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Observation of the top quark flavor changing neutral process t ! cþ � at the LHC would be the signal

of physics beyond the standard model. If anomalous t ! c� coupling exists, it will affect the precisely

measured Bð �B ! Xs�Þ. In this paper, we study the effects of a dimension 5 anomalous tc� operator in
�B ! Xs� decay to derive constraints on its possible strength. It is found that, for real anomalous t ! c�

coupling ��
tcR, the constraints correspond to the upper boundsBðt ! cþ �Þ< 6:54� 10�5 (for ��

tcR > 0)

and Bðt ! cþ �Þ< 8:52� 10�5 (for ��
tcR < 0), respectively, which are about the same order as the 5�

discovery potential of ATLAS (9:4� 10�5) and slightly lower than that of CMS (4:1� 10�4) with

10 fb�1 integrated luminosity operating at
ffiffiffi
s

p ¼ 14 TeV.
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I. INTRODUCTION

In the standard model (SM), a top quark lifetime is
dominated by the t ! bWþ process, and its flavor chang-
ing neutral current (FCNC) processes t ! qV (q ¼ u, c;
V ¼ �, Z, g) are extremely suppressed by the Glashow-
Iliopoulos-Maiani mechanism. It is known that the SM
predicts a very tiny top FCNC branching ratio Bðt !
qVÞ, less than Oð10�10Þ [1], which would be inaccessible
at the CERN Large Hadron Collider (LHC). In the litera-
ture [2,3], however, a number of interesting questions have
been intrigued by the large top quark mass which is close to
the scale of electroweak symmetry breaking. For example,
one may raise the question whether new physics (NP)
beyond the SM could manifest itself in nonstandard cou-
plings of the top quark which would show up as anomalies
in the top quark productions and decays.

At present, the direct constraints on Bðt ! qVÞ are still
very weak. For its radiative decay, the available experimen-
tal bounds are Bðt ! u�Þ< 0:75% from ZEUS [4] and
Bðt ! q�Þ< 3:2% from CDF [5] at 95% C.L., respec-
tively. These constraints will be improved greatly by the
large top quark sample to be available at the LHC, which is
expected to produce 8� 106 top quark pairs and another
few million single top quarks per year at low luminosity
(10 fb�1=yr). Both ATLAS [6] and CMS [7] have analyses
ready for hunting out top quark FCNC processes as power-
ful probes for NP.With 10 fb�1 data, it is expected that both
ATLAS and CMS could observe t ! q� decays if their
branching ratios are enhanced to Oð10�4Þ by anomalous
top quark couplings [6,7]. However, if the top quark anoma-
lous couplings are present, they will affect some precisely
measured qualities with virtual top quark contributions.
Inversely, these qualities can also restrict the possible num-
ber of top quark FCNC decay signals at the LHC. The
precisely measured inclusive decay B ! Xs� is one of the
well-known sensitive probes for extensions of the SM,

especially the NP which alter the strength of FCNCs [8].
Thus, when performing the study of the possible strength of
t ! c� decays at the LHC, one should take into account the
constraints from B ! Xs� [9,10].
In this paper, we will study the contribution of anoma-

lous t�c operators to the �B ! Xs� branching ratio and
derive constraints on its strength. In the next section, after a
brief discussion of a set of model-independent dimension 5
effective operators relevant to t ! c� decay, we calculate
the effects of operator �cL�

��tRF�� in B ! Xs� decay,

which result in a modification to C7�. In Sec. III we present

our numerical results of the constraints on its strength and
the corresponding upper limits on the branching ratio of
t ! c� decays. Finally, conclusions are made in Sec. IV.
Calculation details are presented in Appendix A, and input
parameters are collected in Appendix B.

II. TOP QUARK ANOMALOUS COUPLINGS AND
THEIR EFFECTS IN �B ! Xs� DECAY

Without resorting to the detailed flavor structure of a
specific NPmodel, the Lagrangian describing the top quark
anomalous couplings can be written in a model-
independent way with dimension 5 operators [11]

L5 ¼ �gs
X

q¼u;c;t

�g
tqL

�
�qR�

��TatLG
a
��

� gffiffiffi
2

p X
q¼d;s;b

�W
tqL

�
�qR�

��tLW
�
��

� e
X
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��
tqL
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��tLF��

� g

2 cos�W

X
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�Z
tqL

�
�qR�
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þ ðR $ LÞ þ H:c:; (1)
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where � is the complex coupling of its corresponding
operator, �W is the weak angle, and Ta is the Gell-Mann
matrix. � is the possible new physics scale, which is
unknown but may be much larger than the electroweak
scale. There are also Lagrangians describing the top quark
anomalous interactions with dimension 4 and 6 operators,
and the dimension 4 and 5 terms can be traced back to
dimension 6 operators [12,13]. In fact, top quark anoma-
lous interactions can be generally described by the gauge-
invariant effective Lagrangian with dimension 6 operators
in a form without redundant operators and parameters
[10,14]. A recent full list of dimension 6 operators can
be found in Ref. [15]. But for on-shell gauge bosons, the
Lagrangian in Eq. (1) works and is commonly employed in
high energy phenomenology analysis [3,6,16].

The operators in Eq. (1) relevant to t ! q� decays read

L � ¼ �e
X

q¼u;c

��
tqL

�
�qR�

��tLF��

� e
X

q¼u;c

��
tqR

�
�qL�

��tRF�� þ H:c: (2)

It is understood that the Dirac matrix ��� connects left-

handed fields to right-handed fields. The t ! c� transition
will involve two independent operators mq �qR�

��tLF��

and mt �qL�
��tRF��, where the mass factors must appear

whenever a chirality flip L ! R or R ! L occurs. Because
of the mass hierarchy mt � mc, the effect of
mq �qR�

��tLF�� can be neglected unless ��
tqL is enhanced

to be comparable to mt

mc
��
tqR by an unknown mechanism.

The anomalous t�q coupling affects b ! s� decays
through the two Feynman diagrams depicted in Figs. 1(a)
and 1(b). It is interesting to note that the Cabibbo-
Kobayashi-Maskawa (CKM) factors in Figs. 1(a) and 1(b)
are VtbV

�
qs and VqbV

�
ts, respectively. Since jVtbV

�
qsj �

jVqbV
�
tsj for q ¼ u, c, the contribution of Fig. 1(a) would

be much stronger than that of Fig. 1(b). Furthermore, given
the fact that the strengths of t ! u� and t ! c� are com-
parable, the contribution of Fig. 1(a) to b ! s� is still
dominated by t ! c� because of jVcsj � jVusj. Hence we
will only consider Fig. 1(a) with anomalous tc� coupling.
From the Feynman diagram of Fig. 1(a), it is easy to observe

that the large CKM factor VtbVcs � 1 makes b ! s� very
sensitive to the strength of anomalous tc� coupling.
The calculation of Fig. 1(a) can be carried out straight-

forwardly. The calculation details are presented in
Appendix A, and the final result reads

iMðb ! s�Þ ¼ �s½e��ðkÞ�b��ðkÞ; e��ðp; kÞ
¼ ie

GF

4
ffiffiffi
2

p
�2

V�
csVtb½i���k�ðmsfLðxÞL

þmbfRðxÞRÞ�: (3)

Usually the ms term can be neglected, and the function
fRðxÞ is calculated to be

fRðxÞ ¼ ��
tcR

�
2mt

�
� 1

ðxc � 1Þðxt � 1Þ
� x2c

ðxc � 1Þ2ðxc � xtÞ
lnxc

þ x2t
ðxt � 1Þ2ðxc � xtÞ

lnxt

�
; (4)

with xq ¼ m2
q=m

2
W . Now we are ready to incorporate the

NP contribution into its SM counterpart for �B ! Xs�
decay.
In the SM, it is known that �B ! Xs� decay is governed

by the effective Hamiltonian at scale � ¼ OðmbÞ [17]

H effðb! s�Þ¼�4GFffiffiffi
2

p V�
tsVtb

�X6
i¼1

Cið�ÞQið�Þ

þC7�ð�ÞO7�ð�ÞþC8gð�ÞO8gð�Þ
�
; (5)

where Cið�Þ are the Wilsion coefficients, Oi¼1�6 are the
effective four quark operators, and

O7� ¼ e

16�2
mbð �sL���bRÞF��;

O8g ¼ g

16�2
mbð �sL���TabRÞGa

��:
(6)

For calculating Bð �B ! Xs�Þ, instead of the original
Wilson coefficients Ci, it is convenient to use the so-called
‘‘effective coefficients’’ [18]

FIG. 1 (color online). Feynman diagrams for b ! s�. (a) and (b) are the penguin diagrams with the anomalous tq� couplings.
(c) Sample LO penguin diagram in the SM.
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Cð0Þeff
7� ðmbÞ ¼ 	16=23Cð0ÞSM

7� ðMWÞ

þ 8

3
ð	14=23 � 	16=23ÞCð0ÞSM

8g ðMWÞ

þ Cð0ÞSM
2 ðMWÞ

X8
i¼1

hi	
ai ; (7)

where 	 ¼ 
sð�WÞ=
sð�bÞ, and

hi ¼
�
626 126

272 277
� 56 281

51 730
� 3

7
� 1

14
� 0:6494

� 0:0380 � 0:0185 � 0:0057

�
; (8)

ai ¼
�
14

23

16

23

6

23
� 12

23
0:4086 � 0:4230

� 0:8994 0:1456

�
: (9)

To the leading order approximation, the Bð �B ! Xs�Þ is
proportional to jCð0Þeff

7� ðmbÞj2 [19].

In terms of the operator basis in Eq. (5), the contribution
of the anomalous t ! c� couplings in Eq. (3) would result
in the deviation of

C7�ðMWÞ ! C0
7�ðMWÞ ¼ C7�ðMWÞ þ CNP

7� ðMWÞ (10)

and CNP
7� ðMWÞ can be read from Eq. (3) as

CNP
7� ðMWÞ ¼ ��

tcR

�

V�
cs

V�
ts

mt

�
1

ðxc � 1Þðxt � 1Þ

þ x2c
ðxc � 1Þ2ðxc � xtÞ

logxc

� x2t
ðxt � 1Þ2ðxc � xtÞ

lnxt

�
: (11)

From this equation, one can see that the NP contribution is
suppressed by a factor of mt=� but enhanced by Vcs=Vts.
Since the NP contribution does not bring about any new

operator, the renormalization group evolution of Ceff
7�

from MW to the mb scale is just the same as the SM one
in Eq. (7). For mt ¼ 172 GeV, mb ¼ 4:67 GeV,

sðMZÞ ¼ 0:118, and � ¼ 1 TeV, we have

C0eff
7� ðmbÞ¼	16=23½Cð0ÞSM

7� ðMWÞþCð0ÞNP
7� ðMWÞ�þ8

3
ð	14=23�	16=23ÞCð0ÞSM

8g ðMWÞ

þCð0ÞSM
2 ðMWÞ

X8
i¼1

hi	
ai ¼0:665½Cð0ÞSM

7� ðMWÞþCð0ÞNP
7� ðMWÞ�

þ0:093Cð0ÞSM
8g ðMWÞ�0:158Cð0ÞSM

2 ðMWÞ¼0:665½�0:189þ��
tcRð�1:092Þ�

þ0:093ð�0:095Þ�0:158: (12)

In principle, C0eff
7� ðmbÞ will receive corrections from

anomalous t ! cg couplings in Eq. (1) which will cause a

deviation to Cð0ÞSM
8g ðMWÞ. However, as shown by Eq. (12),

the coefficient 	16=23 of Cð0Þ
7�ðMWÞ is about 1 order larger

than 8
3 ð	14=23 � 	16=23Þ of Cð0ÞNP

8g ðMWÞ. Given the relative

strength of Cð0ÞNP
8g ðMWÞ to Cð0ÞSM

8g ðMWÞ at 10% level,

C0eff
7� ðmbÞ will be shifted by only a few percentage. For

simplifying the numerical analysis, we neglect the contri-
bution of the anomalous t ! cg couplings.We also find that
the operator �qR�

��tLF�� contributes to �B ! Xs� only

through the term ms �s���ð1� �5Þb as shown by Eqs. (3)

and (A7). Combined with the previous remarks on this
operator, the effects of �qR�

��tLF�� could be safely

neglected.

III. NUMERICAL RESULTS AND DISCUSSIONS

The current average of experimental results of Bð �B !
Xs�Þ by the Heavy Flavor Average Group is [20]

B expð �B!Xs�Þ¼ ð3:55�0:24�0:09Þ�10�4: (13)

On the theoretical side, the next-to-leading order (NLO)
calculation has been completed [19,21] and gives

B ð �B ! Xs�Þ ¼ ð3:57� 0:30Þ � 10�4: (14)

The recent estimation at next-to-next-to-leading order
(NNLO) [22] gives Bð �B ! Xs�Þ ¼ ð3:15� 0:23Þ � 10�4,
which is about 1� lower than the experimental average in
Eq. (13). Thus the experimental measurement of Bð �B !
Xs�Þ is in good agreement with the SM predictions with
roughly 10% errors on each side. The agreement would
provide strong constraints on the top quark anomalous inter-
actions beyond the SM [9,10].
The decay amplitude of t ! c� has been calculated up

to NLO [16]. For a consistent treatment of the constraints
from t ! c� and b ! s� decays, we use the NLO formu-
las in Ref. [21] to calculate Bð �B ! Xs�Þ. The experimen-
tal inputs and main formulas are collected in Appendix B.

For numerical analysis, we will use the notation ��
tcR ¼

j��
tcRjei�

�
tcR and set � ¼ 1 TeV.
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At first, we analyze the dependence of BSMþNPð �B !
Xs�Þ on the new physics parameters j��

tcR=�j and ��tcR,
which is shown in Fig. 2. From the figure, one can find that
the contribution of anomalous t ! c� coupling is con-
structive to the SM one for ��tcR 2 ½�50�; 50��; thus
Bð �B ! Xs�Þ is very sensitive to j��

tcRj. However, whenj��tcRj 2 ½80�; 130��, the sensitivity of Bð �B ! Xs�Þ to
j��

tcRj becomes weak. For j��tcRj 	 180�, the contribution
of anomalous t ! c� coupling is destructive to the SM one
and there are two separated possible strengths for j��

tcR=�j.
The allowed region for the parameters j��

tcR=�j and ��tcR
under the constraints from Bð �B ! Xs�Þ at 95% C.L. is
shown in Fig. 3. The corresponding 95% C.L. upper bound
on Bðt ! c�Þ is shown in Fig. 4.

Now we discuss our numerical results. From Eq. (12),
the explicit relation between the SM and the t ! c� cou-
pling contributions is

C0eff
7� ðmbÞ ¼ �0:293� 0:726��

tcR: (15)

Obviously, when Re��
tcR > 0, the interference between

them is constructive, and it turns out to be destructive
when ��tcR > 90�. Thus the features of these constraints
shown in Figs. 3 and 4 for different ��tcR are as follows:

(i) The bound on j��
tcR=�j is very strong for ��tcR 2

½�50�; 50��. For ��tcR � 0�, as shown in Fig. 3, we
obtain the most restrictive upper bound j��

tcR=�j<
4:9� 10�5 GeV�1, which implies Bðt !
c�Þ< 6:54� 10�5.

(ii) The bound on j��
tcR=�j is rather weak for ��tcR

around 110�. For such a case, Re��
tcR is destructive

to the SM contribution as shown by Eq. (15), so, the
allowed strength for the anomalous coupling is

FIG. 2 (color online). The contour plot describes the depen-
dence of Bð �B ! Xs�Þð�10�4Þ on j��

tcR=�j and ��tcR. The

dashed lines correspond to the experimental center value of
Bð �B ! Xs�Þ.

Allowed by B Xs at 95 C.L.

Excluded by CDF at 95 C.L.

150 100 50 0 50 100 150
0.0

0.5

1.0

1.5

2.0

tcR deg

tc
R

T
eV

1

FIG. 3 (color online). The 95% C.L. upper bounds on anoma-
lous coupling j��

tcR=�j as a function of ��tcR. The shadowed

region is allowed by Bexpð �B ! Xs�Þ and the dashed line is the
CDF [5] upper limit.

FIG. 4 (color online). Bðt ! c�Þ as a function of ��tcR. The
shadowed region is allowed by the combined constraints of
Bð �B ! Xs�Þ and CDF searching at 95% C.L.
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much larger than the one for real ��
tcR. When

j��tcRj � 135� and j��
tcRj � 0:571, C0eff

7� ðmbÞ is al-

most imaginary since ReC0eff
7� ðmbÞ � 0. Then the

restriction on j��
tcR=�j is provided by the CDF

search for Bðt ! c�Þ [5].
(iii) As shown in Fig. 3, when ��tcR 	�180�, there are

two solutions for j��
tcR=�j. The larger one

j��
tcR=�j 	 1:4� 10�3 GeV�1 (S2 column in

Table I) corresponds to the situation in which the
sign of Ceff

7� is flipped. However, it has been ex-

cluded by the CDF upper bound of Bðt ! c�Þ<
0:032 [5]. The other solution (S1 column in Table I)
j��

tcR=�j< 5:6� 10�5 GeV�1 will result in the
upper limit Bðt ! c�Þ< 8:52� 10�5.

Taking ��tcR ¼ 0�;�180� and �110� as benchmarks,
we summarize our numerical constraints on ��

tcR and their
corresponding upper limits on Bðt ! c�Þ in Table I. From
the table, we can find that our indirect bound on real ��

tcR is
much stronger than the CDF direct bound. The correspond-
ing upper limits on Bðt ! c�Þ are about the same order as
the ATLAS sensitivity Bðt ! c�Þ> 9:4� 10�5 [6] and
CMS sensitivity Bðt ! c�Þ> 4:1� 10�4 [7] with an in-
tegrated luminosity of 10 fb�1 of the LHC operating atffiffiffi
s

p ¼ 14 TeV [6].

IV. CONCLUSIONS

In this paper, starting with model-independent dimen-
sion 5 anomalous tc� operators, we have studied their
contributions to Bð �B ! Xs�Þ. It is noted that the t ! c�
transition will involve two independent operators
��
tcR �cL�

��tRF�� and ��
tcL �cR�

��tLF��. The first operator

will produce a left-handed photon in t ! c� decay, while
the second one will produce a right-handed photon. It is
found that �B ! Xs� is sensitive to the first operator, but not
to the second one.

For real ��
tcR, the constraint on the presence of

��
tcR �cL�

��tRF�� is very strong, which corresponds to the

indirect upper limits Bðt ! c�Þ< 6:54� 10�5 (for posi-
tive ��

tcR) and Bðt ! c�Þ< 8:52� 10�5 (for negative
��
tcR), respectively. These upper limits for Bðt ! c�Þ are

close to the 5� discovery sensitivities of ATLAS [6] and
slightly lower than that of CMS [7] with 10 fb�1 integrated

luminosity operating at
ffiffiffi
s

p ¼ 14 TeV. For nearly imagi-
nary ��

tcR, the constraints are rather weak since C7� in the

SM is a real number. If Bðt ! c�Þ were found to be of the
order of Oð10�3Þ at the LHC in the future, it would imply
the weak phase of ��

tcR to be around�100�. However, such
a coupling might be ruled out by the other observable in B
meson decays [23].
In summary, we have studied the interesting interplay

between the precise measurement of b ! s� decay at
B factories and the possible t ! c� decay at the LHC.
For real anomalous coupling, it is shown that Bðt ! c�Þ
has been restricted to be below 10�4 at 95% C.L. by
�B ! Xs� decay, which is already 2 orders lower than the
direct upper bound from CDF [5]. The result also implies
that one may need a data sample much larger than 10 fb�1

to hunt out t ! c� signals at the LHC.
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APPENDIX A: THE CALCULATION OF CNP
7� ð�WÞ

Using the Feynman rules in Fig. 5(a), the amplitude of
the penguin diagram in Fig. 5(b) can be written as

iM ¼ �usðp0Þ½e��ðp; kÞ�ubðpÞ��ðkÞ; (A1)

TABLE I. The 95% C.L. constraints on the anomalous t ! c� coupling by Bð �B ! Xs�Þ and Bðt ! c�Þ for some specific ��tcR
values.

��tcR ¼ 0� ��tcR ¼ �180� S1 ��tcR ¼ �180� S2 ��tcR ¼ �110�

Bð �B ! Xs�Þ j��
tcRj< 0:049 j��

tcRj< 0:056 1:35< j��
tcRj< 1:45 j��

tcRj< 0:55

Bðt ! c�Þ CDF bounds [5] j��
tcRj< 1:09 j��

tcRj< 1:09 j��
tcRj< 1:09 j��

tcRj< 1:09

Combined bounds j��
tcRj< 0:049 j��

tcRj< 0:056 
 
 
 j��
tcRj< 0:55

Bðt ! c�Þ <6:54� 10�5 <8:52� 10�5 
 
 
 <8:17� 10�3

FIG. 5 (color online). (a) The Feynman rules of t�c interac-
tions in the Lagrangian of Eq. (1). (b) Penguin diagram contri-
bution to b ! s� with top quark anomalous interactions.
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��ðp;kÞ¼�ig2

�
V�
csVtb

Z d4q

ð2�Þ4
N

½ðp0 �qÞ2�m2
cþ i��½ðp�qÞ2�m2

t þ i��½q2�m2
Wþ i�� ; (A2)

N ¼ �
Lðpp0 �qþmqÞ���ð��
tcRRþ ��

tcLLÞ
� ðp�qþmtÞ��Lg


�k�; (A3)

with R ¼ ð1þ �5Þ=2 and L ¼ ð1� �5Þ=2. By Dirac alge-
bra

�
Lq�
��ð��

tcRRþ ��
tcLLÞq��L ¼ 0: (A4)

The terms with q2 in N vanish and N becomes

N ¼ mc�
�
tcL½2ðp�qÞ��� þ ð4�DÞ���ðp�qÞ�

� Lk� þmt�
�
tcR½2���ðp0 �qÞ

þ ð4�DÞðp0 �qÞ����Rk�: (A5)

Thus, there is no divergence in ��ðp; kÞ. After integrating
out q in the ��ðp; kÞ and using the on-shell condition,
��ðp; kÞ can be written in the following form:

e��ðp; kÞ ¼ ie
GF

4
ffiffiffi
2

p
�2

V�
csVtb½i���k�ðmsfLðxÞL

þmbfRðxÞRÞ�; (A6)

where

fLðxÞ ¼ ��
tcL

�
2mc

�
� 1

ðxc � 1Þðxt � 1Þ
� x2c

ðxc � 1Þ2ðxc � xtÞ
lnxc

þ x2t
ðxt � 1Þ2ðxc � xtÞ

lnxt

�
; (A7)

fRðxÞ ¼ ��
tcR

�
2mt

�
� 1

ðxc � 1Þðxt � 1Þ
� x2c

ðxc � 1Þ2ðxc � xtÞ
lnxc

þ x2t
ðxt � 1Þ2ðxc � xtÞ

lnxt

�
: (A8)

Using the convention of Ref. [19], we have

Cð0ÞNP
7� ðMWÞ ¼ � 1

2

V�
cs

V�
ts

fRðxÞ

¼ V�
cs

V�
ts

mt

��
tcR

�

�
1

ðxc � 1Þðxt � 1Þ

þ x2c
ðxc � 1Þ2ðxc � xtÞ

lnxc

� x2t
ðxt � 1Þ2ðxc � xtÞ

lnxt

�
: (A9)

APPENDIX B: MAIN FORMULAS AND INPUTS

Following the notation in Ref. [21], the branching ratio
of �B ! Xs� can be expressed as

B½ �B ! Xs��E�>E0

¼ Bexp½ �B ! Xce ���
��������
V�
tsVtb

Vcb

��������
26
em

�C
½PðE0Þ þ NðE0Þ�;

(B1)

where PðE0Þ is the perturbative ratio

�½ �B ! Xs��E�>E0

jVcb=Vubj2�½ �B ! Xue ���
¼

��������
V�
tsVtb

Vcb

��������
26
em

�
PðE0Þ;

(B2)

which includes the Wilson coefficients of Eq. (7). NðE0Þ
denotes the nonperturbative corrections. The semileptonic
phase space factor

C ¼
��������
Vub

Vcb

��������
2�½ �B ! Xce ���
�½ �B ! Xue ���

(B3)

can be obtained from a fit of the experimental spectrum of
the �B ! Xcl �� [24].
For calculatingBðt ! c�Þ, we use the NLO formulas in

Refs. [16,25]. Because t ! bW is the dominant top quark
decay mode, the branching ratio of t ! c� is defined as

B ðt ! c�Þ ¼ �ðt ! c�Þ
�ðt ! bWÞ : (B4)

The partial width �ðt ! c�Þ at the NLO can be found in
Ref. [16], namely,

�NLOðt ! c�Þ

¼ 2
s

9�
�0ðt ! c�Þ

�
�3 log

�
�2

m2
t

�
� 2�2 þ 8

�
; (B5)

where �0ðt ! c�Þ ¼ 
m3
t ð��

tcR=�Þ2 is the LO partial de-
cay width.
The partial width of t ! bW has been calculated in

Ref. [25] at the NLO, which reads
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�NLOðt ! bWÞ ¼ �0ðt ! bWÞ
�
1þ 2
s

3�

�
2

�ð1� �2
WÞð2�2

W � 1Þð�2
W � 2Þ

�4
Wð3� 2�2

WÞ
�
lnð1� �2

WÞ �
9� 4�2

W

3� 2�2
W

� ln�2
W þ 2Li2ð�2

WÞ � 2Li2ð1� �2
WÞ �

6�4
W � 3�2

W � 8

2�2
Wð3� 2�2

WÞ
� �2

��
(B6)

with �0ðt ! bWÞ ¼ ðGFm
3
t =8

ffiffiffi
2

p
�ÞjVtbj2�4

Wð3� 2�2
WÞ and �W � ð1�m2

W=m
2
t Þ1=2.

The experimental inputs are collected in Table II, in which the CKM factors are derived from the Wolfenstein
parameters A, �, �
, and �	.
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