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We comment on Weinberg’s interesting analysis of asymptotically safe inflation [S. Weinberg, Phys.

Rev. D 81, 083535 (2010).]. We find that even if the gravity theory exhibits an ultraviolet fixed point, the

energy scale during inflation is way too low to drive the theory close to the fixed point value. We choose the

specific renormalization group flow away from the fixed point towards the infrared region that reproduces

the Newton’s constant and today’s cosmological constant. We follow this renormalization group flow path

to scales below the Planck scale to study the stability of the inflationary scenario. Again, we find that some

fine-tuning is necessary to get enough e folds of inflation in the asymptotically safe inflationary scenario.
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I. INTRODUCTION: Among all the approaches to
realize quantum gravity, the asymptotic safety of gravity
[1,2] is a brilliant approach, in which the unltraviolet (UV)
behavior of the theory is controlled by a non-Gaussian
fixed point (NGFP) of the renormalization group (RG)
flow, with a finite dimensional critical surface of trajecto-
ries attracted to the UV fixed point. Recently, this scenario
has received increasing attention due to the mounting
evidence that such a fixed point exists in the UV, and the
critical surface turns out to be three-dimensional [3–6].

A natural area to apply asymptotically safe gravity is the
early universe [7]. Recently, the interesting idea of asymp-
totically safe inflation was investigated by Weinberg in
Ref. [8]. Starting with a general covariant theory of gravi-
tation, Weinberg showed that such a theory allows de Sitter
space as a solution to its classical gravitational field equa-
tions. Including time dependence in the Hubble parameter
naturally introduces instabilities in the de Sitter solution
that can terminate inflation. Assuming the theory is at the
fixed point during inflation, and using the known numerical
values for the couplings at the fixed point, Weinberg con-
cludes that, in the absence of some fine-tuning, in some
known examples with asymptotic safety, inflation ends
prematurely without enough number of e folds achieved.

In this paper, we assume the gravity theory not only has a
fixed point in the UV, but also reproduces today’s Newton’s
constant and the cosmological constant (as the dark energy)
in the IR. That is, the renormalization group trajectory that
fits the IR data flow to a fixed point in the UV. If this
assumption does not hold, the whole idea of asymptotic
safety does not describe nature and so is irrelevant for
the cosmology of our Universe. Under this assumption,
we reexamine Weinberg’s analysis. We find that even if
the theory admits a non-Gaussian fixed point in the UV, the
energy scale generically has to be above the reduced Planck
scalempl in order for the coupling constants to approach the

fixed point. However, inflation proceeds at a much lower
energy scale, where the Hubble parameter H� 10�5mpl

and the values of the coupling parameters can be quite
different from the fixed point values; this may make a

difference in terms of how many e folds of inflation one
gets. By solving the RG equations, we determine how the
couplings flow away from the fixed point, as the energy is
lowered below the Planck scale. In the infrared (IR), we use
the known experimental values, namely, the Newton’s con-
stant GN and the cosmological constant � as well as con-
straints on higher order terms, to determine the particular
RG trajectory in the critical surface that flows away from
the UV fixed point towards the IR. Along this trajectory at
H=mpl � 10�5, we find that fine-tuning is still needed to

achieve enough e folds before instability sets in. Compared
with Ref. [8], the fine-tuning we find depends on the ratio
H=mpl, but is insensitive to the values of couplings at the

fixed point. This is the main point of this comment.
II. SETUP: We start with a general covariant action of

gravitation with higher-derivative terms as in Ref. [8],

S ¼ �
Z

dx4
ffiffiffiffiffiffi
jgj

q
½g0�4 þ g1�

2Rþ g2aR
2

þ g2bR��R
�� þ � � ��; (1)

where� is the cutoff scale of the theory. We have extracted
powers of � explicitly to make the coupling constants gi
dimensionless. The dependence of gi on� is suppressed in
the notation. In principle, matter fields and all higher-
derivative terms are there from an effective field theory
point of view. The running of the couplings gi satisfy the
RG equations of the form

�
dgi
d�

¼ �iðgjÞ: (2)

In order for gið�Þ to approach a fixed point g�i as� ! 1, it
is necessary that �iðg�j Þ ¼ 0.

III. ASYMPTOTICALLY SAFE INFLATION: With
rotational and translational symmetries, we start with the
flat space Friedmann-Robertson-Walker metric

ds2 ¼ �dt2 þ a2ðtÞdx2i :
The classical gravitational field equation can be solved
through the single equation
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N ð�; tÞ ¼ 0; (3)

N ð�; tÞ � �g0 � 6��2g1H
2 ���4g2að216H2 _H

� 36 _H2 þ 72H €HÞ þ��4g2bð72H2 _H

� 12 _H2 þ 24H €HÞ þ � � � : (4)

To search for de Sitter solutions, we specify the scale
factor

aðtÞ ¼ expð �HtÞ (5)

with �H the constant Hubble parameter. We see that

�H

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� g0
6g1

s
(6)

is a solution of the classical field equation N ð�; tÞ ¼ 0.
The Hubble scale is determined by the value of the cou-
pling constants g0 and g1.

We now discuss how inflation can end in the asymptoti-
cally safe scenario. So far we have only considered the
Hubble parameter to be a time independent constant.
Including the time dependence, we can write

HðtÞ ¼ �H þ �HðtÞ: (7)

If there exists an unstable mode, then �HðtÞ will grow, thus
ending inflation.

With a time dependent HðtÞ,N ð�; tÞ ¼ 0 now requires
that

c0ð�; �HÞ�H�H þ c1ð�; �HÞ� _H
�H2

þ c2ð�; �HÞ� €H
�H3

þ � � � ¼ 0

with ci’s Taylor expansion coefficients of N ð�; tÞ around
�H, whose forms are worked out in Ref. [8].
If we schematically write �HðtÞ � expð� �HtÞ, we get

c0 þ c1�þ c2�
2 þ � � � ¼ 0: (8)

Roots with Reð�Þ> 0 will represent instabilities of the
solution, and de Sitter expansion will only last for
1=Reð�Þ e folds. If all the roots have Reð�Þ< 0, then
de Sitter expansion will be an attractor solution and, ignor-
ing the effect of the inflaton potential, inflation will last
forever.

IV. A SPECIFIC EXAMPLE: Consider the action

�
Z

d4x
ffiffiffiffiffiffi
jgj

q �
�2

gN
ð2��2 �RÞ þ 1

2s
C2 � !

3s
R2

�
: (9)

Here � is the energy scale, gN , �, !, s are dimensionless
parameters.R is the Ricci scalar, and C is the Weyl tensor.
We require s > 0 so that the Euclidean functional integral
is damping.

The � functions for s and ! are given by one-loop
perturbation theory [2],

�
ds

d�
¼ � 1

ð4�Þ2
133

10
s2; (10)

�
d!

d�
¼ � s

ð4�Þ2
�
5

12
þ 183

10
!þ 10

3
!2

�
; (11)

from which we notice that ! has a stable fixed point at

!� ¼ �0:0228 (12)

and s is asymptotically free.
As we approach the inflation energy scale, higher order

terms become important, and as we approach the Planck
scale, presumably all higher order terms can be relevant in
determining the existence and location of the UV fixed
point. Here we are interested only in gravity models with
asymptotic safety. Such models may consist of particular
sets of higher order terms as well as appropriate matter
fields. The flow of Newton’s constant and the cosmological
constant have been studied in special cases. For example, it
has been argued that there are singularities in the � func-
tion of the quadratically truncated theory terminating the
flow to the IR [2], which suggests that such truncated
models may not be sufficient to describe our Universe.
Here we start with today’s Universe, which is well
described by Einstein gravity, and assume asymptotic
safety. (Otherwise, asymptotic safety is irrelevant to our
Universe.) Our main concern is to illustrate how to flow
down from the Planck scale to the inflation energy scale,
and further to today’s Universe at 10�3 eV. We implicitly
assume that a truncated theory will give, within orders of
magnitude, approximately the same flow as the full theory.
Given the assumptions above, We simplify the problem

by fixing! ¼ !�, s ¼ 0 and consider the two-dimensional
flow of gN and � first. We write [9]

�
dgN
d�

¼ 2gN � �1g
2
N þOðg3NÞ; (13)

�
d�

d�
¼ �2�þ a1gN þ a2gN�þ a3g

2
N þOðg2N�Þ; (14)

where a1, a2, a3 are known coefficients at the fixed point,
which are functions of! and s. Setting! ¼ !� and s ¼ 0,
and using the analysis in Ref. [10], we have

�1 ¼ �a2 ¼ 2u�2
ð4�Þ2 ; a1 ¼ 2u�1

ð4�Þ2 (15)

with u�1 ¼ 1:38, u�2 ¼ 0:73. One should note that the rela-
tion �1 ¼ �a2 may not hold if one introduces matter fields
into the theory.
The RG flow can now be easily solved

� ¼ ð�=��Þ�4 þ u�1
2ð�=�0Þ�2 þ 2u�2

; (16)

gN ¼ ð4�Þ2 ð�=�0Þ2
1þ u�2ð�=�0Þ2

(17)

with �0 and �� free parameters.
So, in the UV limit � ! 1, gN and � flow to the fixed

point
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g�N
ð4�Þ2 ¼ 1

u�2
¼ 1:37; �� ¼ u�1

2u�2
¼ 0:95: (18)

In the IR limit � ! 0, the Einstein-Hilbert term in the
action (9) reads

�2

gN
ð2��2 �RÞ ¼ �4

� ��2
0R

ð4�Þ2 � m2
pl

�
��R

2

�
;

where we have demanded that

�2
0 ¼ 8�2m2

pl ¼
�

GN

; � ¼ �4
�

ð4�Þ2m2
pl

: (19)

The cosmological constant� contributes energy density
�m2

pl � 10�120m4
pl, which means for positive and small �,

the scale �� and �0 has to obey ��

�0
� 10�30.

V. THE HUBBLE SCALE DURING INFLATION:

Using Eq. (6), during inflation, we have H ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
�. At

the fixed point �� � 1, H ��. However, from observatio-
nal data, we are pretty confident that

H

mpl
� 1 ) � � �0:

Imposing H=mpl � 1 forces the theory to flow away from

the UV fixed point.
Since the theory cannot be at the fixed point during

inflation, we want to know how the coupling constants
depend on the ratio H=mpl. Away from fixed point, on

scales H0 � � & mpl (H0 being the Hubble constant

today), Eq. (16) gives

� � u�1
2

�
�

�0

�
2
; (20)

so we have

H �
ffiffiffiffiffi
u�1
6

s
�2

�0

;
H

mpl

� �

ffiffiffiffiffiffiffiffi
4u�1
3

s
�2

�2
0

��2

�2
0

: (21)

Using Eqs. (16) and (17), the coupling constants gN
and � are

� � u�1
2

H

mpl

; gN � ð4�Þ2 H

mpl

: (22)

In terms of the ratio H=�, we find that

H

�
� ffiffiffiffi

�
p �

ffiffiffiffiffiffiffi
H

mpl

s
� 1; (23)

so we are in a regime that higher derivatives terms beyond
those included in the action (9) are negligible.

VI. INSTABILITY OF DE SITTER SOLUTION: In
the absence of the four or higher order derivative terms in
the action (9), the de Sitter solution is stable. The presence
of appropriate matter fields will introduce a positive u�2 into
Eq. (13) so that gN has an UV fixed point. Introducing four
and higher order derivative terms into the action (9)

introduces instability to the de Sitter solution. A perturba-
tion to the de Sitter solution will grow, thus destabilizing
the inflationary phase.
To find the unstable mode to H, Eq. (8) reduces to

�2 þ 3�� A ¼ 0; A ¼ � 3s

2!�gN
: (24)

If A � 1, the two roots are � � �3 and � � A=3. The
negative � does not lead to any instability. If we pick � ¼
A=3, the de Sitter phase can last for 3=A e folds. For
inflation, we need A� 1=20.
Using Eqs. (12) and (22) for �, gN and !, we get

A� s

�
H

mpl

��2
: (25)

In order to get A� 1=20, we need, at the inflation energy
scale,

sð� ¼ HÞ & 10�1

�
H

mpl

�
2
:

For H ��0 �mpl, s can be of order unity. However,

for the realistic inflationary scenario, we require
H=mpl � 10�5; so s & 10�11, which is close to the bound

obtained by Weinberg [8].
The parameter s is asymptotically free,

s ¼ s0

��
1þ s0

133

160�2
lnð�=�sÞ

�
: (26)

The C2 term in the action (9) introduces a massive tensor
mode while theR2 term introduces a massive scalar mode.
They will modify the gravitational force which is well
checked up to distance as small as sub-milimeters. This
implies that the extra modes must be massive enough
(m> 10�3 eV) so these extra forces are Yukawa damped,
which goes like e�mr=r. Since m2 � s�2=gN , this implies
that

s > 10�60; (27)

where coincidentally, m * u�. So s & 10�11 is consistent
with the bound and may not be hard to arrange in the early
universe. It is not clear whether the exponentially small s is
a fine-tuning or not, since other than the bound (27), there
is no guiding principle for a natural value of s.
For s� 10�11 during inflation, the parameter s will

remain small for the whole energy range from �� to mpl,

due to its asymptotically free property. This justifies our
approximation to set s ! 0 in the flow equation. At the
same time, a tiny s parameter will ensure that the running
of ! is also small according to Eq. (11), which justifies
setting ! at its fixed point value !� in our analysis.
VII. THE ISSUE WITH THE GHOST POLE:

Because of the fourth derivative terms in the action (9),
the graviton propagator contains, in addition to the usual
massless graviton, a massive spin two particle of negative
residue, i.e. a ghost. The presence of the ghost leads to
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violation of unitarity and makes the theory inconsistent at
quantum level.

Let us first look at the scale of the ghost pole.
Schematically, the ghost propagator takes the form

�1

p2 �m2
2

; m2
2 ¼

s

gN
�2:

We now compare the ghost massm2 with the Hubble scale.

Since away from the fixed point, H=�� ffiffiffiffi
�

p
, we have

m2

H
�

ffiffiffiffiffiffiffiffiffi
s

gN�

s
: (28)

Note that the total number of e folds is

Ne ¼ 3

A
¼ �2!��gN

s
; (29)

and we therefore have

m2

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2!�

Ne

s
&

1

10
: (30)

We see that during inflation, the energy scale is above the
ghost mass, if the ghost is present at its naive value.

However, the presence of the ghost may be an artifact
of the truncation of the theory. If the theory is not trun-
cated, the propagator denominator could have nontrivial
forms which removes the ghost pole. The idea is to
absorb quadratic counterterms (those which contribute to
the propagator) by field redefinitions and include all (infi-
nitely many) counterterms generated in the bare action
[11]. Since the counterterms are all powers of H=�, the
classical solution we find above should still hold as long as
H=� � 1, which is imposed by observation.

Even if the theory is truncated, with running couplings,
it is not clear whether the tree level ghost pole will be hit or
not [5].

VIII. MATTER FIELDS: The ghost problem is totally
absent if the 4- and higher-derivative terms are not

introduced. In the Einstein gravity theory, gN has a UV
fixed point if there is an appropriate set of matter fields so
that �1 / 4nV þ 2nD � nS > 0 in Eq. (13), where nV
ðnD; nSÞ is the number of vector (Dirac, scalar) fields
[12]. In this simple example, the instability discussed
above is also absent so the ending of inflation in this
scenario follows from the properties of the inflaton poten-
tial. This is the standard scenario.
IX. POWER-LAW INFLATION: Instead of searching

for de Sitter solution, one can also consider power-law
expansion with aðtÞ � tpðp > 1Þ [13]. For a power-law
background, we expect that p * 100, so that the tensor
mode r ¼ 16=p satisfies the observational bound.
We use the action (9) for illustration. To analyze the

instability of the power-law solution, we need to expand
around �H ¼ p=t. The only difference is that �H ¼ p=t is
time dependent, so _H and €H cannot be ignored. The
resulting instability Eq. (8) has a positive root (leading
order in the large p limit)

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:51

H

mpl

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:37s

H=mpl

þ 0:51
H

mpl

s
: (31)

In reaching the above result, we have used Eq. (22) for the
couplings away from the fixed points.
If we take H=mpl � 10�5, we have

���0:002þ 0:002
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2:7	 109s

p
: (32)

We see that if during inflation s� 1, Ne � 1. To get
enough e folds, we need at least sð� ¼ HÞ & 10�7. This
requirement of an exponentially small s during inflation is
again tied to the ratio H=mpl � 1, and is insensitive to the

values of gN and � at the fixed points.
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