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We present the general form of the unitary matrices keeping invariant the Majorana neutrino mass

matrix of specific texture suitable for explaining oscillation data. In the case of the tri-bimaximal pattern

with two degenerate masses, we give a specific realization of the underlying Uð1Þ symmetry which can be

uplifted to a symmetry in a complete theory including charged leptons. For this, we present a model with

three light SM-like Higgs doublets and one heavy Higgs triplet and find that one can accommodate the

hierarchy of the charged-lepton masses. The lepton mass spectrum can also be achieved in another model

extending the SM with three SM-singlet scalars transforming nontrivially under the flavor symmetry.

We discuss how such a model has room for generating enough baryon asymmetry through leptogenesis in

the framework of type-I and -II seesaw mechanisms.
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I. INTRODUCTION

The atmospheric, solar, and reactor neutrino oscillations
[1–3] have provided robust evidence that neutrinos are
massive and lepton flavors are mixed. Moreover, a number
of phenomenological Ansätze of lepton flavor mixing with
two large rotation angles [4,5] have been proposed and
discussed [6], in particular, the tri-bimaximal flavor mixing
pattern [7] describes approximately well the oscillation
data. The starting point is usually the assumption that there
are only three neutrinos and that they are Majorana fermi-
ons. The most general neutrino mass matrix, in the flavor
basis where the charged-lepton mass matrix is diagonal, is
then a symmetric 3� 3 matrixM�. Any model of neutrino
mass always ends up with a simplification of M�, thereby
reducing the number of independent parameters, and the
results are fitted in order to be consistent with the experi-
mental data.

The approach of form invariance proposed by Ma [8],
substitutes this ad hoc procedure by the symmetry argu-
ment that the neutrino mass matrix is invariant when ex-
pressed in the flavor basis and another basis related to the
former by a specific unitary transformation S:

STM�S ¼ M�: (1)

This, for certain S, imposes a particular form onM� which
might be able to accommodate the data. The set of these S’s
might form discrete or continuous symmetry groups, de-
pending on the mass spectrum, and then one can impose
this symmetry on the setup so to become the underlying
symmetry for the desired form of M�.

In this work, we seek the most general symmetry S
satisfying the form invariance [Eq. (1)], and we find it by
examining the invariance implication on the diagonalized

neutrino mass matrix Mdiag
� since the analysis in the latter

case is simpler.
The method is applied to the phenomenologically suc-

cessful tri-bimaximal pattern [7] and its realization in
tripartite model [9]. When the three neutrino masses are
distinct, the form of S is quite limited and has a well-
defined ðZ2Þ3 symmetry [10]. However, in the special
case when two neutrino masses are almost degenerate,
the symmetry is a priori isomorphic to the Abelian group
Uð1Þ corresponding to a rotation in the degenerate mass
eigenspace. We find a realization of this approximate Uð1Þ
symmetry and deduce the general form of the matrix S
characterizing the tripartite model with two degenerate
masses, of which the Z3 symmetry reported in [9] is a
special case. Moreover, if a symmetry is behind the ob-
served pattern of M�, then it must also apply to the
charged-lepton mass matrix Ml. Following [9], we first
introduce three Higgs scalar doublets at the electroweak
scale, and one heavy Higgs triplet and find that the con-
ditions on the Yukawa couplings necessary to accommo-
date the Z3 symmetry of [9] are sufficient to enforce the
approximate Uð1Þ continuous symmetry, of which we
characterize the conserved current. We introduce later
another model with only one Higgs doublet, but extending
the standard model (SM) by three SM-singlet scalars trans-
forming nontrivially under the flavor symmetry. Like the
first model, all patterns of charged-lepton masses can be
accommodated, but moreover, we examine the possibility
of the model to produce enough baryogenesis, via lepto-
genesis, in the framework of seesaw mechanisms.
The plan of the paper is as follows. We start by some

basics defining the notations in Sec. II. In Sec. III we
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explain the method for finding the form invariance sym-
metry, and we apply it to the tripartite model. We treat in
Sec. IV the case of almost two degenerate masses.
In Sec. V we implement the symmetry in a setup including
the charged leptons with many Higgs doublets, and study
the current associated with this continuous symmetry.
In Sec. VI we introduce another model with additional
SM-singlet scalars and study the charged-lepton mass
spectrum. In Secs. VII and VIII we treat, within the model,
the problems of generating the neutrino mass hierarchies
and the lepton and baryon asymmetries in the framework
of seesaw mechanisms. We end up by summarizing our
results in Sec. IX.

II. BASIC NOTATIONS

In the standard model (SM) of particle interactions, there
are three lepton families. The charged-lepton mass matrix
linking left handed ðe;�; �Þ to their right-handed counter-
parts is in general arbitrary, but may always be diagonal-
ized by a biunitary transformation:

Ml ¼ Ul
L

me 0 0
0 m� 0
0 0 m�

0
@

1
AðUl

RÞy: (2)

Similarly, the neutrino mass matrix may also be diagonal-
ized by a biunitary transformation if it is Dirac:

MD
� ¼ U�

L

m1 0 0
0 m2 0
0 0 m3

0
@

1
AðU�

RÞy; (3)

or by one unitary transformation if it is Majorana:

MM
� ¼ U�

L

m1 0 0
0 m2 0
0 0 m3

0
@

1
AðU�

LÞT: (4)

The observed neutrino mixing matrix is the mismatch
between Ul

L and U�
L, i.e.,

Ul� ¼ ðUl
LÞyU�

L ’
0:83 0:56 <0:2
�0:39 0:59 0:71
0:39 �0:59 0:71

0
@

1
A

’
ffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
3

p
0

�1=
ffiffiffi
6

p
1=

ffiffiffi
3

p
1=

ffiffiffi
2

p
1=

ffiffiffi
6

p �1=
ffiffiffi
3

p
1=

ffiffiffi
2

p

0
B@

1
CA: (5)

This approximate pattern has been dubbed tri-bimaximal
by Harrison, Perkins, and Scott [7].
If we work in the flavor basis whereMl is diagonal, thus

Ul
L ¼ 1 be a unity matrix, and assume the neutrinos are

of Majorana type, then the flavor mixing matrix is simpli-

fied to V ¼ U�
L, and so, with Mdiag

� ¼ Diagðm1; m2; m3Þ,
we have

M� ¼ VM
diag
� VT: (6)

The tri-bimaximal neutrino mixing pattern can be
obtained as follows. First, we consider the product of two
Euler rotation matrices:

R12ð�xÞ ¼
cx sx 0
�sx cx 0
0 0 1

0
@

1
A;

R23ð�yÞ ¼
1 0 0
0 cy sy
0 �sy cy

0
B@

1
CA

(7)

(with sx � sin�x, cy � cos�y, and so on). We then fix �y to

be equal to the ‘‘maximal mixing’’ angle �y ¼ 45�, getting
the mixing matrix:

V ¼ R23

�
�y ¼ �

4

�
R12ð�xÞ ¼

cx sx 0
� sxffiffi

2
p cxffiffi

2
p 1ffiffi

2
p

sxffiffi
2

p � cxffiffi
2

p 1ffiffi
2

p

0
B@

1
CA:

(8)

The neutrino mass matrix takes then the form

M� ¼
A0
� � B0

� þ C0
� ð1=4Þ ffiffiffi

2
p

tanð2�xÞC0
� �ð1=4Þ ffiffiffi

2
p

tanð2�xÞC0
�

ð1=4Þ ffiffiffi
2

p
tanð2�xÞC0

� A0
� þ C0

� B0
� � C0

�

�ð1=4Þ ffiffiffi
2

p
tanð2�xÞC0

� B0
� � C0

� A0
� þ C0

�

0
B@

1
CA; (9)

where

A0
�¼�ð3=4Þcosð2�xÞðm2�m1Þþð1=4Þðm2þm1Þ

þð1=2Þm3;

B0
�¼�ð1=4Þðm2þm1Þþð3=4Þcosð2�xÞðm2�m1Þ

þð1=2Þm3

C0
�¼ cosð2�xÞðm2�m1Þ:

(10)

In consequence, any ‘‘measurable’’ mixing angle �x can be

obtained in this way; however, the experimentally mea-

sured x-mixing angle in the tri-bimaximal pattern can be

characterized as being the mixing angle which makes the

terms involving C0
� in Eq. (9), proportional to the mass

difference m2 �m1, constitute a ‘‘democratic’’ perturba-

tion on the form of the mass matrix when m1 ¼ m2. This

happens when �x ¼ arctanð1= ffiffiffi
2

p Þ � 35:3� leading to
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V0 ¼ R23

�
�y ¼ �

4

�

R12

�
�x ¼ arctan

�
1ffiffiffi
2

p
��

¼

ffiffi
2

pffiffi
3

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p
1ffiffi
6

p � 1ffiffi
3

p 1ffiffi
2

p

0
BB@

1
CCA:

(11)

The vanishing of the (1, 3) element in V0 assures an exact

decoupling between solar (�e ! ��) and atmospheric

(�� ! ��) neutrino oscillations, and the neutrino mass

matrix of Eq. (9) takes the form

M� ¼ V0

m1 0 0
0 m2 0
0 0 m3

0
@

1
AVT

0

¼
A� � B� þ C� C� �C�

C� A� þ C� B� � C�

�C� B� � C� A� þ C�

0
@

1
A; (12)

with

A� ¼m3 þm1

2
; B� ¼m3 �m1

2
; C� ¼m2 �m1

3
:

(13)

The form of Eq. (12) is, thus, phenomenologically desir-

able and the question arises as to whether or not there is a

guiding principle, say a symmetry, leading to it. One of the

ways to have M� of a given form is to impose a form

invariance condition [Eq. (1)] for certain unitary S, and our

aim is to find the most general form for these unitary

matrices S, which can then be uplifted to symmetries

underlying the specific form of M�.

III. DETERMINING THE FORM INVARIANCE
SYMMETRY FOR THE TRI-BIMAXIMAL

PATTERN—METHOD

In order to find the symmetry that imposes the form
invariance property on a given mass matrixM�, we see that
Eq. (1), using Eq. (6), is equivalent to

UTM
diag
� U ¼ M

diag
� ; (14)

where U is a unitary matrix related to S by

S ¼ V�
0UVT

0 : (15)

Thus any ‘‘symmetry’’ U for the diagonalized form can
appear as a symmetry S in the flavor basis. Writing
Eq. (14) as

½
ffiffiffiffiffiffiffiffiffiffiffi
M

diag
�

q
Uð

ffiffiffiffiffiffiffiffiffiffiffi
M

diag
�

q
Þ�1�T½

ffiffiffiffiffiffiffiffiffiffiffi
M

diag
�

q
Uð

ffiffiffiffiffiffiffiffiffiffiffi
M

diag
�

q
Þ�1� ¼ 1; (16)

where

ffiffiffiffiffiffiffiffiffiffiffi
M

diag
�

q
¼

ffiffiffiffiffiffi
m1

p
0 0

0
ffiffiffiffiffiffi
m2

p
0

0 0
ffiffiffiffiffiffi
m3

p

0
B@

1
CA;

we see that the general form of U is

U ¼
� ffiffiffiffiffiffiffi

Md
�

q ��1
O

ffiffiffiffiffiffiffi
Md

�

q
; (17)

where O is any 3� 3 orthogonal matrix. The set of matri-
ces U defined in Eq. (17) forms a group under matrix
multiplication. However, the unitarity condition on U
imposes, for real matrices O, the following ‘‘vanishing
commutator’’ condition on O:

½O;M
diag
� � ¼ 0: (18)

This condition does eliminate most members of the
orthogonal group Oð3Þ, except few discrete subgroups
such as ðZ2Þ3 for the case of nondegenerate neutrino
mass spectrum, as was shown in [10]. However, in the
case of degenerate spectrum there is room for few continu-
ous subgroups to remain as we shall see now.

IV. APPLICATION TO THE TRIPARTITE MODEL
WITH TWO DEGENERATE MASSES

Let us consider here the case of an almost degenerate
mass spectrum m1 ’ m2, where their actual difference [the
C� part in Eq. (12)] can be treated as a perturbation
originating from higher order operators, then M� is of the
form

M� ¼
A� � B� 0 0

0 A� B�

0 B� A�

0
@

1
A; (19)

with A� ¼ m3þm1

2 , B� ¼ m3�m1

2 . Any rotation V corre-

sponding to �y being fixed at �
4 and �x arbitrary [Eq. (8)]

will diagonalize M�.
In [9], a symmetry (Z3 � Z2) for the form (19), which

determines it uniquely, was given:

SB ¼
�1=2 � ffiffiffiffiffiffiffiffi

3=8
p ffiffiffiffiffiffiffiffi

3=8
p

ffiffiffiffiffiffiffiffi
3=8

p
1=4 3=4

� ffiffiffiffiffiffiffiffi
3=8

p
3=4 1=4

0
BBB@

1
CCCA:S3B ¼ 1;

S2 ¼
�1 0 0

0 0 1

0 1 0

0
BB@

1
CCA:S22 ¼ 1:

(20)

However, from Sec. II we find that the general symmetry
enforcing the form (19), which corresponds to two degen-
erate massesm1 andm2, would correspond, providedm3 is
different from the common degenerate mass in accordance
with the experimental data, to an orthogonal matrix O, in
Eq. (17) and satisfying the condition (18), of the form
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O ¼ O2
0
0

0 0 �1

0
@

1
A;

where O2 is an isometry in the x-y plane. To fix the ideas,
we restrict our symmetry here to the connected component
of the unity, which are the rotations in the x-y plane,
and get:1

Uð�Þ ¼
c� s� 0
�s� c� 0
0 0 1

0
@

1
A: (21)

We get thus the general symmetry

S� ¼ Vð�xÞUð�ÞVð�xÞT

¼
c�

s�ffiffi
2

p � s�ffiffi
2

p

� s�ffiffi
2

p 1
2 ð1þ c�Þ 1

2 ð1� c�Þ
s�ffiffi
2

p 1
2 ð1� c�Þ 1

2 ð1þ c�Þ

0
BB@

1
CCA: (22)

Note that the mixing angle �x can be taken arbitrary here
since it is not determined in the degenerate masses case.
We can check that S� determines uniquely the form (19),
i.e. a necessary and sufficient condition for a matrix to be
of the form [Eq. (19)] is to be symmetric and invariant
under the symmetry S� for all angles �:

½ðM ¼ MTÞ ^ ð8 �; ST�MS� ¼ MÞ�

,
2
649A;B:M ¼

A� B 0 0

0 A B

0 B A

0
BB@

1
CCA
3
75: (23)

We see also that the Z2 and Z3 of [9] are particular sub-
groups of this Uð1Þ symmetry, for S�ð2�=3Þ ¼ SB and S� ¼
S2. The S� is a three-dimensional representation, albeit
‘‘reducible,’’ of the group Uð1Þ in that S�1þ�2 ¼ S�1S�2 .

Here, some remarks are in order. First, had we dropped
the requirement of the matrix M being symmetric in the
form invariance condition, then the symmetry S� would
impose the following form on M:

½ð8 �; ST�MS� ¼ MÞ�

,
2
649A; B; C:M ¼

A� B �C C

C A B

�C B A

0
BB@

1
CCA
3
75: (24)

Second, we have neglected the Majorana phases, on which
there are no experimental bounds, in the discussion so far.
By introducing the mixing angles ð�x; �y; �zÞ and the

phases ð�; �; �Þ, the unitary matrix V, which diagonalizes
the symmetric neutrino mass matrixM� in the flavor basis,
can be parametrized as follows:

V ¼ UP (25)

P ¼ diagðei�; ei�; 1Þ;

U ¼
cxcz sxcz sz

�cxsysz � sxcye
�i� �sxsysz þ cxcye

�i� sycz

�cxcysz þ sxsye
�i� �sxcysz � cxsye

�i� cycz

0
BB@

1
CCA

(26)

and Eq. (6) gives the following matrix elements:

M�11 ¼ m1c
2
xc

2
ze

2i� þm2s
2
xc

2
ze

2i� þm3s
2
z ;

M�12 ¼ m1ð�czszc
2
xsye

2i� � czcxsxcye
ið2���ÞÞ þm2ð�czszs

2
xsye

2i� þ czcxsxcye
ið2���ÞÞ þm3czszsy;

M�13 ¼ m1ð�czszc
2
xsye

2i� þ czcxsxsye
ið2���ÞÞ þm2ð�czszs

2
xcye

2i� � czcxsxsye
ið2���ÞÞ þm3czszcy;

M�22 ¼ m1ðcxszsyei� þ cysxe
ið���ÞÞ2 þm2ðsxszsyei� � cycxe

ið���ÞÞ2 þm3c
2
zs

2
y;

M�33 ¼ m1ðcxszcyei� � sysxe
ið���ÞÞ2 þm2ðsxszcyei� þ sycxe

ið���ÞÞ2 þm3c
2
zc

2
y;

M�23 ¼ m1ðc2xcysys2ze2i� þ szcxsxðc2y � s2yÞeið2���Þ � cysys
2
xe

2ið���ÞÞ þm2ðs2xcysys2ze2i� þ szcxsxðs2y � c2yÞeið2���Þ

� cysyc
2
xe

2ið���ÞÞ þm3sycyc
2
z :

(27)

One can see now that the S� symmetry imposing the tripartite model with two degenerate masses (m1 ¼ m2) can only
accommodate the special case of two equal Majorana phases (� ¼ �) and a vanishing Dirac phase (� ¼ 0). In fact, as we
saw in Eq. (23), the S� symmetry imposes the form of Eq. (19) with A� and B� complex in general. We can diagonalize this
matrix by writing

A� � B� 0 0
0 A� B�

0 B� A�

0
@

1
A ¼ V

jA� � B�j 0 0
0 jA� � B�j 0
0 0 jA� þ B�j

0
@

1
AVT (28)

1In general, the group U would be generated by the rotations and reflections: U ¼ hR12ð�Þ; Ix; Iy; Izi.

E. I. LASHIN et al. PHYSICAL REVIEW D 83, 013002 (2011)

013002-4



V ¼ UP; P ¼ diagðei	; ei	; ei
Þ;

U ¼ R23

�
�y ¼ �

4

�
¼

1 0 0
0 1ffiffi

2
p 1ffiffi

2
p

0 � 1ffiffi
2

p 1ffiffi
2

p

0
B@

1
CA (29)

2	 ¼ ArgðA� � B�Þ; 2
 ¼ ArgðA� þ B�Þ: (30)

We can set 
 ¼ 0 by an ‘‘unphysical’’ global phase shift of
the neutrino fields (c i ! e�i
c i) in the neutrino mass
term [ðM�Þijc ic j], so that to end up, when comparing
with Eq. (26), with the case (�y ¼ �

4 , �z ¼ 0, � ¼ �,
� ¼ 0).

Conversely, one can see directly from the expressions in
Eq. (27) that if we restrict to the degenerate case (m1 ¼
m2), and impose �y ¼ �

4 (suggested by atmospheric mixing

data [1,2]) and �z ¼ 0 (suggested by reactor data [3]),
while leaving �x free, we get the expressions

M�11 ¼ m1ðc2xe2i� þ s2xe
2i�Þ;

M�12 ¼ m1cxsxe
�i�ffiffiffi

2
p ð�e2i� þ e2i�Þ;

M�13 ¼ m1cxsxe
�i�ffiffiffi

2
p ðe2i� � e2i�Þ;

M�22 ¼ m1e
�2i�

2
ðs2xe2i� þ c2xe

2i�Þ þm3

2
;

M�33 ¼ m1e
�2i�

2
ðs2xe2i� þ c2xe

2i�Þ þm3

2
;

M�23 ¼ m1e
�2i�

2
ð�s2xe

2i� � c2xe
2i�Þ þm3

2
:

(31)

It is clear now that we have the S�-symmetry form of
Eq. (19) if and only if we have (� ¼ � and � ¼ 0), as
claimed.

V. LEPTON FAMILY SYMMETRY IN PRESENCE
OF MANY HIGGS DOUBLETS

Any symmetry defined in the basis ð�e; ��; ��Þ is

automatically applicable to ðe;�; �Þ in the complete
Lagrangian, and one should verify that the symmetry S�
can be imposed in a complete theory including the charged
leptons. We follow the approach of [9] and extend the
standard model of particle interactions to include three
scalar doublets ð�0

i ; �
�
i Þ, playing the role of the ordinary

SM-Higgs field, and one very heavy triplet ð�þþ; �þ; �0Þ.
The leptonic Yukawa Lagrangian is given by

LY ¼ hij½�0�i�j � �þð�ilj þ li�jÞ=
ffiffiffi
2

p þ �þþlilj�
þ fkijðli�0

j � �i�
�
j Þlck þ H:c:; (32)

where, under the S� transformation,

ð�; lÞi ! ðS�Þijð�; lÞj; lck ! lck; (33)

ð�0; ��Þi ! ðS�Þijð�0; ��Þj;
ð�þþ; �þ; �0Þ ! ð�þþ; �þ; �0Þ: (34)

This means

ST�hS� ¼ h (35)

ST�f
kS� ¼ fk: (36)

Thus, this Lagrangian has the global symmetry
Uð1ÞL N S�, where Uð1ÞL is associated with total lepton
number.2 However, in order to avoid having Goldstone
bosons (majorons) in the theory, when �0 gets a vacuum
expectation value (vev) breaking spontaneously the Uð1ÞL
symmetry, we add the following soft symmetry breaking
term:

�LY ¼ �ij

2
�T

i �
yi�2�j þ H:c:; (37)

where �ij is not proportional to the identity �ij, so that the

Uð1Þ-symmetry S� symmetry is broken explicitly as well in
order not to have a corresponding ‘‘majoron’’ when the�’s
take a vev. Assuming that the triplet mass square (M2

�) is

positive, then the minimization of the potential with re-
spect to the field � gives

h�i ¼ ��i�jvivj

M2
�

(38)

which can be naturally in the electron volt range for �ij 	
M� 	 1012 GeV [11]. The coexistence of two types of final

states for �þþ, lþi lþi from LY and �þ
i �

þ
i from �LY,

indicates a nonconservation of lepton number. However,
one needs also to impose CP violation in out-of-thermal
equilibrium decays to ensure that the lepton asymmetry
generated by �þþ is not neutralized by the decays of ���.
Now, since h is a symmetric matrix then the relations

[Eqs. (23) and (35)] lead to

h ¼
a� b 0 0
0 a b
0 b a

0
@

1
A: (39)

As to Eq. (36), it has a general solution for fk in the form
[see Eq. (24)]

fk ¼
ak � bk ck �ck
�ck ak bk
ck bk ak

0
@

1
A; (40)

where the coefficients ak, bk, and ck can be any complex
numbers. It is noteworthy that the solution in Eq. (40)

2We assign a zero lepton number to the doublets �i, and a
lepton number of two units to the heavy triplet �.
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represents also the general solution of any invariant matrix
fk under Z3 (i.e. STBf

kSB ¼ fk). We thus conclude that
the underlying symmetry of the Lagrangian [Eq. (32)]
presented in [9] is the Uð1Þ symmetry S�, and that the
phenomenological analysis therein assuming Z3 � Z2

symmetry does apply herein with the Uð1Þ symmetry.

In fact, when the Higgses get vevs we have the neutrino
and charged-lepton ‘‘gauge’’ mass matrices as follows:

ðM�Þij ¼ h�0ihij (41)

and

Ml ¼
ða1 � b1Þv1 þ c1ðv2 � v3Þ ða2 � b2Þv1 þ c2ðv2 � v3Þ ða3 � b3Þv1 þ c3ðv2 � v3Þ
�c1v1 þ a1v2 þ b1v3 �c2v1 þ a2v2 þ b2v3 �c3v1 þ a3v2 þ b3v3

c1v1 þ b1v2 þ a1v3 c2v1 þ b2v2 þ a2v3 c3v1 þ b3v2 þ a3v3

0
@

1
A; (42)

where vi � h�0
i i. The neutrino mass matrix is proportional

to a single vev and this translates the Uð1Þ symmetry S�
from the Yukawa couplings to the neutrino mass matrix.
One can arrange for the vevs and the Yukawa couplings
such that Ml, after suitably rotating the charged right-
handed singlet leptons lc, is the charged-lepton mass ma-
trix in the flavor space, where (MlM

y
l ) is diagonal. For

example, if v1;2 
 v3 then we have

Ml � v3

�c1 �c2 �c3
b1 b2 b3
a1 a2 a3

0
@

1
A: (43)

As the determinant of this Ml is proportional to
v2
3a � ðb� cÞ, where a is the complex vector of compo-

nents ai (similarly for b, c), we conclude that a nonsingular
lepton mass matrix should correspond to noncoplanar
vectors ða;b; cÞ. We get then

MlM
y
l � v2

3

kck2 �c � b� �c � a�
�b � c� kbk2 b � a�
�a � c� a � b� kak2

0
B@

1
CA; (44)

where kck2 ¼ c � c� (idem for a, b) and the usual
Hermitian product of two complex vectors (a and b) is
defined as a � b� � P

3
i¼1 aib

�
i .

In order to show that Ml can naturally represent the
lepton mass matrix in the flavor space, let us just assume
the magnitudes of the three vectors coming in ratios com-
parable to the lepton mass ratios:

kck
kak ¼ 
e � me

m�

	 3� 10�4;

kbjj
kak ¼ 
� � m�

m�

	 6� 10�2:

(45)

This yields the squared mass matrix to be written as

Q
 � MlM
y
l � v2

3kak2

2
e �
e
� cosc ei	 �
e cos�ei


�
e
� cosc e�i	 
2
� 
� cos�ei�

�
e cos�e�i
 
� cos�e�i� 1

0
B@

1
CA; (46)

where �, �, and c are the ‘‘angles’’ between the pairs of
complex vectors ðb; aÞ, ðc; aÞ, and ðc;bÞ, respectively,
whereas �, 
, and 	 are the phases of the corresponding
Hermitian products.3 The diagonalization of MlM

y
l by

means of an infinitesimal ‘‘rotation’’ amounts to seeking
an anti-Hermitian matrix

I� ¼
0 �1 �2

���1 0 �3
���2 ���3 0

0
@

1
A; (47)

with small parameters �0s, satisfying

ðQ
 þ ½Q
; I��Þij ¼ 0; i � j: (48)

If we solve this equation analytically to express the
�’s in terms of ð
e;�; cosðc ; �; �Þ; 	; 
; �Þ, we find,
apart from ‘‘fine-tuned’’ situations corresponding to copla-
nar vectors a, b, c, that we get j�3j 	 
�, j�2j 	 
e, and
j�1j 	 
e=
�, which points to a consistent solution diago-
nalizing Q
 close to the identity matrix given by Ul

L ¼
eI� � I þ I�. For the above numerical values and a com-
mon value �=3 for the angles with representative phases as
(	 ¼ �

3 , 
 ¼ �
4 , and � ¼ �

5 ), we get m2
e:m

2
�:m

2
� ¼

6� 10�8:3� 10�3:1, with the ‘‘exact’’ unitary diagonal-
izing matrix given by

3The ‘‘angle’’ � between two complex vectors b and
a is defined, following Cauchy-Schwartz inequality, as jb �
a�j ¼ kbk � kak � cos�, so we have b � a� ¼
kbk � kak � cos� � eiArgðb�a�Þ.
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Ul
L 	

1 2:6� 10�3 expð�0:502i�Þ 1:5� 10�4 expð�0:75i�Þ
�2:6� 10�3 expð0:502i�Þ 1 3� 10�2 expð0:20i�Þ
�1:5� 10�4 expð0:75i�Þ �3� 10�2 expð�0:20i�Þ 1

0
B@

1
CA: (49)

The deviations due to the rotations are generally small, but
could interpret measuring a nonzero small value of Ue3

which is restricted by the reactor data [12] to be less than
0.16 in magnitude. Furthermore, the phases present in Ul

L,
as given in Eq. (49), could contribute to Dirac and
Majorana phases.

As we said above, the phenomenological features of [9]
assuming Z3 � Z2 symmetry, in particular, the leptonic
flavor changing decays through � exchange, can be re-
peated here with the underlying Uð1Þ symmetry. However,
in contrast to discrete symmetries, the existence of a con-
tinuous symmetry leads to a conserved current, which we
investigate now.

For illustration, let us restrict the discussion to the
neutrino part. The invariance, under S�, of the ‘‘current-
relevant’’ part of the Lagrangian depending on the field
derivative:

K� ¼ i ��k�
�@��k (50)

leads to the current:

J
�
� � �i

@K�

@ð@��jÞTjk�k ¼ Tjk ��j�
��k; (51)

where Tjk is the generator of the Uð1Þ symmetry S�:

T ¼
0 iffiffi

2
p �iffiffi

2
p

�iffiffi
2

p 0 0
iffiffi
2

p 0 0

0
BB@

1
CCA: (52)

In fact, Sð�Þ [Eq. (22)], as a three-dimensional representa-
tion of the commutative Uð1Þ group, should be reduced to
three one-dimensional irreducible representations obtained
by diagonalizing the matrix Sð�Þ to get

Sð�Þ ¼ L
1 0 0
0 e�i� 0
0 0 ei�

0
@

1
ALy (53)

L ¼
0 �iffiffi

2
p iffiffi

2
p

1ffiffi
2

p �1
2

�1
2

1ffiffi
2

p 1
2

1
2

0
BB@

1
CCA ¼ V0 V� Vþ

� �
: (54)

The ‘‘neutrino’’ eigenvectors V0, V�, Vþ (forming the
columns of the matrix L) represent the neutrino fields
with definite S charges, respectively, equal to 0;�1; 1.
Writing the neutrino gauge fields �g ¼ ð�e; ��; ��Þ in

terms of these definite S-charge fields, one can see that
the ‘‘neutrino’’ current [Eq. (51)] expresses explicitly the
conservation of the S charge, in that we have

J�� ¼ ð0 �V0�
�V0 � 1 �V���V� þ 1 �Vþ��VþÞ: (55)

We have here a conserved current associated with a global
continuous symmetry with no gauge fields coupled to it.
This is similar to the case of Uð1Þ baryon number conser-
vation in the SM.
Using the tri-bimaximal matrix Ul� to move from the

neutrino gauge states �g
e;�;� to neutrino ‘‘mass’’ states

�m
1;2;3, we can express the definite S-charge neutrino fields

V ¼ ðV0; V�; VþÞ in terms of the mass eigenstates: V ¼
LT � �g ¼ LT � V0 � �m, which gives

V0 ¼ �3;

V� ¼
�
� iffiffiffi

3
p þ 1ffiffiffi

6
p

�
�1 þ

�
� iffiffiffi

6
p � 1

3

�
�2;

Vþ ¼
�
iffiffiffi
3

p þ 1ffiffiffi
6

p
�
�1 þ

�
iffiffiffi
6

p � 1

3

�
�2:

(56)

One can see directly that the particular combination of
mass eigenstates in [Eq. (56)] never mixes under free
time evolution provided �1 and �2 have degenerate mass.
This degeneracy has already been shown to be a conse-
quence of Uð1Þ symmetry S�. The same conclusion still
holds if one thinks of the underlying symmetry, in the
degenerate two masses case, as Z3 � Z2 [see Eq. (20)],
due to the compatibility of both Sð�Þ and Z2 in that they
commute and have common eigenstates.

VI. LEPTON FAMILY SYMMETRY IN PRESENCE
OF MANY HEAVY SINGLET SCALARS

The many Higgs doublets in the previous model were
introduced to accommodate the charged-lepton mass spec-
trum, but at the cost of inducing dangerous flavor changing
neutral currents [13], which are difficult to be controlled.
To remedy this situation, we introduce in the present model
three heavy SM-singlet scalars transforming nontrivially
under the flavor symmetry, and keep the SM-Higgs �
intact. However, we enlarge the flavor symmetry so as to
include an inversion in the flavor space, which means that
the underlying flavor symmetry, call it SI, assumes now the
form

SI ¼ S� hIi ffi Uð1Þ � Z2 (57)

with S given in Eq. (22), and I ¼ Diagð�1;�1;�1Þ.4

4More precisely, the group U in Eq. (21) is now a
direct product of two commuting groups: U �
hR12ð�Þ; Ii ffi SOð2Þ � Z2.
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We assume the SM Higgs � and the charged right-
handed leptons lcj to be singlets under the SI symmetry,

whereas the lepton left doublets transform componentwise
faithfully:

Li ! SIijLj; (58)

with i; j ¼ 1; 2; 3. The normal SM mass term for charged
lepton,

L 1 ¼ Yij
�Li�lcj ; (59)

should vanish now since the invariance under SI restricts
the Yukawa couplings to satisfy the matrix equation:

ðSIÞT � Y ¼ Y; (60)

which cannot be met for an SI matrix with determinant
equal to �1. It is noteworthy that had we chosen not to
enlarge the flavor symmetry then this mass term would
have been allowed.

In order to generate lepton masses, we introduce three
SM-singlet scalar fields, �k, one for each family (the
indices k ¼ 1; 2; 3 refer also to the flavors e, �, and �,
respectively), and they are coupled to the corresponding
lepton left doublet

Lk ¼ �k

lk

� �

via the dimension 5 operator:

L 2 ¼ fikr
�

�Li��kl
c
r; (61)

where � is a heavy mass scale. As said earlier, this
ad hoc assumption of the coupling of charged leptons
with the additional Higgs fields via higher operators, and
not through SM-like Yukawa terms, is suitable to reduce
the effects of flavor changing neutral currents. We assume
the new scalars �k and the lepton left doublets transform
similarly under SI, i.e.,

�i ! SIij�j: (62)

Invariance of the Lagrangian under the symmetry implies

SIi	S
I
k
fikr ¼ f	
r; (63)

which is written, in matrix form, as

ðSIÞTfrSI ¼ fr; (64)

where fr, for fixed r, is the matrix whose ði; jÞ entry is fijr.
Noting that I enters Eq. (64) quadratically, and thus cancels
out, then Eq. (24) imposes the form

fr ¼
Ar � Br Cr �Cr

�Cr Ar Br

Cr Br Ar

0
@

1
A: (65)

When the fields �k and �� take the vacuum expectation
values (vevs) h�ki ¼ �k and h��i ¼ v, the charged-lepton
mass matrix originating from L2 becomes

ðMlÞir ¼ vfikr
�

�k: (66)

As we are concentrating on the neutrino sector without
stating explicitly the �k potential and since the S

I symme-
try is broken by ‘‘soft’’ terms in the Higgs sector, we may
assume a �3-dominated pattern: �1, �2 
 �3, so to get the
charged-lepton mass matrix

Ml � v�3

�

�C1 �C2 �C3

B1 B2 B3

A1 A2 A3

0
@

1
A: (67)

The determinant of Ml is proportional to the mixed prod-

uct, ðv�3

� Þ3A � ðB�CÞ, where A is the ‘‘complex’’ vector

of components Ai (similarly for B, C), which means that
these three vectors should not be coplanar in order to have a
nonsingular lepton mass matrix. We get then

MlM
y
l � v2�2

3

�2

C � C� �C � B� �C �A�
�B � C� B �B� B �A�
�A �C� A � B� A �A�

0
@

1
A: (68)

In a similar way to the analysis in the previous many Higgs
doublet model, we see that assuming the magnitudes of the
three vectors to come in ratios comparable to the lepton
mass ratios,

kCk2:kBk2:kAk2 	m2
e:m

2
�:m

2
�; (69)

would imply that the mixing Ul
L, making Ul

LMlM
y
l U

ly
L

diagonal, will be naturally very close to the identity matrix
with off-diagonal terms of order (me=m� 	 5� 10�3,

me=m� 	 3� 10�4, m�=m� 	 6� 10�2). This would

mean again that our basis is the flavor basis to a very
good approximation and that the hierarchical charged-
lepton masses can be obtained from a hierarchy on the a
priori arbitrary Yukawa couplings (kCk2 
 jjBk2 

kAk2).

VII. THE NEUTRINO MASS MATRIX AND
TYPE-I SEESAW SCENARIO

In this scenario the effective light left neutrino mass
matrix is generated through seesaw mechanism as

M� ¼ �MD
�M

�1
R ðMD

� ÞT; (70)

where MR is the heavy Majorana right-handed neutrinos
mass matrix, whereas the Dirac neutrino mass matrix
comes from the Yukawa term

gij �Li
~��Rj; (71)

with ~� ¼ i�2�
�. As to the right neutrino, we will assume

that it transforms faithfully as

�Rj ! SIj��R�; (72)

since, as we shall see, this assumption will put constraints
on the right Majorana mass matrix. The invariance of the
Lagrangian under SI implies in matrix form:

E. I. LASHIN et al. PHYSICAL REVIEW D 83, 013002 (2011)

013002-8



ðSIÞTgSI ¼ g: (73)

Again, noting that when I enters here it does so quadrati-
cally, Eq. (24) forces the form

MD
� ¼ v

AD � BD CD �CD

�CD AD BD

CD BD AD

0
@

1
A: (74)

As to the right-handed Majorana mass matrix, it origi-
nates from the term

1
2�

T
iRC

�1ðMRÞij�jR; (75)

where C is the charge conjugation matrix. The invariance
under SI implies

ðSIÞTMRS
I ¼ MR; (76)

and thus the symmetric MR has the form [Eq. (23)]

MR ¼ �R

AR � BR 0 0
0 AR BR

0 BR AR

0
@

1
A: (77)

Using Eqs. (70), (74), and (77), we have the effective
neutrino mass matrix:

M� ¼ � v2

�R

A� � B� 0 0
0 A� B�

0 B� A�

0
@

1
A; (78)

where

A� ¼ ARðA2
D þ B2

D þ C2
DÞ þ BRðC2

D � 2ADBDÞ
ðAR � BRÞðAR þ BRÞ ;

B� ¼ �BRðA2
D þ B2

D þ C2
DÞ � ARðC2

D � 2ADBDÞ
ðAR � BRÞðAR þ BRÞ :

(79)

Diagonalizing M� we get the neutrino mass eigenvalues:

v2

�R

ðA� � B�; A� � B�; A� þ B�Þ: (80)

We see here that all possible different patterns of the two
degenerate neutrino masses spectrum can be obtained as
follows.

(i) Normal hierarchy ðm1 ¼ m2 
 m3Þ.—It suffices to
have

0 
 AR;D ’ BR;D; CD 
 BD; (81)

for getting a normal hierarchy with

A� ’ A2
D

AR

; B� ’ A2
D

BR

: (82)

We see that one can arrange the Yukawa couplings to
enforce A� ’ B�, so that to make the smallest
neutrino mass m1 ¼ m2 as tiny as one wishes.

(ii) Inverted hierarchy ðm1 ¼ m2 � m3Þ.—It is suffi-
cient to have

0 
 AR;D ’ �BR;D; CD 
 BD; (83)

so that one gets an inverted hierarchy with

A� ’ 2A2
D

AR � BR

; B� ’ �2B2
D

AR � BR

: (84)

One can arrange the Yukawa couplings to enforce
A� ’ �B�, so that to make the tiniest neutrino mass
m3 small at will.

(iii) Degenerate case ðm1 ¼ m2 � m3Þ.—If we have

AR;D � BR;D; BD � CD; (85)

then we get

A� ’ A2
D

AR

; B� ’ 2ADBD

AR

; (86)

which implies A� � B�, so that we have a degen-
erate spectrum.

Thus, we see that any pattern occurring in both the Dirac
and the right-handed Majorana mass matrices can reappear
in the effective neutrino mass matrix.
The right-handed (RH) neutrino mass term violates

lepton number by two units, and the out of equilibrium
decay of the lightest RH neutrino to SM particles can be a
natural source of lepton asymmetry [14]. This leptogenesis
parameter is given by

� ’ 3

16�v2

1

ð ~MDy
�

~MD
� Þ11

X
j¼2;3

Im½fð ~MDy
�

~MD
� Þ1jg2�MR1

MRj

;

(87)

where MRi; i ¼ 1; . . . ; 3 are the masses for RH neutrinos,
and ~MD

� is the Dirac neutrino mass matrix in the basis
where the Majorana RH neutrino mass matrix is diagonal.5

Explicitly we have

ð ~MDy
�

~MD
� Þ11¼ð2jCDj2þjADj2þjBDj2�ADB

�
D�A�

DBDÞ;
ð ~MDy

�
~MD
� Þ12¼

ffiffiffi
2

p ð�C�
DADþCDA

�
DþC�

DBD�CDB
�
DÞ;

ð ~MDy
�

~MD
� Þ13¼ 0; (88)

which gives a vanishing lepton asymmetry. Thus, in this
seesaw-type mechanism the baryon asymmetry, generated
by lepton asymmetry, is zero provided SI is an exact
symmetry. Certainly, our symmetry SI is not exact, and
the breaking term [the C part in Eq. (12), which can
originate from higher dimensional operators suppressed

5One has to go to the basis where the RH neutrino mass matrix
is diagonal because the lepton asymmetry comes from the decay
of the RH neutrino mass eigenstate.
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by a heavy scale] has to be added in order to lift the
degeneracy among the neutrino masses. In this case, one
can compute the asymmetry in terms of the SI-symmetry
breaking parameters. We shall not dwell on this, rather we
shall discuss the other phenomenologically motivated pos-
sibility of leptogenesis in the type-II seesaw mechanism.

VIII. THE NEUTRINO MASS MATRIX AND
TYPE-II SEESAW SCENARIO

In this scenario we introduce two SM triplet fields
�A, A ¼ 1; 2 which are also assumed to be singlet under
the flavor symmetry SI. The Lagrangian part relevant for
the neutrino mass matrix is

L ¼ 
A
	
L

T
	C

�1�Ai�2L
 þLðH;�AÞ þ H:c:; (89)

where A ¼ 1; 2 and

LðH;�AÞ¼�2
HH

yHþ
H

2
ðHyHÞ2þMATrð�y

A�AÞ

þ
�A

2
½Trð�y

A�AÞ�2þ
H�A
ðHyHÞTrð�y

A�AÞ
þ�AH

T�y
Ai�2HþH:c:; (90)

where

H ¼ �þ
�0

� �
;

and

�A ¼
�þffiffi
2

p �0

�þþ � �þffiffi
2

p

0
@

1
A

A

: (91)

The neutrino mass matrix due to the exchange of the two
triplets, �1 and �2, is

ðM�ÞA	
 ’ v2

�

1
	


�1

M2
�1

þ 
2
	


�2

M2
�2

�
; (92)

where M�i
is the mass of the neutral component �0

i of the

triplet �i; i ¼ 1; 2.
Appropriately, we present some remarks here. First, the

symmetry SI implies that the symmetric matrices 
1 and

2 have the structure given in Eq. (23):


a ¼
Aa � Ba 0 0

0 Aa Ba

0 Ba Aa

0
@

1
A; a ¼ 1; 2:

Second, due to the ‘‘tadpole’’ term (the �A term) in
LðH;�AÞ, which forbids explicitly the ‘‘unwanted’’ ma-
jorons, which would have resulted from the spontaneous
breaking of the lepton number, one can arrange the

parameters so that minimizing the potential gives a non-
zero vev for the neutral component �0 of the triplet. This
would generate a mass term for the neutrinos, a procedure
which is equivalent to integrating out the heavy triplets
leading to the same mass formula. Third, the flavor chang-
ing neutral current due to the triplet is highly suppressed as
a result of the heaviness of the triplet mass scale, or
equivalently the smallness of the neutrino masses.
One can discuss now the baryon asymmetry generated

by leptogenesis. We show at present that even though the
neutrino Yukawa couplings are real it is possible to gen-
erate a baryon to photon density consistent with the ob-
servations. In fact, since the triplet �A can decay into
lepton pairs L	L
 and HH, it implies that these processes

violate total lepton numbers (by two units) and may estab-
lish a lepton asymmetry. As the universe cools further,
the sphaleron interaction [15] converts this asymmetry
into baryon asymmetry. At temperature of the order
maxfM1;M2g, the heaviest triplet would decay via lepton
number violating interactions. Nonetheless, no asymmetry
will be generated from this decay since the rapid lepton
number violating interactions due to the lightest Higgs
triplet will erase any previously generated lepton asymme-
try. Therefore, only when the temperature becomes just
below the mass of the lightest triplet Higgs the asymmetry
would be generated.
With just one triplet, the lepton asymmetry will be

generated at the two loop level and it is highly suppressed.
We justify this in that one can always redefine the phase of
the Higgs field to make the � real resulting in the absorp-
tive part of the self-energy diagram becoming equal to
zero. The choice of having more than one Higgs triplet is
necessary to generate the asymmetry [16]. In this case, the
CP asymmetry in the decay of the lightest Higgs triplet
(which we choose to be �1) is generated at the one loop
level due to the interference between the tree and the one
loop self-energy diagram6 and it is given by

�CP � � 1

8�2

Im½�1�
�
2 Trð
1
2yÞ�
M2

2

M1

�1

; (93)

where �1 is the decay rate of the lightest Higgs triplet and it
is given by

�1 ¼ M1

8�

�
Trð
1y
1Þ þ �2

1

M2
1

�
: (94)

If we denote the phases of Aa � Ba, Aa þ Ba, �a by 	a,

a, �a (a ¼ 1; 2), respectively, then by redefining the
fields, �a ! e�i	a�a, one can remove the phases 	a in
the Yukawa couplings. For �a � M�a

	 1013 GeV,

a ¼ 1; 2 (which give a neutrino masses in the sub-eV
range) we get

6There is no one loop vertex correction because the triplet
Higgs is not self-conjugate.
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�CP � � 1

�

2jA1 � B1kA2 � B2j sinð�1 ��2Þ þ jA1 þ B1kA2 þ B2j sinð�1 ��2 þ 
1 � 
2Þ
1þ 2jA1 � B1j2 þ jA1 þ B1j2

; (95)

Note that even if Aa ¼ Ba, so that to kill the first term in the
numerator, the CP violation responsible of the lepton
asymmetry still depends on the relative phases between
�1, �2 and/or ðAþ BÞ1, ðAþ BÞ2.

The baryon to photon density is approximately given by

�B � nB
s

¼ 1

3
�L ’ 1

3

1

g�
��CP; (96)

where g� 	 100 is the number of relativistic degrees of
freedom at the time when the Higgs triplet decouples from
the thermal bath and � is the efficiency factor which takes
into account the fraction of out of equilibrium decays and
the washout effect. In the case of strong washout, the
efficiency factor can be approximated by (H is the
Hubble parameter)

� ’ H

�1

ðT ¼ M1Þ: (97)

With the above numerical values and with an efficiency
factor of order 10�4, we get, for 
1 ¼ 
2, a baryon asym-
metry:

�B � 10�7 Trð
1
2yÞ
Trð
1y
1Þ þ 1

sinð�2 ��1Þ: (98)

Thus, one can produce the correct baryon-to-photon ratio
of �B ’ 10�10 by choosing 
’s of order 0.1 and not too
small relative phase between �1 and �2.

IX. SUMMARYAND CONCLUSIONS

We presented here a method to find the most general
symmetry implementing the form invariance property sat-
isfied by the neutrino mass matrix. Applying the method
for the tripartite model with two degenerate masses, we
found the underlying symmetry to be the Abelian group

Uð1Þ, which may possibly be enlarged to be Uð1Þ � Z2,
and we have given a realization of it. The symmetry can be
implemented in a complete setup including charged lep-
tons, and we presented some models to account for the
lepton mass hierarchies and the possibility of baryogenesis
through leptogenesis.
It is important to note that in the seesaw models we

presented, the renormalization group equations (RGE) ef-
fects may become important especially for the degenerate
mass case. Actually, since the seesaw mechanism (for both
types I and II) occurs at very high scale, the radiative
corrections of the neutrino mass matrix parameters could
have important effects on the lepton mixing matrix and
neutrino masses [17]. In [18], it has been shown that, in the
minimal supersymmetric standard model, the effects of the
RGE to the tri-bimaximal model can be sizable. However,
in the nonsupersymmetric extension of the SM (which is
the case in this paper) with a right-handed neutrino or Higgs
triplet, the effect of the RGE is suppressed in the case of a
hierarchy or inverted hierarchy, and within the currently
allowed range for the case of quasidegenerate spectrum
with masses of order (or smaller) than 0.1 eV [19].
The setup as a whole can be seen as a first step approxi-

mation, which can be perturbed, with a breaking scale
proportional to C� and so to the neutrino mass splitting
[Eqs. (12) and (13)], so that to lead to tripartite model
without degeneracy.
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