KATRIN [28] is

m2
� 
 m2

1c
2
12c

2
13 þm2

2s
2
12c

2
13 þm2

3s
2
13: (3.29)

For quasidegenerate neutrino mass spectrum (m0 ¼ m1 ’
m2 ’ m3) we obtain that

m� � m0 (3.30)

directly gives information about the absolute neutrino mass
scale.
On the other hand, due to the phases appearing in

Eq. (3.28) there is typically a sizable ambiguity in the
relation between mee and m0, as long as the Majorana
CP phases are not predicted. Allowing, for instance, for
arbitrary Majorana phases and considering a quasidegen-
erate neutrino mass spectrum (m0 ¼ m1 ’ m2 ’ m3) and
with small 
MNS

13 , mee can still be in the approximate

interval mee 2 ½mlightest=3; mlightest�.
This ambiguity is resolved in our model, since the large

contribution to the neutrino mass matrix proportional to the
unit matrix6 (with jm0j 	 jmI

3j; jmI
2j) results in small

Majorana CP phases, and thus we predict

mee � m0: (3.31)

The assumed dominance of m0 in our model allows us to
realize a quasidegenerate neutrino spectrum (with normal
or inverse mass ordering) in a natural way, without any
tuning of parameters. The possible values for mee as a
function of the lightest neutrino mass mlightest is shown in

Fig. 5.
Wewould like to remark that for smallerm0 one can also

naturally extend the model to hierarchical or inverted
hierarchical neutrino masses without changing the leptonic
mixing angles. With jm0j � jmI

2j or jm0j � jmI
3j or both

we then also encounter cases where the Majorana phases
are close to �. For a quasidegenerate spectrum the model
disfavors these unnatural cases since they would corre-
spond to heavily fine-tuned parameters of the model.
Similarly, an inverse strongly hierarchical spectrum would
require unnatural tuning betweenm0 andm

I
3 to makem3 ¼

jm0 �mI
3j very small. By contrast, for a typical parameter

choice of the model, a normally ordered hierarchical spec-
trum simply corresponds to jm0j � jmI

2j; jmI
3j and does not

require any tuning at all. It is also interesting to note that
with the phases in our model there is no possibility to have
cancellations in Eq. (3.28) that could make mee vanish
exactly.7 Neutrinoless double beta decay is thus, also for

6In our model this part of the neutrino mass matrix is induced
by a standard type I (with right-handed neutrinos) and an addi-
tional type II seesaw contribution. Nevertheless, the conclusions
remain the same as for the pure type II seesaw case since we
assume that the type II contribution is dominant.

7In fact we find numerically that mee * 0:007 eV.
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smaller m0, an unavoidable consequence in this class of
models.

IV. SUMMARYAND CONCLUSIONS

We have proposed a model of quasidegenerate neutrinos
which predicts the neutrinoless double beta decay mass
observable to be approximately equal to the neutrino mass
scale mlightest, thereby allowing its determination approxi-

mately independently of unknown Majorana phases. In
general such quasidegenerate neutrino masses may be
naturally realized if there exists a non-Abelian family
symmetry with real triplet representations that enforces
an additional contribution to the neutrino mass matrix
proportional to the unit matrix, hence determining the
neutrino mass scale. In our model, the additional contribu-
tion was generated by a type II seesaw or, alternatively, by
another type I seesaw contribution from an additional
triplet representation of right-handed neutrinos (or neu-
trino messenger fields). In addition, the standard type I
seesaw contribution determines the neutrino mixing an-
gles. Although such a mechanism (called a type II upgrade
in [11]) has been known for some time, the model in this
paper is the first of its kind to combine this mechanismwith
tribimaximal mixing arising from A4 family symmetry
together with a SUð5Þ SUSY GUT.

The SUSY A4 � SUð5Þ model considered here has sev-
eral attractive features. The full renormalizable superpo-
tential for the coupling of matter to flavons, messenger
fields, and Higgs fields is specified, and only discrete
auxiliary symmetries are introduced, rather than the more
common continuous Abelian symmetry that is typically

invoked in such models. In the considered model, the
neutrino mass scale can originate either from the induced
vacuum expectation value of a SUð2ÞL triplet contained in
a 15-dimensional representation of SUð5Þ or from an addi-
tional contribution to the neutrino mass operator induced
by SUð5Þ singlet messenger fields in the triplet representa-
tion of A4. Since the type I seesaw contribution involves
very hierarchical additional neutrino mass contributions,
responsible for the tiny mass splittings between the quasi-
degenerate neutrinos, we use the constrained sequential
dominance mechanism which is well suited for achieving
such strongly hierarchical contributions. In such a model
the neutrino flavor symmetry associated with tribimaximal
mixing is achieved indirectly from the family symmetry,
given the assumed vacuum alignment. We have included
renormalization group corrections to the mixing angles and
shown that they are under control for small values of tan�
in our framework and do not significantly modify the
leptonic mixing angles. We have therefore considered
small values of tan� throughout our study.
The model has several interesting phenomenological

features which emerge from our numerical fit to the quark
and lepton masses and quark mixing. In addition to b-�
unification that may be viable for small tan�, the model
realizes the GUT scale relation y�=ys � 9=2 proposed in

[16], which is favorable for small values of tan�. In the
quark sector, we observe that the correct �CKM (corre-
sponding to the right unitarity triangle with � � 90�) can
be realized for the simple ansatz in Eq. (2.10). We remark
that this simple ansatz leads to an interesting alternative
texture (different from [29]) that gives rise to a right-angled
unitarity triangle with � � 90�. For the leptonic mixing
angles and CP phases we find 
MNS

13 � 3:3�, 
MNS
12 �

35:1�, 
MNS
23 � 45:0�, and �MNS � 90�. The leptonic mix-

ing angles satisfy the ‘‘lepton mixing sum rule’’ proposed
in [24] with only small theoretical errors since the 1–3
mixing in the charged lepton mass matrix is very small and
the 2–3 mixing vanishes. The Majorana CP phases are
small for quasidegenerate neutrino masses via a large addi-
tional contribution proportional to the unit matrix, as ex-
pected, and the model thus predicts the neutrinoless double
beta decay mass observable to be approximately equal to
the neutrino mass scale, or lightest neutrino mass, i.e.
mee � mlightest.

In conclusion, if neutrinoless double beta decay were
observed in the near future, then this would herald another
neutrino revolution in which neutrino masses would be
quasidegenerate. Among the many possible models of
quasidegenerate neutrinos, the model with an additional
contribution to the neutrino mass matrix proportional
to the unit matrix, as considered here, is distinguished
by the prediction that the neutrinoless double beta decay
mass observable is approximately equal to the neutrino
mass scale mlightest. We have proposed the first realistic

model of this kind involving A4 and SUSY SUð5Þ GUTs.
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FIG. 5 (color online). The effective mass mee in our setup
relevant for neutrinoless double beta decay as a function of the
mass mlightest of the lightest neutrino, for an inverted neutrino

mass ordering (�m2
31 < 0, upper line) and for a normal mass

ordering (�m2
31 > 0, lower line). The bands represent the ex-

perimental uncertainties of the mass squared differences. The
mass bounds from cosmology [2] and from the Heidelberg-
Moscow experiment [32] are displayed as gray shaded regions.
The red lines show the expected sensitivities of the GERDA
experiment in phase I and II [33].
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The A4 family symmetry has the dual effect of enforcing,
on the one hand, quasidegeneracy via the additional unit
matrix contribution to the neutrino mass matrix and, on the
other hand, tribimaximal mixing via the type I seesaw
mechanism and constrained sequential dominance. A nu-
merical fit to quark masses and mixing angles reveals that a
simple ansatz describing quark CP violation with � � 90�
also leads to the leptonic phase �MNS � 90�. In such
models the absolute neutrino masses could be directly
measurable by experiment quite soon.
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APPENDIX A: THE RENORMALIZABLE
SUPERPOTENTIAL AND EFFECTIVE

COUPLINGS

With the field content and symmetries specified in
Table I the superpotential contains the following renorma-
lizable terms:

WH ¼ �5H5
�H5 þ�15H15

�H15 þ�45H45
�H45

þ ��15
�H15H5H5 þ �15H15

�H5
�H5; (A1)

WA ¼ MA10
A10

�A10 þMA5
A5

�A5 þMA1
A2
1 þMBB �B

þMC1
�C1C1 þMC2

�C2C2; (A2)

Wint ¼ �FF �H5A10 þ ~�FF ~�23A5 þ �TiTi�i
�A10

þ ~�T2T2
�H45

�A5 þ y�H15FFþ �H5A10
�A10

þ ~�H5
�C2

�Bþ �0
TBT

2
2 þ �0

�C2�
2
123 þ ~�0

�C2
~�2
23

þ atH5T
2
3 þ ��FF �H5A1 þ �NiNi�iA1 þ ��iCi�

2
i

þ �Ni
�CiN

2
i : (A3)

As discussed in the main text, after GUT symmetry
breaking the SUð2ÞL doublet components from H5 and
H45, respectively, �H5 and �H45 mix and only the light states
acquire the SUð2ÞL breaking VEVs which give the fermion
masses. We parameterize the Higgs mixing with the mix-
ing angles , respectively, �:

H5

H45

� �
¼ c �s

s c

� �
Hl

Hh

� �
;

�H5
�H45

� �
¼ c � �s �

s � c �

� � �Hl
�Hh

� �
;

(A4)

where we have used the common abbreviation c 
 cos

and similar for the sine and the other angle �. The light
Higgs doublets are denoted with an index lwhile the heavy
Higgs doublets are denoted with an index h.
The effective couplings a appearing in the effective

superpotential in the main text can be expressed in term
of the fundamental couplings from Eq. (A3) and the mes-
senger masses from (A2):

ai ¼ �F�Ti; ~a2 ¼ ~�F ~�Ti; (A5)

a11 ¼ ��2
T1;

a22 ¼ ��2
T2 þ ~��0

T�
0
�

M2
A10

MBMC2

;

a33 ¼ at þ ��2
T3

M2
A10

;

(A6)

~a22 ¼ ~��0
T ~�

0
�

M2
A5

MBMC2

;

aij ¼ ��Ti�Tj; for i � j;

a�i
¼ �Ni ��F

MA10

MA1

;

(A7)

aRi
¼ �2

Ni

M2
A10

MA1

þ ��i
�Ni

M2
A10

MCi

; aR12
¼ �Ni�Nj

M2
A10

MA1

:

(A8)

The effective couplings b appearing in the Yukawa
couplings can be expressed in terms of the couplings a
and the Higgs mixing angles as

bi ¼ c �ai; ~b2 ¼ s �~a2; (A9)

bij ¼
c

c2�

aij
aiaj

; ~b22 ¼
c

s2�

~a22
~a22

; b33 ¼ cat þ
c

c2�

	23
a23

;

(A10)

b�i
¼ c

c �

a�i

ai
; (A11)

bRi
¼ 1

c2�

aRi

a2i
; bR12

¼ 1

c2�

aR12

a1a2
: (A12)

APPENDIX B: A POSSIBLE VACUUMALIGNMENT

In this appendix, we will discuss a possibility to extend
the model in the main part by a viable vacuum alignment.
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This possibility is based on realizing the flavon ~�23 effec-

tively by splitting it up into two flavons ~�2 and ~�3, which
get purely real or purely imaginary VEVs by a vacuum
alignment as described below, i.e.

h ~�23i ¼ h ~�2i þ h ~�3i; where

h ~�2i ¼
0

�i

0

0
BB@

1
CCA~	23 and h ~�3i ¼

0

0

w

0
BB@

1
CCA~	23:

(B1)

For the effective superpotential in Eqs. (2.2), (2.3), (2.4),
(2.5), (2.6), and (2.7) this would mean to simply replace
~�2
23 ! ~�2

2 þ ~�2
3 and ~�23

�H45 ! ~�2
�H45 þ ~�3

�H0
5 with an

additional Higgs field H0
5. The field content and the sym-

metries of this extended version of the model is given in
Table IV. We note that, at the level of precision discussed

here, the model predictions are the same as in the main part
of the paper.
We now turn to the discussion of the vacuum alignment

sector with the desired purely real or imaginary alignment
(see also [30]). At the effective theory level the new
operators involving the ‘‘driving fields’’ Pi, Di, and Oi

that are generated by the fields and symmetries specified in
Table IV are given by [dropping Oð1Þ coupling constants]

W ~� ¼ ~Pi

� ~�4
i

M2
Ci

� ~M2
i

�
þ ~Dið ~�i ? ~�iÞ þ ~Oij

~�i
~�j; (B2)

W�123
¼ D123ð~��123 þ�123 ? �123Þ

þ P123

�
�4

123

M2
C123

þ
~�4

M2
C123

þ�2
123

~�2

M2
C123

�M2
123

�
; (B3)

TABLE IV. Representations and charges of the superfields. The subscript i on the fields Ti and Ni is a family index, while for ~Pi and
Pi the i matches the corresponding flavon field. The flavon fields �i and ~�23 can be associated to a family via their charges under
Z2 � Z4

4. The subscripts on the Higgs fields H and �H and extra vectorlike matter fields A and �A denote the transformation properties

under SUð5Þ.
SUð5Þ A4 Z2 Zð1Þ

4 Zð2Þ
4 Zð3Þ

4 Zð4Þ
4 Uð1ÞR

Chiral matter

F �5 3 þ 0 0 0 0 1

T1, T2, T3 10, 10, 10 1, 1, 1 þ, þ, � 0, 1, 0 0, 0, 0 0, 0, 0 1, 0, 0 1, 1, 1

N1, N2 1, 1 1, 1 þ, þ 0, 1 0, 0 0, 0 1, 0 1, 1

Flavons

�23, �123, �3 1, 1, 1 3, 3, 3 þ, þ, � 0, 3, 0 0, 0, 0 0, 0, 0 3, 0, 0 0, 0, 0
~�1, ~�2, ~�3 1, 24, 1 3, 3, 3 �, þ, þ 3, 3, 3 3, 3, 0 3, 0, 3 0, 0, 0 0, 0, 0
~� 1, 1 1, 1 þ 1, 3 0, 0 0, 0 0, 0 0, 0

Higgs multiplets

H5, �H5 5, �5 1, 1 þ, þ 0, 0 0, 0 0, 0 0, 0 0, 0

H0
5,

�H0
5 5, �5 1, 1 þ, þ 0, 0 0, 0 3, 1 0, 0 0, 0

H15, �H15 15, 15 1, 1 þ, þ 0, 0 0, 0 0, 0 0, 0 0, 0

H45, �H45 45, 45 1, 1 þ, þ 0, 0 3, 1 0, 0 0, 0 0, 0

Matterlike messengers

A5, �A5 5, �5 1, 1 þ, þ 1, 3 1, 3 0, 0 0, 0 1, 1

A0
5,

�A0
5 5, �5 1, 1 þ, þ 1, 3 0, 0 1, 3 0, 0 1, 1

A10, �A10 10, 10 3, 3 þ, þ 0, 0 0, 0 0, 0 0, 0 1, 1

A1 1 3 þ 0 0 0 0 1

Higgs-like messengers

B, �B 5, �5 1, 1 þ, þ 2, 2 0, 0 0, 0 0, 0 0, 2

C23, �C23 1, 1 1, 1 þ, þ 0, 0 0, 0 0, 0 2, 2 2, 0

C123, �C123 1, 1 1, 1 þ, þ 2, 2 0, 0 0, 0 0, 0 2, 0

C1, �C1 1, 1 1, 1 þ, þ 2, 2 2, 2 2, 2 0, 0 2, 0

C2, �C2 1, 1 1, 1 þ, þ 2, 2 2, 2 0, 0 0, 0 2, 0

C3, �C3 1, 1 1, 1 þ, þ 2, 2 0, 0 2, 2 0, 0 2, 0

Driving fields
~Pi, Pi 1, 1 1, 1 þ, þ 0, 0 0, 0 0, 0 0, 0 2, 2

D123, D3 1, 1 3, 3 þ, þ 2, 0 0, 0 0, 0 0, 0 2, 2
~D1, ~D2, ~D3 1, 1, 1 3, 3, 3 þ, þ, þ 2, 2, 2 2, 2, 0 2, 0, 2 0, 0, 0 2, 2, 2
~O12, ~O13, ~O23 24, 1, 24 1, 1, 1 �, �, þ 2, 2, 2 2, 1, 1 1, 2, 1 0, 0, 0 2, 2, 2

O13, O23 1, 24 1, 1 �, � 1, 1 1, 1 1, 0 0, 0 2, 2

O1;23, O123;23 1, 1 1, 1 �, þ 1, 1 1, 0 1, 0 0, 1 2, 2
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W�3
¼ P3ð�2

3 �M2
3Þ þD3ð�3 ? �3Þ þO13

~�1�3

þO23
~�2�3; (B4)

W�23
¼ P23

�
�4

23

M2
C23

�M2
23

�
þO1;23

~�1�23þO123;23�123�23:

(B5)

The minimization of the resulting F-term potential leads
to the desired vacuum alignment for all flavons. We note

that the new flavons ~� and ~�1 are only ‘‘auxiliary’’ in the
sense that they do not couple to the matter sector but are

only relevant for the flavon alignment. The flavon ~� leads
to an additional term contributing to the charm mass;
however, its effect can be absorbed in the messenger
masses such that the predictions of the model are un-
changed. The four parts W ~�, W�123

, W�3
, and W�23

have

the following meaning:
(i) The terms in W ~� enforce nonvanishing VEVs of the

three flavons ~�1, ~�2, and ~�3 that are orthogonal to
each other and have only one nonzero element, due
to the effects of the terms with the driving fields ~Di.
Here the ? denotes the symmetric triplet combina-
tion of A4 (see, e.g., [31]). With real Mi due to the

assumed spontaneous CP violation ~�4
i are forced to

be real which means that the VEVs h ~�ii are either

purely real or imaginary. We will choose a vacuum

where ~�2 is imaginary and ~�3 is real. The VEV of
~�1 can be either real or imaginary since its phase
does not affect the results.

(ii) The partW�123
leads to the desired alignment for the

flavon VEV h�123ialong the ð�1;�1;�1Þ direction
(see also [6]) in the minima of the potential with

h�123i � 0 and h~�i � 0. Again, due to the �4
123 in

the term with P123 the VEV can be either real or
imaginary, and we choose the real vacuum in the
ð1; 1; 1Þ direction.

(iii) The terms in W�3
and W�23

finally provide the

alignment for the flavons �3 and �23. The terms
with the driving fieldsOi force the VEVof�3 to be

orthogonal to h ~�1i and h ~�2i and the VEVof �23 to

be orthogonal to h ~�1i and h�123i, leading to the
alignments in the desired direction in flavor space.
We can again choose the purely real vacuum as
explained above.

We note that the driving fields Pi and ~Pi have the same
quantum numbers and therefore, a priori, a linear combi-
nation of such fields couples to each of the above terms
~�4
i =M

2
Ci
� ~M2

i and �4
i =M

2
Ci
�M2

23. Without loss of gen-

erality we have written the driving fields here already in the
field basis where only one driving field couples to one of
these terms. This can always be achieved by a proper field
redefinition.
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